
'

&

$

%

FPGA ACCELERATION OF MOLECULAR

DYNAMICS SIMULATIONS

YONGFENG GU

Dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

BOSTON

UNIVERSITY

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

FPGA ACCELERATION OF MOLECULAR DYNAMICS

SIMULATIONS

by

YONGFENG GU

B.S., Fudan University, 2000
M.S., Fudan University, 2003

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2008

Approved by

First Reader

Martin Herbordt, Ph.D.
Professor of Electrical and Computer Engineering

Second Reader

Roscoe Giles, Ph.D.
Professor of Electrical and Computer Engineering

Third Reader

Wei Qin, Ph.D.
Professor of Electrical and Computer Engineering

Fourth Reader

Sandor Vajda, Ph.D.
Professor of Biomedical Engineering

FPGA ACCELERATION OF MOLECULAR DYNAMICS

SIMULATIONS

(Order No.)

YONGFENG GU

Boston University, College of Engineering, 2008

Major Professor: Martin Herbordt, Ph.D.,
Professor of Electrical and Computer Engineering

ABSTRACT

While molecular dynamics simulations (MD) are a fundamental method for gaining the

understanding of chemical and biological systems, their computational cost is extremely

high: Simulating macromolecules requires thousands of node hours and cell-level systems

remain altogether out of reach. We address this issue by using an emerging mode of

high performance computing that is based on configurable logic in the form of Field Pro-

grammable Gate Arrays (FPGAs). The problem is that, while FPGAs have often delivered

100-fold speed-ups per node over microprocessor-based systems, the applications have gen-

erally been limited to those with small regular kernels operating on low-precision integer

data types. MD possesses neither. We address this problem by creating an explicitly

designed FPGA-coprocessor that can be integrated into generic commercially available

systems.

MD is an iterative technique: the forces on each particle are computed, then applied

using the equations of motion. We use standard partitioning by computing bonded forces,

motion updates, and bookkeeping on the host, while computing the remaining forces (which

dominate) on the FPGA accelerator. For the short-range forces we combine the following:

cell lists, systematically determined interpolation and precision, handling of exclusion, and

iii

support for models with large numbers of particles. This has required new microarchitec-

tures for the cell list processor and off-chip memory controller; and extensive experimen-

tation to explore the design space to optimize precision, interpolation order, interpolation

mode, table sizes, and simulation quality. To perform efficient and accurate numerical com-

putation on FPGA, we created a novel arithmetic mode that is tuned for computing high

order polynomial interpolation. For the long-range forces we use the multigrid method:

we show that this is an excellent match to FPGAs with the primary operations having

a favorable systolic structure and taking advantage of the large number of independently

addressable RAMs.

The significance of this work lies at several levels: the 5× to 10× acceleration of MD

production code while retaining simulation quality; the turings of algorithms for the FPGA;

the system integration; the new arithmetic mode; the numerous novel microarchitectures;

and the methods for optimizing MD implementations on FPGAs.

iv

Contents

1 Introduction 1

1.1 The Problem . 1

1.2 Molecular Dynamics Computations . 3

1.3 High Performance Computing With Accelerators 4

1.4 High End FPGAs as HPC Accelerators . 7

1.4.1 Hardware . 7

1.4.2 Programmability . 8

1.4.3 High Performance FPGA-Based Computing 9

1.4.4 High Performance Reconfigurable Computing Platforms 12

1.5 HPRC for MD . 12

1.6 Summary of Contributions . 16

1.6.1 Overview . 16

1.6.2 Acceleration of MD . 17

1.6.3 General Computation Models and Designs 19

1.7 Organization of the Rest Thesis . 19

2 Molecular Dynamics 21

2.1 Overview . 21

2.2 Basic Methods . 21

2.3 Fast MD Algorithms . 26

2.3.1 Non-bonded Force Evaluation . 26

2.3.2 Long Time Step Integrator . 33

2.4 MD Software Packages . 35

2.4.1 NAMD2 . 35

v

2.4.2 ProtoMol . 36

2.4.3 CHARMM and AMBER . 37

2.4.4 GROMACS . 37

2.5 Special Purpose Machines . 38

2.5.1 MD-GRAPE . 38

2.5.2 MD Engine and MODEL . 40

3 FPGA Acceleration of MD 42

3.1 FPGA Overview . 42

3.2 FPGA Design Flow . 44

3.3 High Performance Reconfigurable Computing 47

3.4 Computation Model . 48

3.5 Reconfigurable Computer Systems . 50

3.5.1 SGI RASC . 51

3.5.2 Cray XD1 and XT4 . 52

3.5.3 SRC MAP Station . 53

3.5.4 XtremeData XD1000 . 55

3.5.5 Annapolis Microsystems Plug-In Boards 57

3.5.6 Summary of Reconfigurable System Products 58

3.6 MD Related Work . 60

4 Algorithm Design Part 1: Short Range Forces 62

4.1 Numerical Computation of Complex Expressions 63

4.1.1 General Considerations . 63

4.1.2 Interpolation of r−x . 64

4.1.3 Computing the Coefficients . 69

4.1.4 Comparing the Interpolation Methods 73

4.1.5 Algorithm to Compute Interpolation Coefficients with Orthogonal

Polynomials . 74

vi

4.2 Semi Floating Point Numbering . 79

4.3 Simulation Quality - Precision vs. Accuracy 87

5 Algorithm Design Part 2: Long Range Forces 91

5.1 Multigrid Method . 91

5.2 Multigrid Method for the Coulomb Force Computation 95

5.3 Mapping Multigrid to FPGAs . 100

5.3.1 Overview . 100

5.3.2 Particle-Grid Converter . 101

5.3.3 Grid-Grid Convolver . 105

5.3.4 Interleaved Memory . 108

6 System Design 111

6.1 System Level Design and Operation . 112

6.1.1 Basic Issues . 112

6.1.2 Basic Operation . 112

6.1.3 Use of Reconfiguration . 115

6.1.4 Integration Into Production MD Systems 115

6.2 Short Range Non-bonded Force Coprocessor 116

6.2.1 Short Range Non-bonded Force Coprocessor Architecture 117

6.2.2 Non-bonded Force Exclusion . 122

6.2.3 Short Range Non-bonded Force Pipeline 126

6.2.4 Polynomial Interpolation Pipeline with Semi-FP 129

6.3 Multigrid Coprocessor for Coulomb Force 134

6.3.1 Multigrid Coprocessor Architecture 134

6.3.2 Implementation Consideration . 137

6.4 Supporting Large Simulations with Explicitly Managed Cache 138

6.4.1 Off-chip Memory Interface and Constrains 139

6.4.2 Coprocessor and Cache Interface . 140

vii

7 Validation and Performance 143

7.1 Experiment Platforms . 143

7.2 Simulation Quality Experiments . 145

7.3 Performance Experiments . 147

7.4 Detailed Analysis of Multigrid Coprocessor 151

8 Summary and Future Directions 158

8.1 Summary . 158

8.2 Future Directions . 160

8.2.1 Node Level Optimization . 160

8.2.2 System Level Parallelization . 161

References 163

viii

List of Tables

4.1 Trade-off between Interval Size and Interpolation Order 68

4.2 Relative Root Mean Square Error of r−7 with Orthogonal Polynomial Inter-

polation. 74

4.3 Relative Root Mean Square Error of r−7 with Taylor Polynomial Interpolation. 74

4.4 Relative Root Mean Square Error of r−7 with Hermite Polynomial Interpo-

lation. 74

4.5 Relative Root Mean Square Error of r−7 with Linear Polynomial Interpolation. 75

4.6 Resource Usage of Floating Point and LNS 83

4.7 Resource Usage of Different Components . 87

4.8 Latency of Various Components. 87

7.1 Profile of the 77K particle model simulation 147

7.2 Performance of Various Configurations . 149

7.3 Clock Period of Various Configurations . 150

7.4 Absolute Force Error . 152

7.5 Average Force Error . 153

7.6 Maximum Force Error . 154

7.7 Potential Energy Error . 154

7.8 Multigrid Coprocessor Profile . 154

7.9 Detail Characteristic of Multigrid Computation 155

ix

List of Figures

2·1 Two Phases of MD . 22

2·2 Lennard-Jones Potential . 24

2·3 Periodic Boundary Condition . 24

2·4 Stochastic Boundary Condition . 25

2·5 Cells in Two Dimensional Space . 27

2·6 Barnes-Hut Space Splitting . 28

2·7 Barnes-Hut Tree . 29

2·8 Multiscale Calculation for Multipole . 29

2·9 PME Steps . 32

2·10 Irregular Particle Pairs Partition Applied by CHARMM 37

2·11 System Level Block Diagram of MD-GRAPE 39

2·12 MD-GRAPE3 Chip Block Diagram . 40

3·1 Virtex-II Pro Generic Architecture Overview 44

3·2 FPGA Programmable Connection . 45

3·3 FPGA Design Flow . 46

3·4 SGI’s SA Brick . 51

3·5 SGI Software Architecture for RASC . 52

3·6 Cray XD1 Node . 53

3·7 XD1 Connection . 54

3·8 SRC MAP Configuration . 55

3·9 SRC MAP Box . 56

3·10 XD1000 BLOCK DIAGRAM . 57

3·11 Diagram of WildstarII-Pro PCI board . 59

x

4·1 Logarithmic Intervals for r−x Interpolation 67

4·2 Basic Monomials . 70

4·3 Legendre Polynomials . 72

4·4 Relative Root Mean Square Error of r−7 (2D) 75

4·5 Relative Root Mean Square Error of r−7 (1D) 75

4·6 Orthogonal Comparisons . 76

4·7 Floating Point Number . 80

4·8 Logarithmic Number . 81

4·9 f(x) for Logarithmic Addition and Subtraction 82

4·10 Semi-FP Adder . 86

4·11 Semi-FP Multiplier . 86

4·12 Precision vs. Simulation Quality . 89

5·1 Merge Sort through a Binary Tree . 93

5·2 V-Cycle . 95

5·3 Cutoff Approximation of Coulomb Force . 95

5·4 Smoothing Function . 96

5·5 Flow Chart of Multigrid Method for the Coulomb Force 98

5·6 Multigrid Method for the Coulomb Force 101

5·7 Extracting gi and oi from Partilce Coodinates 102

5·8 Baisis Function Pipeine . 103

5·9 One Quarter of a 1:64 Particle-Grid Converter 104

5·10 Charge Assignment and Potential Interpolation 105

5·11 1D Convolver Constructed with Processing Elements 106

5·12 2D/3D Convolver . 107

5·13 Splitting a Convolution . 108

5·14 A 2D 42-way Interleaved Memory . 109

6·1 System Architecture . 113

xi

6·2 Short Range Force Coporcessor Top Level State Machine 114

6·3 Cell-list Representation in FPGA Coprocessor 118

6·4 Half Cubic Neighbor Pattern . 119

6·5 Particle Cache Layout . 119

6·6 Short Range Non-bonded Force Coprocessor 124

6·7 Short Range Non-bonded Force Pipeline . 127

6·8 Short Range Non-bonded Force Pipeline Data Flow 130

6·9 Bit Vector Extraction . 131

6·10 Interpolation Pipeline for r−x . 133

6·11 MSBCheckTree . 134

6·12 Multigrid Coprocessor . 136

6·13 Interface among Host, FPGA, and Off-chip SRAM 140

6·14 Data Path between Cache and Force Pipeline Array 141

7·1 WildstarII-Pro PCI board from Annapolis Micro Systems 145

7·2 Absolute Force Error . 153

7·3 Average Force Error . 153

7·4 Maximum Force Error . 154

7·5 Potential Energy Error . 155

xii

List of Abbreviations

ASIC Application Specific Integrated Circuit

b bit

B byte

BCB Bioinformatics and Computational Biology

CPU Central Processing Unit, the functional core of

a PC, one of many in an MPP

DSP Digital Signal Processor

EDA Electronic Design Automation

FFT Fast Fourier Transform

FLOPs Floating-point operations per second

FPGA Field Programmable Gate Array

FSB Front Side Bus

Gb Gigabits, 230 (109) bits

GB Gigabytes, 230 (109) bytes

GFLOPs Giga FLOPS, 109 floating-point operations per

second

GPP General Purpose Processors

GPU Graphics Processing Unit

GROMACS Groningen Machine for Chemical Simulations,

an open-source molecular modeling program

GUI Graphical User Interface

xiii

HDL Hardware Design Language, for example VHDL

or Verilog

HPC High Performance Computing

HPRC High Performance Reconfigurable Computing

HLL High Level Language, specifically for software

design, as opposed to an HDL

IP Intellectual Property

JTAG Joint Test Action Group. IEEE standard 1149.1

Kb Kilobits, 210 (103) bits

KB Kilobytes, 210 (103) bytes

LAMP Logic Architecture Model Parameterization,

novel EDA tool set

LSB Least Significant Bit

LUT Look Up Table, the hardware element that un-

derlies programmable functions in FPGAs

MAC Multiplication and Accumulation

Mb Megabits, 220 (106) bits

MB Megabits, 220 (106) bytes

MPP Massively Parallel Processor

MSB Most Significant Bit

PAR Place And Route

PC Personal Computer

PCI Peripheral Component Interconnect, a common

system bus

PE Processing Element

PME Particle Mesh Ewald Sum

RTL Register Transfer Level

SGI Silicon Graphics, Inc.

xiv

SIMD Single Instruction, Multiple Data

TB Terabytes, 240 (1012) bytes

TFLOPs Tera FLOPS, 1012 floating-point operations per

second

UI User Interface

VHDL VHSIC Hardware Description Language

VLIW Very Long Instruction Word

xv

1

Chapter 1

Introduction

1.1 The Problem

In 2005, the President’s Information Technology Advisory Committee reported that “to-

gether with theory and experimentation, computational science now constitutes the ‘third

pillar’ of scientific inquiry, enabling researchers to build and test models of complex phe-

nomena that cannot be replicated in the laboratory. [Pre05]” And in 2006, a National

Science Foundation Blue Ribbon Panel reported that within computational science, “com-

puter simulation has emerged as a powerful tool, one that promises to revolutionize the way

engineering and science are conducted. [oSBES06]” The method of Molecular Dynamics

simulation (MD) in particular is critical: it lies at the core of computational chemistry

and is central to computational biology. Applications of MD range from the practical, e.g.,

drug design, to basic research in understanding disease processes. An example of the latter

can be found in a study by DeMarco and Dagett [DD04] on the PrP protein that lies at the

root of amyloid (e.g., “mad cow” and Alzheimer’s) diseases. Here, MD simulations indi-

cated that aggregations of misfolded intermediates of PrP are the pathogenic species; this

crucial finding would have been virtually impossible to discover through any mechanism

other than simulation.

MD is compute bound. While studies conducted with a few minutes of PC time can

be useful, the reality is that computational demand is virtually insatiable: almost any MD

simulation will be improved by simulating longer physical time, a larger physical system,

and a more detailed model. Large-scale experiments can be defined as those involving

large computing clusters running for months at a time (often called “heroic” computations).

2

Heroic MD computations have included simulations of viruses (9,000 node-days [FAL+06]),

ion channels through cell membranes (50,000 node-days per significant event [KATS06]),

and ribosomes (2,000 node-days per 4ns simulated time [Poi06]). Just as with simulations of

computer designs–with which computer engineers are most familiar–simplifications improve

throughput, but can lead to misleading results. In the virus study, it was found that

simulation of the whole virus was required to obtain a stable structure; leaving out the

virus core decreased the simulation time, but resulted in instability.

We now summarize the state-of-the-art in the application of MD to biochemical sys-

tems: heroic simulations enable basic modeling of macromolecules and certain even-larger

structures, with the modeled time scale being inversely related to the length scale. For

example, ribosomes can plausibly be simulated for only nanoseconds, but small proteins

for milliseconds. Simulations of long physical time-scales, such as the physical seconds

required to model protein folding, remain far out of reach, as do even brief simulations of

much larger structures, such as the nucleosome. In addition, these large-scale simulations

that currently are possible, are unavailable to most researchers: e.g., a large fraction of

compute time at the National Center for Supercomputing Applications is already used for

MD. 1

The problem that this dissertation investigates is how to bring to researchers

in computational science substantially more cost-effective MD capability. We

address this problem by enabling the use for MD of a new generation of com-

puters based on reconfigurable logic devices: Field Programmable Gate Arrays

or FPGAs.

FPGAs are commodity integrated circuits whose (apparent) logic can be determined,

or programmed, in the field. This is in contrast to application-specific integrated circuits

(ASICs) whose logic is fixed. The tradeoff is that FPGAs are less dense and fast than

ASICs. Often, however, their flexibility more than makes up for these drawbacks: FPGAs

can be reconfigured in milliseconds to support a new set of parameters, or an entirely

1http:// www.ci-partnership.org /Allocations /awards.html

3

new application. When applied to computational problems, FPGA-based solutions have

sometimes provided multiple order-of-magnitude acceleration over microprocessors. And

since FPGAs are commodity parts, the system cost remains moderate.

The key to this problem, however, is not the use of the hardware itself, whose technology

is mainstream; rather it is to create the particular FPGA configurations to accelerate

MD. The challenge here is that the programming model differs drastically from that of

standard computers, including parallel ones. As a consequence, efficient implementation

on an FPGA-based system–of a complex application such as MD–requires restructuring

that application at many levels. Other, simpler, implementation methods, such as direct

translation of MD software codes into FPGA logic, result in only a fraction of potential

performance being achieved. The approach taken here, rather, is the FPGA-aware redesign

of almost every aspect of MD. This includes changes in algorithm selection, creation of

new algorithms, creation of a new arithmetic mode, experimentally determined precision,

integration into production MD systems, optimization of data structures and arithmetic,

and creation of microarchitectures to implement numerous functions. These FPGA-aware

redesigns comprise the bulk of the contributions of this dissertation.

1.2 Molecular Dynamics Computations

Molecular Dynamics refers to an approach to computer simulations of systems where

molecules and atoms interact with one another. There are many variations of MD de-

pending on the detail at which the forces are described, e.g., whether quantum mechanics

is modeled, or only Newtonian approximations. Often quantum mechanical MD simula-

tions are used to construct force models that are used by other “higher-level” MD systems

wherein forces are approximated with Newtonian mechanics. Another source of varia-

tion is how the simulation is advanced. The first MD programs advanced only when events

occurred; currently, the dominant method advances simulations by time-step–although dis-

crete event based MD (DMD) remains important, especially in modeling long time scales.

In this dissertation we restrict our attention to time-step driven Newtonian MD, which is

4

now described.

MD is the iterative application of Newtonian mechanics to ensembles of atoms and

molecules. MD runs in phases: the forces on each particle are computed, then applied

using the equations of motion. In contemporary MD systems, the force computations

often involve many terms, including bonded (covalent, hydrogen) and non-bonded (van

der Waals, Coulombic). For computational efficiency, the non-bonded forces are often

partitioned into short- and long-range components. The complexity of the motion update

and the bonded force computations is O(N) in the number of particles, and generally

requires only a small fraction of overall compute time. The complexity of the non-bonded

force computations is potentially O(N2) in the direct implementation, and comprises the

bulk of the computation. Complexity can be reduced substantially, however. For the short

range component, O(N) is obtained by dividing the system into cells and/or maintaining

lists of particles within a certain distance of a given particle. For the long-range component,

O(N log N) or better is obtained with transform- or grid-based methods. The choice of

method and many other details of the implementation depend on the target computational

platform.

1.3 High Performance Computing With Accelerators

The advent of vector supercomputers in the 1960s revolutionized high performance com-

puting. While these architectures remain critical, since the mid-1990s most high-end sys-

tems have been based on collections of commodity microprocessors. Since then and until

recently, performance of microprocessor-based systems has steadily improved: increasing

chip densities have enabled extraction of greater amounts of instruction level parallelism;

increases in operating frequency have lead to direct increases in throughput. In the last

four years, however, problems with power consumption and heat dissipation have caused

operating frequencies to stagnate at under 4GHz. Microprocessor architecture has topped

out as well: while advances in process technology continue to provide ever more features

per chip, these are no longer primarily used to augment individual CPUs; rather they are

5

used to replicate the processor cores. Research chips with dozens of CPUs have been built,

and commercial versions are projected to be available in the next few years.

One of the greatest current challenges in computer engineering is the cost-effective use

of these additional cores on-a-chip; and it appears likely that this will continue into the

foreseeable future. The problem of developing efficient, portable, applications for parallel

processors remains far from solved, even after having been studied intensively for over 40

years. The problems are much worse on a single chip, with the additional constraints of

highly restricted memory bandwidth per processor. This realization is central to Intel’s vi-

sion: for computationally intensive applications, non-microprocessor accelerators are likely

to provide the most cost-effective solutions [Bha07]. Therefore, support is being developed

for plug-compatible motherboard sockets where, e.g., a Xeon processor chip can be removed

and replaced with an accelerator [Int07b, Xtr07b, DRC07]. Support for accelerators is also

projected on the processor chip itself [Bha07]. For example, a processor chip may contain

some mix of coarse and fine grained CPUs, plus accelerators.

Clearly the computer landscape is shifting dramatically, especially for high-performance

computing (HPC). We now briefly review some alternatives, other than FPGAs, that are

either currently available, or projected to be available soon.

• Multicore. Despite the challenges for their use in general purpose computing, mul-

ticore remain the default technology for new HPC platforms. The first generation

of multi-core microprocessors, such as those from Intel and AMD, has symmetric

mono-cores on one die.

• Cell Processor. As the number of cores per chip gets larger, maintaining computa-

tional efficiency becomes critical, and alternative designs may be more suitable. Of

these asymmetric multi-cores, the best-known is propertyb the IBM Cell processor

[Che07], which is also the compute engine in many game consoles. The Cell combines

a single general purpose CPU with several vector units.

• Manycore. As the number of cores expands into double digits, it is generally referred

6

to as manycore. An 80-core research prototype [Int07a] has been built by Intel.

These cores are likely to be heterogeneous.

• Graphics Processor Units (GPUs). GPUs are commodity high-end processors

designed for graphics computations and found in most PCs. They are especially well-

suited for applications requiring floating-point, but that can be cast as simple SIMD

operations.

• FPGAs. FPGAs are described in more detail in the next Section; here we make

the point that high-end FPGAs suitable for HPC are commodity processors whose

primary markets are in router switches and DSP computers.

• Large-scale SIMD. Most processors have some SIMD component, such as graphics

extensions to the standard instruction set. Large-scale SIMD of the type most fa-

mously represented by the Connection Machine [Hil85] remains an alternative with

the ClearSpeed processors [Cle05]. SIMD accelerators have some more flexibility

than GPUs. They have the disadvantage with respect to multicore, Cell, GPU, and

FPGA, of not being the commodity processor for a high-volume application.

Each of these alternatives is currently thriving: hardware design and technology is

constantly being updated; much work is being done to advance programming tools; and

much research is being conducted to determine the appropriate mappings of applications.

Still, these alternatives vary in power, programmability, programmer’s model, and basic

computational capability. Determining what computations are most cost-effective on which

architecture is a critical and heavily studied problem. The consensus appears to be that

there is no single correct platform, at least certainly not for all types of HPC computations.

In this context, this work can be viewed as an examination of an important part of the

HPC problem space with respect to a leading candidate HPC compute engine.

7

1.4 High End FPGAs as HPC Accelerators

1.4.1 Hardware

Reconfigurable computing is based on technology that conducts computation with recon-

figurable circuits. Although this idea can be traced back at least to the 1960’s, High

Performance Reconfigurable Computing (HPRC) has only become feasible recently, i.e.,

when FPGAs could deliver significant computation power relative to both ASICs and

microprocessors. One factor is that FPGAs are currently driving, rather than lagging,

process technology [Tre04]. Another factor is that high-end FPGAs are now in fact hy-

brid chips with hundreds of ASIC components (especially multipliers and independently

accessible memories) in addition to the configurable circuitry. For example, in the last

four years, FPGAs have been manufactured with process technologies from 130 nm to 65

nm, taking the same exact of microprocessors. Also, because of their inherently reduced

operating frequency, FPGA power consumption is usually less than five watts; in contrast,

high performance DSPs and microprocessor consume tens of watts and hundreds of watts,

respectively.

High-end FPGAs have the following characteristics.

• Programmable in milliseconds by uploading the desired configuration. This also

means that the FPGA can be reprogrammed for other applications just as quickly.

• Millions of configurable gate-equivalents.

• Millions of programmable communication paths, both local and global.

• Design modules often available as ‘intellectual property’ (IP) blocks.

• Gigabit interfaces (Infiniband, Gigabit Ethernet, etc.) to off-chip devices.

• Hardwired on-chip components, particularly hundreds of independently accessible

memory modules and ALUs.

8

• Hundreds of I/O pins that allow for integration into systems with many independently

accessible off-chip caches.

And again, FPGA chip development is driving process technology, a role held until

recently by DRAM chips [But03]. As a result, FPGA-based HPC has the critical attribute

for new IT products: the ability to “ride the technology curve” as stated by Moore’s Law.2

As new generations of process technology—and thus FPGAs—emerge, existing hardware

designs can be ported to them in much the same way that existing software can be loaded

onto a new faster computer, thereby obtaining an analogous boost in performance.

1.4.2 Programmability

Among the alternative for HPC platforms, FPGAs are in some ways the most flexible:

compared with other processors, which have fixed or tightly constrained data interfaces

and predefined micro-functionality, reconfigurable circuits (along with ASICs) can be adopt

an optimal data interface and devote most of the chip area (resources or transistors) to a

specific application.

On the other hand, migrating HPC applications from microprocessor based systems

to multi-core or other thread-based systems is easier for application experts and other

programmers without FPGA-specific experience. This is because for thread-based systems,

they need only consider how to map their algorithms to new hardware; for FPGA based

systems, they also need to worry about the hardware design by themselves. This is either

an advantage or disadvantage, depending on the experience of the implementer. With such

expertise, one can tell the exact requirement to hardware so that they can choose proper

trade-offs or even redesign of algorithm to achieve maximal performance with the same

chip area, number of transistors, or power budget. Without such expertise, it is difficult

to do this job efficiently, even impossible to achieve speed-up.

An analogous gap also exists when application experts develop applications on parallel

supercomputers, and it was not surprising that the best supercomputer programmers are

2Transistor density on a chip doubles every 1-2 years

9

sometimes physicists and chemists. With FPGAs, however, the gap is wider than ever.

Application experts are not only are required to learn new languages, instructions, system

architectures, and programming models, but also have to face a tremendous design space.

One example is that most users do not care much about precision in their applications,

as long as the single or double precision floating-point is accurate enough. They do not

search the design space in terms of precision, because microprocessors do not provide many

options. Dealing with FPGAs, however, they have the freedom to choose any precision,

but must first answer the question that what precision is proper. A proper precision

here means acceptable accuracy and efficient hardware implementation, sometimes even

involving choosing different arithmetic methods. Precision is only one of the new axes

added to the design space, but introduces significant complexity. After combining the

design space of application algorithms and that of FPGA implementation, the entire space

becomes large and finding a optimal solutions can be challenging. For complex applications

such as MD, however, exploring the design space carefully is necessary to achieve substantial

performance improvement.

Providing universally accessible development methods for FPGA-based accelerators has

been challenging. Much work, including this, is done with hardware description languages

(HDLs), such as VHDL and Verilog. In order to facilitate users in porting and developing

applications on FPGAs, many advanced tools are being introduced. Some of them employ

high level languages as a programming interface to FPGA designs; in some, users are

still aware of hardware/software partitioning and hardware implementation; others, e.g.,

Mitrion-C, can directly convert original high level language source code to FPGA designs

with only a limited amount of modification.

1.4.3 High Performance FPGA-Based Computing

The computational power of HPRC is derived from two sources: (i) the thousand-fold

parallelism possible when an entire chip is configured to perform a particular computation,

and (ii) the fact that, unlike thread-based systems, payload is delivered from the pipelines

10

on every cycle. The promise of HPRC is thus high performance at a lower operating

frequency, and thus lower power.

The areas of greatest success for HPRC have been in signal and communication pro-

cessing. Here, small kernels dominate the computation; these kernels are also highly par-

allelizable, and can often make do with low precision and/or complexity of arithmetic

modes.

Early work in HPRC often reported per-node accelerations in the hundreds, and even

thousands. As HPRC has matured, however, a broader range of HPC applications is being

addressed and the reported speed-ups have often been far more modest. Some of the

well-know difficulties are as follows:

• Chip area limitations. While code size is generally not a high-order concern in

HPC, in HPRC the size of the code directly affects the chip area required to imple-

ment the application. Although the relationship is indirect, the overall implication

is that the more complex the application kernel, the more the chip area required to

implement it. This results in reduced parallelism and thus performance.

• Designer limitations. Complex applications often require substantial expertise

and design time to map them efficiently to FPGAs.

• Amdahl’s law limitations. If the kernel does not dominate sufficiently (i.e., consist

of, say, more than 95% of the execution time), then deeper application restructuring

maybe necessary.

• Component limitations. A key attribute of modern FPGAs is their embedded

“hard” components such as multipliers and independently accessible memory blocks

(block RAMs). Floating-point support, however, remains modest; this limits sub-

stantially the FPGA’s potential performance in classic HPC applications (see, e.g.,

[BHUH06] and references).

The combination of high potential performance coupled with relatively low operating

11

frequency makes performance of HPRC applications particularly sensitive to the quality

of implementation. In an article in IEEE Computer, we enumerate some methods that

are likely to be required to obtain high performance of non-trivial HPRC applications

[HVG+07]. As with other high-performance platforms, the key is to avoid implementational

overhead [Sny86].

Method 1: Use an algorithm optimal for FPGAs. For example, replacing an FFT

with a direct correlation.

Method 2: Use a computing mode appropriate for FPGAs. For example, replac-

ing random access with streaming.

