

Effect of Chinese Verb Network Strengthening Treatment (VNeST) in Mandarin-English Bilinguals with Aphasia

Ran Li¹, Wen Li², and Swathi Kiran¹

¹Sargent College of Health & Rehabilitation Sciences, Boston University ²Wheelock College of Education and Human Development, Boston University

Introduction

- Bilingual aphasia: the loss of skills in one or both languages due to brain injury (e.g., stroke, TBI, etc.).
- Challenges in bilingual aphasia treatment:
 - Clinicians do not always speak both languages that a patient speaks
 - Most prior research has focused on Indo-European languages (e.g., Edmonds & Kiran, 2006)
- Cross-language generalization: mixed findings (Kohnert, 2009).
- Limited models in bilingual verb access.
- Verb Network Strengthening Treatment (VNeST; Edmonds et al., 2009; Edmonds & Babb, 2011)

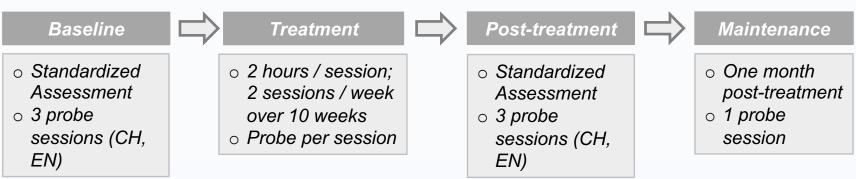
Figure 1. Schema of hypothesized mechanism of VNeST treatment in Mandarin-English Bilinguals with Aphasia.

Current Study

To adapt VNeST in Mandarin Chinese, and investigate whether training in Chinese VNeST will:

- Improve lexical retrieval of trained items
- Generalize to untrained items in the trained language (within-language)
- Generalize to the untrained language (cross-language)
- Generalize to other standardized language tasks
- Change speech error patterns over time

Methods Participants


Pt	Aphasia Type	AOS	Sex	Age (yrs)	Edu (yrs)	MPO	Handed- ness before	L2 AoA	Proficiency (%)		Language Use (%)	
							stroke	(yrs)	СН	EN	СН	EN
1	Broca	Moderate	F	73	18	86	R	16	100	100	4	96
2	Anomic	N/A	М	71	20	140	R	10	100	100	33	67
AOS: Apraxia of Speech; MPO: months post onset; R: Right; AoA: age of acquisition; CH: Chinese; EN: English												

Standardized Language Assessments

Chinese Ass	sessments	P1	P2	English Asse	essments	P1	P2
ABC AQ		38.2	80.8	WAB AQ		52.6	89.9
BNT (30)		2	21	BNT (60)		8	47
Connected Speech	Total # of Utterance/MLU	3/2.7	6/9	Connected Speech (picnic scene)	Total # of Utterance/MLU	11/2.3	5/7.4
(picnic scene)	% CIU/CIU per min	60/5	89/48		% CIU/CIU per min	68/8	94/60
	% complete utterance	0	83		% complete utterance	0	100
NAVS (VNT + ASPT Total)		N/A	N/A	NAVS (VNT + ASPT Total)		12	44
CLQT (comp	oosite)	N/A	N/A	CLQT (composite)		2.6	3.2

ABC AQ: Aphasia Battery in Chinese Aphasia Quotient (Gao, 1993); WAB AQ: Western Aphasia Battery-R Aphasia Quotient (Kertesz, 2006); BNT: Boston Naming Test (Kaplan et al., 2001; Chen et al., 2014); NAVS: Northwestern Assessment of Verbs and Sentences (Thompson, 2011); VNT: Verb Naming Test; ASPT: Argument Structure Production Test; CLQT: Cognitive Linguistic Quick Test (Helm-Estabrooks, 2001); MLU: mean length of utterance; CIU: content information unit.

Treatment Protocol (Over Video-Conference)

Treatment Stimuli

- 18 pairs of semantically-related, singlecharacter, transitive Chinese verbs
- Matched for: word frequency, imageability, familiarity, number of characters/syllables (Coltheart 1981; Liu et al., 2007).

