BOSTON UNIVERSITY

Using Unsupervised Dimensionality Reduction to Identify Lesion Patterns Predictive of Post-**Stroke Aphasia Severity**

Emerson Kropp*, Maria Varkanitsa¹, Nicole Carvahlo¹, Isaac Falconer², Anne Billot^{3,4}, Mohammad Al-Dabbagh¹, and Swathi Kiran¹ ¹Center for Brain Recovery, Boston University, Boston, MA, United States, ³Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA, United States, ⁴Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA, United States

-Introduction-

- Voxel-based methods traditionally used to identify brain regions associated with language + other behavioral functions
- Can predict specific deficits (eg auditory processing), but struggle to predict overall language impairment¹
- Often overfit to regions closer to vasculature² and do not represent realistic patterns of damage across the brain
- Impairment is not the sum of damage to individual regions
- Large left hemisphere measures (eg lesion volume) correlate more with general language ability, but are too broad for accurate predictions

Non-Negative Matrix Factorization (NMF)

- Dimensionality reduction method similar to PCA, but non-negativity constraint ensures parts-based representation of data interpretable in terms of the original variables
- Can apply to lesion data to identify prototypical stroke patterns across patients^{3,4,5}
- NMF atoms are more anatomically relevant than voxel/region-wise analysis as it considers holistic patterns of damage across the brain

AIMS

1. Determine whether NMF representations of lesion information can better predict overall aphasia severity (WAB-R AQ)⁶ 2. Identify which characteristics of stroke patterns are most associated with broad language deficits

	Variable	$Mean~(\pm SD)$	Range
107 left	WAB-R AQ	74.12 ± 22.25	11.7-100
hemisphere stroke	Age	58.64 ± 11.23	18 - 83
patients with	Months Post Onset	66.24 ± 69.89	3 - 539
aphasia (76 male)	Years of Education	15.89 ± 2.43	12-22
	Lesion Volume (cm^3)	136.95 ± 98.68	2.03 - 389.41

<u>References</u>

¹Thye & Mirman (2018). Relative contributions of lesion location and lesion size to predictions of varied language deficits in post-stroke aphasia. *NeuroImage: Clinical*, 20, 1129–1138.

²Mah et al. (2014). Human brain lesion-deficit inference remapped. *Brain*, 137(9), 2522–2531.

³Bonkhoff et al. (2021). Generative lesion pattern decomposition of cognitive impairment after stroke. Brain Communications, 3(2). ⁴Bonkhoff et al. (2022). Association of stroke lesion pattern and white matter hyperintensity burden with stroke severity and outcome. *Neurology*, 99(13).

Structural MRI + WAB-R AQ Acquisition

Data Collection and Preprocessing

Lesion masking, preprocessing, and registration to MNI space

⁵Kernbach et al. (2023). Bayesian stroke modeling details sex biases in the white matter substrates of aphasia. *Communications Biology*, 6(1), 1–17. ⁶Kertesz (2006). Western Aphasia Battery—Revised (WAB-R). APA PsycTests. ⁷Rolls et al. (2020). Automated anatomical labelling atlas 3. *NeuroImage*, 206, 116189. ⁸Rojkova et al. (2016). Atlasing the frontal lobe connections and their variability due to age and education: A spherical deconvolution tractography study. Brain Structure & *Function*, 221(3), 1751–1766. ⁹Kim & Tidor (2003). Subsystem Identification Through Dimensionality Reduction of Large-Scale Gene Expression Data. *Genome Research*, 13(7), 1706–1718.

Funding:

Center for Brain Recovery, Sargent College. This study has been supported by the National Institutes of Health/National Institute on Deafness and Other Communication Disorders (Grant/Award Numbers: R01-DC016950 and P50-DC012283).

<u>Correspondence</u> Emerson Kropp ekropp@bu.edu