Method 3: Use appropriate FPGA structures. For example, using common hard-

ware versions of analogous data structures.

Method 4: Living with Amdahl’s Law. For example, sometimes non-kernel code must

also be optimized through application redesign.

Method 5: Hide latency of independent functions.

Method 6: Pipeline sequences of functions; use replication and rate-matching

to remove bottlenecks.

Method 7: Take advantage of FPGA-specific hardware. For example, in MD, com-

puting the Coulombic force using multigrid requires performing tricubic interpolations at

streaming rate [GH07b]. This uses a number of independent block RAMs and a custom

memory interleaving. These can be generated automatically [VH06].

Method 8: Use appropriate arithmetic precision.

Method 9: Use appropriate arithmetic mode.

Method 10: Minimize use of high-cost arithmetic operations.

Method 11: Create families of applications, not point solutions. HPRC applica-

tions are often complex and highly parameterized: this results in the code having variations

not only in data format, but also in algorithm to be applied.

Method 12: Scale application for maximal use of FPGA hardware.

Most of these are used extensively in this work.

12

1.4.4 High Performance Reconfigurable Computing Platforms

Historically, HPRC has been conducted with coprocessor boards that plug into the PC’s

PCI bus. Vendors include Annapolis Microsystems, Nallatech, Maxeler, and many oth-

ers [Ann03, Nal06, Tec07]. High-end HPRC systems with tighter system integration are

produced by SRC [SRC05]. In the last few years, SMP vendors integrated FPGA-based

nodes into their communication fabrics; examples include Cray and SGI [Cra05, Sil04].

And most recently, vendors such as DRC and XtremeData have created FPGA boards

that are plug-compatible with microprocessors themselves, for immediate integration into

commodity processor boards [Xtr07b, DRC07].

Systems have also been created that gang together a number of FPGAs. Medium-scale

systems are available commercially from SRC, Cray, and SGI. Large-scale systems with

hundreds of FPGAs have been built in research environments, particularly in Berkeley and

Edinburgh [AAC+05, EPC05].

1.5 HPRC for MD

The research described in this thesis, acceleration of molecular dynamics simulations (MD)

with HPRC, is interesting on at least two fronts. First, its acceleration is inherently im-

portant: substantial progress has been made in developing efficient and scalable codes

(e.g., NAMD [Phi05] and GROMACS [VLH+05]). Second, it appears that, more so than

with most floating-point intensive HPC applications, HPRC may offer substantial accel-

eration. One reason is that the kernels, while non-trivial, may still be “manageable” in

the sense that with some optimization they fit on high-end FPGAs. Another is that al-

though high precision is important, there may be room to reduce precision somewhat while

still retaining the quality of the MD simulations. This fact has been used, not only by

most FPGA implementations of MD, but by ASIC- [AFK+95] and von Neumann-based

[VLH+05] versions as well.

The difficulties of HPRC acceleration of MD are of three aspects: accuracy, perfor-

mance, and model size. We now discuss these in turn, beginning with simulation quality.

13

Accuracy is always the first criteria of an MD system. This is because, first, the output

must be accurate so that users can trust the simulations; and second, even small numerical

errors on each particle during each time step may be accumulated to become intolerable,

and so prevent the simulation from converging. These factors partly explain why some com-

putational scientists feel safe only with double precision, even after single precision being

applied for many years. It is difficult to determine, in general, what precision is sufficient.

Some reasons are as follows. Tracking individual particles is impractical, because system

will be random only after a few collisions. Tracking invariant physical quantities, such as

energy and momentum helps, but is still not sufficient because they are only projections of

the simulation model status. Also, even for an ideal simulation system, “the errors intro-

duced by the use of empirical potentials are difficult to quantify [KM02]”; the simulation

quality requirement is thus a function of simulation model itself. In fact, as observed by

La Penna, et al.: “in our very long simulations we did not see signs of instabilities, nor

of any systematic drift” due to using single, rather than double precision floating-point

[PLM+97]. Therefore use of reduced precision still enables acceptable simulation quality

for many simulations, but requires careful design and proof.

Turning now to performance: computing with fewer bits or simpler arithmetic opera-

tions of course improves performance, but the biggest barrier is Amdahl’s law. Once the

densest computational task (the short range non-bonded forces) has been accelerated, the

rest of the tasks become all the more significant and dominate timing. Based on current

FPGA technology, it is impractical to map entire MD problem to FPGAs, so some tasks

must be left on microprocessor. Therefore, the expected speedup is limited from 10 to

20. Scrupulous design and implementation is required, however, otherwise the potential

speedup will be substantially diminished. Moreover, because some optimizations that can

be successfully applied in software MD systems are not efficient or feasible on hardware,

we need to design FPGA specific algorithms for optimization.

Capacity of the MD system means: number and types of particles, size of simulation

box, and the ability to support various simulation options. Simulation duration can also be

14

regarded as a measure of capacity, but this mostly depends on accuracy and performance.

For large and complex simulation models on any contemporary computational platform,

data must be stored off-chip, which for HPRC involves careful design of interface, access

pattern, coherency, and communication overhead. Supporting more simulation options

means implementing more functionality, especially those for rare situations. For software,

this may only mean adding instructions in memory; while for current FPGAs, it means

more chip area, and consequently lower efficiency and performance.

How these difficulties are handled, together with those generic difficulties universal to

HPRC, define the design space for FPGA-based acceleration of MD (FPGA/MD). Specif-

ically, FPGA/MD has been studied by a number of groups [AAS+07, AKE+04, GVH06b,

KP06, KUT+97, SP06] with the design space being spanned by several axes:

• Precision: Is 53 bits used (double precision), or 24 (single precision), or something

else? How is the choice motivated?

• Arithmetic mode: Is floating-point used? Block floating-point? Scaled binary?

Logarithmic representation? A hybrid representation?

• MD code: Is the base system it a standard production system? An experimental

system? A reference code?

• Target hardware: What model FPGA is used? How is it integrated, on a plug-in

board, or in a tightly integrated system?

• Scope: MD implementations have a vast number of variations - which are supported?

How is the long-range force computation performed? With cut-off or a switch func-

tion? Or, is a more accurate, and more computationally complex, method used? Is

this done on the FPGA or software?

• Design flow: How is FPGA configured? With a standard HDL, or a C-to-gate

process, or some combination?

15

A major goal of this work is to investigate the viability of MD in current generation

FPGA technology. While previous studies have made substantial progress, most have

made compromises in performance, precision, or model size simulated. A preliminary MD

system [AKE+04] was implemented on Transmogrifier 3 (TM3) with four Virtex-E 2000E

FPGAs, computing Lennard-Jones force and motion update with fixed-point arithmetic.

Other systems [AAS+07, KP06, SP06] reported recently were developed on SRC-6 MAP

station, which contains two Xilinx Virtex II FPGAs. They all used single precision floating-

point, only computed the short range non-bonded forces (Lennard-Jones and the real part

of Smooth Particle Mesh Ewald Sum) on the FPGAs, and used SRC Carte complier to

generate FPGA design from high level languages; the difference is the based MD code:

[SP06] used their own reference code; [AAS+07] and [KP06] ported NAMD and Amber

respectively. Finally, these floating-point based system achieved speedup between 2.7x to

4x over their pure software reference codes. Their speedups are limited by several factors:

(i) floating-point arithmetic, even single precision restricts the number of pipelines i.e.

parallelism; (ii) only accelerating the short range non-bonded forces computation bonds

restricts the overall speedup; and (iii) C-to-gate design flow is not sufficient to explore the

entire FPGA design space. We attempt to advance the art with numerous FPGA-centric

optimizations, while retaining the MD simulations quality. In particular, our point in the

design space is as follows:

• Precision: All implementations support variable precision. In addition, experiments

measuring energy fluctuation (as described, e.g.: [AFK+95]) were conducted to de-

termine the effects of varying precision on both performance and simulation quality.

It was found that 35-bit precision may be optimal for many simulations.

• Arithmetic mode: We avoid floating-point, but retain accuracy with a new arith-

metic mode that supports only the small number of alignments actually occurring in

the computation.

• Base MD code: ProtoMol [Mat04], with further performance comparisons with

16

NAMD [Phi05].

• Target hardware: A generic PC and a commercial PCI plug-in board with two Xil-

inx VP70s [Ann06]. Performance of this configuration with other FPGAs is estimated

with area and timing accurate design automation method.

• Scope: We describe the short-range force processor implementing cell-list and long-

range force coprocessor implementing multigrid.

• Design flow: all major components (force pipelines, cell-list framework, off-chip

memory controller) were designed from algorithm-level descriptions and implemented

using VHDL. Where appropriate, algorithms were restructured to best use FPGA

resources.

We find that even using 2004-era FPGA hardware we are able to achieve a 5× to 8×

speedup over NAMD with little if any compromise in simulation accuracy.

1.6 Summary of Contributions

1.6.1 Overview

The contributions of this work come into four categories: (i) the acceleration of MD in

and of itself, (ii) what this says about the viability of HPRC in general, (iii) the methods

developed for MD acceleration, and (iv) the applicability of the methods developed for MD

in accelerating other HPC applications. The first of these is immediate: we obtain signif-

icant speedup over the original software implementation, as well as over other production

codes, while still retaining acceptable simulation accuracy. The second follows from the

first: this research demonstrates that FPGAs are not only good for integer applications,

but also viable in the floating-point domain, even without dedicated floating-point units.

The final two sets of contributions are now described.

17

1.6.2 Acceleration of MD

We designed two FPGA coprocessors to compute the short range and the long range non-

bonded force respectively. They were implemented on an Annapolis Micro-system FPGA

development board and integrated into production codes, such as ProtoMol. The new

system could perform complete MD simulation (FPGA computing non-bonded forces and

host PC doing rest computation) and achieved 5× to 8× wall-clock speedup over NAMD

on PC. To fairly compete with production MD codes, we not only implemented basic

MD functions, such as the force equations following the textbook, but also implemented

advanced algorithms applied by production codes, such as cell-list and exclusion. After

accelerating the short range non-bonded force computation, the long range force became

significant. In order to gain more speedup, we designed and implemented a long range

non-bonded force coprocessor, which is the first published FPGA solution and may be the

only one at this time for the problem. We also applied high order polynomial interpolation

and analyzed different interpolation methods for better numerical accuracy, and created

the semi-floating arithmetic mode that mapped efficiently to FPGAs. Highlights of MD

acceleration include:

Short range non-bonded force coprocessor. It consists of a scalable force pipeline

array that computes Lennard-Jones force and the short range part of Coulomb force in

parallel. The force pipeline does piece-wise high order polynomial interpolation to approx-

imate the force curve; interpolation coefficients are computed with orthogonal polynomial

methods, which has the least mean squared approximation error and zero bias.

Implementation of Cell-list method. The force pipeline array is wrapped with a

framework that supports the Cell-list method, so that we can reduce the short range non-

bonded force evaluation from O(N2) to O(NṀ), by only computing particles close to each

other. Cell-list method or similar algorithms are employed by production MD codes for

the same purpose. Without such support, we would not be able to improve end-to-end

performance to overcome the production codes.

Exclusion of non-bonded forces. Excluding the non-bonded force between bonded

18

particles is a required by the physical law, but is problematic even for software implemen-

tation. It could be either expensive, e.g. excluding bonded pairs during non-bonded force

computation, or inaccurate, e.g. computing forces brutally first and subtracting exclusion

forces later with underflow. We propose a new method that checks multiple cut-offs based

on types for bonded pairs. This method avoids those disadvantages and maps efficiently

to FPGA hardware.

Multigrid coprocessor computing the long range non-bonded force. To extend

the overall performance, we built the long range non-bonded force coprocessor based on

multigrid method, which is the first multigrid FPGA implementation, and is probably so

far the only FPGA solution computing the long range non-bonded force. It provides about

3x to 4x speedup over original software version and PME method of NAMD.

Large simulation with off-chip memory. The problem to simulate large models with

our coprocessors is that the on-chip SRAMs are not big enough. We therefore design a

cache scheme that swaps particle data between on-chip SRAMs and off-chip memory, so

that we can simulate large models of up to 256K particles without loosing performance.

Using off-chip memory, however, causes another problem that off-chip memory interfaces

are not uniform on different hardware platforms and porting our designs to other platforms

is difficult. Our solution is to define a general off-chip memory interface of a relaxing

bandwidth requirement, only a couple hundred bits per cycle, and our coprocessors are

designed based on this general interface rather than any specific hardware.

Semi Floating-point Numbering. Because numerical accuracy is critical to MD simu-

lation, especially to force curve interpolation, performing calculation with pure fixed-point

arithmetic is not practical. On the other hand, performing general floating-point arith-

metic without dedicated hardware units decreases chip efficiency significantly on current

FPGAs. We, therefore, created the Semi Floating-point numbering (Semi-FP) system

by compromising floating-point and fixed-point. For most accuracy critical calculations,

we used 35-bit Semi-FP, which maps efficiently to FPGAs while preserving computation

accuracy.

19

1.6.3 General Computation Models and Designs

As MD is a special case of general computation problem, the technologies used in our accel-

eration are applicable to other HPC applications. One example is multigrid method, which

is a general method to solve problems in different scales. In the area of numerical comput-

ing, it is always used to solve partial differential equations (PDEs), such as our long range

non-bonded force coprocessor solving Poisson’s equation in real space. Multigrid method

involves various operations, e.g. discretization, relaxation, anterpolation/interpolation, lo-

cal correction and direct solution. It is never trivial to implement and integrate all these

operations on FPGA. After we developed the multigrid coprocessor for Coulomb force, we

defined a multigrid computation model to adapt other multigrid based applications. In

[GH07a], we mapped the linear image diffusion problem to the multigrid prototype and

investigated the FPGA solution efficiency by exploring the design space in many axes.

Because image processing can be performed with integers of small bit width and does not

require discretization, the linear image diffusion processor achieved speedups in middle

hundreds in both 2D and 3D cases.

Other general designs include multi-dimensional systolic array convolver for large con-

volutions, interleaved memory, Semi-FP operators, and so on. They are not just optimized

modules or library; they are frameworks implementing certain computation models. Ap-

plication developers can focus on mapping their problem to these existing frameworks by

using their expertise of applications to design application specific operations.

1.7 Organization of the Rest Thesis

The rest of this thesis describes a number of methods to implement different aspects of

MD, plus experiments to measure performance, verify the simulations, and determine va-

lidity. The methods span multiple “modes”: algorithm creation and selection, numerical

analysis, FPGA mapping and configuration design, logic design, system programming, and

experiment design. These methods also cover multiple aspects of MD systems: short-range

force computation, long-range force computation, bookkeeping (cell-lists), and data trans-

20

fer. Because of the wide range of subtopics and methods, there is perhaps no optimal

organization; we have chosen to group topics by method, starting with the theoretical and

platform independent, and working our way to FPGA- and finally platform-specific.

Chapter 2 presents MD in greater depth. We begin with the basic concept of MD, advanced

algorithms, production codes and special purpose machines.

Chapter 3 presents HPRC in greater depth, including design flow, FPGAs appropriate

for HPC, computation model for HPRC, and a survey of current HPRC platforms. We

end this chapter with an overview of related work in FPGA/MD.

Chapter 4 and 5 concentrate on algorithm design. There we explain our FPGA algo-

rithms for the two major aspects of MD: numerical computing for the short range force

and the multigrid method for the long range force.

Chapter 6 describes aspects of the overall system design. It presents the architecture

of the entire system and of the two coprocessors (short- and long-range) in detail, and the

off-chip memory interface for supporting large simulation models.

Chapter 7 presents work related to determining validity and performance. We first de-

scribe the specific target platform on which we instantiated our designs, and then demon-

strate the results to validate the simulation quality and system performance.

Chapter 8 summarizes this thesis, projects possible optimizations to the current system,

and describes how to extend it to large-scale parallel systems.

21

Chapter 2

Molecular Dynamics

2.1 Overview

MD is one case of the N -body problem, i.e., the application of Newton’s law so as to inte-

grate particle motion with inter-particle forces as computed with force models. Although

the basic theory is straightforward, MD is a computationally intensive problem because

simulations are invariably of as many particles as possible. Accelerating MD has been

studied for decades in both theoretical and computer engineering areas. In this chapter,

we first give a brief introduction of MD, followed by a description of some well-known

fast algorithms. Then, we give a survey of production MD software packages and special

purpose machines for MD.

2.2 Basic Methods

MD is a set of algorithms for simulating interactions among atoms and molecules with force

fields and motion integrators. Improvements in computer technology and in methods of

numerical computing have extended MD applications until the can be applied to disparate

domains, including theoretical physics, material science, computational chemistry, and

computational biology. In biomolecular research, MD is a critical approach in translating

structural information into its underlying mechanisms [Ke99]. Biomedical applications of

MD [SSB+99] include modeling ligand/receptor complexes, protein folding, protein/DNA

interactions, and high-density lipoprotein aggregates.

In this thesis, we limit our scope to classical MD methods, especially those appropriate

for biomolecular simulations. Classical MD, unlike the Monte Carlo methods or Discrete

22

Event Simulation MD (DMD), generally proceeds iteratively, alternating between a force

computation phase and a motion integration phase over many time steps.

Figure 2·1: Two Phases of MD

In the force computation phase, given the set of particle coordinates, the forces on each

particle are evaluated as a function of the interactions with the other particles. Then the

overall acceleration is computed with Newton’s Second Law. In the motion integration

phase, MD updates particles coordinates by integrating the computed acceleration with

the particle’s current coordinates and velocity. The new coordinates are then the inputs to

the force computation phase in the next time step. The following pseudo-code shows this

process, in which the leapfrog (Verlet) integrator is applied:

For step = 1 to number o f s t eps
Begin

Update v e l o c i t y by a h a l f time step
Update po s i t i o n by a f u l l time step
Evaluate a c c e l e r a t i o n on every p a r t i c l e
Update v e l o c i t y by a h a l f time step

End

The force field components for biochemical simulations commonly belong to one of two

categories: bonded and non-bonded forces.

~F = ~F bond + ~F angle + ~F diherdral + ~F improper + ~FLennard−Jones + ~FCoulomb + ~FH−bond (2.1)

The bonded forces are related to covalent bonds and including bond, angle, dihedral,

23

and improper forces. Because the number of covalent bonds of an N particle simulation

model is O(N), the computational complexity of the bonded forces is O(N) for every

time step. The non-bonded forces include Lennard-Jones (van der Waals), Coulomb, and

hydrogen bond forces. Since the interaction of non-bonded forces is in general between any

two atoms, the computational complexity is O(N2). Even with optimizations that bring

the complexity down to O(N) or at least O(N log N), this is the most computationally

intensive part. The Lennard-Jones and the Coulomb forces are computed with the following

equations:

~FLJ
i =

∑

j 6=i

εab

σ2
ab

{

12

(

σab

|rji|

)14

− 6

(

σab

|rji|

)8
}

· ~rji (2.2)

~FCL
i = qi

∑

j 6=i

(

qj

|rji|3
)

· ~rji (2.3)

where εab and σab are parameters related to particle types.

By inspecting these equations, it is apparent that the Lennard-Jones force converges

very fast in distance. It is safe to switch (approximate) the force to zero for particle pairs

distant from each other. The computational complexity consequently reduces to O(N).

For the Coulomb force, however, simulations still lose accuracy even when applying a long

cutoff. Many algorithms have been invented to accelerate the Coulomb force evaluation and

still to maintain accuracy; these include Ewald Sums and its variants, the fast multipole

method, and the multigrid method.

For motion update, Leapfrog/Verlet [Ver67, Ske99] algorithms are the most common

integrators. All forces are evaluated at the same frequency, as are the particle coordinates

and velocities. This type of algorithms is called Single Time-Stepping (STS). For solvated

biological molecules, the fastest motion is about 10fs [Mat04], whereas Leapfrog needs at

least a time step of 2.5fs to keep system stable. Compared with force evaluation, motion

integration itself does not cost much computation. Advanced integration algorithms, how-

ever, can improve MD performance by reducing the frequency with which forces must be

24

Figure 2·2: Lennard-Jones Potential

evaluated.

Boundary conditions, which define the simulation surroundings, are another important

issue. Use of periodic boundary conditions, which were first applied in crystallographic

research, is quite common. It constructs an infinite simulation model by duplicating a unit

cell in all dimensions. Each particle interacts not only with particles in the unit cell, but

also with those in the image cells. Since all image cells are identical, only the particles in

the unit cell need to be updated. The method of Ewald Sums works only under periodic

boundary condition.

Figure 2·3: Periodic Boundary Condition

25

Stochastic boundary conditions are an alternative, especially in systems consisting of

macromolecules in water. The idea is to apply approximation instead of explicit calculation

of the effect from the water molecules far way from the macro molecules, and to randomize

unwanted regularities that accumulate because of the “tile” structure artificially imposed

on a smooth irregular universe. Simulation models are usually in spherical shape as shown

in Figure 2·4.

Figure 2·4: Stochastic Boundary Condition

Macromolecules are simulated in the inner spherical space filled with water by using the

conventional MD method. In the gray buffer region, the molecular dynamics are computed

with the Langevin equations of motion. These two layers are put in a heat bath shown as

the rectangle box to keep the system at thermal equilibrium. Water molecules are restricted

and evenly distributed in the system by a spherical boundary potential.

One final point: MD has its limitations. For most models, the simulation becomes

chaotic almost immediately. Thus MD does not model reality so much as sample it. For

application of large molecules, MD errors should be no more than those introduced by

approximations in the computation model. Simulations ultimately must be validated with

wet-lab experiments

26

2.3 Fast MD Algorithms

MD simulations usually take considerable amount of time, weeks and months, on supercom-

puters. Even equipped with advanced parallel computers, large models or long durations

still require ever more computing power. Fast MD algorithms have been developed to

accelerate simulation while retaining reasonable accuracy. Because of Amdahl’s law, most

fast MD algorithms focus on two issues: the non-bonded force computation and the motion

integrator. In this section, we give a brief review of these algorithms. A major research

issue for this work is determining which ones are preferable in HPRC systems.

2.3.1 Non-bonded Force Evaluation

Cell Lists

Of the two non-bonded forces, the van der Waals, especially as modeled by the Lennard-

Jones potential, can safely be switched to zero when the distance between two particles is

beyond a certain cutoff. Although the Coulomb force in general cannot be switched to zero

a simple trick makes this partially possible: the force is simply split into two components, a

short-range that converges on the order of the Lennard-Jones, and the remainder, which is

necessarily long-range. The long-range component is handled with the long-range methods

described in the next subsection; the short range by, for each particle, inspecting particles

only in the nearby region. This method of Cell Lists [AT90] is an efficient way to reduce

computation.

The cell-list method partitions the simulation space into cubic cells. As shown in Figure

2·5, if the cell size is larger than the short range force’s cutoff, rcut, then only forces on

particles from same cell or adjacent neighboring cells are necessary to compute. If the cell

size is small, we then need to check more neighboring cells to cover the cutoff. This makes

the cell-list complex, but better approximates the cutoff sphere and thus saves computation.

Cell-lists are constructed after new coordinates are calculated during the motion update

phase. For software implementations, particles in each cell are linked in a list and the

cell-list is represented as an array of such lists. This data structure is dynamic among time

27

steps and usually not efficient for hardware implementation. We have developed an FPGA

oriented cell-list implementation which we describe in Section 6.2. The cell-list information

is also useful for parallelization using spatial decomposition and in mesh- and grid-based

algorithms.

Figure 2·5: Cells in Two Dimensional Space

Multipole Method

Hierarchical tree based algorithms can accelerate the evaluation of long-range non-bonded

forces. A similar requirement was invoked by the gravitational N-body problem. The basic

idea is to “reduce the cost further by computing the force with errors that are comparable

to those introduced by temporal discretization” [STH02], because the potentials of distant

particle groups can be computed with a rapidly convergent power series with limited error.

When particles are close to each other, forces must be evaluated with original equations.

Two similar and related algorithms were proposed in mid-1980’s: the Barnes-Hut (BH)

and the Fast Multipole Method (FMM). These two algorithms are both based on multipole

expansion. For the Coulomb force, the potential at point z caused by charges {qi} at {zi}

can be expanded as:

φ(z) = Q log z +
∞

∑

k=1

ak

zk
(2.4)

where Q =
∑N

i=1 qi and ak =
∑N

i=1
−qiz

k
i

k .

28

For any P ≥ 1,

∣

∣

∣

∣

∣

φ(z) − Q log z −
p

∑

k=1

ak

zk

∣

∣

∣

∣

∣

≤ α
∣

∣

∣

r

2

∣

∣

∣

p+1
≤ (

A

c − 1
)(

1

c
)p (2.5)

where r is the boundary of the charges, |z| ≤ r and c =
∣

∣

z
r

∣

∣, A =
∑N

i=1 |qi|, and α = A
1−|r/z| .

BH constructs an oct-tree structure to describe the charge distribution in the 3D space.

Based on this oct-tree, it is easy to distinguish close charges and remote charges. If N

particles are of uniform distribution in the simulation box, then–because each leaf node has

one particle–the height of this oct-tree is log N , and the complexity of the tree construction

is O(N log N) This is also the complexity of full BH algorithm.

Figure 2·6: Barnes-Hut Space Splitting

FMM computes the multipole expansion for each charge with a hierarchical structure.

The simulation box is divided into cubic sub-boxes on each level from the coarsest to

the finest. FMM starts from the finest level, where the multipole expansion of potential

field due to the local charges is computed for each sub-box. On a coarse level, the same

expansions are computed with the data from the next fine level. This process propagates

29

Figure 2·7: Barnes-Hut Tree

the charge distribution information farther and farther till the coarsest level, where all

charges are in one sub-box. The second half of the process traverses from the coarsest

level to the finest. The multipole expansions caused by distant charges are computed by

gathering information from distant sub-boxes. Because of the hierarchy structure, this time

only adjacent neighboring sub-boxes need to be counted on each level. The complexity of

this process is only O(N).

Figure 2·8: Multiscale Calculation for Multipole

Experiments reported in [GS02] compared these methods under both vacuum and pe-

riodic boundary conditions. In vacuum system simulations, BH has better performance for

30

‘low-precision’ applications, where the force error is 1%. For ‘high-precision’ applications

that are tolerant of 0.1% force error, BH is even slower than naive all-to-all method, while

FMM has better performance for simulation models of more than 105 particles. In periodic

system simulations, BH is still faster than all other methods including Ewald Sum method

with ‘low-precision,’ and FMM is expected to have better performance with ‘high-precision’

and large simulation models of more than 5 × 104 to 105 particles.

Ewald Sums

The method of Ewald Sums is an algorithm to compute the long range Coulomb force in a

periodic system. Assuming the unit cell is cubic, the Coulomb potential energy on particle

i can be expressed as Equation 2.6 and it is obvious that Ei converges slowly with rij.

Ei =
1

2

N
∑

j=1

′
∑

n∈Z3

qiqj

|rij + nL| (2.6)

where ′ means excluding particle i itself in its original cell; L is the length of the unit cell.

The Ewald Sum method applies a spherical Gaussian positive charge cloud and a nega-

tive charge cloud of same distribution to split Ei into two parts: a real part and a reciprocal

part. The real part is fast converging in real space and safe to truncate at a cutoff; the

reciprocal part is also fast converging, but in reciprocal space. The Coulomb potential

energy of this system can be expressed as:

E = E(r) + E(k) + E(s) (2.7)

E(r) =
1

2

N
∑

i,j=1

′
∑

n∈Z3

qiqj
erfc(α |rij + nL|)

|rij + nL| (2.8)

E(k) =
1

2L3

∑

k 6=(0,0,0)

4π

k2
e−

k2

4α2

∣

∣

∣
ρ(~k)

∣

∣

∣

2
, ρ(~k) =

N
∑

j=1

qje
−i~k ~rj (2.9)

31

E(s) = − α√
π

∑

i

q2
i (2.10)

where E(r) is the real part, E(k) is the reciprocal part and E(s) is a constant self correction.

α is called Ewald parameter.

With optimal α, both real part and reciprocal parts have complexity O(N3/2). A bigger

α makes E(r) converges faster, but E(k) slower, and vice versa. The optimal α is given by

the equation:

α =
√

π

(

Treal

Treci
· N

V 2

)
1

6

(2.11)

where Treal and Treci are the time to compute the real part and reciprocal part respectively.

The cutoff of the real part is:

rc =

√
π

α
(2.12)

The cutoff of the reciprocal part is:

kc = 2α
√

P (2.13)

where P is the required precision:

P = ln ε (2.14)

where ε is the tolerable error.

Particle Mesh Ewald

Particle Mesh Ewald (PME) is an efficient algorithm for evaluating Ewald Sums, and is

presented in Darden, et al. [DYP93]. The basic idea of PME is to accelerate Ewald Sums

by choosing a large α in Equation 2.8 to reduce the complexity of the real part of the

Ewald Sum to O(N). In turn, with the mesh method, it computes the reciprocal part in

32

complexity of O(N log N).

There are three basic steps in PME:

1. Assign particles’ charge to mesh points

2. Compute energy/force with FFT

3. Interpolate the results back to particles

The complexity of step one and step three are both O(N), step two is O(N log N) and

dominates the overall complexity.

Figure 2·9: PME Steps: the first arrow is charge assignment, the second
potential computation, and the third force interpolation)

The original PME uses Lagrange interpolation for charge assignment and force inter-

polation. Because the Lagrangian weight function is only piece-wise differentiable, energy

and force should be computed with the same process but separately, and the energy is

not conserved. An improved method, Smooth PME (SPME) is presented by Essmann et

al. [EPB+95]. Here, a B-spline interpolation is applied instead of a Lagrange. The most

important advantage is that force can be computed by differentiating energy directly, and

energy is conserved.

