


# Investigating the Neural Bases of Language and Cognitive Processing in Healthy Adults Using Functional Near-Infrared Spectroscopy Natalie Gilmore, Xinge Li, Meryem Yucel, Swathi Kiran & David Boas

College of Health & Rehabilitation Sciences: Sargent College

**Boston University** 

https://doi.org/10.1117/1.NPh.2.2.020801

Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial. Neurophotonics, 2(2)

#### **INTRODUCTION**

- Language processing recruits a rich network of frontal, temporal and parietal brain areas.
- Domain-general cognitive control is supported by frontal and parietal regions.
- These areas are often damaged after brain injury, leading to language and cognitive impairment.
- Neuroimaging can be used to study neuroplasticity associated with recovery.
- Magnetic resonance imaging (MRI) may be contraindicated in individuals with brain injury (e.g., ferrous material).
- Functional near-infrared spectroscopy (fNIRS) can circumvent these challenges.<sup>1</sup>

## **STUDY AIM**

To investigate brain regions recruited by healthy individuals during language and cognitive tasks via fNIRS

4. High & low band pass filtering

6. GLM  $\rightarrow$  hemodynamic response

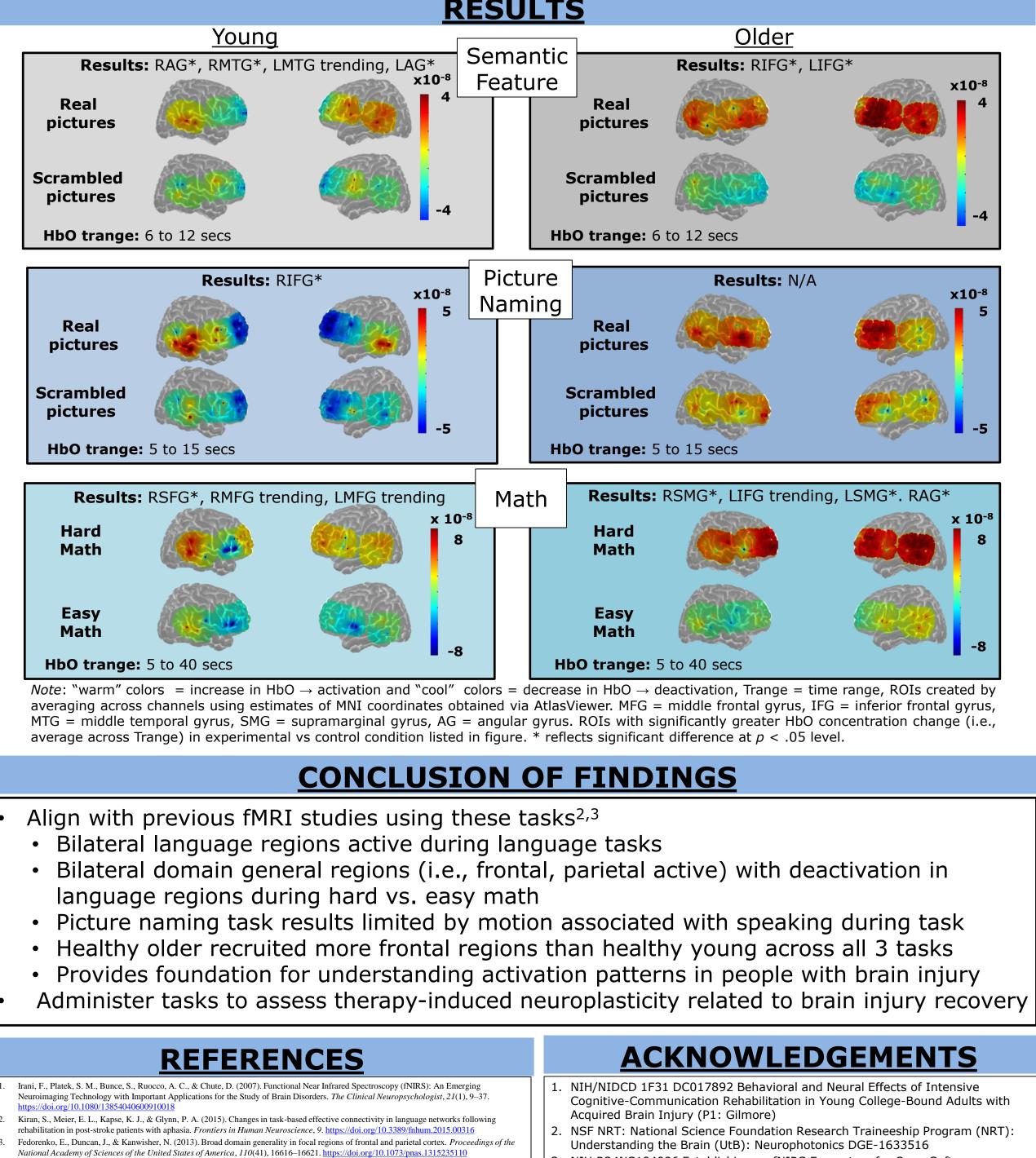
5. OD  $\rightarrow$  concentration  $\Delta$  in hemoglobin