Probe Tasks

Control task n = 10

Treatment Steps

Step 1: Generate scenarios around the target Step 4: Make semantic judgments on verb

sentences Step 5: Produce target verb independently

Step 2: Participants read the triads aloud

Step 3: Expand one scenario with *wh*questions (i.e., when, why, where)

cues

- **Treatment Fidelity Check**
- Conducted by 2nd author 25% of treatment protocol (P1: 94%; P2: 100%)
- 25% of probe response accuracy (P1: 99%; P2: 94%)

Scoring for correct response

- Correct agent, verb, and patient One phonemic error per lexical item
- Appropriate alternative agent/patient

Step 6: Repeat Step 1 without providing

• One prompt for general word (e.g., woman, man)

Data Analysis

Treatment Outcomes

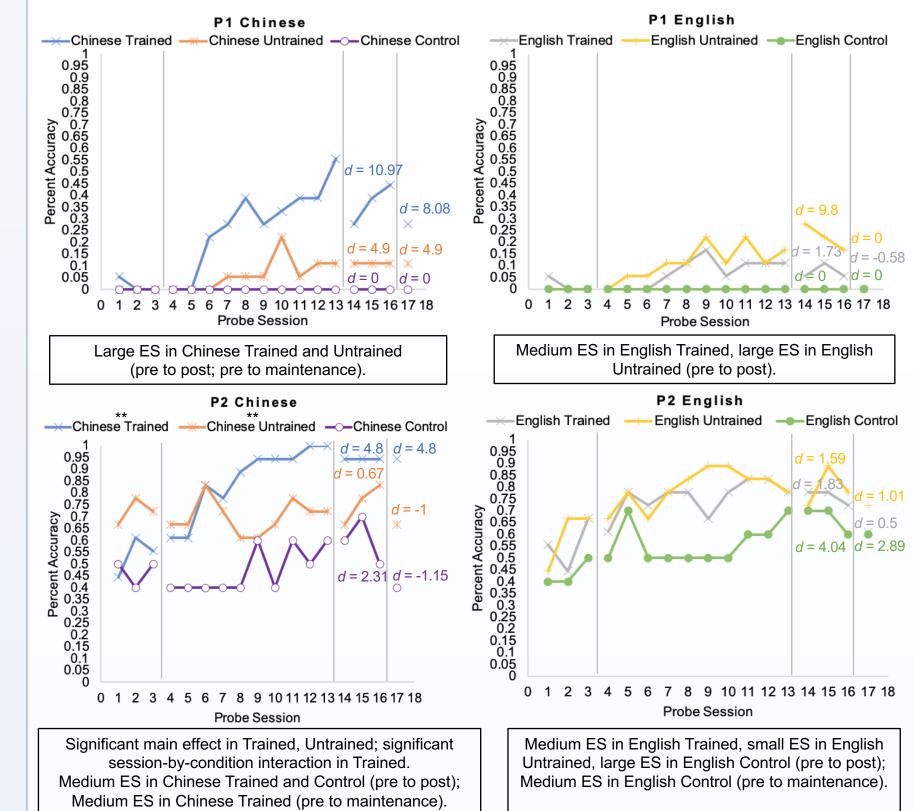
- Logistic regression (P1); Logistic mixed-effects model (P2)
- Dependent variable: response accuracy (0, 1) Independent variables:
- - Sentence conditions: Chinese trained, Chinese untrained, English trained, English untrained, Chinese control, English control
 - Number of probe sessions
 - Session-by-condition interaction
- Random intercept: probe items
- Treatment effect sizes (ES): $d = (M_2 M_1)/\sigma_1$ (if pre-treatment was 0, pooled SD from the trained and untrained scores was used)
 - Pre- to post-treatment
 - Pre-treatment to maintenance

Error Analysis

Error coding: 1) Phonological; 2) Semantic; 3) Morphosyntactic; 4) Neologism; 5) Lexical; 6) No response (NR); 7) Cross-language.

Statistical analysis:

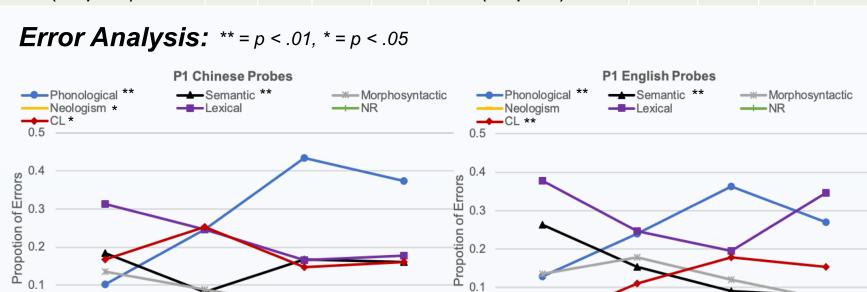
		Poisson mixed-effects model	Linear mixed-effects model				
De	ependent Variable	Count of speech errors (non-NRs)	Rating scores (rating scale)				
	dependent iriables	Session, Type of errors, Sentence condition, Session-by-type, Session-by-condition	Session, Sentence condition, Session-by-condition				
Ra	andom Structure	Items	Items				