33

Multigrid Method

Many important computations, from solving systems of equations to solving partial differ-

ential equations (PDEs), can be executed by discretizing to a grid and iteratively perform-

ing operations in all neighborhoods. Multigrid algorithms improve the convergence rate

of basic finite difference methods by using a hierarchy of discretizations, often reducing

complexity to O(N) in the number of grid points. Multigrid is of particular interest here

because it is also applicable to the long range Coulomb force computation.

There are basically two categories of multigrid methods for Coulomb force. One is

presented by Skeel et al. [STH02], and uses a final direct computation. Since the final

computation uses the electrostatic equation, which means we have the solution of the PDE

from charge distribution to potential distribution, what we save is the computation cost.

The limitation is that it only works well for vacuum boundary condition. An extension

to the periodic boundary condition was proposed in [IHM05]. The second category is to

solve the reciprocal part of Ewald sum numerically with multigrid, such as is presented by

Sagui and Darden [SD01]. In this case, the solution of the PDE from charge distribution

to potential distribution is unknown, but can be approximated with the multigrid method.

They follow the general multigrid method, doing relaxation and correction at every level.

Because it is based on Ewald Sums, this method only works for periodic boundary condi-

tion.

In this research, we have implemented the first multigrid method. More detail about

the original method and our FPGA algorithm is presented in Section 5.2.

2.3.2 Long Time Step Integrator

The longer the time step, the more physical time can be simulated per computation. Al-

though it is hard to prolong the time step for entire system, it is still possible for some

forces that are less sensitive to the particles’ position than others.

The Multiple Time-stepping (MTS) integrators evaluate different forces with different

frequencies. One of the typical MTS integrators is Verlet-I/RESPA/impulse, which splits

34

the overall force into several components and every component’s dynamics corresponds

to a different timescale. These components are evaluated at different frequencies and

summarized for motion update. Formally, it can be represented with impulse functions as

in the following:

M
d2

dt2
X = −

∑

i

∞
∑

n′=−∞

δt~δ(t − n′ 4 t) 5 U i(X) (2.15)

The potential energy is split into several components, U i, and is sampled with the

Dirac delta function with different time steps. The time steps of slower forces are chosen

as multiples of faster forces, so that the algorithm can be implemented as several nested

loops. The fast forces are evaluated in inner loops and slow forces are in the outer loops.

An example of forces splitting is: the bonded forces are the fast forces; forces in range of

a certain cutoff are medium forces; and the remaining are regarded as slow forces. If the

faster forces are calculated with time step t, then the medium forces time step is k1t, and

slow force time step is k2t. The ratio k1k2 always determines the overall speedup because

most computation is spent on the slow forces [BS98]. Typically, t is 0.5 fs, k1 is 2 or 4, and

k2 is 8.

Further analysis of the Verlet-I/r-RESPA/impulse algorithm in [GASSS98] reveals that

simulations may yields resonance when the outer time step is nearly equal to the period of

a fast oscillation. Worse, resonance occurs too when the time step is just less than the half

of the shortest period of the fast oscillation. In biomolecular systems, the first resonance

effect appears at 5 fs and is called “The Five Femtosecond Time Step Barrier” [SI98].

An enhanced impulse integration algorithm, the mollified impulse method (MOLLY), is

proposed in [GASSS98]. MOLLY replaces the slow potential energy and forces as follows:

U slow(X) → U slow(A(X)) (2.16)

F slow(X) → Ax(X)T U slow(A(X)) (2.17)

35

where A(X) is a time averaging of vibrational motion due to fast forces; Ax(X) is a Jacobian

matrix.

Ax(X)T can be regarded as a filter that eliminates components of the slow force impulse

in the direction of the fast forces [IMM+02]. [SI98] reports that MOLLY achieves 5 fs for

the outmost level time step with 3 time averaging methods. MOLLY has been tested with

ProtoMol and integrated into NAMD2.

Constrained Dynamics, such as SHAKE/RATTLE methods [BPGH81], is another type

of integrator under research; this constrains the vibration of bonds. The LN approach for

Langevin Dynamics extrapolates the slow forces rather than sampling with an impulse,

and in some simulations it extends the period of slow force evaluation to be 48 fs or more

[BS98].

2.4 MD Software Packages

There are dozens of MD packages currently in use, some of which have been developed

and optimized for more than a decade. Since our research only accelerates part of MD,

we must necessarily integrate our coprocessors into existing codes to build a complete MD

system. The following is a brief survey of four MD packages: Three, NAMD, GROMACS,

and AMBER, are by far the most popular systems; ProtoMol is highly significant because

it is optimized for extensibility, and so ideal for use in accelerator research.

2.4.1 NAMD2

NAMD2 [Ke99, Phi05] is a scalable MD package running on a wide range of machines from

PC to high-end parallel computers. It is object oriented and implemented in Charm++

(not to be confused with CHARMM; see below).

NAMD2 employs both Spatial Decomposition and Force Decomposition to obtain scal-

ability. The Spatial Decomposition is implemented with cell-lists. The size of cells is larger

than the cutoff of forces by a distance annotated as margin. When a particle moves from

its old cell to a new one, it is not necessary that it be transferred to the new cell immedi-

36

ately. Thus, it is not necessary to update the cell-lists every time step. Actually, NAMD2

generates new cell-lists only every 4 to 8 time steps. This method substantially reduces

communication cost in parallel implementations.

During simulation, the change in particle spatial distribution requires the system to

be rebalanced. Force Decomposition allows the non-bonded force computation to migrate

from busy processors to idle ones dynamically. Since the bonded forces take small portion

of computation, they do not migrate.

There are therefore two types of load balancing are employed in NAMD2: initial and

dynamic. Initial load balancing is done during program startup. From then on, NAMD2

performs the dynamic and measurement-based load balancing by migrating non-bonded

force computation objects. NAMD2 has achieved significant efficiency, for example, close

to 80% on 128 processors.

2.4.2 ProtoMol

ProtoMol [Mat04] is an MD framework developed in C++. It utilizes inheritance and design

patterns of object-orientated programming and is designed especially for experimentation

with novel MD algorithms.

The parallelization on ProtoMol is relatively primitive. The parallel version of Proto-

Mol is modified from the serial version with limited changes. It decomposes the parallelism

with force group, which assigns computations to different processors by force type. Con-

sequently, all particle data are duplicated on every processing node. This method is called

Replicated Data. The communication cost of each processor in a Replicated Data system is

proportional to number of particles. This method is reported to work well with up to tens

of processors. ProtoMol has similar performance to serial versions of leading MD packages,

such as NAMD2.

37

2.4.3 CHARMM and AMBER

CHARMM [He94, PZK02] has been under development since 1983 and is coded in FOR-

TRAN. CHARMM partitions the computation of the O(N2) pair-wise non-bonded forces

with Force Decomposition, which means that computation is partitioned in units of single

force evaluation. Because no spatial information is applied, neighbor lists do not help in

this case. Assuming there are P processors, the communication cost of each processor is

O(N/
√

P).

CHARMM minimizes the communication and achieves load balancing with irregular

partitioning. An example of a partition across 4 processors is shown in Figure 2·10.

Figure 2·10: Irregular Particle Pairs Partition Applied by CHARMM
[He94]

AMBER [CCD+05] shares many characteristics with CHARMM. It was developed in

FORTRAN, and is regarded as the “standard” MD code. It improves simulation accuracy

by adding new force terms. CHARMM and AMBER have their own force fields. For

parallelization, AMBER only applies the Replicated Data method.

2.4.4 GROMACS

GROMACS was developed from GROMOS by rewriting routines from FORTRAN to C.

It was originally designed for parallel computer systems. GROMACS has highly optimized

codes, such as converting some floating-point operations to integer, supporting SIMD in-

structions, and assembly level optimization. It is reported to be the fastest MD package

38

to date; however, it may not be best one in terms of scalability. GROMACS enables par-

allelism with Message Passing Interface (MPI) standard functions on cluster systems and

shared memory super computers. The communication cost is a major barrier preventing

GROMACS from scaling to a large number of nodes, although it has significant single node

capability.

GROMACS decomposes particles to nodes connected in a ring structure. At every time

step, all the coordinates and partial forces are sent around half of the ring, so that for par-

ticle pair (i,j), either ‘i’ is sent to the node of ‘j’ or ‘j’ is sent to the node of ‘i’ to calculate

pair-wise forces; then, the results are sent back in the opposite manner for each particle to

sum up. As stated in [KSF+07], the all-to-all communication causes the network to lose

packets in regualr Ethernet switched clusters, and breaks down the scalability when the

number of nodes is greater than two. One solution to this issue is to employ expensive

networks with good QoS (high bandwidth and low latency); other solutions include ap-

plying link-layer flow control on the cost-efficient Gigabit Ethernet network and explicitly

controlling communication pattern. With these methods, the scalability is extended at

least to 16- or 32-node systems.

2.5 Special Purpose Machines

The importance of MD and the regularity of its computations have inspired some work in

special-purpose architectures. Most of these were originally developed for N-Body compu-

tations.

2.5.1 MD-GRAPE

MD-GRAPE is a subset of the GRAPE (GRAvity PipE) family of special-purpose com-

puters. The latter were originally designed for gravitational simulation and were extended

to other N-body problems, including MD [KUT+97]. GRAPE chips work as coprocessors

connected with a host computer via a bus adaptor.

GRAPE chips are designed to compute the most intensive O(N2) long range inter-

39

Figure 2·11: System Level Block Diagram of MD-GRAPE [FTM+96]

particle forces in a general form:

~Fi =
∑

j

ajg(bjr
2
s)~rij (2.18)

where rij is the geometry displacement between particles, rs is a scale factor, and aj , g, bj

are parameters for specific forces.

The host computer does the rest of computation. Original GRAPE, however, could

only compute forces in form of 1/r2, which is not the case of Particle-Particle Particle-

Mesh (P 3M). Several modifications were applied on GRAPE, described in [FTM+96,

EMF+93, TNO+03, JVS03], to build MD specific GRAPE chip, i.e. MD-GRAPE and MD-

GRAPE2. Because they only computed the real part of Ewald Sum, WINE [FMI+93] and

WINE2 [NSFE00] were developed for the reciprocal part of Ewald Sum. MD-GRAPE2 and

WINE2 were integrated into the Molecular Dynamics Machine (MDM) [NSE+99, NSK+00],

where particle data are duplicated on each MD-GRAPE2 board and WINE2 board. MD-

GRAPE3 [TNO+03] integrated the real part and reciprocal part computation as well as

particle data memory into one chip, and will be applied in the Protein Explorer machine.

A block diagram of the MD-GRAPE3 chips (from [TNO+03]) is shown below.

The amount of communication between the host and MD-GRAPE3 is O(N). At the

same time, the computation performed on MD-GRAPE3 is proportional to O(N2). In the

Protein Explorer system, the ratio between the communication speed and the calculation

speed is 0.25 bytes per one thousand operations, so the communication/computation speed

gap is not a big problem.

40

Figure 2·12: MD-GRAPE3 Chip Block Diagram [TNO+03]

2.5.2 MD Engine and MODEL

MD Engine is a hardware accelerator for non-bonded forces computation. The system

presented in [TMK+99] contains a Sun Ultra-2 workstation, 76 MD Engine cards, and

achieved a 48 times speedup over a single Sun Ultra-2 workstation. The acceleration is

performed by the MODEL chips on each MD Engine card, which is able to compute the

non-bonded forces as well as the original Ewald Sum method in a general purpose pipeline.

The MD Engine cards hook onto a single bus to communicate with the workstation. It

is convenient to broadcast particle coordinates and computation parameters to MODEL’s

local memory via this bus. During the computation, each MODEL chip can run at top

speed. However, the communication after force computation in this system is not efficient.

Most of the computation within MODEL pipeline uses a 40-bit floating-point format.

MODEL also uses quadratic interpolation to compute nonlinear functions with coefficients

from its function memory. To maintain accuracy, different correction methods are applied

41

to the Lennard-Jones force, the Coulomb force, and the reciprocal part of Ewald Sum

individually. This means that although MODEL has a general force pipeline, it is still

hard, if not impossible, to adapt new forces.

42

Chapter 3

FPGA Acceleration of MD

Nowadays, cutting edge FPGAs operate as fast as 500MHz, have more than 200,000 general

logic cells, and many dedicated function units such as memories and ALUs. With such

large capacity FPGAs, high performance computing (HPC) on FPGAs has been explored

in many ways, including floating-point arithmetic, linear algebra, communication, and

signal processing. Recently, FPGAs have been employed in supercomputers, such as the

Cray XD1, SGI Altix RASC, and SRC MAP station, to work as configurable coprocessors.

The latest trend is pin compatible FPGA cards, such as from DRC, XtremeData, and

Nallatech, that plug directly into the processor socket on the processor board. This trend

of growing support for FPGAs confirms our belief that these devices are promising high-

end computation resources, and that research into HPRC is both more feasible and critical

than ever.

3.1 FPGA Overview

FPGAs are one type of reconfigurable circuits. Other reconfigurable circuits include Pro-

grammable Array Logic (PAL), Generic Array Logic (GAL), and Complex Programmable

Logic Devices (CPLD). Among these devices, FPGAs provide the largest number of gates

and are the most powerful in terms of ability to implement logic functions.

FPGAs are made of programmable components and programmable connections. The

programmable components are able to implement combination logic to translate small scale

inputs to outputs with a lookup table (LUT). Storage units, such as flip-flops (FF) are also

available in the programmable logic fabric and are necessary to build sequential logic. The

programmable connections interconnect the programmable components to combine small

43

scale functions into large scale functions; the hierarchical structure retains low propagation

delay for signals traveling across the chip. As shown in Figure 3·1, the Xilinx Virtex II

FPGA chip [Xil03] contains configurable logic blocks (CLBs) as the programmable compo-

nents. The LUTs in the CLBs are usually implemented with SRAMs, they can therefore

be used as normal SRAMs as well. As shown in Figure 3·2, CLBs are connected to the

Switch Matrix for global communication; neighboring CLBs are connected with express

lines.

Besides these configurable components, modern high-end FPGAs have many dedicated

function units and peripherals implemented in custom logic; these include on-chip SRAMs

(called Block RAMs or BRAMs), DSP modules (multiply and add units), fast I/Os, and

multiple clock control units. Some FPGA families, such as Xilinx Virtex II and Vir-

tex IV, have multiple embedded PowerPC processors, as shown in Figure 3·1. Although

the connections among these dedicated function units and CLBs are reconfigurable, these

connections are somewhat less flexible; these dedicated components still have much bet-

ter efficiency than equivalent logic built out of the small-scale configurable components.

High-end FPGAs also have hundreds of I/O pins. These are commonly used to integrate

FPGAs with off-chip but on-board memory. A typical board-level FPGA system contains

several independently addressable SRAM and DRAM banks for use as backing store or

user-managed cache.

FPGAs have traditionally been used for glue logic on printed circuit boards (PCBs) to

merge signals among chips, or to provide board level registers. One advantage of FPGAs in

this scenario is that they can be modified even after the board design has been committed.

Another traditional application for FPGAs is for IC prototyping. FPGAs are used to

emulate chips?logic before they are fabricated. In a recently published project [LYS07],

an Intel Pentium microprocessor was emulated with a Xilinx Virtex IV LX200 FPGA.

The advantage over, say, software emulation, is efficiency: FPGA-emulation enables full

system simulation including test with run real operating systems, such as Windows XP.

Another application is for situations where the expense of developing an ASIC would not

44

Figure 3·1: Virtex-II Pro Generic Architecture Overview [Xil03]

be justified: here FPGAs provide a direct and cost-effective solution.

3.2 FPGA Design Flow

Generally, FPGA design involves two aspects: function description and function verifica-

tion. These two parts are shown side-by-side in the design flow as shown in Figure 3·3.

Function description specifies the configuration of the chip to implement certain functional-

ity ?this is done in various abstract levels. Function verification checks whether the design

matches the specification at each level. Software tools for all of these functions have a long

history derived, especially from ASIC design: they are known collectively as Electronic

Design Automation (EDA).

A central difference between ASIC and FPGA design for HPRC is the intended appli-

cation space; this has a direct influence on the tools used to support creation of FPGA

configurations. Although there is little difference between what could be implemented on

ASIC and FPGA (other than that the ASIC would be more efficient), configurability gives

FPGAs viability as a general purpose processor. General purpose in this sense does not

45

Figure 3·2: FPGA Programmable Connection

imply the flexibility of a microprocessor, rather the fact that they can accelerate many dif-

ferent types of applications. The expectation is that FPGAs will be cost-effective solutions

in lower volume applications than ASICs, and that the designer will have less hardware

design experience. This last point is enabled by the fact that the FPGA already provides

much of the circuitry required for a working solution. To summarize: while much of the

EDA infrastructure for HPRC is derived directly from its existing user base, the highest

level, closest to the designer is not.

HPRC is still developing rapidly and there is as yet no convergence as to the best meth-

ods for describing configurations (the FPGA equivalent of programming). Furthermore,

it is likely that several different modes will remain viable, depending on market size and

potential mark up.

In theory, it is possible to program each CLB individually. Although this might be

possible for small-scale designs for high-volume applications, this is not generally viable

for HPRC. The next level is that of the hardware description language (HDL), e.g., VHDL

and Verilog. These languages have a C-like syntax and when used by a skillful designer,

can be used to produce highly efficient configurations. HDLs of any kind, however, are

fundamentally different from high-level languages (HLLs). Whereas HLLs direct a com-

puter to execute a sequence of instructions, HDLs describe the behavior of a circuit at all

46

Figure 3·3: FPGA Design Flow

times with respect to stimulus. Of course there is convergence when the HDL is describing

a microprocessor!

One of the fundamental problems in computer engineering today is to bridge this se-

mantic gap between HDL and HLL. Dozens of tools have been developed to allow designers

to specify functionality in more abstract manner. For example, SystemC [Gro02] uses C++

as programming interface, Matlab using Simulink [Mat06]. Users must follow the restric-

tions embedded in these tools to specify their requirements, which causes considerable cost

of training and legacy codes recoding. Other tools, such as Impulse-C [Imp06] and SRC

MAP C/Fortran [SRC06], translate programs from standard high level languages to FPGA

configurations. They are, of course, convenient for users to convert legacy codes or develop

new applications with little training. However, the performance of the auto-generated

FPGA designs is usually not as good as other methods.

In the end, it may turn out that the choice of description method used for a particular

HPRC application may matter less than how the algorithm is restructured to map to the

FPGA. In this work we design explicitly with VHDL; we believe that the importance and

difficulty, particular the need for high precision, warrant this level of design.

47

3.3 High Performance Reconfigurable Computing

Before addressing the capability of FPGAs for high performance computing (i.e. HPRC),

we need to discuss the limitations of other computation resources. The computational

power of a general-purpose supercomputer system is enhanced with improvements to in-

dividual nodes, the communication network, and parallelism. In recent years, the clock

frequency of microprocessors has not significantly increased, because of the power density

barrier. Instead, multi-core technology avoids this problem by executing multiple tasks

in parallel at lower frequency. For HPC, multi-core may not be that effective, because

the overhead of communication and synchronization becomes more significant when the

problem is decomposed into very small granularity. On the other side, Application Specific

Integrated Circuits (ASICs) of special architecture are desirable to achieve fine grained

parallelism. The advantage and disadvantage of ASICs are both obvious. They are more

efficient in terms of chip area and power than general purpose microprocessor because of

their specialized architecture; however, ASICs are difficult and expensive to develop, and

inflexible to adapt new applications.

FPGAs have characteristics of both generalization and specialization: before configu-

ration, they are general for various architectures; once configured, they are application-

specific. Although running much slower than high performance microprocessors, FPGAs

can achieve better data throughput, because of application specific architecture, such as

non-standard data types and customized memory interfaces. The massive connections

and programmable components offer FPGAs flexible scalability and enormous parallelism.

Compared with ASICs, FPGAs are commodity parts and easy to use: one FPGA acceler-

ation platform can work for many applications.

Applying FPGAs to HPC is promising, but also challenging. Herbordt et al. [HVG+07]

summarized the following major reasons. (i) The speedup is limited by Amdahl’s law, i.e.

the portion of problem to be accelerated with FPGAs. (ii) The operating frequency of

FPGAs is slow. (iii) The overhead of parallelism affects FPGA systems as well. (iv) There

48

are different computation models between microprocessor and FPGAs. (v) Few application

experts are good at FPGA design. Therefore, the performance of HPC using FPGAs is very

sensitive to the quality of the implementation. Overhead must be scrupulously avoided in

implementation, both in tools and in architectures [Sny86].

In general, FPGAs are completely different computation resources from microprocessors

for HPC applications. They offer a novel approach to break through the performance

barrier and still retain flexibility to address various applications.

3.4 Computation Model

Since the potential speedup of FPGA acceleration is tremendous but difficult to obtain, the

development methodology becomes important. As defined for the analogous problem of

developing parallel applications [SSOB02, DG04, PV96], a well defined programming model

is the common platform for system designers, tool developers, and application developers

to work on. By following a unique programming model, application developers can work

independently, and also benefit from the optimization done by system designers and tool

developers. The situation of HPRC is similar, but more complicated.

As a consequence of the challenges described previously, HPRC applications require

careful design; this is problematic because application experts usually lack FPGA expertise.

The methodology that merges HPC applications and FPGA development must provide

models that experts on both sides can work with. The difficulty for HPRC is that there

is no uniform architecture to configure on FPGA. The traditional programming models

cannot help application experts use FPGA efficiently. FPGA-specific models therefore are

necessary. Since FPGAs in used for HPRC are mostly configured as computation engines

to process data, these models shall be computation orientated. The computation models

likely to be effective for HPRC are closely related to real hardware to enable real speedup.

Stream processing is a well studied computation model. For problems having a regular

computation pattern, massive data processing can be controlled by a few flow controls, and

data can be re-used within data path to relieve the memory access bottleneck. Many com-

49

puter architecture technologies utilize these features, such as SIMD instructions (mostly

multimedia instructions), systolic arrays, and GPUs. The stream processing computation

model comprises a wide range of support for these kinds of problems, including stream spe-

cific languages [TKA02], stream compilers for general programming languages [MPHL03],

stream architecture on general purpose processor [RAJ99, PW96], and special stream pro-

cessors [KDK+01].

FPGAs by nature are appropriate stream processing processors. This is because they

have programmable connection to implement various systolic array structures, programmable

components to efficiently perform non-standard operations, and a flexible I/O interface to

interact with external devices. Many tools based on the stream processing computation

model assist application experts in exploiting speedup with FPGAs: two of these are SA-C

[BHD+02] and ASC [Men06]. SA-C (Single Assignment C) extends the C language for

users to annotate stream tasks. The SA-C compiler takes out these tasks and generates

VHDL code. ASC (A stream compiler) extends C++ and also depends on user annotations

to recognize stream tasks. ASC uses PamDC, instead of VHDL or Verilog to specify FPGA

designs. Both SA-C and ASC define data types for bit operations. Mapping streaming

tasks to FPGA, even those as simple as expanding a loop with a deterministic number

of iterations and no data dependencies, is not trivial for most software developers. These

tools help them improve performance without doing specific FPGA development or opti-

mization, as long as their applications fit in the supported stream processing computation

model.

Multigrid is another computation model good for HPRC. It perhaps not as generally

applicable as the stream model, but is indicative of the idea of the family of applications

as opposed to point solutions. We originally developed a multigrid coprocessor to compute

the long-range Coulomb force for Molecular Dynamics simulation [GH07b]. The multigrid

method is, in fact, applied in many areas, such as numerical computing and image pro-

cessing. Therefore, we defined a computation model based on the multigrid coprocessor,

and adapted some image processing algorithms to it. For algorithms only doing linear

50

operations, this multigrid model can directly generate FPGA circuits and performance

estimation, and application experts only need to provide algorithm information, such as

operation coefficients, data type, and number of iterations. For non-linear multigrid algo-

rithms, because there is no general form to model non-linear operations, our computation

model needs to analyze problems case by case, rather than to provide a generic solution.

This fact also reveals that creating FPGA computation model is more difficult.

One or a few computation models are definitely not sufficient for all of HPRC: for many

families of applications (including MD) we need meticulous implementation to squeeze out

cost-effective performance. If the model is too general, it becomes trivial and useless; if

it is too specific, numerous potential applications will be left behind. The advanced EDA

tools described previously are often helpful, but not universally sufficient. They raise the

abstraction level above that of the hardware description, so that application experts can

focus on algorithms. FPGA expertise is still required, however, for essential jobs, such

as optimizing common architectures and libraries, creating templates, and developing new

hardware systems.

3.5 Reconfigurable Computer Systems

Several vendors have released HPRC systems in recent years. Many of them are extended

from existed supercomputer systems. Although FPGAs can be configured in different ways,

the FPGA chips must be plugged into PCB boards to work with memory, microprocessor,

and other devices. There have been various supercomputer system architectures with spe-

cific node structure, communication, operating system, and programming model; FPGAs

introduce more architecture design choices. For instance, the relationship between micro-

processor and FPGA can be either processor/coprocessor, or peer-to-peer in the whole

system. In this section, a brief survey introduces some of these HPRC systems.

51

3.5.1 SGI RASC

SGIs HPRC product is called the Reconfigurable Application Specific Computing (RASC)

[Sil04]. The newest version is the RC100, a reconfigurable computer blade. RASC is based

on the Altix architecture. The RASC blade can be connected to the Altix 350 system via

the NUMAlink low-latency high-bandwidth bus.

Figure 3·4: SGI’s SA Brick [Sil04]

There are two Xilinx Virtex4 LX200 FPGAs on each RASC blade. As shown in Figure

3·4, each FPGA can have up to 5 banks of off-chip SRAM (up to 40MB in total). The

interface to the NUMAlink is through the Scalable Systems Port (SSP) and the TIO ASIC

chip, which provides a high speed (up to 3.2GB/s) and low latency access to the memory

coherency domain. Furthermore, SGI allows users map virtual addresses to the FPGA

memory.

As shown in Figure 3·5, SGI has a layered software architecture for HPRC. Users can

use the RASC Abstraction Layer API to access FPGAs from the user space; the OS layer

handles FPGA device management, such as FPGA configuration bit-file downloading and

data transferring; FPGAs are in the hardware layer, which can be developed with vari-

ous languages and tools, such as VHDL, Verilog, Mitrion-C, and Handel-C. The software

52

Figure 3·5: SGI Software Architecture for RASC [Sil04]

debugging support is based on GDB with FPGA-aware extension.

3.5.2 Cray XD1 and XT4

Cray integrated FPGAs as coprocessors in their message passing supercomputer. The XD1

[Cra05] was their first HPRC solution. As shown in Figure 3·6, there are up to 6 nodes

in one chassis; every node has two AMD Opteron microprocessors and one Xilinx FPGA

as the reconfigurable coprocessor. The connection among the FPGA, the microprocessors,

and the RapidArray Interconnect System is shown in Figure 3·7. The HyperTransport bus

provides two 3.2GBps connections between the FPGA and the Opteron microprocessors,

and 4GBps connection from the FPGA to the RapidArray Interconnect System which

connects to other nodes. Each FPGA additionally has four 3.2GBps ports to QDR SRAMs

and two 2GBps ports to other computation modules. The Cray XT4 is the successor of

XT3, which has newer SeaStar interconnection, Opteron Processors, DRAMs, and FPGA

coprocessors. Unlike the XD1, where FPGA has dedicated socket, XT4 allows FPGA to

be plugged into its processor socket and to access DRAMs directly.

Cray’s message passing programming model is extended to execute computation on the

FPGA as well: APIs include “fpga put” and “fpga get”. The FPGA coprocessor itself

follows the regular development flow. At the high level, high level languages or tools like

53

Figure 3·6: Cray XD1 Node [Inc]

MATLAB scripts are compiled to VHDL/Verilog. Then, the VHDL/Verilog codes are

synthesized and mapped to FPGA chips.

3.5.3 SRC MAP Station

The HPRC solution from SRC is called MAP. The last versions are the SRC-6, which is

based on Xilinx FPGAs, and the SRC-7 which is based on Altera FPGAs. A MAP node is

a standalone box plugged into the main system. The MAP systems can be built on differ-

ent scales: a small system contains only one MAP box plugged into a microprocessor node,

which is called MAP station; a cluster based system is constructed with several MAP sta-

tions connected with Ethernet; a high-end system has several MAP boxes, microprocessor

nodes, and common memories connected with the SRC Hi-Bar Switch bus.

Each MAP box contains two FPGAs as well as on-board SDRAMs and SRAMs. The

interface to the microprocessor is up to 14.4GB/s on the SRC-7 and 2.8GB/s on the SRC-6.

The general purpose I/O (GPIO) pins allow MAP-to-MAP or peripheral-to-MAP direct

54

Figure 3·7: XD1 Connection [Inc]

connections with throughput of up to 4.8GBps.

SRC provides a set of MAP development tools from high level language compilers to

FPGA debugging tools. The SRC MAP compiler translates C or FORTRAN codes to

FPGA logic directly. The main program calls the FPGA logic as a function, which does

the following tasks: download the user logic, transfer data via DMA, start and monitor

data processing on FPGA, and finally, return control back to the calling program. The SRC

MAP compiler generates FPGA configurations from high level languages by using methods

such as parallelizing deterministic loops into pipelines and converting non-deterministic

loops into state machines; the latter, lack of parallelism, however, sometimes results in

little performance. Since the development starts from high level language, software-style

debugging and hardware simulation are both supported. SRC defines two programming

modes: a debug mode and a simulation mode. In debug mode, the high level language

source codes can be quickly compiled and executed on the microprocessor. Also, developers

can use the “printf” function to debug codes. In simulation mode, the source codes are

compiled to Verilog and then to the Synopsis VCS simulator. Usually, system calls or other

functions that require OS intervention are not allowed in MAP codes. For tasks such as

on-board memory access, one can use a macro as a library function associated with a piece

55

Figure 3·8: SRC MAP Configuration [HP05]

of predefined FPGA logic. Another use of macros is to insert user logic. In this case, one

can develop and optimize FPGA logic with a different development flow and integrate it

into MAP codes.

