

Beyond naming: Assessing near and far transfer effects in bilingual aphasia following semantic feature-based treatment

Marissa Russell-Meill¹, Erin Carpenter¹, Manuel J. Marte¹, Michael Scimeca¹, Claudia Peñaloza^{2,3,4}, & Swathi Kiran¹

62nd Annual Meeting of the Academy of Aphasia October 18-20th, 2024 Nara, Japan

¹ Center for Brain Recovery, Boston University, MA, USA

²Department of Cognition, Development and Educational Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain

³Institute of Neurosciences, University of Barcelona, Barcelona, Spain

⁴Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain

Predicting Rehabilitation Outcomes for bilinguals with aphasia using Computational Modeling (PROCoM) Team

Swathi Kiran

Erin Carpenter

Manuel J. Marte

Michael Scimeca

Claudia Peñaloza

Risto Miikkulainen

Uli Grasemann

Disclosures

This work was funded by the NIH/NIDCD grant number U01DC014922 awarded to Swathi Kiran and Risto Miikkulainen

Marissa Russell-Meill, Erin Carpenter, Manuel J. Marte, and Michael Scimeca were partially supported by T32DC013017

Claudia Peñaloza was supported by grant RYC2021-034561-I funded by MCIN/AEI/10.13039/501100011033 and the European Union NextGenerationEU/PRTR

This study is registered at www.ClinicalTrials.gov, identifier: NCT02916524

Background

Background

Treatment-induced change following aphasia therapy

- Anomia is a hallmark deficit of aphasia
- Generalization → optimal aphasia therapy¹
 - Bilinguals have the potential for *cross-language generalization*²⁻⁵

Background Aims Methods Results Discussion

Treatment-induced change following aphasia therapy

Distant skill/domain

Closely related skill/domain

Trained skill/domain

Trained targets

Cognitive processing
Global language ability
Expressive language
Receptive language
Functional communication
Reading/writing

Semantic processing

Naming of untrained words

Naming of trained words

Anomia Treatment

1. Webster et al., 2015; 2. Faroqi-Shah et al., 2010; 3. Goral et al., 2023; 4. Lee & Faroqi, 2024; 5. Scimeca et al., 2023

Current work:

Measurement of cross-language and cross-domain generalization following semantic feature-based anomia therapy in bilingual aphasia

Semantic feature-based treatments (SFT) and patterns of transfer

Adapted from Costa, La Heij, & Navarrete (2006), framework of bilingual lexical access; Kiran et al., 2013

Background Aims Methods Results Discussion

Semantic feature-based treatments (SFT) and patterns of transfer

- Sustained attention to therapy tasks
- Executive functioning demands
- Auditory comprehension of instructions
- Sentence production

ckground Aims Methods Results Discussion

Following SFT, BWA will show:

- Direct transfer effects to untrained naming items
- Near transfer effects to untrained semantic processing tasks
- 3) <u>Far transfer</u> effects to broader linguistic and non-linguistic tasks

ackground Aims Methods Results Discussion

? Hypotheses

Following SFT, BWA will show:

- 1) <u>Direct transfer</u> effects to untrained naming items
- Near transfer effects to untrained semantic processing tasks
- 3) <u>Far transfer</u> effects to broader linguistic and non-linguistic tasks

Methods

- 48 Spanish-English BWA
- Received 40 hours of SFT in either Spanish or English

Participant demographics, language background, and treatment assignment

		, ,		,		_	
n = 48	Sex	Age	MPO	Education	L1	L2 Age of	Treatment
				(years)		Acquisition	language
	F = 19	53.84	47.35	13.98	Sp = 40	13.21	Sp = 28
	M = 29	(15.86)	(82.7)	(3.39)	Eng = 8	(11.09)	Eng = 20

Note. Values are presented as Mean (SD). MPO = Months post-onset; L1 = first acquired language; L2 = second acquired language; Sp = Spanish, Eng = English

Peñaloza, C., Dekhtyar, M., Scimeca, M., Carpenter, E., Mukadam, N., & Kiran, S. (2020). Predicting treatment outcomes for bilinguals with aphasia using computational modeling: Study protocol for the PROCoM randomised controlled trial. BMJ open, 10(11), e040495.

Methods

Assessments

Immediate effect	Direct transfer (untrained naming)	Near transfer (seman	tic processing)	Far transfer (broader language & cognitive skills)
1. Trained words (e.g., <i>celery</i>)	2. Untrained, related words (e.g., cabbage) 3. Untrained,	 Spoken/written word- picture matching 	carrot zanahoria	Western Aphasia Battery Aphasia Quotient (WAB-AQ)
	unrelated words (e.g., dog) Untrained translations of 1-3 (e.g., apio, repollo, perro)	 Auditory/written synonym judgment 	ocean sea	Raven's Coloured Progressive Matrices (RCPM)
		Word semantic association	comb door brush gate tweezers peine puerta cepillo entrada pinzas	
	Boston Naming Test (BNT)	 Pyramids and Palm Trees Test (PAPT) 		

ackground Aims Methods Results Discussion

Statistical Analyses

Data cleaning/organization

- Compiled pre and post treatment assessment scores
- Imputed < 10% of missing data (primarily post-treatment) using mice package in R¹

Linear mixed-effects models

- Score ~ timepoint + (1|participant)
- 16 models:
 - treated language assessments (7)
 - untreated language assessments (7)
 - nonverbal assessments (2)
 - Benjamini-Hochberg correction

1. Zhang, Z. (2016). Multiple imputation with multivariate imputation by chained equation (MICE) package. Annals of translational medicine, 4(2).