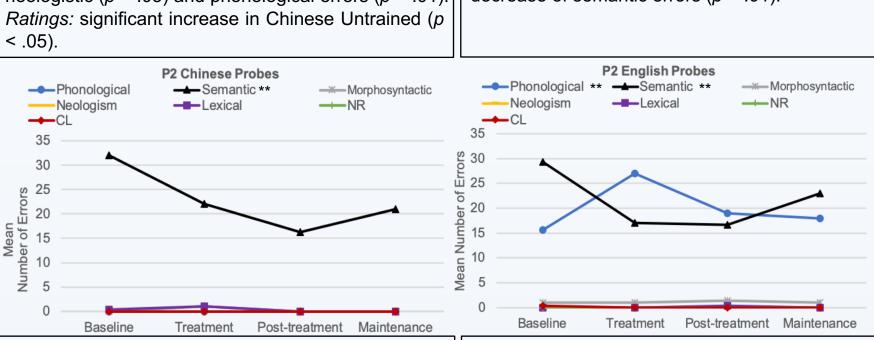

Connected speech

- % CIU and CIUs/minute (Nicholas & Brookshire, 1993)
- Total number of utterances; mean length of utterances
- % of complete utterance (<u>+</u> complete, <u>+</u> relevance)

Results

Treatment outcomes:


ES (d) benchmarks (Edmonds et al., 2014) Trained: 2.3 (small), 3.7 (medium), 5.5 (large); Generalizations: 1.2 (small), 1.7 (medium), 3.3 (large); ** = p < .01.


Pre- and Post-treatment language measures:

CS: Connected Speech; ABC: Aphasia Battery of Chinese; AQ: Aphasia Quotient; BNT: Boston Naming Test; NAVS: Northwestern Assessment of Verbs and Sentences; VNT: Verb Naming Test; ASPT: Argument Structure Production Test; CLQT: Cognitive Linguistic Quick Test; MLU: mean length of utterance; CIU: content information unit.

Chinese Assessments		P1		P2		Eng	English Assessments		P1		P2	
		Pre	Post	Pre	Post			Pre	Post	Pre	Post	
ABC AQ		38.2	46.8	8.08	83.7	WAB AQ		52.6	54.4	89.9	92.4	
BNT (30)		2	2	21	22	BNT (60)		8	14	47	47	
cs	Total # of Utterance/MLU	3/2.7	8/1.4	6/9	6/8	CS	Total # of Utterance/MLU	11/2.3	14/2.7	5/7.4	5/9.4	
	% CIU/CIU per min	60/5	46/6	89/48	96/46		% CIU/CIU per min	68/8	46/4	94/60	86/37	
	% complete utterance	0	0	83	67		% complete utterance	0	36	100	100	
NAVS (VNT + ASPT Total)		N/A	N/A	N/A	N/A	NAVS (VNT + ASPT Total)		12	17	44	46	
CLQT (composite)		N/A	N/A	N/A	N/A	CLQT (composite)		26	3.2	3.2	3.8	

Significant increase of cross-language (p < .01) Significant decrease of cross-language (p < .05) and semantic errors (p < .01); significant increase of and phonological errors (p < .01); significant decrease of semantic errors (p < .01). neologistic (p < .05) and phonological errors (p < .01)

Significant decrease of semantic errors in the trained condition over time (p < .01). Ratings: significant increase in Chinese Trained (p <

.01).

More phonological and semantic errors (p < .01) Ratings: Significant increase in English Trained (p < .05).

Discussions & Future Directions

- Training Chinese verbs in sentence context generalized to untrained semanticallyrelated verbs in Chinese (Edmonds et al., 2009).
- Training Chinese verbs in sentence context improved verb retrieval in English, which was the untrained language.
- Both patients improved in other standardized language measures, in both Chinese and English.
- Increase of cross-language errors in P1's untrained language.
- Decrease of semantic errors over time; Change from more severe to less severe speech errors over time in both Chinese and English.
- Effective in patients with different aphasia severities (Edmonds & Babb, 2011).
- VNeST can be delivered online via video-conference.

& Babb, M. (2011). Effect of verb network strengthening treatment in moderate-to-severe aphasia. American Journal of Speech-Language Pathology, 20(2), 131–145. Edmond, L. A. Nadeau, S., Kiran, S. (2009), Effect of VNeST on Lexical Retrieval of Content Words in Sentences in Persons with Aphasia, Aphasiology, 23(3), 402-424 (2009). Cross-language generalization following treatment in bilingual speakers with aphasia: A review. Seminars in Speech and Language, 30(3), 174–186. Research, 36(2), 338-350.

Acknowledgments

Study participants; Maria Varkanitsa from the BU Aphasia Research Laboratory for helping with drawing the probe stimuli. This work was funded by NIH/NIDCD 1U01DC014922 (PI: Dr. Swathi Kiran). This presentation was supported by 2019 NIDCD R13 conference grant awarded to the Academy of Aphasia (PI: Dr. Swathi Kiran).