3.5.4 XtremeData XD1000

XtremeData released its HPRC solution, the XD1000 coprocessor module, in 2006 [Xtr07b].

It is neither a plug-in FPGA board in a workstation nor a plug-in chassis in a supercom-

puter. Rather, it is a coprocessor module that plugs directly into an Opteron 940 socket.

Within this module, there is a Stratix-II FPGA from Altera, 4MB off-chip SRAM, 32MB

FLASH memory, and a JTAG/I2C port. Through the Opteron 940 socket, it can com-

municate with the peer Opteron microprocessors via the HyperTransport bus, and can

access the memory on the mother board. One system applying this coprocessor mod-

ule is XtremeData’s XD1000 development system. The coprocessor module sits aside an

Opteron 2.2GHz microprocessor on a dual-CPU mother board. As shown in Figure 3·10,

56

Figure 3·9: SRC MAP Box [HP05]

the XD1000 coprocessor module has its own 2GB DDR memory; the Opteron micropro-

cessor handles peripherals with the south bridge; the bus between two sockets is up to

3.2GB/s. Other possible applications of the XD1000 coprocessor module include standard

commercial HPC enterprise, rack, and blade servers. By replacing the Opteron micro-

processors with the XD1000 modules, the system can be armed with FPGA computation

modules without hardware change on current hardware, and these FPGA modules can take

advantage of the high performance interface to microprocessors and memories.

XtremeData provides a platform support package (PSP) with Impulse-C, an extension

of ANSI C developed by Impulse Accelerated Technologies. Developers can create acceler-

ator including FPGA logic, memory interface, FPGA/CPU communication routines, and

application software with only C-level development. With optimized libraries, XtremeData

expects that the speedup from this process could be 50×.

57

Figure 3·10: XD1000 BLOCK DIAGRAM [Xtr07a]

3.5.5 Annapolis Microsystems Plug-In Boards

Almost every FPGA chip has a plug-in development board that communicates via standard

peripheral buses, such as PCI and VME. These boards are essential for creating FPGA ap-

plications. As FPGAs have become viable components for use in HPC, these plug-in boards

have become suitable for building small-scale reconfigurable computer systems. This is be-

cause they contain necessary system-level components (analogous to PC motherboards).

Thus (i) not only chips, but also boards are COTS parts; (ii) boards are independent of

host, therefore able to work in different systems; (iii) existing PC or workstation based

systems, e.g. cluster, can easily incorporate FPGA with these boards.

In these reconfigurable computer systems, the plug-in boards work as loosely coupled

coprocessors, receiving data from host and sending results back over the I/O bus. All com-

munication between coprocessor and host in this model is through the standard peripheral

bus. This is slower than the tightly coupled solutions describe above; whether or not the

communication is adequate depends of course on the applications.

58

We have found that plug-in boards are adequate for FPGA/MD systems to achieve

acceleration of up to 10×. To achieve this for MD (or other non-trivial HPC application)

one must explore the problems’ data locality and reuse the data downloaded to coproces-

sors. Because the on-chip SRAMs are too small to hold the working set for most problems,

plug-in boards contain substantial off-chip memory to extend the storage space.

Many vendors FPGA plug-in boards, including the Wildstar series from Annapolis

Micro System, Inc, and the BenNUEY series from Nallatech, Inc. One example is shown

in Figure 3·11, is the WILDSTAR R©-II PRO/PCI Board from Annapolis Micro System,

Inc., which we use in this work. This board consists of two Xilinx Virtex-II-Pro XC2VP70

-5 FPGAs; each FPGA is surrounded by six off-chip SRAM chips and a DRAM chip of

up to 48MB and 128MB, respectively; FPGAs are interconnected through both differential

pins and high speedup rocket I/O; both FPGAs communicate with host through the PCI

Bus and have a socket to connect to other boards or external signal sources. Since this

is a development board, creating FPGA applications is done with a standard design flow:

the user develops logic with an HDL (perhaps through a higher level abstraction) and

incorporates pre-defined modules from vendor; host software accesses boards with APIs

containing the device driver. More detail about the particular version of this system that

we used will be presented in Chapter 7.

3.5.6 Summary of Reconfigurable System Products

Current reconfigurable computer systems fall roughly into two categories: super-computer

based systems (e.g. SGI RASC, Cray XD1, and SRC MAP Station) and extension board

based systems (e.g. XtremeData XD1000 and Annapolis Wildstar plug-in boards). The for-

mer are extended from existing super-computer architectures. As a parts of HPC solutions,

these systems also have tools to develop and integrated FPGAs into existing programming

models. FPGAs can work as coprocessors sitting beside microprocessors in one node, or

work as independent processors. In both models, FPGAs are able to communicate with

other processors or access remote memory via high-performance buses. Since many HPC

59

Figure 3·11: Diagram of WildstarII-Pro PCI board [Ann03]

applications have already been developed and tuned on the original super-computers, it is

convenient to accelerate them with FPGAs on the extension systems. The disadvantage is

that these systems are specific, so they are expensive and difficult to port FPGA designs

across different systems. Developers also are required to have intensive knowledge of the

systems to develop accelerated designs.

The systems of the second category are based on industry standard interfaces. There-

fore, they have more flexibility and are more affordable. FPGA designs are also easier to

port across different systems. One concern of this type of system is that the bandwidth of

some industry standard interfaces becomes a bottleneck. Although careful FPGA algorithm

design may relieve the pressure on communication for some applications, plugging FPGAs

into the high-speed front bus (FSB) instead of the peripheral bus (e.g. the XtremeData

XD1000 solution) seems promising. This solution can also be applied in super-computer

based systems (e.g., the Cray XT4).

60

3.6 MD Related Work

Research on FPGA acceleration of MD is being carried out in recent years. Some designs

and results have been published since 2003.

One of these studies is published by N. Azizi, et al. [AKE+04] in 2004. A preliminary

MD system was implemented on a Transmogrifier 3 (TM3) system, which had 4 intercon-

nected Virtex-E 2000E FPGAs and external SRAMs. This system evaluated the all-to-all

Lennard-Jones force and the Verlet integration on FPGAs. The numerical computation

was performed with fixed-point numbers of different scales. For Lennard-Jones, it applied

a method, which is believed equivalent to the second order interpolation. The interpolation

was performed on the acceleration curve directly. This system was capable of 8192 parti-

cles, but no capacity of supporting multiple particle types was reported. It was also hard

to evaluate the simulation accuracy provided by this system with the information in this

paper. The speedup of this acceleration is 0.29, slower than original software implementa-

tion on a PC of a 2.4GHz CPU. The authors cited the bottlenecks as memory bandwidth,

clock speed, and lack of parallelism.

Another study was presented by R. Scrofano, et al. [SP04], in 2004. They applied

simplified double precision FP arithmetic to compute the Lennard-Jones potential and

force with original equations. Two 119 stage pipelines were placed and routed on a virtual

Virtex-II Pro XC2VP125-7 chip, but no real performance was measured. This design was

not integrated into any fully functional MD system, so there was no quality measurement

either. A new version was developed on an SRC-6 MAP station [SGTP06, SP06]. Both

the Lennard-Jones force and the real part of Smooth Particle Mesh Ewald Sum are cal-

culated on FPGA coprocessors with floating-point arithmetic. In particular, erfc(x) and

e−x2

in the real part of SPME are computed with lookup table and interpolation. The

force computation including cell-list support is implemented by translating software into

hardware. Because of the floating-point arithmetic complexity on FPGAs and the off-chip

memory access latency, the force computation pipeline is split into two parts connected

61

with a FIFO. The FPGA coprocessor has to stall when it fetches force data from memory

to accumulate and when the FIFO is full. The rest of the computation includes computing

the bonded forces and the reciprocal part of the SPME, constructing cell-list, and inte-

grating motions are computed on the general purpose microprocessors. Two simulations

of 52K particles and 33K particles are reported. The speedup is about 2.7 − 2.9×. Single

precision is used. No simulation quality is reported.

Kindratenko, et al., [KP06] reported their work of porting NAMD to the SRC-6 MAP

station. Only the short range force computation was implemented on the FPGA chips. A

stack of functions was rewritten to be packed in a single function and compiled with the

MAP-C compiler [SRC05] to generate FPGA logic. The computation uses single precision

floating-point arithmetic and four pipelines are fit in two Virtex-II Pro100 FPGA chips.

The overall 3x speedup was achieved for a simulation of 92K particles.

Alam, et al., [AAS+07] also used the SRC-6 MAP Station. They ported Amber to

the SRC-6 MAP station by mapping part of the real part of the Particle Mesh Ewald

Sum (PME) to two Virtex-II Pro FPGA chips. The computation is carried out with single

precision floating-point arithmetic. This system simulated two models of 23K particles and

61K particles respectively, and achieved about 4x speedup in both simulations.

As a part of the GRAPE project, PROGRAPE (PROgrammable GRAPE), using

FPGA to replace GRAPE chips, has been developed for 4 versions since 1999 [HFKM00,

HN05]. There are some attemps that maps MD to PROGRAPE [Sch07], but no much

detail has been found.

62

Chapter 4

Algorithm Design Part 1: Short Range Forces

We now begin in earnest the discussion of our work in accelerating MD with FPGAs. As

described in the introduction, we begin with aspects of the work that are more general

and move to the FPGA-specific and finally to experiments with a particular system. In

this chapter and the next (after this prologue), we describe overall design considerations

related to first the short-range and then the long-range force computations. We begin with

a brief overview of some of the issue related to mapping complex applications to FPGAs

at the algorithmic level.

Mapping algorithms originally created for general purpose processors (GPPs) to FPGAs

is in some ways more challenging than porting algorithms from single processor systems to

parallel computers. In addition to general issues universal to parallel application design,

including decomposition, communication, and synchronization, the design space for the

FPGA coprocessor itself is also very large. The computational capabilities of GPPs and of

FPGAs are quite different. GPPs have high operating frequency and hardware units for

common data types, e.g. byte/word integer and standard floating-point; but the through-

put is usually limited by the number of function units and the memory and I/O bandwidth.

FPGAs, on the other side, have high parallelism/bandwidth; are able to efficiently operate

with non-standard data types; and are inherent good at data processing. But because the

FPGA control logic is usually implemented in state machines and are hardwired together

with the data path, FPGAs are much less flexible than GPPs. Therefore, mapping algo-

rithms from GPPs to FPGAs is not just a matter of swapping functions from software

to hardware. Algorithms usually require redesign to match FPGAs’ strengths, such as

maximizing parallelism and throughput, while avoiding weaknesses such as high-precision

63

floating-point operations. In this research, we investigated and redesigned MD algorithms

in several aspects, including the efficient numerical computation of complex expressions,

the use of the multigrid method for the long range Coulomb force, and the use of alternative

arithmetic mode: semi floating-point arithmetic mode.

The topics of the rest of this chapter concentrate on issues related to creating dedicated

processors for computing complex expressions. Key is the fact that there is a large space of

possible designs: these must be enumerated and evaluated. In the next section we describe

issues related to fast interpolation. Issues are the format of the look-up, the interpolation

mode, trade-offs between interpolation order and table size, arithmetic format, numerical

precision, and evaluation of the alternatives.

4.1 Numerical Computation of Complex Expressions

4.1.1 General Considerations

Computing the short-range force involves computing complex expressions. There are two

issues: the number of operations and their complexity. With respect to number of opera-

tions, most high-performance implementations of MD avoid direct computation of the r−x

terms, opting instead for polynomial approximation. This still leaves a large number of

alternatives and, as we shall see, the choices depend very much on the hardware platform.

The complexity of the operations is derived primarily from the assumption that double

precision floating-point (DP) will be used (although some systems, GROMACS in partic-

ular, relax this assumption). If the precision or other aspects of the arithmetic complexity

of DP can be reduced on the FPGA implementation, there will be a proportional increase

in performance: chip area saved can be applied directly to increasing parallelism.

Double precision floating-point is considered canonical in applications like MD in tradi-

tional computer systems. However, we have applied fixed-point number and its variations

in most computations conducted on FPGA. There are two main reasons: (i) floating-point

arithmetic costs too much chip area, and (ii) it is more than necessary in many cases. In tra-

ditional computer systems, floating-point operations are performed by dedicated hardware

64

units designed for general applications. In this case, the cost of floating-point operations

is acceptable, but it is also usually the only choice. In contrast, since our coprocessors

are designed for special purposes, we are free to choose the arithmetic modes. Developing

efficient numerical methods for MD-specific computation is both practical and essential to

achieve speedup with FPGAs.

We must use proper arithmetic operations to match the FPGAs’ capabilities. For

instance, high-end FPGAs nowadays have embedded hardware multipliers and adders,

such as the DSP modules in Xilinx Virtex IV and Virtex V families. These each contain

a dedicated 18-bit × 18-bit 2’s complement signed multiplier, adder logic, and a 48-bit

accumulator. On these FPGAs, MAC (multiply-accumulate) is an efficient operation;

division and square-root, however, must still be avoided even with fixed-point numbers.

Implementation of lookup tables is also efficient on FPGAs: the hundreds of integrated

on-chip SRAMs can be configured to different widths and accessed directly accessed the

configurable logic fabric. With these memories, the coprocessor can simultaneously work

on a large number of lookup tables without a memory access bottleneck.

Because polynomial interpolation only involves addition, multiplication, and coefficient

fetching, it is extremely suitable for FPGAs. We have applied high order polynomial

interpolations with a novel variation of fixed-point system-semi floating-point (Semi-FP) for

the Lennard-Jones force and the short range part of the Coulomb force computation in our

coprocessors. In the following subsections, we describe first our study of the interpolation

methods for FPGAs, followed by an introduction to Semi-FP arithmetic.

4.1.2 Interpolation of r−x

Recall that the Lennard-Jones force for particle i can be expressed as:

FLJ
i =

∑

j 6=i

εab

σ2
ab

{

12

(

σab

|rji|

)14

− 6

(

σab

|rji|

)8
}

rji (4.1)

where the εab and σab are parameters related to the types of particles, i.e. particle i is type

a and particle j is type b. Also that the Coulombic force can be expressed as:

65

FC
i = qi

∑

j 6=i

(

qj

|rji|3
)

rji (4.2)

We assume that the Coulomb force is split into two components: the slowly converging

part that is computed using one of the long-range methods, and the rapidly converging

part that together with the Lennard-Jones force comprises the short-range force to be

computed.

Most of the complexity in MD is in the short-range, non-bonded, force computation.

As describe previously, this has two components, the Lennard-Jones force and the rapidly

converging component of the Coulomb force. The Lennard-Jones force is often computed

with the so-called 6-12 approximation given in Equation4.1 and shown in Figure 2·2. Since

this calculation is the inner loop, considerable care is taken in its implementation: even in

serial implementations, the equation is not evaluated directly, but rather through a table

look-up plus interpolation.

Previous implementations of FPGA/MD have used table look-up for the entire Lennard-

Jones force as a function of particle separation [AKE+04, GVH06a]. The index used is |rji|2

rather than |rji| so as to avoid the costly square-root operation.

~FLJ
ji (|rji|2 , (a, b))

~rji
=

εab

σ2
ab

{12(σab

|rji|
)14 − 6(

σab

|rji|
)8} (4.3)

where ~rji is the displacement between atom i and atom j; a and b are the types of these

two atoms.

Because it is possible in principle for any two atoms to interact this way, computing

this force has been problematic. Here we describe a new method of short-range force

computation that changes what gets looked up, the shape of the table; in later sections,

we will discuss the interpolation mechanism, and the method of computing interpolation

coefficients.

Previous implementations of FPGA/MD have used table lookup for the entire force

as a function of particle separation [AKE+04, GVH06a]. This method is efficient for uni-

66

form gases where only a single table is required [AKE+04]: because it is not necessary

to distinguish atom types, the lookup table is a function only of displacement. As the

Lennard-Jones force, however, depend in general atom types, simulations of T different

atom types require T 2/2 tables. Since table lookup is in the critical path, the tables must

be in on-chip SRAMs for FPGA/MD to be viable. In previous work we described a latency

hiding technique whereby tables are swapped as needed [GVH06a].

Here we propose a different method, used also in some GPP MD codes. Instead of

implementing the force pipeline with a single table lookup for the entire force, we use two

tables for the Lennard-Jones force, one each for r−14 and r−8. Equation 4.3 now becomes

Equation 4.4. Because |rji|2 is much easier to compute than |rji|, the lookup table is

indexed with |rji|2.

~FLJ
ji (|rji|2 , (a, b))

~rji
= Aab×|rji|−14+Bab×|rji|−8 = Aab×R14(|rji|2)+Bab×R8(|rji|2) (4.4)

where

Aab = 12εabσ
12
ab (4.5)

and

Bab = −6εabσ
6
ab (4.6)

and where R14(x) = x−7 and R8(x) = x−4 are two lookup tables both indexed with |rji|2.

Thus, the force is computed with two sets of lookup tables. Aab and Bab are coefficient

lookup tables indexed with atom types, but they independent of distance; R14 and R8

are curve lookup tables indexed with distance, but independent of atom types. The two-

dimensional lookup table Equation 4.3 becomes a joint of two sets of one-dimensional

lookup tables. Assuming we interpolate the Lennard-Jones force in cutoff with K intervals,

the direct interpolation method requires K ·T 2/2 coefficients, while 2K+T 2 by our method.

67

The advantage is that we can easily support up to 32 atom types without swapping tables;

the disadvantage is that a few more operations must be performed in the interpolation

pipeline.

Returning now to the Coulomb force computation: because applying a cut-off to

FCL
ji (|rji|2(a, b))

rji

= QaQb|rji|−3 = QQabR3(|rji|−3) (4.7)

often causes unacceptable error, and also because the all-to-all direct computation is too

expensive for large simulations, various numerical methods are applied to solve the Poisson

equation that translates charge distribution to potential distribution. To improve approxi-

mation quality and efficiency, these methods split the original Coulomb force curve in two

parts with a smoothing function ga(r): a fast declining short range part and a flat long

range part. For example:

1

r
= (

1

r
− ga(r)) + ga(r) (4.8)

where the two components are shown in Figure 5·4. The short range component can be

computed together with Lennard-Jones force using a third look-up table. The entire short

range force becomes:

Fshort
ji

rji

= Aabr
−14
ji + Babr

−8
ji + QQ(r−3

ji +
g′a(r)

r
) (4.9)

Figure 4·1: Logarithmic Intervals for r−x Interpolation

We next describe an optimization to the lookup tables themselves. The r−x expressions

display extreme changes in behavior over the range of possible interaction radii, as shown

68

in Figure 4·1. It would be an exorbitant and needless cost in table size to use the same

number of coefficients and the same step sizes in the well-behaved regions of the curve.

Rather, as in [AKE+04], each curve is divided into several sections along the X-axis. Here,

the length of each section is twice that of the previous; however, each section is cut into

the same number interpolation intervals N .

To improve the accuracy of the force computation, we interpolate using higher order

terms. Here we assume a Taylor expansion; below we describe a more accurate alternative.

The Ci are the coefficients, x is the offset within the interval, and a is the left end of the

interval.

f(x) = C0 + C1(x − a) + C2(x − a)2 + C3(x − a)3 + ... + Cn(x − a)n + o(xn) (4.10)

When the interpolation is of order M , each interval needs M + 1 coefficients, and each

section needs N × (M + 1) coefficients. Since the section length increases exponentially,

extending the curve (in r) only increases the size of coefficient memory very slowly.

Table 4.1: Trade-off between Interval Size N (N is the Number of Intervals
per Section) and Interpolation Order M for r−7.

M and N are two major design coefficients for the short range force coprocessor. In-

creasing M or N each improves simulation accuracy, but reduces the chance to have more

force pipelines. Interestingly, on the FPGA these two numbers have a resource cost in

69

different hardwired components: the main cost for finer intervals is in the on-chip SRAMs,

while the main cost for higher order interpolation is in hardware multipliers and registers.

4.1 gives a sample of the tradeoff effects on R14 = x−7. In our first version, where the

all particles were stored on chip, N = 128 and M = 3 appears to be optimal. In the

second version, because particles are stored in the off-chip memories and every time only

a small portion is swapped in FPGA, less block RAMs are needed for particle data, and

the optimal configuration became N = 512 and M = 2. A consequence of the change

in parameters is that, because of the reduction in compute resources required for M = 2

versus M = 3, the number of pipelines can often be doubled. This doubles performance

without affecting simulation quality.

4.1.3 Computing the Coefficients

We now show how to develop polynomial approximations to arbitrary functions so that

the approximation is relatively easy to compute with economical use of FPGA resources.

The FPGA will implement the approximation F of function f as a sum of terms:

F (x) = C0 + C1x + C2x
2 + C3x

3 (4.11)

where the coefficients Ci are stored separately for a set of intervals that partition the x

range of interest. This form is desirable for FPGA implementation because the low powers

of x require relatively few hardware multipliers. In order to maintain accuracy in F , it is

defined as a piecewise function on a set of intervals that partition the range of interest,

with coefficients Ci for any interval chosen to provide the best approximation of f on

that interval. The piecewise nature of F is taken for granted in the remainder of this

discussion. One obvious way to create such an approximation on an interval near a point is

by truncating a Taylor series expansion. When carried to an infinite number of terms, this

represents F exactly. Truncating the series causes problems in accurate approximation,

however. In order to see how accuracy problems arise, consider the curves in Figure 4·2

illustrating the first few monomials xi.

70

Figure 4·2: Basic Monomials

All of the curves have the same general half-U shape, and become increasingly similar

as the degree increases. In other words, the x2 or x3 term of a low-order approximation

is important in approximations of all higher-order Taylor terms. Said differently, large

coefficients of high-order Taylor terms contribute heavily to the coefficients in the low-order

approximation. The i! denominator in the Taylor series dominates for asymptotically large

i. Still, for the functions and ranges of current interest (r−4 and r−7, 0.1 < r < 100),

many Taylor series terms i > 3 have appreciably large numerators due to large binomial

coefficients in (x−p)i and large derivative values dif/dpi. As a result, the truncated Taylor

series omits many large high-order terms that are important to approximation using low-

order polynomials. This is especially problematic for the larger intervals where behavior

may worse even than that of linear interpolation.

The orthogonal polynomial interpolation expression is also a polynomial of order p and

is arranged as a function of (x − a):

f(x) = C0 + C1(x − a) + C2(x − a)2 + C3(x − a)3 + ... + Cp(x − a)p + o(xp) (4.12)

71

where a is the starting point of an interval. The algorithm to compute the coefficients Ci

will be addressed later. With the orthogonal polynomial basis {Qiab|i = 0, 1, 2, , p − 1} on

range [a, b) derived from the Legendre Polynomials shown in Figure 4·3, we can construct

any polynomial of pth order on [a, b), including the Taylor expansion. An approximation of

F (x) in terms of polynomial space is a projection of F (x) from some high-order space down

into the low-order space spanned by a set of basis functions. Monomials, {1;x;x2;x3, . . . },

are not the most convenient set of basis functions to construct approximation polynomials.

When we expand the approximation polynomial by involving a high order monomial, the

weights of the low order terms are to be adjusted, because monomials are not orthogonal to

each other. This is another explanation why truncating Taylor expansion doesn’t generate

the best approximation - the low order terms are not adjusted after high order term involves.

However, if the Qiab(x) are orthogonal, we can project F (x) to the axis of Qiab(x) and

avoid affecting projections to other axis in the space. Furthermore, if we choose a proper

orthogonal basis, such as the Legendre Polynomials, in which the order of basis functions

is continuous by increments of ‘1’, we can span the polynomial space by increasing the

order by ‘1’ as well. Our FPGA implementation uses polynomials of the form in Equation

4.11. We can gradually improve approximation quality by constructing polynomials with

more basis functions (i.e. increasing polynomial order) based on the computation budget.

At the same time, the set of basis functions guarantees two nice properties:

• Least squared error, ‖F (x) − Pab(x)‖2, on [a, b).

• Approximation bias is zero, i.e.
∫ b
a (F (x) − Pab(x))dx = 0

The first property guarantees Pab(x) is the best local approximation in the polynomial

space of a given order; the second implies that if the data distribution is uniform, the

overall approximation bias will cancel out.

Although the orthogonal polynomial interpolation is the best local approximation in

each interval, the interpolation polynomials are continuous only within interval. When

transformed into Fourier space, as is done in some long range force calculations, spurious

72

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

Ln
(x

)

Legendre Polynomials

q0 q1 q2 q3 q4 q5 q6

Figure 4·3: Legendre Polynomials

terms may result.

Piecewise Hermite interpolation is an improved version of the original piecewise linear

method. Given two points on the target curve and their derivatives {(x0; f(x0); f
′(x0));

(x1; f(x1); f
′(x1))}; a polynomial is required to go across these two points with the same

derivatives. Since there are four constraints, this polynomial is third order. The four

coefficients can be computed by solving the following equations:

f(x0) = dx3
0 + cx2

0 + b0x + a

f ′(x0) = dx2
0 + cx0 + b

f(x1) = dx3
1 + cx2

1 + b1x + a

f ′(x1) = dx2
1 + cx1 + b

(4.13)

73

4.1.4 Comparing the Interpolation Methods

We formalized the problem here: given computation budget, i.e. interpolation order and the

number of pieces (bins or intervals), find optimal interpolation polynomials to minimize

the simulation error. This problem then is transformed to find optimal polynomials to

minimize interpolation error for target functions.

We compare the three higher order interpolation methods - Taylor, Orthogonal, and

Hermite - by plotting their relative RMS error. In the left graph of Figure 4·4 and Figure

4·5, the number of intervals per section varied; in the right graph, the order is varied. We

observe that the method of orthogonal polynomials is superior to the others. This is not

surprising because all the other interpolation polynomials are subsets in the orthogonal

polynomial spanning space. Problems with the Taylor expansion have already been de-

scribed; for higher order Hermite interpolation, the RMS error is larger than Taylor and

Orthogonal, which can be regarded as the cost to maintain the continuities among inter-

vals. In general, increasing interpolation order by 1 achieves a similar effect as multiplying

the number of intervals number by 4 or 8.

One concern about piece-wise interpolation is continuity. Hermite guarantees first and

second order continuity with a third order polynomial, but the average RMS error is worse

than Orthogonal by three digits or more. Moreover, although no effort is made to “line-up”

the end-points of each interval with Orthogonal, they do so anyway to the resolution of

the arithmetic.

Minimax is another criteria people always apply to interpolation quality. Although

Orthogonal by default does not yield minimax error, it guarantees that the average inter-

polation error is minimized and the approximation bias is zero, if the input is of uniform

distribution. Since in MD the short range force curve is approximated in small pieces,

it is acceptable to assume that the input is of uniform distribution within each interval.

Because of the average error is optimal, the maximal error in a small interval is close to

the optimal one.

We return to the trade-off between number of intervals per section and order of the

74

polynomial used for interpolation, with respect to the method of orthogonal polynomials

(see Figigure 4·6). We observe that several combinations of order M versus intervals N

have similar error, allowing for hardware-based design choice describe early.

Table 4.2: Relative Root Mean Square Error of r−7 with Orthogonal Poly-
nomial Interpolation.

Table 4.3: Relative Root Mean Square Error of r−7 with Taylor Polynomial
Interpolation.

Table 4.4: Relative Root Mean Square Error of r−7 with Hermite Polyno-
mial Interpolation.

4.1.5 Algorithm to Compute Interpolation Coefficients with Orthogonal Poly-

nomials

We now address the algorithm to compute the coefficients Ci in Equation 4.12. This

problem can be defined as following: given any continuous function F (x) and an interval

75

Table 4.5: Relative Root Mean Square Error of r−7 with Linear Polynomial
Interpolation.

(a) (b)

Figure 4·4: Relative Root Mean Square Error of r−7 with Orthogonal
and Taylor Polynomial Interpolation. The input range is from 2−4 to 27 of
logarithmic intervals.

(a) (b)

Figure 4·5: Projections of Data in the Previous Figure to 3rd Order In-
terpolation (a) and 128 Intervals per Section (b)

76

Interpolation with Orthogonal Polynomials

1.E-15

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

0 100 200 300 400 500 600

Number of Intervals per Section

R
e

la
ti

v
e

 R
M

S
 E

rr
o

r 1

2

3

4

Figure 4·6: Orthogonal Comparisons

set, I, on range [A,B), find a set of best approximation polynomials on every interval, such

as Pab(x) on interval [a, b), where A ≤ a < b ≤ B.

Algorithm:

1. Compute orthogonal polynomial basis on range [a, b).

Given orthogonal polynomial basis on range [−1,+1], Legendre polynomials,

which are computed as following:

q0(z) = 1

q1(z) = z

(n + 1)qn+1(z) = (2n + 1) · z · qn(z) − nqn−1(z)

The orthogonal polynomial basis on range [a, b) : Q0ab Q1ab . . . , are acquired by

substitution z =
x − (a + b)

b − a
.

2. Compute the coefficients ki, so that F (x) ≈ ∑

i≥0 kiQiab(x) = Pab(x) on interval

[a, b).

ki =

∫ b
a F (x)Qiab(x)

∫ b
a Qiab(x)Qiab(x)

(4.14)

77

3. Compute the coefficients Ci, so that F (x) ≈ ∑

i≥0 Ci(x − a)i = Pab(x).

Substituting x with x+a in Pab(x) =
∑

i≥0 kiQiab(x) and expanding it yield Ci.

4. Repeat step 1 to 3, for every interval in I.

Now, we show some properties of these polynomials.

Lemma 1: {Qiab|i = 0, 1, 2, . . . } are orthogonal.