Results

Post-treatment

Directly trained words \rightarrow semantically unrelated words \rightarrow semantically related words

BNT: Significant improvement in both languages

% Accuracy

 Background
 Aims
 Methods
 Results
 Discussion

 Near transfer (semantic processing)

 Spoken Word Picture Matching

 Written Word Picture Matching

Timepoint

Post-treatment

Improvements in both languages:

- Spoken word-picture matching
- Written word-picture matching

ckground Aims Methods Results Discussion

Near transfer (semantic processing)

Post-treatment

Improvement in treated language only:

Word semantic association

comb

door brush gate tweezers

peine

puerta cepillo entrada pinzas

Background Aims Methods Results Discussion

Near transfer (semantic processing)

Timepoint

= = Post-treatment

No significant improvement:

- Auditory synonym judgments
- Written synonym judgments

ocean sea

océano mar

ckground Aims Methods Results Discussion

Near transfer (semantic processing)

Pyramids and Palm Trees

Timepoint

Post-treatment

No significant improvement:

- Auditory synonym judgments
- Written synonym judgments
- PAPT

Results Far transfer (broader language & cognitive skills) **Raven's Progressive Matrices WAB-AQ** 100 100 75 75 % Accuracy 50 50 25 25 Treated language Untreated language **WAB-AQ** Timepoint Significant changes in both languages **RCPM:** Post-treatment No significant change

Not significant

Discussion Immediate Direct transfer

cabbage)

(untrained naming)

2. Untrained,
related words (e.g.,

1. Trained words (e.g., celery)

3. Untrained, unrelated words (e.g., dog)

effect

- Untrained translations of 1-3 (e.g., apio, repollo, perro)
- Boston Naming Test (BNT)

- Significant gains in all word sets
 & BNT^{1,2}, aligns with spreading activation theory
- Improvement in semantically unrelated words > semantically related

1. Li & Kiran 2023; 2. Gilmore et al., 2020; 3. Collins & Loftus, 1975; 4. Dell, 1986; 5. Jeffries & Lambon Ralph, 2006; 6. Bihovsky et al., 2023

Discussion

Significant in both languages

Significant in one language

Not significant

Immediate effect (u

Direct transfer (untrained naming)

Near transfer (semantic processing)

Spoken/written wordpicture matching

 Auditory/written synonym judgment

océano mar

 Word semantic association comb door brush gate tweezers

puerta cepillo entrada pinzas

 Pyramids and Palm Trees Test (PAPT)

- Improvement in tasks involving mapping lexical forms to visual semantic referents (e.g., word-picture matching)
- No improvement in tasks demanding greater cognitive resources (e.g., synonym judgments, PAPT⁵)

1. Li & Kiran 2023; 2. Gilmore et al., 2020; 3. Collins & Loftus, 1975; 4. Dell, 1986; 5. Jeffries & Lambon Ralph, 2006; 6. Bihovsky et al., 2023

ackground Aims Methods Results Discussion

Discussion

Significant in both languages

Significant in one language

Not significant

Immediate effect

Direct transfer (untrained naming)

Near transfer (semantic process

- Improvement in overarching language function^{1,2,6}
- No improvement in domaingeneral cognitive skills^{1,2}
- Effects of SFT may be specific to linguistic and semantic domains

Far transfer (broader language & cognitive skills)

- Western Aphasia
 Battery Aphasia
 Quotient (WAB-AQ)
- Raven's Coloured Progressive Matrices (RCPM)

1. Li & Kiran 2023; 2. Gilmore et al., 2020; 3. Collins & Loftus, 1975; 4. Dell, 1986; 5. Jeffries & Lambon Ralph, 2006; 6. Bihovsky et al., 2023

ackground Aims Methods Results Discussion

Following SFT, BWA will show:

- <u>Direct transfer</u> effects to untrained naming items
- Near transfer effects to untrained semantic processing tasks
- Far transfer effects to broader linguistic and non-linguistic tasks

Treated language

Untreated language

Conclusions and future directions

Improvement in untrained words and language abilities beyond naming

Cross-language generalization

Transfer effects appear to be domainspecific

Future research:

- Wider range of measures
- Intervention and patient-level predictors of generalization

Acknowledgements

- Participants and their families
- NIH/NIDCD U01 DC014922; PI: Swathi Kiran
- PROCoM Team
- Center for Brain Recovery