7. Paired t-tests comparing concentration

changes in oxygenated hemoglobin

(HbO; averaged across peak time

range) across two task conditions


within regions of interest (ROIs)

### PARTICIPANTS

|                                                                                                             |                                        |                  |                                       |                                                                                                          | 1                |                                                       |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------|
| Twenty-nine                                                                                                 | Group                                  | Mean<br>Age      | Sex                                   | Handed-<br>ness                                                                                          |                  | M                                                     |
| healthy controls<br>recruited from                                                                          | Younger $(n = 20)$                     | 25               | 8 M                                   | 19 RH                                                                                                    |                  | HbC<br>Note:                                          |
| greater Boston.                                                                                             | Older $(n = 9)$                        | 65               | 5 M                                   | All RH                                                                                                   |                  | averag<br>MTG =<br>averag                             |
| <u> </u>                                                                                                    | METH                                   | <u>ODS</u>       | -                                     | -                                                                                                        |                  |                                                       |
|                                                                                                             | Igths<br>Picture Nation<br>35 items/co | ndition<br>Block | 32 ite<br>4 sec - 17 + 7<br>Press '1' | <ul> <li>16 sources</li> <li>16 sources</li> <li>32 detecto</li> <li>24 long</li> <li>8 short</li> </ul> | asy <sup>*</sup> | Aligi<br>• B<br>• B<br>la<br>• P<br>• H<br>• P<br>Adr |
| PRE-PROCESSING & ANALYSIS VISUALIZATION                                                                     |                                        |                  |                                       |                                                                                                          |                  |                                                       |
| 1. Pruned channels with poor<br>2. Raw fNIRS $\rightarrow$ optical densit<br>3. Motion detection & correcti | ty (OD)                                | landma           | arks with                             | reference<br>Polhemus digiti<br>rks to brain atla                                                        |                  | Ironi E. Diotok                                       |

- 2. Register landmarks to brain atlas & probe to subjects' head surfaces
- 3. Project probe to brain atlas  $\rightarrow$  MNI
- coordinates for sources/detectors 4. Generate HbO overlay from group results

Note: Data processed/analyzed in Homer2<sup>4</sup> visualized with AtlasViewer<sup>5</sup> & statistics conducted in MATLAB.



**BU** Neurophotonics Center

RESULTS

| <b>REFERENCES</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>ACKNOWLEDGEMENTS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Irani, F., Platek, S. M., Bunce, S., Ruocco, A. C., &amp; Chute, D. (2007). Functional Near Infrared Spectroscopy (fNIRS): An Emerging<br/>Neuroimaging Technology with Important Applications for the Study of Brain Disorders. <i>The Clinical Neuropsychologist</i>, 21(1), 9–37.<br/>https://doi.org/10.1080/13854040600910018</li> <li>Kiran, S., Meier, E. L., Kapse, K. J., &amp; Glynn, P. A. (2015). Changes in task-based effective connectivity in language networks following<br/>rehabilitation in post-stroke patients with aphasia. <i>Frontiers in Human Neuroscience</i>, 9. https://doi.org/10.3389/fnhum.2015.00316</li> <li>Fedorenko, E., Duncan, J., &amp; Kanwisher, N. (2013). Broad domain generality in focal regions of frontal and parietal cortex. <i>Proceedings of the</i><br/><i>National Academy of Sciences of the United States of America</i>, <i>110</i>(41), 16616–16621. https://doi.org/10.1073/pnas.1315235110</li> <li>Huppert, T. J., Diamond, S. G., Franceschini, M. A., &amp; Boas, D. A. (2009). HomER: A review of time-series analysis methods for near-infrared<br/>spectroscopy of the brain. <i>Applied Optics</i>, <i>48</i>(10), D280. https://doi.org/10.1364/AO.48.00D280</li> <li>Aasted, C. M., Yücel, M. A., Cooper, R. J., Dubb, J., Tsuzuki, D., Becerra, L., Petkov, M. P., Borsook, D., Dan, I., &amp; Boas, D. A. (2015).</li> </ul> | <ol> <li>NIH/NIDCD 1F31 DC017892 Behavioral and Neural Effects of Intensive<br/>Cognitive-Communication Rehabilitation in Young College-Bound Adults with<br/>Acquired Brain Injury (P1: Gilmore)</li> <li>NSF NRT: National Science Foundation Research Traineeship Program (NRT):<br/>Understanding the Brain (UtB): Neurophotonics DGE-1633516</li> <li>NIH R24NS104096 Establishing an fNIRS Ecosystem for Open Software-<br/>hardware Dissemination</li> </ol> |