Proof:

If i 6= j,

〈Qiab(x)Qjab(x)〉 =

b
∫

a

Qiab(x)Qjab(x)dx =

+1
∫

−1

qi(z)qj(z)dz = 〈qi(z)qj(z)〉 = 0

Property 1: Least squared error, ‖F (x) − Pab(x)‖2, on [a, b).

Proof:

If i 6= j, F(x) can be represented precisely by a polynomial of infinite order, F (x) =
∑

i≥0 Fix
i. With the recursive construction equations, xj can be derived with linear com-

bination of {Qiab|i = 0, 1, 2, . . . j}. In another word, the orthogonal basis can be con-

structed from monomials through the Gram-Schmidt process too. Therefore, the poly-

nomial space of order p is equivalent to the space constructed with the first p basis of

{Qiab|i = 0, 1, 2, . . . }.

The 2-norm between F (x) =
∑

i≥0 Fix
i and an arbitrary pth order polynomial L(x) =

∑

0≤i<p Lix
i is:

‖
∑

i≥0

Fix
i −

∑

0≤i<p

Lix
i‖2

They both can be constructed with {Qiab|i = 0, 1, 2, . . . } with coefficients {ki} and {li}

computed with Equation 4.11. In particular,

78

∑

0≤i<p

kiQiab(x) = Pab(x)

Because the {Qiab|i = 0, 1, 2, . . . } are orthogonal,

‖
∑

i≥0

Fix
i −

∑

0≤i<p

Lix
i‖2 = ‖

∑

i≥0

kiQiab(x) −
∑

0≤i<p

liQiab(x)‖

= ‖
∑

0≤i<p

(ki − li)Qiab(x) +
∑

i≥p

kiQiab(x)‖2

≥ ‖
∑

i≥p

kiQiab‖2

The least squared is acquired only when {li} equals the corresponding {ki}, i.e., the poly-

nomial coefficients generated by our algorithm.

Lemma 2: qn(1) = 1, n ∈ N

Lemma 3: qn(−z) = (−1)nqn(z), n ∈ N

Lemma 4: (2n + 1)qn(z) =
d

dz
(qn+1(z) − qn−1(z)), n ∈ N

Lemma 5:

b
∫

a

Qiab(x)dx = 0, i ∈ Z

Proof:

For n ≥ 1, because of Lemma 2 and Lemma 3, when n is even,

qn+1(1) = qn−1(1) = 1 and qn+1(−1) = qn−1(−1) = −1

when n is odd,

qn+1(1) = qn−1(1) = qn+1(−1) = qn−1(−1) = 1

79

Because of Lemma 4,

+1
∫

−1

qn(z)dz =
1

(2n + 1)

+1
∫

−1

(
d

dz
(qn+1(z) − qn−1(z)))dz

=
1

(2n + 1)
(qn+1(z) − qn−1(z))|+1

−1

=
1

(2n + 1)
(qn+1(1) − qn+1(−1) − qn−1(1) + qn−1(−1))

= 0

With substitution z =
x − (a + b)

(b − a)
,

b
∫

a

Qiab(x)dx =

+1
∫

−1

qn(z)dz = 0

Property2: Approximation bias is zero, i.e.

b
∫

a

(F (x) − Pab(x))dx = 0.

Proof:

For any p ≥ 0

b
∫

a

(F (x) − Pab(x)) dx =

b
∫

a



F (x) −
∑

0≤i<p

kiQiab(x)



 dx

=

b
∫

a

∑

i≥p

(kiQiab(x)) dx

=
∑

i≥p



ki

b
∫

a

Qiab(x)dx





= 0

4.2 Semi Floating Point Numbering

The analysis of previous section is based on general mathematic methods. This sec-

tion shows how we map polynomial interpolation to FPGAs. Floating-point is applied

80

in most MD packages for two reasons: (i) MD requires accurate numercial computation;

(ii) floating-point function units are standard in most microprocessors. However, we do

not have standard floating-point function units on current FPGAs; and more importantly,

we have alternative choices to do accurate computation. In the section, we first investigate

the floating-point number system and logarithmic number system. Next, we introduce our

semi floating-point (Sem-FP) number systems and compare it with others.

Floating Point Numbering System

Floating-point number systems, such as the single and the double precision numbers spec-

ified in IEEE standard 754, basically split the bit string in three fixed length pieces: sign

bit, exponent, and mantissa. With the symbols shown in Figure 4·7, the normalized value

can be computed as F = (−1)S · M · 2E .

Figure 4·7: Floating Point Number

Floating-point numbering systems can vary in the sizes of E, M, and in support of

denormal values. The IEEE Standard 854 Radix-Independent Floating-Point Arithmetic,

allows floating-point formats with base 2 or 10, and also provides guidance for other bases

and word lengths. We will only use this general model, however, for later analysis.

The dynamic range of a floating-point number system is determined by the length of

the exponent part and the finest resolution; the precision is maintained with those bits

of the mantissa. For example, the IEEE Standard 754 single precision number has 8 bits

for exponent and 23 bits for mantissa; just considering the normalized value, the dynamic

range is about ±1038, while the finest resolution is about 1.18 × 10−38.

Floating-point addition is more complex than multiplication, because operands must

be aligned before adding mantissas, which is not necessary for multiplication. Aligning

81

mantissas, even with barrel shifters, is still very expensive in terms of logic and latency,

because mantissas can be shifted by any distance within its length and in either direction.

That is why floating-point adders are usually larger than multipliers, although they both

also require that the result be (potentially) normalized by shifting.

Logarithmic Numbering System

Logarithmic number systems (LNS) [SA75, HaAWH+05] can be regarded as a special case

of floating-point systems, which only has the sign bit and exponent, but the mantissa is

omitted, because it is always equal to ‘1’. The normalized value can be computed with

F = (−1)S · 2E . Clearly, ‘0’ can not be represented with this formula. In practice, extra

tag bits are used to indicate ‘0’ and other non-standard values. Figure 4·8 shows an LNS

format.

Figure 4·8: Logarithmic Number

The exponent is a fixed-point number and can be partitioned into two parts: Integer

(EI) and Fraction (EF). When the length of EI and EF are equivalent to the length of

the exponent and mantissa of floating-point, the LNS can cover almost the same dynamic

range as the floating-point number system.

As to operators, LNS simplifies multiplication, division, powers, and roots by converting

them to addition, subtraction, multiplication, and division, respectively. This is the most

significant advantage of using LNS. Meanwhile, the cost is that the addition/subtraction

operator is more complicated. For example, to do LNS addition C = A + B, where A and

B have the same sign bit, the exponent of C must be computed with Equation 4.15.

82

Ec = log2|A ±B| = log2

∣

∣

∣

∣

A(1 ± B

A
)

∣

∣

∣

∣

= log2|A|+ log2

∣

∣

∣

∣

1 ± B

A

∣

∣

∣

∣

= EA + f(EB − EA) (4.15)

where

f(x) = f(EB − EA) = log2

∣

∣

∣

∣

1 ± B

A

∣

∣

∣

∣

= log2

∣

∣

∣
1 ± 2(EB−EA)

∣

∣

∣
(4.16)

Figure 4·9: f(x) for Logarithmic Addition and Subtraction

f(x) is plotted in Figure 4·9. Describing this curve introduces the complexity of the

addition and subtraction operators. Many piece-wise polynomial interpolation schemes

have been studied for f(x) [Lew94]. A hybrid approach does multiplication, division, powers,

and roots with LNS, but leaves addition and subtraction with floating-point arithmetic.

To transform numbers between two formats is evidently necessary; [FSL91] presented an

interpolator for transferring numbers between these systems in linear time.

[HaAWH+05] compared the resource usage of different operators of floating-point and

LNS on FPGAs. Table 4.6 lists the usage of slices on Xilinx Virtex II Family FPGAs.

LNS addition/subtraction also requires extra on-chip SRAMs and hardware multipliers for

83

interpolation. Neither of these two systems has obvious absolute advantages over the other

one. In the rest of this section, we will mostly use the traditional floating-point numbering

system as a baseline to compare the fixed-point number systems and our Semi-FP number

system.

Table 4.6: Resource Usage of Floating Point and LNS

Semi Floating Point Numbering System

Both floating-point and LNS are expensive for FPGAs and become especially so when

the computation is large-scale parallel high-order polynomial interpolation. The obvious

alternative, fixed-point numbering, has the obvious problem that the dynamic range of

coefficients is too big. For instance, we perform 3rd order polynomial interpolation to

approximate f(x) = x−7 for the Lennard-Jones force, in which x ranges from 2−4 to 27 for

molecular systems. It is sufficient to use Taylor expansion to simplify our analysis, because

the coefficients computed with orthogonal polynomials are almost of the same magnitudes.

Considering the third order term,

C3 =
f (3)(x)

3!
=

84

x10
(4.17)

it varies from −9.2 × 1013 to −7.1 × 10−20 according to the curve’s high and low ends

respectively. For fixed-point, the distance between the most significant bits of these two

numbers is more than 100 bits. Putting this another way, we need more than 100 bits

to retain the magnitude of −9.2 × 1013 and to still be able to distinguish −7.1 × 10−20

from 0. Arithmetic operations on 100-bit fixed-point numbers require as many resources

84

and latency as floating-point operations. On the other hand, the useful precision of the

coefficients is much less than 100 bits: most bits are zero (or sign bit extension), which do

not improve accuracy.

The essential differences between fixed-point and floating-point are the capability for

big dynamic range and the complexity of the hardware implementation. Fixed-point is

preferred in cases where dynamic range is limited. Our major concern is interpolation,

or more precisely, piecewise polynomial interpolation. The polynomial interpolation coef-

ficients for r−x do not appear to fall into the category of limited dynamic range. After

inspecting the coefficient expressions, however, we observed that their dynamic ranges are

still bounded in some sense.

The dynamic range of the coefficients, i.e., in Equation 4.17, is huge because the input

range varies to a great extent. As the logarithmic interval scheme shows in Figure 4·1,

however, the MSB of the interpolation input varies no more than one bit in each section.

Consequently, the coefficient dynamic ranges are bounded, for example to 10 bits for the

C3 in Equation 4.17; this is definitely acceptable. More importantly, it is now possible to

employ cheap fixed-point arithmetic, rather than floating-point, to do polynomial interpo-

lation. With respect to the huge dynamic range, we allow same coefficients, e.g., C3, from

different sections, or different coefficients, e.g. C3 and C2, using different scale factors, but

coefficients in a single section must use the same scale factor.

The operators for interpolation, such as adders can therefore be simplified. The rea-

soning is as follows. First, for each interval, the scale factors are known. Second, for each

interval, differences in scale factors for the addends are known. Third, there are only a

small number of differences between pairs of scale factors, and the adders only need to

support these pairs. Fourth, the possible pre-computed shifts, and only those shifts, need

to be hardwired (as shown in Figure 4·10). Finally, the pre-computed shift is selected at

run time based on the formats stored along with the coefficients. Considering the actual

force model, the Lennard-Jones force computation uses 11 formats; the Coulomb force,

when treated as a short-range force uses 14.

85

In the implementation, the same coefficient in different sections has different scale fac-

tors, but the same precision, i.e., higher coefficient values in the ill-behaved sections (with

numbers of form xxx.x) and lower values where the curve is flatter (x.xxx). Although among

sections coefficients and other internal data may have different scale factors, the arithmetic

operations are exactly the same, and the operands are of same width as well. Hence,

the entire interpolation pipeline, including fixed-point multipliers, adders, and pipeline

registers, are applicable to all sections. Furthermore, because the variation of the same co-

efficient across different sections is limited to a predefined set, the cost of operators to shift

operands and results is much less than that for floating-point. We called this numbering

system semi floating-point (Semi-FP), because the binary point is able to shift, but only

to a few predefined places.

The Semi-FP adder and multiplier are shown in Figures 4·10 and 4·11. The Semi-

FP adder aligns operands before performing fixed-point addition, whereas the Semi-FP

multiplier does not. Both adder and multiplier need shifted results to the pre-defined

formats after the corresponding operations. The format signal instructs the switches to

align the data.

Although alignments are still necessary, Semi-FP, compared with floating-point, sim-

plifies operators in four aspects. First, as explained early, the switch (shift) logic is much

simpler. Second, the scale factor is only determined at the beginning of the interpolation

pipeline; operators do not need to extract the scale factor by themselves. Third, the scale

factor is not embedded in the data bit-string, so Semi-FP has more bits available for preci-

sion. Forth, if two Semi-FP operators are successive, the output switch of the first operator

can be combined with the input switch of the second; this is because it is not necessary to

maintain the format of the intermediate result.

Table 4.7 shows the resource usages of operators for floating-point and Semi-FP. Log-

icCore stands for LogiCore Floating-point Operator IP library from Xilinx, and the data

in the table are derived from Version 2.0 [Xil06]. We observe that, Semi-FP, especially the

adder, takes less resources than floating-point.

86

Figure 4·10: Semi-FP Adder

Figure 4·11: Semi-FP Multiplier

87

Latency is another critical issue about resource consumption. For example, to compute

(A + B) × A, the second A must be buffered till (A + B) finishes. In a pipeline, a FIFO

is normally used to buffer A, so that every cycle, a new set of (A,B) can be processed.

Longer latency of addition here means deeper FIFO requiring more resources. As shown

in Table 4.8, Semi-FP has significantly smaller latency than floating-point for adders.

Table 4.7: Resource Usage (in Slices for the Xilinx V2 Family) of Different
Components.

Table 4.8: Latency of Various Components.

To implement the pipeline for the complete pair-wise Lennard-Jones force computation,

our version uses some integer units as well as 35-bit Semi-FP, but only where no precision

can be lost. The overall slice usage is listed in Table 4.7. Semi-FP is more compact than

both single precision and double precision versions. A comparison with respect to register

usage yields similar result.

4.3 Simulation Quality - Precision vs. Accuracy

In this section we describe the procedure used to determine precision. It is well known

that for particular applications, FPGA implementations can achieve speed-ups of 1000×

88

or more. These applications are characterized by high parallelism, which can be translated

into high circuit utilization. They are usually also characterized by low-precision data

where the FPGA implementation can trade off data path width for an increased number

of function units. Probably for this reason, many researchers are still trying to avoid

applications that are “canonically” double precision floating-point, including MD.

We believe that a central area of research in FPGA-based acceleration is analyzing MD

to see whether double precision floating-point is actually needed, or whether it is simply

used because it has little marginal performance cost on contemporary microprocessors

[VHB03, VHB04]. A well-known study by Amisaki, et al. [AFK+95] investigated precision

required for MD; they showed that certain important measures relevant to MD simulation

quality do not suffer when precisions of various intermediate data are reduced from 53 bits

to 25, 29, and 48 bits, respectively. A more extreme observation was made by La Penna,

et al. who write that “in our very long simulations we did not see signs of instabilities nor

of any systematic drift” due to using single, rather than double precision floating-point

[PLM+97]. Clearly, though, this last reference is not the consensus. Now looking at this

from the point of view the user, Rapaport states that “obtaining a high degree of accuracy

in the trajectories is neither a realistic nor a practical goal. [Rap04]”

The issue of exactly how much precision is required for which particular MD simulations

is far from well-studied. This is precisely because MD implementations are nowadays almost

universally run on machines where there is little incentive to not using double precision.

For implementations on configurable circuits, however, the situation is quite different.

If it is possible to reduce the precision without appreciably changing the quality of the

simulation, then it is possible to increase the computational resources that can be applied.

This in turn should result in substantially better overall performance.

Because MD simulations are chaotic, small changes in arithmetic (precision or mode)

result in substantial alterations of particle trajectories after only a few collisions. For

production users of MD codes, validation is in-the-end accomplished by comparing simu-

lations with experiments. Much more common, however, is to check for simulation quality

89

by making sure that physical quantities that should be invariant remain so. The relative

RMS fluctuation in total energy is defined as:

√

|〈E2〉 − 〈E〉2|
|〈E〉| (4.18)

We ran a set of experiments based on two versions of serial reference code, reproducing

as closely as possible the experiments done by Amisaki et al. [AFK+95]. The first used

double precision floating-point, the second tracked the hardware implementation, e.g. in

varying precision. When the precision of the fixed-point code was set at 50 bits, the results

precisely matched that of the floating-point code.

(a) (b)

Figure 4·12: Shown is the effect of precision on two metrics for simulation
accuracy: (a) Fluctuation of total energy and (b) the ratio of the fluctua-
tions in total and kinetic energies. Simulations were carried out with two
different time-steps.

We also ran a set of experiments to find the relationship between energy fluctuation

and precision. In agreement with [AFK+95], we found that the various function units can

be tuned independently to derive the optimal FPGA circuits that retain minimal energy

fluctuation. For simplicity, however, we present results where the precision of the entire

data path is varied in unison. We use two different simulation time scales: time steps were

90

set to 10−15 seconds and 10−16 seconds, respectively. A graph showing the results from

this set of experiments is shown in the left part of Figure 4·12. One observation is that,

in this experiment, a 40-bit datapath results in a similarly low energy fluctuation as a full

53-bit datapath.

Fluctuation of total energy, however, is not the only check that a system is “well-

behaved.” Another is the ratio of the fluctuations between total energy and kinetic energy

R = δEtotal/δEkinetic. R should be less than .05 [Van04]. We plot R in the right half of

Figure 4·12. Note that by this measure, 31 bits are sufficient for time-steps of 10−15 seconds

and 30 bits are sufficient for time-steps of 10−16 seconds. Although greater precision results

in “better” behavior, that better behavior may not be needed.

Accounting for the hardware multipliers available on the our FPGAs, we round up to

the next time-area discontinuity and obtain a 35-bit data path. This design has a factor of

10x to 50x more energy fluctuation than the best case, but between 100× and 500× lower

R than what has been regarded as minimal to indicate “good behavior.”

91

Chapter 5

Algorithm Design Part 2: Long Range Forces

As stated in previous chapters, numerous methods have been developed to compute the

long-range part of the slowly converging Coulomb force. Most of them are derived from the

famous method of Ewald Sums; usually the critical operation is the 3D FFT. Implemen-

tation of 3D FFTs with high precision is still too expensive for current FPGAs to attain

speedup, even with carefully optimized IPs, such as those from Xilinx CoreGen [Xil07] and

Altera MegaCore [Alt07]. Instead, we choose the multigrid method to compute the long

range part of the Coulomb force. The multigrid method has been proved fast and accurate,

and matches the functionality of FPGA well.

In this Chapter we demonstrate our long-range force solution using the multigrid

method. The presentation has three parts: a general introduction to the multigrid method,

the multigrid algorithm for the Coulomb force, and our mapping the algorithm to FPGAs.

5.1 Multigrid Method

The multigrid method is also known as the Multiscale methodology. One way to describe

it is as a method of obtaining a global solution by executing local processes at multiple

scales. Multigrid is useful in the common case where it is difficult to solve a problem globally

because there is too much information to process directly, and the size of solution space

is super-linear with respect to the amount of data. In contradistinction, local processes

usually generate local solutions, such as local maxima or best approximations, with much

less effort. Also important is that the local process compresses the local information, so

that the global solution can be developed with the compressed information in a smaller

space. So long as the ratio between information and solution space is super-linear, using

92

local processes can always save the overall computation effort.

Another important part of the multigrid method is the interaction between local and

global processes. The local process can be partitioned to finer processes; the global process

can be integrated into a coarser problem. Applying this idea recursively, a global process

can be decomposed into a hierarchy of local processes. First, the local process compresses

local information on a fine level. Next, the compressed information is transferred to a

coarser level, so that the local information can be merged there and be “more global.”

Finally, the global solution is generated with the information merged from multiple levels

of local processes. If the processes have the same function and interface, this hierarchical

structure can be very regular and preferable for both software and hardware implementa-

tions.

A toy example of the multigrid method is a merge sort through a binary tree structure.

Assume there is an integer array X[N] of unsorted values. Then N2 comparisons are needed

by naive sorting methods. If the finest local process sorts only two integers, and every

coarser process merges two sorted arrays, only N log N comparisons are needed. During

convergence, every local process compresses the information by sorting a partially sorted

array, which is constructed by connecting two sorted sub-array. In another words, entropy

reduces when an array becomes better ordered. The efficiency comes from two sources: the

speed of every local process, and the structure of the Multiscale tree. The former depends

on the particular applications; the latter, however, is general. For example, let there be

an algorithm that could merge four sorted arrays at once. This would mean that the local

process would compress more information than the previous merge algorithm and the rate

of convergence would be correspondingly faster.

Complex multigrid applications not only summarize local information to give one global

result, but also require results at fine resolution; this depends on global information. Con-

sidering the Coulomb force computation, the potential at any give point in the space (result

at fine resolution) is influenced by all other charges in the space (global information). For

this type of problems, the local-to-global (fine-to-coarse) procedure to merge information

93

Figure 5·1: Merge Sort through a Binary Tree

is insufficient. Another procedure is required to apply the global solution to local areas

(coarse-to-fine). The local process must do additional work: during the local-to-global

phase, besides compressing local information for the coarse level process, it must also com-

pute part of the final result. Once the global information is summarized, the local process

can extract and apply its influence on the final result (e.g. the potential caused by distant

charges). The local processes in the tree structure are thus traversed twice: during the

local-to-global and global-to-local procedures. The down and up traversal of the hierarchy

is called a V-cycle in the multigrid method.

We now sketch the general multigrid algorithm with PDE notation following the pre-

sentation found by Yavneh [Yav06]. Algorithm 1 is a series of recursive V-cycles. The

fine-to-coarse operation is referred to as restriction, coarse-to-fine as prolongation.

We begin with qn, the known parameters on the current grid (e.g. the charge dis-

tribution), and finish with the solution un (e.g. the potential distribution) of the PDE

un = L · qn. The general idea of solving PDEs with the multigrid method is to approxi-

mate different components of the solution at multiple scales (levels): the high frequency

components are approximated at fine levels, the low frequent components at coarse levels.

Because the high frequency components are more local than the low frequent components,

they can be computed only with local data, but then with high resolution. Meanwhile, the

low frequency components need global information, but tolerate low resolution. This is

94

Algorithm 1 V-cycle of the general Multigrid

Function ul =V-Cycle(ul, qzl, l)

Begin

1. If this is coarsest grid, solve Ll × ul = ql and return ul.

2. uh = Relax0(ul, ql, l)

3. rl = ql − Ll × ul

4. ql+1 = Al+1
l ∗ rl

5. ul+1 = 0

6. ul+1 =V-Cycle(ul+1, ql+1, l + 1)

7. ul = ul + I l
l+1 × ul+1

8. ul = Relax1(ul, ql, l)

9. Return ul

End

why the local process is allowed to compress information, and the global process can still

reach accurate results.

We now return to Algorithm 1. Step 1 solves the PDE directly, if the grid is small

enough. Step 2 does the first relaxation to give a guess of the solution. Step 3 computes

the residual (error) of the guess. Step 4 restricts the known parameters to a coarser grid

(having fewer grid points and unknown variables) with a basis function A. Step 5 specifies

the boundary condition, for example setting ul + 1 to zero for a vacuum. Step 6 calls the

V-cycle recursively to solve the residual. Step 7 uses function I to prolongate the solution

of the residual as a correction from the coarse grid back to the current grid, and integrates

the correction with the guess. Step 8 does another round relaxation. Step 9 returns the

solution. Figure 5·2 shows a V-Cycle; with a constant number of iterations per level and a

geometric reduction in grid points per level, the resulting complexity is O(N).

95

Figure 5·2: V-Cycle

5.2 Multigrid Method for the Coulomb Force Computation

Recall the difficulties with computing the Coulombic force: it converges too slowly to use

cell-lists directly, but using a cut-off approximation (shown at right) is not highly accurate.

The solution is to split the force into two components (shown below): a fast converging

part that can be solved locally, e.g., with cell lists, and the remainder, which is sometimes

called the softened part.

Figure 5·3: Cutoff Approximation of Coulomb Force

This appears to create an even more difficult problem: the softened function converges

even slowly than the original. The key idea is to pass the softened function on to the next

coarser level, where it is again split. This continues until the coarsest level is reached.

There, the problem should be small enough for the direct solution to be efficient.

More formally, the problem of Coulomb force computation is to compute the potential

96

distribution by solving the Green’s function for the given charge distribution. The electro-

static potential is expressed as:

V CL
i =

∑

j 6=i

qj

|rji|
(5.1)

For computational accuracy, 1/r is split into two parts with a smoothing function ga(r),

1

r
= (

1

r
− ga(r)) + ga(r) (5.2)

so that

1

r
− ga(r) (5.3)

declines fast enough to be cut-off beyond distance a, while ga(r) varies slowly with

distance. Via the smoothing function, the high frequency parts of 1/r become a short

range term that can be computed in the same way as the Lennard-Jones force (in O(N)

steps). The choice of the smoothing function is beyond the scope of this discussion; it can

be a Gaussian distribution, as is used with Ewald Sums, or the one applied in this thesis.

The smoothing function, i.e., the PDE to be solved, can be evaluated precisely on a grid

when the wavelength of the highest frequency remaining term is equivalent to the grid cell

size.

Figure 5·4: Smoothing Function. (a) left is the orignial 1/r and the
smoothing function ga(r). (b) right is 1/r − ga(r)

97

Grid-based algorithms map the smoothing function defined in the continuous coordinate

space to the one defined in the discrete grid coordinate space. This can be described by

the following energy equation:

N
∑

i=1

N
∑

j=1

qiqjga(|~rj − ~ri|) =
∑

k

∑

m

qh,mqh,nga(|~rh,k − ~rh,m|) (5.4)

where qi and qj are particle charges, and qh,m and qh,n are charges at points m and n

on a grid with spacing h. The transform is done by a basis function φ(w) and will be

discussed later. There are many approaches to solve the smoothing functions ga(r) on a

grid, including the Particle Mesh Ewald algorithm, the multigrid based algorithms used

here, and even (for small scale problems) direct computation.

We map the smoothing function problem to the multigrid algorithm with the following

V-cycle. Given ga(r) on a grid with spacing h, we define a coarser grid with spacing 2h

where ga(r) is smoothed by another smoothing function, g2a(r), as shown in Equation 5.5.

ga(r) = (ga(r) − g2a(r)) + g2a(r) (5.5)

The local correction ga(r)-g2a(r) takes out the high frequency component of ga(r) and

becomes short range too. The even slower varying g2a(r) can now be approximated more

efficiently on the even coarser grid and so on until the coarsest grid. This specifies the first

half of V-cycle. On the coarsest grid, the smoothed charge distribution is described with

only a small amount of data, so that it can be transformed to the potential distribution by

computing Equation 5.1 directly.

After the low frequency part of potential has been computed on the coarsest grid, we

still need to incorporate the high frequency component and then to apply it to each particle.

The potential on the coarse grid is interpolated back to the fine grid and combined with

a local correction on each level. This comprises the second half of the V-cycle. Finally,

forces are generated by differentiating the potential on the finest grid in three dimensions,

and interpolating the result to each particle’s position.

98

Figure 5·5: Flow Chart of Multigrid Method for the Coulomb Force

99

The flow chart of this algorithm is shown in Figure 5·5. The operations of this algorithm

can be classified into two categories: particle-grid conversion and grid-grid steps. The

particle to grid charge assignment (TP1) and the grid to particle potential interpolation

(TP2) both apply a basis function φ(w) and its gradient. A 3rd order and a 5th order basis

function are proposed in [STH02]. The assignment is computed as:

Q1(x, y, z) =
∑

m

Qm × φ(|xm − x|) × φ(|ym − y|) × φ(|zm − z|) (5.6)

where Q1(x, y, z) is the charge on finest grid points (x, y, z); Qm is the charge of particle

m; (xm, ym, zm) are the particle coordinates. The interpolation is computed with:

Fm,x = Qm × V (x, y, z) × dφ(|xm − x|) × φ(|ym − y|) × φ(|zm − z|) (5.7)

where Fm,x is the force in the x direction, which is interpolated from the grid point (x, y, z).

The basis function φ(w) must be C1 continuous, so that the force computed with Equation

5.7 is also continuous.

The other operations (AG, COR, DIR, IG) are of the grid-grid type. They can be rep-

resented with 3D matrix convolutions. According to Equation 5.2 and 5.5, the smoothing

function matrix on grid Ωl can be expressed as:

Gl ≈ Ĝl + I l
l+1G

l+1Al+1
l (5.8)

where Al+1
l is the assignment matrix that anterpolates charge from the fine grid Ωl to the

coarse grid Ωl+1; I l
l+1 is the interpolation matrix that interpolates potential from coarse

grid to fine grid; and Ĝl is the local correction matrix. Al+1
l and I l

l+1 apply the same basis

function φ(w). Given a charge matrix Ql, the potential matrix V l is computed as:

V l ≈ Ĝl · Ql + I l
l+1G

l+1(Al+1
l · Ql), l = 1, 2, ..., L − 1 (5.9)

On the coarsest grid ΩL, the potential is computed with:

100

V l = Gl · QL (5.10)

where GL denotes the direct computation between all grid point pairs.

Equation 5.9 reveals that, except on the coarsest grid, three convolutions are performed

on every grid: (i) assigning charge distribution to the next coarser grid, (ii) computing the

local correction, and (iii) interpolating the potential from the next coarser grid back to

current grid. The coarsest grid only has one convolution with GL. In addition, because

GL, ĜL, Al+1
l and I l

l+1 are independent of l and I l
l+1 = (Al+1

l)T , only three convolution

cores need to be precomputed.

5.3 Mapping Multigrid to FPGAs

Following the two types of operations outlined previously, our multigrid coprocessor re-

quires two kinds of computation modules: a particle-grid converter and a grid-grid con-

volver. Because these operations execute sequentially, the low level computation modules,

especially multipliers, can be shared. On-chip memories are also important to the multigrid

coprocessor, because they not only store intermediate results as a buffer between succes-

sive operations, they also combine computation models of different data-access patterns in

terms of architecture. In the rest of this section, we first demonstrate the overall opera-

tion sequence, and then present three major components: the particle-grid converter, the

grid-grid convolver, and the interleaving memory structure.

5.3.1 Overview

The overall algorithm is shown schematically in Figure 5·6. Starting at the upper left, the

perparticle potentials are partitioned into short and long range components. The short

range (van der Waals and short range part of the Coulomb force) is computed directly,

e.g. with cell lists, while the long range is applied to the finest grid. Here the force is split

again, with high-frequency component solved directly and the low-frequency passed on to

the next coarser grid. This continues until the coarsest level where the problem is solved

101

directly. This direct solution is then successively combined with the previously computed

finer solutions (corrections) until the finest grid is reached. Here the forces are applied

directly to the particles.

Figure 5·6: Multigrid Method for the Coulomb Force

5.3.2 Particle-Grid Converter

We scale our coordinates to match the finest grid. In one dimension (see Figure 5·7), we

can partition the particle position into two components gi|oi where gi is the index of the

previous point and oi is the distance from the grid point. It then suffices to use oi alone

to compute the contributions of q to any surrounding neighborhood of gi’s.

Basis functions φ(w) (or dφ(w)) are used. This takes 3 steps: (i) scaling the particle

coordinates to grid coordinates to extract the grid index gi (xm, ym, zm) and offset oi

(|xm − x|, |ym − y|, |zm − z|); (ii) computing φ(w) (or dφ(w)), the assignment (or the

interpolation) weights; and (iii) multiplying the weights by the charge (or the potential)

on the grid point. We normalize grid cell sizes to be powers of 2 so that scaling particle

102

coordinates to grid coordinates only requires zero-cost shifting. The bits to the left of the

binary point are then gi, those to the right oi.

Figure 5·7: Extracting gi and oi from Partilce Coodinates

For φ(w) and dφ(w) (we use those derived by [STH02]), instead of computing φ(w)

directly, we modify the basis function to be a set of polynomials of oi for the particle’s

neighboring grid points. For example, Equation 5.11 is the 3rd order basis function applied

by our coprocessor, and w is the distance between particle and grid points:

φ(w) =























(1 − |w|)(1 + |w| − 3
2w2) , |w| ≤ 1

−1
2(|w| − 1)(2 − |w|2) , 1 ≤ |w| ≤ 2

0 , |w| ≥ 2

(5.11)

By substituting w with oi + 1, oi, 1 − oi, and 2 − oi, we have four polynomials in

Equation 5.12 corresponding to the four neighboring grid points:



































φ0(oi) = −1
2oi3 + oi2 − 1

2oi

φ1(oi) = 3
2oi3 − 5

2oi2 + 1

φ2(oi) = −3
2oi3 + 2oi2 + 1

2oi

φ3(oi) = 1
2oi3 − 1

2oi2

(5.12)



































dφ0(oi) = −3
2oi2 + 2oi − 1

2

dφ1(oi) = 9
2oi2 − 5oi2

dφ2(oi) = −9
2oi2 + 4oi + 1

2

dφ3(oi) = 3
2oi2 − oi

(5.13)

Evaluating the basis function polynomials in parallel requires considerable FPGA re-

103

Figure 5·8: Basis function pipeline for φ(w) and dφ(w). ‘switch’ selects
output between φ(w) and dφ(w)

sources, optimization is therefore critical. The basis function pipeline shown in Figure 3

computes all eight polynomials in Equation 5.12 and Equation 5.12 with a common in-

put oi. First of all, because these polynomials are all functions of oi, oi2, and oi3, we

implement the gray box to generate oi2 and oi3 for all expressions. The other four boxes

(with different colors) compute φ(oi) and dφ(oi) for the four neighboring grid points in one

dimension, respectively, as shown in Figure 5·7. Because dφ(oi) is only needed for the force

in Equation 5.7 and φ(oi) is NOT needed at the same time, φ(oi) and dφ(oi) are computed

in the same box and selected by the ‘switch’ signal. After analyzing the structure of the

polynomials, further optimization is possible, such as sharing computation between φ(oi)

and dφ(oi). As to the polynomials of Equation 5.12 and Equation 5.12, even no explicit

multiplication is needed by using shifting.

Because evaluating these polynomials—as well as the four for dφ(w) in Equation 5.13,

—in parallel consumes many resources, optimization is critical but possible for the circuits

that evaluate these polynomials. The basis function pipeline shown in Figure 5·8 computes

all eight polynomials with a common input oi. First of all, because these polynomials are

all functions of oi, oi2, and oi3, they can share some computations: the gray box generates

oi2 and oi3 for all other four boxes that compute the eight polynomials. Because dφ(w) is

104

only needed for force in Equation 5.7, and φ(w) is not needed at the same time, φ(w) and

dφ(w) are combined in the same box, and selected by the switch signal.

Figure 5·9: One Quarter of a 1:64 Particle-Grid Converter

With a Pth order basis function, one particle is associated with P 3 grid points. Per-

forming the assignment (or interpolation) in parallel both speeds up the computation and

reduces the number of basis function pipelines. Figure 5·9 shows one quarter of the tree

structure of a 1 : 43 particle-grid converter. Each color circle multiplies its input by φ(w)

or dφ(w) from the box of the matching color in the basis function pipeline. Only three

basis function pipelines are needed to work with this three-level tree, each pipeline corre-

sponding to the weights along one of three dimensions. The circles of matching color in the

last column share the same outputs from a single basis function pipeline (e.g. z direction),

as do those in the second column (not shown here) (e.g., the y direction). No such sharing

is needed in the first column (e.g., the x direction). This structure has 43-way parallelism

and 84 multipliers overall (color circles).

During charge assignment, the input is the particle charge; after it is multiplied by the

weights in three directions, the outputs from the last column are the charges assigned to the

neighboring grid points. For interpolation of the potential, the input is the particle charge

as well; the outputs are the weights to be multiplied by the potential from the neighboring

grid points. Moreover, because what we really care about is the force on each particle,

105

the potential is differentiated in three dimensions to yield force fields during interpolation,

as in Equation 5.7. The same data (oi and the potentials of the neighboring grid points)

must pass through the converter three times, and each time one of the three basis function

pipelines has its ‘switch’ set. Finally, an adder tree does the weighted summation and

produces the force. Figure 5·10 exhibits these two processes.

Figure 5·10: Charge assignment (above) and potential interpolation (be-
low)

5.3.3 Grid-Grid Convolver

The grid-grid convolver is extended from our previous work [VH06]. The original design

of the systolic array structure is based on the McWhirther-McCanny structure[Swa87].

Without loss generality, let us start from one dimensional convolution C = A ∗ B, where

A[0..L − 1], B[0..M − 1], C[0..(L + M − 1)].

C[k] =
∑

i

A[i] ∗ B[k − i] (5.14)

The basic operation is multiplication and accumulation (MAC), and is done by one

processing element (PE) in the circuit in Figure 5·11. Before convolution, the elements of

A are propagated through and stored in the A registers (marked with A[]). The Init A

signal is connected to the write-enable of the A registers to enable the propagation. During

convolution, the elements of B are broadcast to all PEs, one data per clock. In every cycle,

106

each PE multiplies the element in the A register by the element of B and accumulates the

product with the partial result from the previous PE; the updated partial result is stored

in the pipeline register; and the output of the last PE is a single element of C. After all

elements of B have been streamed through, another L − 1 zeros must be broadcasted to

flush out the remaining elements of C still in the pipeline registers. At the same time, the

A registers are ready to be initialized again.

Figure 5·11: 1D Convolver Constructed with Processing Elements

A 2D convolver is constructed with 1D convolvers as shown in Figure 5·12 (a). Because

every row of the result matrix C has L+M −1 elements, we need a FIFO to hold the extra

M − 1 data before sending them to the next 1D convolver. Since the FIFO is attached

after a 1D convolver, it is called a row FIFO. A 3D convolver is constructed with similar

structure. In this case, 2D convolvers are connected with planar FIFOs, as shown in Figure

5·12 (b).

The computational capacity of these convolvers is limited by two facts: the number of

PEs and the size of FIFOs. The former limits the size of A, while the latter limits the size

of B. Because the row and planar FIFOs are usually implemented with on-chip SRAMs

while PEs must be implemented with slices, B can be much larger than A; a 1000:1 ratio

was implemented in a previous study [VGH04]. Also, we can simply set the FIFO depth

in the control logic without modifying connections, but it is extremely difficult to change

the length of the PE chain without re-synthesis. These convolvers are difficult to adapt to

107

Figure 5·12: 2D/3D Convolver. (a) Top is a 2D convolver constructed with
1D convolvers and row FIFOs. (b) Bottom is a 3D convolver constructed
with 2D convolvers and plane FIFOs.

two large matrices of variable sizes because only one of them can be treated as B.

The extension of the convolver for the multigrid coprocessor is that both input matrices

are allowed to be larger than the number of PEs in the systolic array, instead of supporting

only one large matrix. The motivation is that each multiplication operator requires many

hardware multipliers, which limits the number of PEs in this convolver. Therefore, the

convolution operations, such as COR and DIR (from Figure 5·6), must be computed in

blocks. Also, because of the nature of multigrid, the sizes of the input matrices varies

among operations and iterations. On one side, the size of grids varies among different

levels; on the other side, the sizes of convolution kernels are not necessary to be same. For

instance, the size of COR is determined by the cutoff distance of the smoothing function;

the size of DIR is determined by the size of the coarsest grid; and the size of AG and IG

108

is determined by the supporting range of the basis function. A flexible convolver is thus

essential to maintain efficiency.

Figure 5·13: Splitting a Convolution

Besides configuring the lengths of the FIFOs to adapt one large input matrix of variable

size, we can adapt the other matrix by splitting a convolution into several small pieces and

routing results to their proper destinations. As is shown in the example in Figure 5·13,

a 2D matrix A is too large to convolve with matrix B directly through the systolic array.

It is split into 4 small pieces, A0 to A3, each of which are convolved with B to produce

A0*B through A3*B. These are partial results of A*B and spread from the four corners.

Summing them up based on their locations yields A*B. Our grid-grid convolver is therefore

built with a systolic convolution pipeline wrapped by a complex controller that manages

the process. The parallelism is scalable according to the number of PEs that fit on chip,

i.e., the scale of the convolution pipeline.

5.3.4 Interleaved Memory

One issue with the particle-grid converter is that a large number of grid points must be

accessed on every cycle, such as 64 points with a basis function that supports [-2,+2]; this

requires both high bandwidth and highly parallel addressing logic. Fortunately, modern

FPGAs, with their hundreds of independent on-chi SRAMs, have just such capability. The

interleaved memory design described in [VH06] is one such example.

109

Figure 5·14: A 2D 42-way Interleaved Memory

We begin by illustrating the 2D 4 × 4-way interleaving memory used to record the

original 2D grid. Given an address reference (x,y), the grid points within a 4 × 4 window,

i.e. (x, y), (x, y+1), ..., (x+3, y+3), must be accessed. Obviously, 16 independent memory

accesses are required for each interleaved memory access. As shown in Figure 5·14, when

grid points are stored in 16 separate banks marked from 00 to 33, any 4× 4 access window

contains grid points from all banks and only one of each. The index of each bank is either

the same as that of the bank of the reference address, or the one greater than that in the

X and/or Y dimension, respectively. The outputs from the memory banks, i.e., the 00 is

always at the top-left corner, not necessary in the expected order, such as the blue window.

Here, the data must be shifted (with rotation) in both X and Y directions based on the

reference address.

The following example shows the logic how interleaved memory works. Assume that

the grids data are stored in 4 × 4 banks with a zigzag scanning order, i.e., that the grid

points from the top-left block are at address 0 in the memory banks, followed by those

from the top-right block, then bottom-left and bottom-right. As in Figure 5·14, to access

window with the reference address (1, 3) 16 data shown in the blue window are fetched

simultaneously. The address of (1, 3) in its memory bank is 0, which is given by expression:

bank address = X × 2 + Y (5.15)

110

where X = (x mod 4) and Y = (y mod 4). For the rest grid points, some of them have

the same bank addresses as (1, 3), but some do not. For example, the grid point (1, 4)

is fetched from memory bank 10, while its bank address is 1, rather than 0. We can tell

this adjustment from the reference address as well. For esmaple, the grid right to (x, y)

is (x, y + 1); if y + 1 produces an overflow beyond 4, the Y in Equation 5.15 must be

replace with Y + 1. Next, the memory bank outputs are rotationally shifted to the left by

(3 mod 1), and to the top by (1 mod 4). The inputs to the interleaving memory are shifted

in the opposite way before they reach the memory banks. The 3D interleaving memory is

analogous.

111

Chapter 6

System Design

The goal of this research is to build an accelerated MD system on commercial off-the-shelf

(COST) platforms. Besides creating FPGA algorithms, system design and implementation

is also critical to achieve speedup. Many system design issues needed to be considered

and solved in order to create a prototyped system on a real hardware platform. These

included problem partitioning, software selection and integration, FPGA design, and com-

munication. Among these, FPGA coprocessor design is perhaps the most critical, because

the algorithms discussed in the previous chapter are very complex for current FPGAs,

and as we argued in previously, performance is unusually sensitive to the quality of the

implementation.

Although our research targets FPGA technology in general, there are still many depen-

dencies with respect to specific hardware. Clearly, the performance depends directly on

the achievable clock frequency, the amount of logic, the mix of hardwired components, the

off-chip/on-board memory, the host/processor interface, and many other factors. Trivially,

these affect the numbers of processing pipelines and their throughput. Not so obvious is

their effect on design decisions themselves, such the methods used to manage the memory

hierarchy or how bookkeeping overhead is distributed.

In this chapter, Section 6.1 first addresses the overall system architecture and the

development environment; Section 6.2 and 6.3 present architectures of the short range

force coprocessor and the multigrid coprocessor, respectively; and Section 6.4 explains a

cache scheme used to extend system capacity by swapping data between on-chip and off-

chip memories.

112

6.1 System Level Design and Operation

6.1.1 Basic Issues

Because most computation of MD is spent on the non-bonded forces, first priority must be

given to their acceleration. The partition of our MD system is thus straightforward: the

non-bonded force computation is performed on the FPGA and the remaining computations,

such as for the bonded forces and motion update, are computed by the host.

A system-level view of a typical hardware platform is shown in Figure 6·1. It consists of

a PC (or other threaded processor) working as the host and two FPGAs being configured

as coprocessors. This combination can be used as a complete small-scale MD system

or as a computation node in a large system. The interface between the host and the

coprocessors, e.g. a bus, is a potential bottleneck in this type of system. We apply the

concept of replicated data: each coprocessor has a copy of the data (coordinate, type, and

acceleration) of all particles. Coprocessors are therefore self-contained and can operate

independently except for data transfer to coordinate updates in the system state.

In the system in Figure 6·1, three computation engines work in parallel in most of time.

Once N particles’ data are downloaded to the FPGA coprocessors, an O(N2) (e.g. all-to-

all) or an O(N ×M) (e.g. cell-list) force computation can be executed on the coprocessors.

Since data is only transferred at the end of a phase (force computation and motion update),

and because the amount of data is bounded to at most a few MB, the ratio of computation

to communication is very high. This relieves the bottleneck of the FPGA/coprocessor

interface. Note that other partitions of the problem, such as would be required to achieve

very high speed-ups, would reduce this ratio and motivate a more tightly coupled system.

These issues are currently being explored in conjunction with the Desmond system []. For

the low-cost solution described here, however, the simple bus-based interface is sufficient.

6.1.2 Basic Operation

We now describe high-level operation of a typical implementation of our system. At every

time step (see Figure 6·1), particle coordinates are downloaded from the host to the copro-

113

Figure 6·1: System Architecture

cessors through the communication bus. Because the on-chip memory size is limited, most

particle data must be stored in the off-chip memory. As a consequence, a caching scheme

is implemented that maintains a small fraction of particle state in the on-chip SRAMs and

loads data as needed while completely hiding the off-chip memory access latency.

If the data formats are different between the host and the coprocessors, then they are

converted on-the-fly during data transfer via the converters on the FPGA. This is necessary

here because the host uses double precision floating point, while the coprocessor uses

Semi FP. The particle type information is also be downloaded, but no format conversion

required. Since the size of type information is much smaller than that of the coordinates

and accelerations, they can be stored either on-chip or off-chip depending on the number

of particles.

The force computation starts as soon as the transfer of particle coordinates and types

finishes. Details about the force coprocessors are given in Section 6.2 and 6.3. Once the

114

force computation completes, the results, i.e., the accelerations, are uploaded back through

the converters and the bus, and on to the host. The final step is cleaning the acceleration

memory for the next iteration.

Figure 6·2: State machine that controls data transfer and coprocessor
execution

Figure 6·2 shows a simplified view of the coprocessor’s top-level state machine, which

orchestrates data transfer and coprocessor execution. Before the first force computation,

the host explicitly instructs the coprocessor to clear the force memory, and the state ma-

chine moves to S2 until the clear operation finishes. Then, the host can start to download

particle data. After data download finishes, the start-computing signal is sent to the force

computation module. When computation completes, the force computation module issues

a force-ready signal, so that the top level state machine can trigger a notification (usually

an interrupt) to the host (S4). Then, the host starts the upload. Once the force upload

finishes, the restart signal is generated to prepare the coprocessor for the next time step,

such as by clearing the acceleration memory. The complete state machine contains more

states to control the access timing for the bus interface and the off-chip memory.

115

6.1.3 Use of Reconfiguration

Reconfiguration is an important capability of this system architecture. The time to load

a new configuration into a high end FPGA is small with respect to the time required for

either the short- or the long-range force computations for a single iteration. Thus, if there

is only one FPGA chip in the system, it can be reconfigured for the long range force and

the short range force sequentially. This allows the entire chip capacity to be applied to

each computation with little loss in performance.

Another reason to use reconfiguration is to support multiple time-scale force integration.

The long-range force may not necessarily be evaluated in every time step (actually every

2nd to 10th time steps is common), because it varies much slower than the short-range

and the bonded forces. With reconfiguration, we can keep all FPGA chips computing

the short range forces during every time- step, while the long-range force coprocessor is

configured once every several time steps. In this case, the reconfiguration overhead is even

less significant as it gets amortized over several time steps.

6.1.4 Integration Into Production MD Systems

A central attribute of our system is that it can be integrated into production MD systems.

For this study, we adapt the ProtoMol system for acceleration with our FPGA coprocessors.

The general idea is to swap functions from software to hardware. There are several issues.

(i) the partition between components must be completely clean, i.e., there can be no

interleaving of work done by the coprocessor and host other than the global partition.

This is trivial in some modular codes, tortuous in others. We have chosen the ProtoMol

system because it was designed especially for such module swapping. (ii) Data formats may

need to translated between host and coprocessor and back. As we have already described,

in our design this is handled entirely by the coprocessor. (iii) Data structures may need

to be modified. In this system, we use the cell-list computations performed on the host,

but require that data be ordered in a particular way to optimize coprocessor performance.

(iv) Some computations still performed by the host after partitioning may need to be

116

optimized. This situation arises as follows. A module that takes a trivial part of the

overall computation time in the unaccelerated code may now be significant when most of

the rest of the code now runs at a 10 − 20× speed-up.

Initialization is the first necessary software modification. It includes three steps: (i)

FPGA board setup, including clearing interrupts and allocating transfer memories; (ii)

FPGA chip configuration, including resetting chips and configuring FPGAs; and (iii) co-

processor initialization, including downloading force parameters and clearing the accelera-

tion memory in preparation for the first time step. The overhead of initialization is trivial

in the overall simulation time. What cannot be neglected, however, is the overhead of

particle data transfer between host and the coprocessors that occurs during every time

step. In addition to communication, pre- and post-processing of are required on the host.

This is because the data structure optimized for the software implementation is usually

not suitable for hardware. Restructuring introduces extra overhead in both timing and

memory. One example is the cell-list implementation for the short range forces, which

will be addressed in Section 6.2. Compared with the original software implementation,

this overhead may be insignificant, since it is bonded with O(N). However, because it

is on the critical path, after accelerating the O(N2) or O(N × M) computation with the

coprocessors, this overhead becomes more significant and must be optimized.

6.2 Short Range Non-bonded Force Coprocessor

The short range non-bonded forces include the Lennard-Jones force and the short range

part of the Coulomb force. Both can be switched to zero if two particles are far away from

each other. Because of this property, the cell-list method saves computation effort: only

the region near the reference particle need be inspected, rather than the entire simulation

space (see Chapter 2).

The forces between particle pairs are computed with the force pipeline array. Par-

allelism is explored in two dimensions: the replication of the force pipelines, and the

concurrency of the pipeline stages. Within the force pipeline, polynomial interpolation is

117

computed with Semi-FP to approximate the force curve. In this section, the short range

non-bonded force coprocessor will be introduced in three parts: the coprocessor architec-

ture with cell-list support, the force pipeline itself, and the polynomial interpolation with

Semi- FP operations.

6.2.1 Short Range Non-bonded Force Coprocessor Architecture

Cell-list Representation

In fully software implementations, cell lists are usually represented by an array of linked-

lists in which every linked-list is a series of indices pointing to particles of one cell. When

particles move among cells, the corresponding indices move among the linked-lists as well,

while the layout of particle data (e.g. coordinate, type, and acceleration) remains fixed in

memory. The advantage of this method is that less data movement required, because the

indices are much compact than the particle data; the disadvantage is that we need a series

of random accesses to fetch particles of one cell.

In our FPGA implementation, our short range force coprocessor requires particles of

one cell to be fetched in parallel so that they can be sent to force pipeline array with the

highest bandwidth possible. Obviously, the link-list method is problematic for our FPGA

coprocessor’s superscalar architecture. There is certainly enough data bandwidth offered

by the on-chip SRAMs; there is not, however, enough addressing logic. This is because,

with the fixed particle data layout method, we can not avoid most of the particles from

one cell ending up in a single SRAM bank. In this worst (but not infrequent) case, we

would have to access them serially. We therefore designed an alternative data structure to

implement cell-lists.

Instead of linking indices in a list (as shown in Figure 6·4) and keeping particle layout

static, we dynamically group particles by cell in the particle memory. As shown in Figure

6·3, particles from the same cell have the same color and are stored in a single segment.

The order of cells in the particle memory is predefined. Thus, we can use an array, the cell-

list memory, to indicate the particle-per-cell counts. In practice, every word in the particle

118

memory usually contains more than one particle (such as two in Figure 6·3) to match the

number of pipelines in the force pipeline array. Accordingly, the counts in the cell-list

memory are in units of words as well. With this two-level indexing logic (one to locate the

cells and the other to locate particles), multiple particles from the same cell can be fetched

simultaneously. When the number of particles of one cell is not a multiple of the number

of pipelines, some dummy particles must be padded at the end of that cell in the particle

memory, so that the first particle of the next cell starts from a word boundary. Because

the size of the cell-list memory is very small, we build the cell-list-auxiliary memory in the

same on-chip SRAM of the cell-list memory, which indicating the starting addresses of cells

in the particle memory.

Figure 6·3: Cell-list Representation in FPGA Coprocessor

Data Path and Control Logic

Figure 6·6 shows the architecture of the short range non-bonded force coprocessor with

cell-list support. There are three major parts in this architecture. The force pipelines are

the computation modules that evaluate the short range forces for given particle pairs. We

fit as many pipelines as possible on the FPGA to maximize the parallelism. The off-chip

memories store all the particle data, while the caches implemented with the on-chip SRAMs

119

only contain the working set. The pair-controller generates control signals and addresses

to swap particle data between memories and caches and route them through the force

pipelines. In this subsection, we explain the logic of the pair-controller and the high-level

data path shown in Figure 6·6. The details about the force pipelines and the caches is in

a later section.

Figure 6·4: Half Cubic Neighbor Pattern

Figure 6·5: Particle Cache Layout

The high-level logic of the pair-controller is described with the pseudo code in Algorithm

2. The outer three loops of Address generator() traverse every cell in the simulation box.

The current cell, referred to as self , is loaded from the off-chip memory into the cache first.

The inner-most loop loads the cells neighboring self into the cache. When the cell size is

equal or larger than the short range force cutoff, only 26 adjacent neighboring cells need

120

to be inspected. In fact, because of the Newton’s third law, only half of them are loaded.

The blue boxes in Figure 6·4 are one combination of a half of the adjacent neighboring

cells. Let the coordinates of the red cell (self) be (i, j, k). Then the coordinates of the blue

cells are: (i+?, j + 1, k+?), (i + 1, j, k+?), and (i, j, k + 1), where ‘?’ means any of −1, 0,

+1. Locate neighbor() computes the starting addresses of neighboring cells following this

pattern. Finally, Traverse cell() fetches particle pairs from the cached cells for the actual

force computation.

Reducing the cell size increases the number of neighboring cells within the cutoff. Con-

sequently, we can approximate a more accurate cutoff sphere and remove more particles

remote to ‘self’. This is the method usually applied in software implementations. For

FPGAs, the trade-off is the complexity of the pair-controller versus the number of par-

ticles removed. Since even the perfect cutoff sphere will only save less than half of force

computation, this optimization is of lower priority.

There are four major signals generated by Traverse cell() to control the data path:

Pi addr, Pj addr, Pi sel, and Pj mask. Pi addr and Pj addr are the addresses to access

particles in cache. Pi refers to the particles in self , Pj to the particles the other cells in

the neighborhood, including self . Because every cache word has N particles (where N is

the number force pipelines), Pi sel is used to select one of them to compute with N Pj

particles. In the case that a force pipeline is assigned to compute the force between Pi and

itself, the result is excluded by the Pj mask signal by selecting zero as the force pipeline

output. Traverse cell() has only two steps: Traverse self() and Traverse pairs(). The

former fetches pairs of particles both from self ; the latter fetches one from self and one

from the neighboring cells. Figure 6·5 shows the particle layout in the cache.

Traverse pairs() treats all neighboring cells as a big cell and takes further four steps:

1. One cache word of N particles from self is loaded into array P i. Then, one of them

is selected with Pi sel and is copied to the Pi register. The Pi acceleration array

is cleared for later accumulation.

121

Algorithm 2 Pair-controller Logic

Address generator ()
{

for (i =0; i< c e l l l i s t s i z e ; i++)
// c e l l l i s t s i z e i s the number o f c e l l s a long one ax i s .
{

for (j =0; j< c e l l l i s t s i z e ; j++)
{

for (k=0; k<c e l l l i s t s i z e ; k++)
{

s e l f=i ∗ c e l l l i s t s i z e ˆ2+ j ∗ c e l l l i s t s i z e+k ;
Load cache (s e l f) ;
s e l f s i z e=c e l l l i s t memo r y [s e l f] ;
for (l =0, n e i g hbo r s i z e =0; l <13; l++)
// on ly h a l f o f 26 ne ighbor s shou ld be t r a v e r s ed
{

neighbor=Locate ne ighbor (i , j , k , l) ;
Load cache (neighbor) ;
n e i g hbo r s i z e+=c e l l l i s t memo r y [neighbor] ;

}
(Pi addr , Pj addr , P i s e l , Pj mask)

=Trave r s e Ce l l (s e l f s i z e , n e i g hbo r s i z e) ;
}

}
}

}

122

2. In the every following cycle, one cache word from the neighboring cells is loaded into

the Pj registers. The particles in the Pi register and Pj registers now comprise N

particle pairs for N force pipelines. At the end of the force pipelines, the accelerations

are accumulated with those of the particles in the Pj registers; these accelerations

are also summed up through an adder tree before being accumulated and stored in

the Pi accumulation array.

3. After all the particles in the neighboring cells are computed with the particle in Pi

register, the next particle in the Pi array is loaded into the Pi register, and step 2

is repeated.

4. After all particles in the Pi array are processed, the results in the Pi acceleration

array are flushed back to acceleration memory. At the same time, the next N

particles in self are ready to load. The process goes back to step 1.

Traverse self() has similar steps, except that, the Pj are also from self , the Pj mask

does exclusion, but the Pi acceleration array doesn’t flush. The pseudo code in Algorithm

3 illustrate the logic of these signals.

6.2.2 Non-bonded Force Exclusion

The problem of non-bonded force exclusion arises as follows. The non-bonded forces

(Lennard-Jones force and Coulomb force) exist only between particle pairs without co-

valent bonds. In another words, the non-bonded forces between bonded particles must be

excluded from the non-bonded force calculation.

One naive method is to check whether two particles are bonded before evaluating the

non-bonded forces. This method is expensive, however, because it requires on-the-fly bond

checking. Another method employed by some MD packages is to combine the bond check-

ing with pair-list construction. In this case, a lists of particle pairs are constructed during

the motion update phase, which only contains particle pairs within the short range force

cut-off and not excluded. Consequently, only these pairs are processed during the force

123

Algorithm 3 Traverse cell, Traverse self, and Traverse pairs

Tr a v e s e c e l l (s e l f s i z e , n e i g hbo r s i z e)
{

(Pi addr , Pj addr , P i s e l , Pj mask)= Tr a v e r s e s e l f (s e l f s i z e) ;
(Pi addr , Pj addr , P i s e l , Pj mask)

=Trav e r s e pa i r s (s e l f s i z e , n e i g hbo r s i z e) ;
}

Tr a v e r s e s e l f (s e l f s i z e)
{

for (int i =0; i< s e l f s i z e ; i++)
{

Pi addr=i ;
for (int s=0; s<N; s++)
{

P i s e l=s ;
for (int j =0; j<=i ; j++)
// on ly h a l f o f the pa i r s s h a l l be computed
{

Pj addr=j ;
i f (Pi addr==Pj addr)
{

Pj mask=0x−1<<P i s e l ;
}
else
{

Pj mask=0;
}

}
}

}
}

Trav e r s e pa i r s (s e l f s i z e , n e i g hbo r s i z e)
{

Pj mask=0;
for (int i =0; i< s e l f s i z e ; i++)
{

Pi addr=i ;
for (int s=0; s<N; s++)
{

P i s e l=s ;
for (int j =0; j<ne i g hbo r s i z e ; j++)
{

Pj addr=s e l f s i z e+j ;
}

}
}

}

124

Figure 6·6: Short Range Non-bonded Force Coprocessor

computation phase. This method is more efficient than the naive one, but still requires

checking bonds between two particles. This is problematic for our hardware implementa-

tion. In order to access particles with pair-lists, particles must have a fixed layout that our

cell-list framework expressly avoids. The pair- list is required by every force pipeline, but

its size is O(N) and so too big to fit on-chip.

The third method is to compute the non-bonded force between any particle pairs within

cut-off and subtract those between the excluded pairs later. The complementary non-

bonded forces between excluded pairs are similar to those bonded forces and easy to com-

pute. This method does not need on-the-fly bond checking and is proper for hardware

implementation. There is still a problem of this method, however. The complementary

force (mostly the r14 term of Lennard-Jones force) can be very large because bonded par-

ticles can be much closer than non-bonded pairs. Adding and subtracting such large-scale

values in floating-point overwhelms the small but real force values. In contrast, adding and

125

subtracting large complementary forces in fixed-point numbers will not result in loss of

precision. The reason is that fixed-point numbers retains bits from the left while floating-

point retains those from the right. When a large value is added, a floating-point number

will shift its mantissa to the right to fit the large sum, but lose low order bits. Fixed-point

number, in this case, will overflow but keep lower bits. Since such large value will be

subtracted anyway, the overflow of fixed-point number will be recovered and the precision

retained. Meanwhile, floating-point numbers will shift the mantissa to the left, but will

not be able to recover the lower bits. In our system, the non-bonded forces are computed

on coprocessors with Semi-FP and the complementary force is computed on host along

with the other bonded forces. Because mimicking the Semi-FP calculation on host is more

expensive than doing floating-point directly, we need another solution to this issue.

Our solution is to apply a short cut-off to the non-bonded force computation, because

two non-bonded particles cannot be too close to each other. From the point of view

of the force calculation, the unreasonably large non-bonded force values are caused only

by particle pairs with narrow separation. Therefore, particle pairs within a certain cut-

off must be bonded, and after excluding them the rest of the non-bonded force values

have a reasonable dynamic range. It is easy to determine the short cut-off by solving

the inequality ~F short(r2) < range, where range is the dynamic range with reasonable

force values. Because the dominating term on the left side of the inequality is
(

σ
r

)14
, and

the dynamic range of σ is usually about a factor of 10, we need multiple short cut-offs

depending on σ, i.e., the particle type. In addition, since we are dealing with large force

values, the short cut-off checking on the short range force coprocessor must exactly match

that of the complementary force computation on the host. Hence, we adjust (enlarge)

the cut-off slightly so that r2 can be represented precisely in Semi-FP format. Finally,

because the short cut-off checking is performed with Semi-FP and floating-point, there

are some extreme cases that one particle pair is excluded by the coprocessor but included

in the complementary force again by the host. We solve this problem by counting the

excluded pairs on both sides, and if a mismatch happens, the short range forces are totally

126

recomputed on the host. Since we use either truncation or rounding to zero for Semi-FP

operations, r2 in Semi-FP can only be smaller than in floating-point, which means that the

short range force coprocessor will exclude no less pairs than the host, and whenever there

is a mismatch, we shall recompute the short range forces for that time step. Fortunately,

such mismatches happens less than once every 1000 time steps in experiments, so it does

not have obvious effect on performance.

6.2.3 Short Range Non-bonded Force Pipeline

The force pipeline is the compute engine of the short range force coprocessor. The overall

system has a modular design so that the pipeline can be swapped according to the force

model.

We begin the description an overall description, beginning with its interface. This can

be split into two parts: scalable initialization ports and fixed data path ports. The former

are used to initialize the force parameter memory. These force parameters include ε and

σ for the Lennard-Jones force, and particle charges for the Coulomb force. The data path

ports are used to transfer particle data, such as coordinates, types, and forces, during the

force computation. The force parameter memories are used by every force pipeline. We

have built them using the on-chip SRAMs so that they can scale with the number of force

pipelines. This number, in turn, is determined by the chip capacity. In addition, multiple

force pipelines can share one instance of the force parameter memory via the multi-port

interface provided by the on-chip SRAMs. The force pipeline is fine grained, with 61 stages;

its implementation is exhibited below. In the rest of this section, we describe in more detail

a force pipeline that computes the combination of the Lennard-Jones force and the short

range part of the Coulomb force.

As shown in Figure 6·7, the pipeline stages can be grouped into 8 major steps, where

r is the distance between particle i and particle j:

1. Compute the displacement in each dimension.

2. Perform periodic boundary refolding if necessary.

127

3. Compute the square of the distance between particle pairs, r2.

4. Check the distance. If the r2 is out of range, a flag is set to force the output to zero

at the end of pipeline.

5. Interpolate r−x with r2.

6. Look up the pre-computed force parameters based on the particle types, e.g., the

Lennard-Jones force parameters ε and σ.

7. Apply force parameters with r−x to get the pseudo-force.

8. Multiply the pseudo-force with the displacement vector from step 1 to get the force.

Figure 6·7: Short Range Non-bonded Force Pipeline

Steps 1, 2, 3, 6, and 8 are straightforward: they require only fixed-point arithmetic

operations or memory accesses. Step 5 performs the polynomial interpolation with Semi-

FP and will be explained in detail in Section 6.2.4. In the rest of this section we give

further explanations of steps 4 and 7.

Step 4 checks cutoffs for both short and long ranges. The short range cutoff is checked

to exclude the non-bonded force computation among particles with covalent bonds as

explained in the previous section; the long range cutoff is checked to switch off the short

range forces. In software implementations, since cell-lists have already excluded particles

128

far away from one other, it is usually not necessary to check this cutoff again. In our

coprocessor, however, our cell-list is coarse grained. And because the force is computed in a

pipeline, excluding particle pairs from processing does not save any execution time. A more

important consideration for this implementation has to do with the Semi-FP interpolation.

The r2 in the force pipeline can only represent values slightly large than the long range

cutoff, because we need to save precision of r2 to maintain interpolation accuracy. If the

cell size is same as the switching cutoff, the largest value for r2 can be 12 times the square of

the cutoff, requiring another 4 bits. Therefore, we need to make sure that the two particles

are within the distance, which can be presented by r2 in Semi-FP; otherwise the result is

meaningless. Hence, to optimize this computation, we compute r2 with a lower precision–

but a larger range of values–to check the long range cutoff. Meanwhile, the fine-grained

format r2 has been computed and is available for interpolation.

When only computing the Lennard-Jones force, step 7 follows Equation 4.4. This

applies the Lennard-Jones force parameters with r−14 and r−8. If the short range part of

the Coulomb force is also computed here, the pseudo force becomes:

~F short
ij

~rij
= (A × r−14 + B × r−8) + QQ × (r−3 +

g′a(r)

r
) (6.1)

A and B are two pre-computed Lennard-Jones force parameters; QQ is the pre-computed

product of charges of these two particles; ga(r) is the smoothing function for the short

range part of Coulomb force computation; and a is the cutoff distance of ga(r). The first

term is for the Lennard-Jones force, the second term is for the short range part of the

Coulomb force. In particular, if the C2 continuous smoothing function Equation [STH02]

Equation 6.2 is used,

ga(r) =
1

a

(

15

8
− 5

4
(
r

a
)2 +

3

8
(
r

a
)4

)

(6.2)

the pseudo force becomes:

129

~F short
ij

~rij
= (A × r−14 + B × r−8) + QQ × (r−3 +

5

2a3
− 3

2a5
· r2) (6.3)

For a C3 continuous smoothing function [STH02],

ga(r) =
1

a

(

35

16
− 35

16
(
r

a
)2 +

21

16
(
r

a
)4 − 5

16
(
r

a
)6

)

(6.4)

the pseudo force becomes:

~F short
ij

~rij
= (A × r−14 + B × r−8) + QQ × (r−3 +

35

8a3
− 21

4a5
· r2 + − 15

8a7
· r4) (6.5)

Once r−3, r−8, and r−14 are computed by the interpolation pipeline, the pre-computed

coefficients and parameters are applied through a simple pipeline to yield the pseudo force,

as shown in Figure 6·8 . Because r−3, r−8, and r−14 are not required until the middle of

the pipeline, some stages that compute the smoothing function can be parallelized with

the interpolation pipeline.

6.2.4 Polynomial Interpolation Pipeline with Semi-FP

The polynomial interpolation pipeline is the core of the short range non-bonded force

pipeline. It takes r2 as input and does piece-wise interpolation to approximate r−x with

Semi-FP computations and the logarithmic interval scheme in the table look-up. The

mathematical background of our interpolation method and details about Semi-FP oper-

ations have been addressed in a previous chapter. Now, we show how to integrate these

ideas into the polynomial interpolation pipeline.

The basic function of this interpolation pipeline is to compute the polynomial

f(x) = C0 + C1 × (x − a) + C2 × (x − a)2 + C3 × (x − a)3 + ... + Cp × (x − a)p. (6.6)

Figure 6·10 shows the data path for 3rd order interpolation. The first block interprets

130

Figure 6·8: Short range non- bonded force pipeline data flow for the C3

smoothing function

r2; the coefficient memories store the interpolation coefficients (C0 to C3 for a third order

interpolation); the remaining blocks compute the interpolation polynomial with Semi-FP

adders and multipliers as shown in Figures 4·10 and 4·11. r2 is interpreted to extract

several inputs into the interpolation pipeline.

A simplified example is shown in Figure 6·9. Point a is the left end of an interval. The

interval index and the offset into the interval can be extracted from the input, (x), without

any additional computation on FPGA, if the section edge and the number of intervals per

section are both power of 2. The section index (i.e. Format) is determined by the position

of the leading 1 in x. For example, let us assume an interpolation input ranging from 2−4

to 22 and that each section has 16 intervals. In this case, we define the scale factor as −14,

i.e., that the most significant bit is 2 (216−14−1), the 2nd bit 1, and so on. As shown in

the bit string x in Figure 6·9, because the 6th bit from left is the leading ‘1’, this number

can range from 2−4 to 2−3, i.e., the first section from left, where the size of each interval is

2−4−4. The next four bits, 0010, indicate that x locates in the 3rd interval from 2−4, i.e.,

131

the interval from 0.078125 to 0.08203125. The remaining (low-order bits), 110000, are the

offset from 0.078125, which is 0.0029296875.

Now, let us inspect the real implementation for interpolating R14 = t−7 = (r2)−7 =

r−14. The interpolation input t = r2 has fixed-point format. Because t is defined within

the interval 2−4 to 27 for the Lennard-Jones and the short range part of the Coulomb

force, there are 11 sections in our logarithmic interval scheme (see Section 4·10). Thus, the

scale factor of t is 7 to fit 27, and 11 formats are required to support the 11 sections. In

addition, each section is split into 27 intervals. The four steps to compute an interpolation

polynomial are as follows:

Figure 6·9: Extracting section (i.e. format), interval, and offset for Inter-
polation

1. Extract format, a, and (t− a) from t. The method is shown in Figure 6·9. Locating

the leading 1 in t is the most complex part in this step and is done by a module called

MSBCheckTree shown in Figure 6·11. For section (2−4, 2−3), (t−a) has a scale factor

of −4 − 7 = −11; this continues, e.g. with section (2−3, 2−2) having a scale factor of

−3 − 7 = −10. The factor is −7, because each section is cut into 27 intervals. From

now on, the intermediate results have different formats if they are corresponding to

different interpolation sections. The information extracted from t is applicable to all

interpolation polynomials for the various r−x interpolation pipelines.

132

2. C3 × (t − a). C3 is fetched from the coefficient memory with the address com-

posed with format and a: format indicates the section and a indicates the off-

set within a section. The scale factor can be determined with Equation 4.17, e.g.,

47 = log(max
2−4≤t<2−3

{|C3|}) for section (2−4, 2−3). The multiplication is performed by

a Semi-FP multiplier.

3. C3 × (t − a) + C2. C2 is fetched in the same way as C3. Its scale factor in (2−4, 2−3)

is 41 = log(max
2−4≤t<2−3

{|C2|}). The addition is performed by a Semi-FP adder.

4. Repeat steps 2 and 3 until t−7 = ((C3 × (t− a) + C2)× (t− a) + C1)× (t− a) + C0 is

computed. In the current implementation, the outputs are in Semi-FP format, i.e.,

t−7 has different formats for different sections. For example, for section (2−4, 2−3),

t−7 has a scale factor of −4× (−7) = 28, while the scale factor is −3× (−7) = 21 for

section (2−3, 2−2).

Because the interpolation pipeline outputs (r−x) are in Semi-FP format, the Semi-

FP multipliers must be used to combine the r−x with force parameters to compute the

pseudo-forces. This is an issue because the force parameters are in fixed-point format. The

outputs of these multipliers have same formats regardless of interpolation section. Hence,

the Semi-FP operations end here, and ‘format’ is no long needed.

Figure 6·11 shows the block diagram of MSBCheckTree. This function locates the

position of the leading 1 of t = r2 through a hierarchical structure. The MSBChecker

module searches for the leading 1 in its input bit string and generates two outputs: the

position of the leading 1 and a flag bit indicating whether the string is all 0s. Consider,

for example, a two-level MSBCheckTree. On the top level, the input bit string is split into

multiple substrings, so that they are searched locally and in parallel by the MSBChecker

modules. On the bottom level, the MSBChecker module checks the bit string that is

composed with the flag bits from its upstream MSBCheckers. The leading 1 in the input

bit string indicates which substring (called the winning substring) contains the leading 1 of

the entire string. Combining the position result of the bottom level of MSBChecker with

133

Figure 6·10: Interpolation Pipeline for r−x

134

Figure 6·11: MSBCheckTree is constructed with a hierarchy of MS-
BCheckers.

that of the winning substring derives the global leading 1 position. A large MSBCheckTree

works as a recursive to the two-level example: the local search results converge through

the tree, and eventually the root MSBChecker yields the global leading 1 position and the

flag bit.

6.3 Multigrid Coprocessor for Coulomb Force

The multigrid coprocessor computes the long range part of the Coulomb force. The al-

gorithm and the FPGA design of critical modules have been discussed in Chapter 5. In

this section, we first present details of the overall design of the multigrid coprocessor, espe-

cially the control logic and interfaces among modules in the data path. In the second part

of this section, we discuss implementation considerations with respect to possible design

trade-offs.

6.3.1 Multigrid Coprocessor Architecture

Figure 6·12 shows the major components and the data path of the multigrid coprocessor. It

consists of a particle-grid converter, a grid-grid convolver, two instances of the interleaved

memory, some dual-port memories, control logic, and some miscellaneous components.

Recall the multigrid method for the Coulomb force, five operations (TP1, TP2, AG,

IG, COR, and DIR) are executed sequentially in a V-cycle (see Section 5.2); between pairs

135

of operations data are stored in the memories.

To explore the data path in Figure 6·12, let us start with the two major computation

modules, the particle-grid converter and the grid-grid convolver, beginning with the for-

mer. The inputs of the particle-grid converter are the particle charge and oi, the least

significant bits of its coordinates; the outputs are the weighted charges assigned to the

neighboring grid points. Particles are processed sequentially. Before a particle reaches

the particle-grid converter, its coordinates and type must be fetched from the position

and type memories (shown in Figure 6·1). The address is generated by the control logic.

Next, the type-parameter memory converts type into charge. To store the assigned charges

into the interleaved Q memory during TP1, or to fetch potentials from the interleaved V

memory during TP2, we require that the memory address gi, which is dispatched from the

particle coordinates, indicate the neighborhood of the particle being processed. In TP2,

the assigned charges are also multiplied with the potentials on the finest grid via a vector

multiplier. Finally, the outputs from the vector multiplier are summed via an adder tree

to compute the force on that particle.

The other major component of the data path is the grid-grid convolver, which is used

in AG, COR, DIR, and IG phases. Its input is either charge or potential on grids and the

predefined convolution kernels according the computation phases; its output is either charge

or potential on grids. Because the input and output of this convolver during computation

are only one datum at each end, regular dual-port memories are good enough for Q and

V memories. During convolution, the control logic generates the address of the source

memory, selects the correct data with a MUX before the grid-grid convolver, and generates

the address and write-enable signal to store the convolution result back into the destination

memory. When doing convolution on the finest grid, the interleaved memories must be

accessed like a regular dual-port memory. In this case, their address is not gi but rather

one generated by the control logic. The MUX above the particle-grid converter selects the

proper address according the phase.

One of the components not shown in Figure 6·12, but worth noting, is the memory

136

used to stor the convolution cores for GL, Ĝl, Al+1
l and I l

l+1 (see Section 5.2). The control

logic generates the addresses to fetch both the convolution cores and the control signals

that initialize the convolver (see Section 5.3.3). The particle-grid converter, the grid-grid

convolver, and the vector multiplier all require a large number of multipliers. Fortunately,

because the convolver does not at the same time as the other two components, they can

share some multipliers.

Figure 6·12: Multigrid Coprocessor

The control logic routes data through the data path following the sequence of the

V-cycle specified in the flow chart in Figure 5·5. The following six steps elaborate data

movement, critical control signals, and addresses from the point of view of timing.

1. The particle coordinates and charge are fetched from the off-chip particle position

memory and on-chip Type-Param memory. The coordinates in every direction are

split into two parts oi and gi as described in Section 5.3. The particle-grid converter

computes the charges assigned to the neighboring grid points with oi. The assigned

charges are stored into the interleaved Q memory with address gi simultaneously.

2. After charges are assigned, the charge grid convolves with the pre- computed matrix

Ĝl to compute the correction; the result is stored in the dual-port V memory.

3. The charge grid also convolves with the pre-computed matrix Al+1
l to anterpolate

charges to the next coarser grid; the result is stored in the dual- port Q memory.

4. At the coarsest grid, the potential is computed directly. Instead of matrix Ĝl, the

charge grid convolves with the pre-computed matrix GL. The potential grid is stored

137

in the dual-port V memory.

5. The potential grid convolves with the pre-computed matrix I l
l+1 to interpolate the po-

tential to the next finer grid. The result is accumulated with the correction computed

in step 3.

6. At the finest level, particle coordinates and charge are fetched again to compute

the weights for potential interpolation. Potentials from neighboring grid points

are fetched simultaneously from the Interleaved V memory, dot multiplied with the

weights, and summed with the adder tree. To compute the force in all dimensions,

the potential interpolation is performed independently with partial differentiation in

three dimensions.

6.3.2 Implementation Consideration

Because the multigrid coprocessor is more complex than the short range non- bonded force

coprocessor, scaling and fitting designs to a specific FPGA chip becomes more challenging.

For the short range force pipeline, we can easily replicate the force pipeline to maximize

the chip usage. The multigrid coprocessor, however, contains many different components

that scale non- linearly: some expand cubically, such as the grid-grid convolver; others

expand exponentially, such as the particle-grid converter. Furthermore, some components

have conflicts for critical resources, especially on the on-chip SRAMs and the hardware

multipliers. Careful tuning is thus necessary to balance the system capability and perfor-

mance. The following setting is based on our implementation on a Xilinx Virtex II pro 70

(VP70) FPGA.

In this implementation, the finest grid can be up to 32 × 32 × 32 with the limited

being the number of on-chip SRAMs. We apply the 3rd order basis functions (Equation

5.11). Adopting the 5th order basis functions slightly exceeds the number of the hardware

multipliers, but would not be a problem for VP100. The grid-grid convolver has a 4 ×

4 × 4 computation kernel; this is also limited by the number of hardware multipliers. The

particle-grid converter contains a 1 : 42 two-level tree structure, rather than the preferred

138

three-level one. Consequently, the memory interleaving is 42-way. This configuration is

a compromise resulting from resource balancing. The hardware multipliers needed by a

1 : 43 particle-grid converter and the vector multiplier that follows exceed the capacity of

the VP70 chip.

Our experiments also show that a 43-way interleaved memory could barely fit on a

VP70, but then almost no resources remain for other functions. Another possible design is a

1 : 23 particle-grid converter. Of course, the 23-way interleaved memory is sufficiently small

enough to easily fit on chip. The performance however would decay with the parallelism

reducing to 8. In contrast, the 1 : 42 configuration provides reasonable parallelism, while

consuming 90% of the hardware multipliers. In fact, the particle-grid converter and the

vector multiplier require 36 35-bit multipliers, sharing them with the grid-grid convolver,

which needs 64 35-bit multipliers. One consequence of this modification is that the particle-

grid converter can only assign one charge to 16 grid points at a time, and so requires four

cycles to assign to all 64 grid points.

6.4 Supporting Large Simulations with Explicitly Managed Cache

The limited size of the on-chip SRAMs is the major barrier to simulating large models with

our coprocessors. They are used to store three types of data: grid data (in the Multigrid

coprocessor), computation parameters (e.g., the Lennard- Jones force coefficients, charges

of each atom type, interpolation coefficients, cell-list information, and other static data),

and particle data (e.g., coordinate, acceleration, and atom type). As previously discussed,

the coprocessors employ the on-chip SRAMs to obtain large bandwidth and complex access

patterns and so to achieve high throughput.

The original version of our short range non-bonded force coprocessor could hold up to

10K particles in the on-chip SRAMs. In order to enlarge the system capacity, these data

must be stored off-chip; the danger is potential deterioration in bandwidth and flexibility.

There are some additional constraints when accessing the off-chip memories. For example,

the WildstarII- Pro PCI board from Annapolis Micro Systems, on which we prototyped

139

our coprocessors, has a 9 clock cycle latency to access the off-chip SRAMs; the SRAM

chips can’t be read and written concurrently; and a NOP cycle must be inserted between

read and write operations. After studying these data, we decided to move the particle

data to the off-chip memory. We did this because (i) the particle data has the lowest

bandwidth and latency requirement and the simplest access pattern among the three types

of data, and (ii) by decoupling the particle memory the coprocessor chip, the simulation

size becomes independent of the on-chip SRAM size. The rest of this section addresses the

modifications of the coprocessor design to support the caching scheme.

6.4.1 Off-chip Memory Interface and Constrains

We have designed our coprocessor to be maximally hardware independent, in particular

with respect to the platform (e.g., the FPGA). If we want to utilize the off-chip resources,

however, some generality is necessarily lost. Here, we define an off-chip memory interface

and specification, so that we can port, with limited need for modification, our coprocessors

to platforms with different off- chip memories. The interface between the off-chip memory

and the coprocessors are assumed to be dual-ported (read and write ports) SRAM interface.

The off- chip memory is assumed to be able to work at the same frequency as the coprocessor

with constant access latency, or have equivalent timing. The bandwidth of the SRAMs

is assumed to be no less than the data required for one particle per cycle, where that

data is a three dimensional fixed-point coordinate or force vector. In our current system

configuration, this is about 100 bits per cycle.

Recall that the particle coordinates and forces are stored on the host in double precision

floating-point format. They need to be converted into Semi-FP on the FPGA before they

are stored in the off-chip memory. Because the FPGA is physically in between the host and

the off-chip memory, the particle data must pass through the FPGA (as shown in Figure

6·13). No additional interface between the bus and the off-chip memory is needed.

140

Figure 6·13: Interface among Host, FPGA, and Off-chip SRAM

6.4.2 Coprocessor and Cache Interface

Because the multigrid coprocessor reads and writes one particle per cycle during charge

anterpolation and potential interpolation, latency is the only effect of employing the off-

chip memory, and only some minor changes are necessary. For the short range force

coprocessor, multiple particle data are accessed in every clock cycle by the force pipelines.

The fixed connection between the off-chip memory and the coprocessor may not have

sufficient bandwidth, and in any case would not be able to scale with the number of force

pipelines. To solve this problem, we extended our cell-list method to a cache scheme by

utilizing the particles’ spatial and temporal locality.

With the cell-list method, particles are grouped based on their locations. At any

moment, only particles in a neighborhood (in the same cell or in the neighbor cells) are

accessed and processed. Moreover, within the switching cutoff of the short range forces,

the number of particles is limited because of the density of the simulation model. Hence,

with this spatial locality, it is possible to maintain the throughput of the force pipelines

with only a small cache. In addition, increasing the size of the simulation model does not

increase the cache capacity requirement. Once a cell and half of its neighbors are loaded

into the cache, which contains O(N) particles (where N is the number of particles in a

141

cell), they are processed by the force pipelines for O(N2) cycles. The timing ratio between

cache swapping (loading/flushing) and computation is thus O(N). This fact implies that

if we construct two caches (analogous to blocks in microprocessor caches), we can keep

one working with the pipelines at high bandwidth due to the on-chip connection, and have

the other one swapping data via a slow interface to the off-chip memory. Since N is not

a trivial number in reasonable simulation models, this temporal locality is valid regardless

of the size of the simulation. Finally, the cache replacement scheme is straightforward,

because it just needs to follow the predefined order to traverse all cells; there are therefore

no cache misses.

Figure 6·14: Data Path between Cache and Force Pipeline Array. In this
example, cache 0 is working with the force pipelines and cache 1 is swapping
data with the SRAMs

142

Figure 6·14 shows the connections among the off-chip memory, caches, and force pipelines.

There are two lines of caches numbered 0 and 1. They work either with the force pipelines

or swap data with the off-chip memories. Each line has one position cache and one force

cache. The position caches are read-only, whereas the force caches are read/write. The

gray boxes are multiplexers that control the cache operation. When the force pipelines are

computing with one cache line (see, e.g., cache 0 and the blue arrows in Figure 6·14), the

other cache line is swapping particles (see, e.g., cache 1 and pink arrows). In particular, the

position cache loads the particle coordinates for the next cell; the force cache flushes the

result of the previous cell and then initializes itself with 0. The flushed results are added

with those read from the off-chip memory (with the adder near the bottom). The adder

next to the short range force pipeline accumulates the forces from the pipeline with the

partial results in the force cache. The green arrows are the interface between the off-chip

memories and the host.

We have implemented the cache scheme on a WildstarII-Pro PCI plug-in board from

Annapolis Micro Systems. This board has two FPGAs; there are 6 SRAM chips (Samsung

18Mb (512K×36-bit) DDRII CIO b2 (K7I323682B) around each FPGA, and the total

bandwidth per FPGA is 432 bits per cycle. We instantiate two cache lines on the FPGA

chip, and each line can store 2048 particles. By using the off-chip SRAMs, our system

can simulate up to 256K particles without sacrificing clock frequency. In fact, since fewer

on-chip SRAMs are used to store the working set of the particles, more SRAMs can be

devoted to the other types of data. The result is actually an improvement in performance.

143

Chapter 7

Validation and Performance

Simulation quality is the essential criteria for MD systems: any acceleration technology

must generate accurate results. Determining simulation error, however, is complex. Gen-

erally, it can be divided in two categories: algorithm approximation error and numerical

computation error. The former is related to the force model, motion integration, and

boundary conditions, while the latter is associated with the numbering system, arithmetic

mode, numerical approximation, and error accumulation. We have new approaches in

both categories. Investigating the impact on the simulation quality is therefore necessary

and critical to validate our research. Performance, however, is our major contribution.

Although we have built our system on 4-year old FPGA chips, we have still achieved

promising speedups.

In this chapter, we first describe two platforms on which we conducted the experiments.

Next, we present the methods and experiments that validate our acceleration. In the third

part of this chapter, we present the performance data of our system and compare them

with other systems. In this part, we also estimate the performance that would be achieved

on similar platforms, but with newer and/or larger FPGA chips. In the last part of this

chapter, we present detailed experiments and analysis about the multigrid coprocessor, we

respect to both accuracy and performance.

7.1 Experiment Platforms

We have built two types of platforms for validation and performance measurement. Both

platforms use ProtoMol 2.03 as the base code and replace the non-bonded force compu-

tation with our coprocessor. The first type is a pure software simulator that simulates

144

our FPGA coprocessors; the other is the FPGA coprocessors themselves. In the software

platform, coprocessors are implemented with the C++ Semi-FP library that emulates the

Semi-FP operations with bit-level accuracy. With this library, we can easily prototype

coprocessors by only constructing major datapath components such as the computation

pipelines, but avoid most timing issues. This helps us to explore the design space and to

make design decisions about the data width and scale factor of every register. Because

it tracks the Semi-FP operation bit-by-bit, this software version system later becomes a

test-bench to debug and verify the FPGA version of the system.

We have implemented a complete working system, the platform of which we now de-

scribe. The primary components are a PC with a 2.8 GHz Xeon CPU and a WildstarII-Pro

PCI board from Annapolis Micro Systems [Ann06]. The board has two Xilinx Virtex-II-Pro

XC2VP70 -5 FPGAs. ProtoMol 2.03 is also used (downloaded from the ProtoMol website).

The operating system is Windows-XP; all codes are compiled using Microsoft Visual C++

.NET with performance optimization set to maximum. FPGA configurations are coded in

VHDL and synthesized with Synplicity integrated into the Xilinx tool flow. Data transfer

between host and coprocessors is done with the software support library from Annapolis

Microsystems. These transfer routines are efficient with nearly the full PCI bandwidth

being used and little system overhead. Both FPGA coprocessors run at a minimum of

75MHz. We use the six off-chip SRAM chips (Samsung 18Mb (512K×36-bit) DDRII CIO

b2 (K7I323682B)) to instantiate the cache scheme described in previous chapter.

This working system supports up to 256K particles stored in the off-chip SRAMs (three

for coordinates and three for acceleration) and up to 32 particle types. The particle type

memory is implemented on the FPGAs. Four cache lines are implemented on-chip and each

cache line is capable of storing 2K particles. Other system specifications are: 3rd order

polynomial interpolation is applied to compute short range forces; the 3rd order basis

function (5th order exceeds the multiplier count on VP70) and the 5th order smoothing

function are applied in the multigrid coprocessor; and 35-bit Semi-FP or integer are used

for all numerical computation. Please note that the use of 35-bit precision is motivated

145

as described previously; there is no constraint inherent in any aspect of this work that

constrains precision other than user specification.

Figure 7·1: WildstarII-Pro PCI board from Annapolis Micro Systems
[Ann03]

7.2 Simulation Quality Experiments

Clearly, accuracy of the calculation is a concern when converting a floating- point applica-

tion to fixed-point arithmetic. Because of the inherently chaotic nature of the calculation,

“Obtaining a high degree of accuracy in the trajectories is neither a realistic nor a prac-

tical goal. [Rap04]” Rather, quality assurance in MD is determined by observing fidelity

of emergent physical properties. Perhaps the most common of these is energy fluctuation

(see, e.g., [BS98, SZB96]). Our goal is therefore to achieve energy fluctuation similar to

the original calculations.

To measure energy fluctuation, one physical model simulated was bovine pancreatic

trypsin inhibitor in water, a model of approximately 1100 particles and 26 atom types, run

for 0.01 ns (i.e. 10,000 time steps with 1 fs per step). We say approximately, because the

number of waters was varied within 10% between runs to obtain an ensemble. The bonded

force in the force model includes angle, bond, diherdral, and improper diherdral. Lennard-

Jones and Coulomb forces are computed with 3rd order polynomial interpolation and semi

floating-point numbers. Periodic boundary conditions were used and switched cut-off at

that size. The original ProtoMol was compared with the ProtoMol modified as described in

146

the previous section. After 10 runs we have found comparable energy fluctuation between

the two systems, with both being close to 0.014.

The second physical model simulated was also of bovine pancreatic trypsin inhibitor in

water. This model has more than 14,000 particles and 26 atom types. The bonded forces

were same as the first model; the non-bonded forces were evaluated with different methods.

The Lennard-Jones force and the short range part of the Coulomb force were computed

with 3rd order polynomial interpolation and semi floating-point numbers. In addition,

cell-lists were applied with cell size of 10Å, which was also the short range cut-off. The

long range part of the Coulomb force was computed with the multigrid method with two

levels of grids, finest grid spacing of 4Å, 5th order smoothing functions, and 3rd order

basis functions. The boundary condition was vacuum. After 0.01 ns (i.e. 10,000 time steps

with 1 fs per step) simulation running on both the original ProtoMol and our accelerated

version, we measured the total energy fluctuation. They were very close to each other:

3.50 × 10−4 of the orignial ProtoMol versus 3.55 × 10−4 of the accelerated version. The

ratio between the total energy fluctuation and the kinetic energy fluctuation as mentioned

in Section 4.3 were both 0.018, below the criteria of .05 [Van04].

The third physical model simulated was of bovine pancreatic trypsin inhibitor in water

as well, more than 11,000 particles and 26 atom types. The Lennard-Jones force and the

bonded forces were computed as previous models; the Coulomb force was computed with

PME method implemented in ProtoMol on host. In particular the PME method applied

a real part cutoff of 10Å, 3rd order BSpline interpolation, and the α factor (see Chapter

2.3.1) of 0.312. We compared the simulation quality with different semi-floating point

implementations for 0.2 ns (1 fs per step) duration. The energy fluctuation for 35-bit

semi-floating point without rounding, 35-bit semi-floating point with rounding to zero, 45-

bit semi-floating point with rounding to zero, and double precision floating-point were all

about 4.0×10−4. A 0.5 ns simulation applying 35-bit semi-floating point without rounding

yielded an energy fluctuation of 3.0 × 10−4.

147

7.3 Performance Experiments

For performance comparisons, we simulated the Protein Data Bank Molecule of the Month

for January, 2007, Importin Beta bound to the IBB domain of Importin Alpha.12 This

complex has roughly 77K particles. The simulation box is 93Å×93Å×93Å. We ran for 1000

time-steps. Table 7.2 profiles the relative contributions of various components of both the

baseline and the accelerated versions of ProtoMol. Two points are noteworthy for the

accelerated version: (i) that the short range force dominates, concurring, e.g., with [SP06],

and (ii) that the overhead is a small fraction (roughly 6%) of the execution time. The

total speed-up is 9.8×. For further reference, we also downloaded and ran a NAMD binary

(v2.6 b1) 3; these results are also shown in Table 7.2. NAMD is somewhat faster than

ProtoMol; the resulting speed-up is 8.8×. These numbers are clearly preliminary as there

is substantial room for performance improvement in both baseline and FPGA-accelerated

configurations; this is now described.

Table 7.1: Profile of the 77K particle model simulation

Baseline Code Optimization. ProtoMol has been optimized for experimentation

of the kind described here. In contrast, others codes (such as NAMD and GROMACS)

have been heavily optimized for performance. Moreover, the data structures in ProtoMol

are designed for serial execution but not compatible with our coprocessor interfaces. The

overhead to convert data structure in current system can be optimized by redesigning these

data structures with consideration of FPGA coprocessors.

Long-range computation. The serial multigrid long range force computation shown

1http://www.rcsb.org/pdb/explore/explore.do?structureId=1QGK
2http://www.rcsb.org/pdb/static.do?p=education discussion/molecule of the month/pdb85 1.html
3http://www.ks.uiuc.edu/Development/Download/download.cgi? PackageName=NAMD

148

in 7.1 seems slow (see, e.g. [IHM05]). This is currently being investigated, but in any case,

the NAMD SPME code is a bit faster. Commonly, the long-range force is only computed

periodically.

Periodic force integration. Commonly, the long-range force is only computed peri-

odically. In the NAMD benchmarks it is computed every four time- steps.

FPGA Accelerated Code Dynamic Reconfiguration. While the performance

of the FPGA-based multigrid computation appears to be good, the use of computational

resources is disproportionate to its execution time (again, as observed previously by [SP06]).

Fortunately, the wall-clock time of each time-step is long in comparison to the time it takes

to reconfigure the FPGA. Especially when used with periodic force integration, dynamic

reconfiguration is an attractive alternative. For our current hardware, this allows both

VP70s to be used primarily for the short-range computation, nearly doubling performance.

Larger chip, higher speed-grade. A larger chip of the same family (the Xilinx V2

VP100) allows the short- range force unit to be implemented with four pipelines rather

than just the two that fit in the VP70. This (similarly) results in a near doubling of

performance. A higher speed-grade results in a roughly 15

Newer chip. Using the Xilinx Virtex-5 improves operating frequency by another factor

of 1.7.

Reduced precision. If reduced precision is acceptable, this also allows the operating

frequency to be increased (see Table 7.3), and for the Virtex-5, the number of pipelines to

be doubled.

Optimizations. Virtually no optimization has been done on the FPGA configurations;

professional design using FPGA-specific tools (such as guided placement) could result in

substantial performance improvement. For example, while our arithmetic units are area

efficient, they are far slower than the corresponding elements in Xilinx library. Another

obvious optimization that has not yet been undertaken is tuning the MD cell size.

Table 7.2 gives the wall clock execution time (per timestep) for an assortment of con-

figurations. The serial codes (except for the bottom line, which was obtained from the

149

Table 7.2: Performance of various configurations given per time-step in
seconds of wall-clock time for the 77K particle simulation

NAMD website) were all run on the same PC that serves as host to our FPGA copro-

cessor. The next set of configurations uses the same PC and the FPGA coprocessor as

described previously. The third set is simulation only. These configurations assume the

same board but with the two VP70s replaced with a single VP100 of the same speed grade.

Timing and area estimates are obtained using the same tool flow through post-place-and-

route. The area estimate from such measurements is usually exact and the timing within

10%. The PC-only ProtoMol runs used a cell size of 5Åand a Lennard-Jones cut-off of

10Å. The NAMD runs used a pair-list distance of 13.5Åand a Lennard-Jones cut-off of

10Å. The accelerated ProtoMol runs used a cell size of 10Åand a Lennard-Jones cut-off

of 10Å. Finally, we note that NAMD performance of 2 second per time-step per node has

been reported for slightly larger simulation models (obtained from the NAMD web site).

150

Table 7.3: Shown is the clock period in nanoseconds for various accelerator
configurations for various Xilinx FPGAs. VP70 numbers are validated in
hardware, the others are post place-and-route.

Comparing MD performance of FPGA-based systems will be frought with difficulty

until double precision floating-point is fully supported. Table 7.3 shows the highest per-

forming configurations in terms of operating frequency and number of pipelines across

recent families of Xilinx FPGAs. We have generated a number of new data points which

we now interpret. We have shown experimentally the following speed-ups; the first two

comparisons show little if any loss in simulation quality (numbers from Table 7.2):

• 11.0× when comparing NAMD run in our lab versus ProtoMol accelerated with two

VP70s (3.2 versus .29); this reduces to around 6.5× when comparing with external

NAMD reports (less-than-2 versus .29).

• When using a single VP100 rather two VP70s the speed-ups are 8.9× and 5.3× (3.2

versus .36 and less-than-2 versus .36).

• When the precision requirement is relaxed, the speed-up for a single VP100 increases

to 9.7× versus NAMD run in our lab (3.2 versus .33), and 5.8× versus external

NAMD reports (less-than-2 versus .33).

• For the new Virtex-5 LX330T with reduced precision, the speed-ups are 16.8× and

10× (3.2 versus .19 and less-than-2 versus .19). Especially in this last case, the

various overhead components are significant.

Intriguing is what this says about the future potential of HPRC for heavily floating-

point applications. From the technology point of view, adding hard floating-point units to

future generation FPGAs, to go with the hard block RAMS and multipliers, would make

a tremendous difference. Also making a big difference would be increasing the numbers of

151

those other hard components in proportion to the process density.

If FPGA component architecture does not change, HPRC for MD may still be promis-

ing. We have shown that a factor of 5× to 9× speed-up is achievable using a VP100 acceler-

ator versus a highly tuned code. The Virtex-5 holds promise of significantly improving that

performance. Since the FPGA configurations were done entirely with a modest amount of

student labor, there is potential for substantially increasing that speed-up. For such an

important application as MD, this effort is likely to be reasonable.

7.4 Detailed Analysis of Multigrid Coprocessor

We did further analysis on the multigrid coprocessor with respect to both simulation ac-

curacy and performance. Beside the energy fluctuation of the entire simulation model, the

force error on particles is another measurement to evaluate the simulation quality. This

measurement uses forces computed with the most accurate method as a reference to com-

pare the forces computed by alternative methods. We follow the methods used by [STH02];

four types of error are measured to compare the quality of various smoothing and basis

functions.

Fabs = max
i

‖ ~̃Fi − ~F‖ (7.1)

Fmax =
maxi(mi

1/2‖ ~̃Fi − ~F‖)
N−1

∑

i(mi
1/2‖~Fi‖)

(7.2)

Favg =
N−1

∑

i(mi
1/2‖ ~̃Fi − ~F‖)

N−1
∑

i(mi
1/2‖~Fi‖)

(7.3)

Upot =

∣

∣

∣

∣

∣

Ũ − U

U

∣

∣

∣

∣

∣

(7.4)

Fabs is the maximum absolute error of the force on one particle; Fmax is the normalized

error of the force on one particle; Favg is the normalized average error of the force on every

152

particle; Upot is the potential energy error.

~Fi and U are the reference force and energy evaluated with software. This method

performs direct all-to-all computation and with double precision floating-point. ~̃Fi and Ũ

are the force and energy evaluated with the multigrid method with either double precision

floating-point or fixed-point numbers.

The experiments are performed with the 14K-particle BPTI molecules. The fixed multi-

grid settings of these tests are as follows: 2 levels of grid, 3rd order basis function, the

smoothing function cutoff of 10Å, and the ratio between grid levels of 2. We varied the

order of the smoothing function (the “order” in the following tables and figures) between

3 and 5, and the size of the finest grid (H). In most cases, the finest grid size is no smaller

than 3 × 3 × 3. However, because our coprocessor currently only handles finest grid sizes

of powers of 2, we did tests with H = 2 and H = 4. The simulations ran for 10 time steps

of 1fs. The numbers in the following tables are the average errors.

From the force errors we can infer that the fixed-point version has quality similar to the

double precision version under same settings. If simulations strictly require that the finest

grid size be 3, our fixed-point version can achieve better accuracy with H = 2, but will take

longer to compute. The potential energy from the fixed-point version is computed with

the double precision floating-point numbers rather than the fixed-point numbers, because

energy is usually evaluated far less frequently than force in the real simulations; and it can

be evaluated with more accurate but slower methods. The potential energy error shows

that the potential energy is less sensitive to arithmetic mode than the force.

Table 7.4: Absolute Force Error

Table 7.8 and 7.9 shows the performance profiles of the multigrid computation for

153

Figure 7·2: Absolute Force Error

Table 7.5: Average Force Error

Figure 7·3: Average Force Error

154

Table 7.6: Maximum Force Error

Figure 7·4: Maximum Force Error

Table 7.7: Potential Energy Error

Table 7.8: Profile of the multigrid Coulomb force coprocessor running the
77K particle model

155

Figure 7·5: Potential Energy Error

Table 7.9: Detail characteristic of multigrid computation. Time in seconds
per 1000 timesteps

156

the 77K particle model on the FPGA-accelerated and the PC-only versions. Most of the

execution time is spent on convolutions. Therefore, the performance of the convolver has

significant impact on the FPGA acceleration. As described earlier, we spent most of our

chip resource on the systolic array convolver to build 64 PEs and each PE performs one pair

of multiplication and addition (MAC) per cycle (i.e. 64-MACs per cycle in total). As the

coprocessor runs as 75MHz, the peak performance of this convolver is about 9.6GFLOPS.

The real performance, however, is less than the peak; the efficiency is reduced for many

reasons.

First, the convolver pipeline must be initialized and flushed before and after every

convolution, and the PEs are idle during these operations. For example, to anterpolate

charges from the finest grid (283) to the coarsest grid (173), we need 21952 64-MACs to

apply a third order basis function; indeed, we spent 39304 cycles to perform this operation

with the 64-PE convolver; the efficiency is about 56%. Second, when the convolution

kernel is larger than the convolver, the convolution must be partitioned, and pipeline

initialization and flushing cause more efficiency loss. Third, because the 64 (i.e. 43) PEs

are fixed connected in the convolver, the convolution kernel must be expanded if its edge

length is not a multiple of 4. These padded zeros reduce efficiency as well, e.g., in COR and

DIR. Fourth, if we handle the direct force evaluation on the coarsest grid with all-to-all

computation, we only need to compute half of the grid point pairs because of the third

Newton’s law (Fij = −Fji). When cast as a convolution, however, it is hard to apply Fij

to grid point i and j at the same time in the convolver, causing a 2× loss. Fifth, there

is further coprocessor overhead (e.g. communication), that comprises almost 1/3 of the

execution time of the FPGA accelerated version.

Overall, the efficiency of the multigrid coprocessor is 31%, or about 3GFLOPS at

75MHz. Because the I/O requirement is low and independent of further parallelism

achieved in the layout, the system is scalable to larger FPGA chips without modification.

This profile indicates that to improve the performance, we should improve the per-

formance of the convolver first. Having more PEs in the convolver definitely increases

157

parallelism and provides higher peak GFLOPS. A larger convolver is also able to handle

larger convolution kernels and reduces the overhead of splitting convolutions. At least two

approaches can achieve these purposes: implementing the coprocessor on a larger and faster

FPGA chip, and applying reduced precision, if acceptable. To improve coprocessor effi-

ciency, it is always important to match the problem to the hardware, in this case the size of

the convolver. Moreover, because the overhead inherent in the FPGA coprocessor becomes

significant especially after acceleration, Amdahl’s law again bounds the speedup. Having

a high bandwidth and low latency communication interface between host and FPGA can

optimize the overall performance as well.

158

Chapter 8

Summary and Future Directions

In this final chapter, we conclude this thesis with a summary of the major work performed in

this research, and discuss two major directions in which we plan to extend our MD/HPRC

solution.

8.1 Summary

In this research we developed a set of technology to accelerate MD with HPRC. Our re-

search includes FPGA algorithm design, numerical analysis, coprocessor micro-architecture

design, FPGA implementation, system integration, and system verification. We instanti-

ated a small scale system that was able to perform complete MD simulation and achieve

substantial speedup over production software. We also demonstrated that HPRC is a vi-

able technology for accelerating applications in the floating-point domain, even without

direct hardware floating-point support. We conclude with some lessons:

Explicit FPGA design is required high quality FPGA design. Compared with the

other MD/HPRC attempts surveyed in Section 3.6, we mapped the problem to hardware

by reconstructing algorithms, and configured the FPGA with explicit HDL design. In this

way, we could apply sophisticated modules such as the interleaved memory and the cell-list

framework into the FPGA coprocessors. This design flow requires more development effort

than direct translation of software from a high level language; it also provides more design

flexibility and thus the potential for much more efficient FPGA design. We believe the

importance of MD has made the extra effort well worthwhile.

Algorithm reconstruction is essential for high chip efficiency. Our performance

basically comes from two sources: massive parallelism/bandwidth embedded in the FPGA

159

architecture and the application specific designs that enabled much of this potential to

be achieved. The former is the basic feature of FPGA that shows potential speedup over

microprocessor even when running at a low frequency; the latter is the essential approach

to achieve potential speedup. For HPRC, ’application specific’ means both application

specific architecture and application specific algorithm, e.g., arithmetic mode. We therefore

explored the design space of both algorithm and architecture to find sweet spots that yield

optimal performance.

Tuning arithmetic mode and precision require careful verification. One of de-

sign choices is using Semi-FP instead of floating-point. Since simulation quality is the

fundamental criteria of MD, we were very cautious about numerical analysis. We com-

pared various numerical computation methods and conducted experiments to prove that

our alternative arithmetic method and algorithms retained numerical accuracy (with little

detriment to physical significance). After all, there is as yet no consensus on the best

method for evaluating MD simulation quality. Any statistic error measurement, e.g. force

error or energy fluctuation, is a macro characteristic of the simulation model, while users

care about micro-structure from MD simulations. Because of this gap, statistic error mea-

surement is not sufficient to tell if a simulation is accurate enough. Real experiments are,

of course, the final method to ensure simulation results but are beyond the scope of this

research.

Maintainability of FPGA designs is more important than absolute performance.

We instantiated our designs on a real 2004-era platform and integrated our coprocessors

into ProtoMol for performance analysis. Without low level FPGA optimization, we had

about 10x speedup over NAMD. Based on simulation results, the speedup can reach 16x

without major modification if latest FPGA are used. To gain more performance from large

and complex designs such as our coprocessors, we can either do low level optimization or

port them to a newer (better) chip. Based on current FPGA manufacturing technology,

we have found that FPGAs still have plenty of room to increase operating frequency and

chip capacity, and that various HPRC systems emerge. Considering the difficulty of FPGA

160

development, maintainability preferable than absolute performance.

8.2 Future Directions

To improve performance further, there are at least two directions in which we shall extend:

node level optimization and system level parallelization.

8.2.1 Node Level Optimization

At this time, we can perform complete MD simulations by accelerating the dense compu-

tation kernel (short range and long range non-bonded forces) with FPGA coprocessors.

Some modules in these coprocessors, however, still have room for further optimization. For

example, we used a general convolver in the multigrid coprocessor for the grid-grid com-

putation. In fact, the convolution kernels are all symmetric, which means a big number of

PEs in the systolic array are doing same dot-products during every cycle. By reusing the

results from PEs, we can theoretically save 7/8 or more PEs, i.e. another 8x speedup in

the convolver.

Porting our coprocessor to new FPGA chips is the second node level optimization.

The current system is implemented on 2004-era FPGAs, which were manufactured with

130nm technology and can operate as fast as 200MHz (with 100MHz being likely), while

the newest FPGAs are manufactured with 65nm and can operate at more than 500MHz

(with 200MHz being likely). Porting our coprocessors to the new FPGAs can increase

both parallelism and operating frequency. However, because some of our current designs

are optimized for old FPGA architecture, e.g. the 18Kb on-chip SRAM and the 18-bit

hardware multiplier, some modules must be adjusted to adapt new FPGA architecture,

e.g., the 25-bit multiplier and 36Kb on-chip SRAM in the Xilinx Virtex 5 series.

In order gain more performance, we need more configurable components. Mapping

designs across multiple FPGA chips can serve this purpose. Reconfiguration, in some

cases, can provide more configurability as well. Other low-level optimization such as floor-

planning could improve performance as well.

161

8.2.2 System Level Parallelization

The next extension of this research is to use the FPGA coprocessors in parallel systems.

Since parallel MD packages have been developed for many years, integrating our FPGA

coprocessors to them is a reasonable possibility. As described earlier, MD packages apply

various parallelization methods, such as force and spatial decomposition; these require

different software/hardware decompositions and thus accelerator implementations. Our

current designs must be modified accordingly.

In the case of spatial decomposition, the short range non-bonded force coprocessor can

be easily integrated into each node, as it is self-contained with a block of space in the

simulation box. For the long range non-bonded force, communication becomes critical. In

fact, because of the acceleration, communication overhead is relatively more costly than in

an unaccelerated parallel system.

Based on performance profiling, some functions may be added to or removed from

the coprocessor. One possibility is to allocate one dedicated node to compute the long

range force at lower frequency than other forces: particle-grid conversion can be done on

the particles’ host nodes before being transferred to the dedicated node. Since the data

transfer between the dedicated node and the host nodes can be slow; within the dedicated

node, our multigrid coprocessor can solve Poisson’s equation with some modifications.

For example, to compute large models (the finest grid is larger than 643), the multigrid

coprocessor must be modified to swap grid data off-chip as well as to support more levels of

grids. Moreover, because of the Amdahl’s law, the speedup of current system will finally be

limited by the part we do not accelerate, i.e. the bond force computation, motion update,

and overhead, acceleration about these parts will become more and more important.

On the hardware platform side, large scale parallel reconfigurable computers have vari-

ous system architectures that keep changing. It is impossible to provide a general solution

for all systems, and thus design methodology plays an important role. Separating modules

to be platform dependent or independent, as in the case of our off-chip memory interface,

is one feasible way. The platform-dependent modules must be redesigned for specific plat-

162

forms; the platform independent modules are better to be scalable, so that they can adapt

hardware of same architecture. In the long term, EDA tools can be used to specify these

generic parameters and resynthesize optimal FPGA designs based on system specification.

References

[AAC+05] Arvind, Krste Asanovic, Derek Chiou, James C. Hoe, Christoforos Kozyrakis,
Shih-Lien Lu, Mark Oskin, David Patterson, Jan Rabaey, and John Wawrzynek.
Ramp: Research accelerator for multiple processors - a community vision for a
shared experimental parallel hw/sw platform. Technical Report UCB/CSD-05-
1412, EECS Department, University of California, Berkeley, Sep 2005.

[AAS+07] S.R. Alam, P.K. Agarwal, M.C. Smith, J.S. Vetter, and D. Caliga. Using
FPGA devices to accelerate biomolecular simulations. Computer, 40(3):66–73,
2007.

[AFK+95] T. Amisaki, T. Fujiwara, A. Kusumi, H. Miyagawa, and K. Kitamura. Error
evaluation in the design of a special-purpose processor that calculates nonbonded
forces in molecular dynamics simulations. Journal of Computational Chemistry,
16(9):1120–1130, 1995.

[AKE+04] N. Azizi, I. Kuon, A. Egier, A. Darabiha, and P. Chow. Reconfigurable
molecular dynamics simulator. In Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 197–206, 2004.

[Alt07] Altera, Corp. FFT MegaCore Function User Guide, 2007.

[Ann03] Annapolis Micro Systems, Inc., Annapolis, MD. WILDSTAR-II Hardware Ref-
erence Manual, 2003.

[Ann06] Annapolis Micro Systems, Inc., Annapolis, MD. WILDSTAR II PRO for PCI,
2006.

[AT90] M.P. Allen and D.J. Tildesley. Computer Simulation of Liquids. Oxford Uni-
versity Press, 1990.

[Bha07] A. V. Bhatt. Keynote talk 1. Presentation, the International Conference on
Field Programmable Logica and Applications, 2007.

[BHD+02] W. Böhm, J. Hammes, B. Draper, M. Chawathe, C. Ross, R. Rinker, and
W. Najjar. Mapping a single assignment programming language to reconfig-
urable systems. Journal of Supercomputer, 21(2):117–130, 2002.

[BHUH06] M.J. Beauchamp, S. Hauck, K.D. Underwood, and K.S. Hemmert. Archi-
tectural modifications to improve floating-point unit efficiency in FPGAs. In
Proceedings of the International Conference on Field Programmable Logic and
Applications, pages 515–520, 2006.

163

164

[BPGH81] H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, and J. Hermans.
Interaction models for water in relation to protein hydration. In B. Pullman,
editor, Intermolecular Forces. Reidel Publishing Company, Reidel, Dordrecht,
The Netherlands, 1981.

[BS98] E. Barth and T. Schlick. Overcoming stability limitations in biomolecular dy-
namics. I. combining force splitting via extrapolation with Langevin dynamics
in LN. Journal of Chemical Physics, 109(5):1617–1632, 1998.

[But03] M. Butts. Molecular electronics: All chips will be reconfigurable. Tutorial, the
13th International Conference on Field Programmable Logic and Applications,
September 2003.

[CCD+05] D.A. Case, T.E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K.M. Merz,
Jr., A. Onufriev, C. Simmerling, B. Wang, and R.J. Woods. The Amber
biomolecular simulation programs. Journal of Computational Chemistry, 26:1668–
1688, 2005.

[Che07] Chen, T., et al. QCDOC: Cell broadband engine architecture and its first
implementationa performance view. IBM Journal of Research and Development,
51(5):559–572, 2007.

[Cle05] ClearSpeed Technology, www.clearspeed.com. CSX600: Advanced Product
Data, 2005.

[Cra05] Cray, Inc., www.cray.com/products/xd1. Cray XD1 Supercomputer, 2005.

[DD04] M.L. DeMarco and V. Daggett. From conversion to aggregation: Protofibril
formation of the prion protein. Proceedings of the National Academy of Sciences
of the United States of America, 101(8):2293–2298, 2004.

[DG04] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. In Proceedings of the 6th Symposium on Operating System Design and
Implementation (OSDI), 2004.

[DRC07] DRC Computer Corporation, www.drccomputer.com. DRC Reconfigurable
Processor Unit, 2007.

[DYP93] T. Darden, D. York, and L. Pedersen. Particle Mesh Ewald: an N log(N)
method for Ewald sums in large systems. Journal of Chemical Physics, 98:10089–
10092, 1993.

[EMF+93] T. Ebisuzaki, J. Makino, T. Fukushige, M. Taiji, D. Sugimoto, T. Ito, and
S. K. Okumura. Grape project: An overview. Publications of the Astronomical
Society of Japan, 45:269–278, 1993.

[EPB+95] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Ped-
ersen. A smooth particle mesh Ewald method. Journal of Chemical Physics,
103:8577–8593, 1995.

165

[EPC05] EPCC. FPGAs: Self-wiring supercomputer is cool and compact. Edinburgh
Parallel Computing Centre (EPCC) news, July 2005.

[FAL+06] P.L. Freddolino, A.S. Arkhipov, S.B. Larson, A. McPherson, and K. Schulten.
Molecular dynamics simulations of the complete satellite tobacco mosaic virus.
Structure, 14:437–449, 2006.

[FMI+93] T. Fukushige, J. Makino, T. Ito, S. Okumura, T. Ebisuzaki, and D. Sugi-
moto. WINE-1: Special-purpose computer for n-body simulations with periodic
boundary conditions. Publ. Astronomical Society of Japan, 44:361–375, 1993.

[FSL91] C. F. E. Wu F. S. Lai. A hybrid number system processor with geometric and
complexarithmetic capabilities. IEEE Transactions on Computers, 40(8):952–
962, 1991.

[FTM+96] T. Fukushige, M. Taiji, J. Makino, T. Ebisuzaki, and D. Sugimoto. A
highly parallelized special purpose computer for many-body simulations with
and arbitrary central force: MD-GRAPE. The Astrophysical Journal, 468:51–
61, 1996.

[GASSS98] B. Garcia-Archilla, J.M. Sanz-Serna, and R.D. Skeel. Long-time-step meth-
ods for oscillatory differential equations. SIAM Journal on Scientific Comput-
ing, 20(3):930–963, 1998.

[GH07a] Y. Gu and M. C. Herbordt. Amenability of multigrid computations to fpga-
based acceleration. In High Performance Embedded Computing Workshop, 2007.

[GH07b] Y. Gu and M. C. Herbordt. FPGA-based multigrid computations for molec-
ular dynamics simulations. In Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, 2007.

[Gro02] T. Grotker. System design with SystemC. Kluwer Academic Publishers, Boston
MA, 2002.

[GS02] P. Gibbon and G. Sutmann. Long-range interactions in many-particle simula-
tion. In J. Grotenhorst, D. Marx, and A. Murmatsu, editors, Quantum Simu-
lations of Complex Many-Body Systems: From Theory to Algorithms. John von
Neumann Institue for Computing, NIC Series, Vol. 10, 2002.

[GVH06a] Y. Gu, T. VanCourt, and M. C. Herbordt. Accelerating molecular dynam-
ics simulations with configurable circuits. IEE Proceedings on Computers and
Digital Technology, 153(3):189–195, 2006.

[GVH06b] Y. Gu, T. VanCourt, and M. C. Herbordt. Improved interpolation and
system integration for FPGA-based molecular dynamics simulations. In Pro-
ceedings of the International Conference on Field Programmable Logic and Ap-
plications, pages 21–28, 2006.

166

[HaAWH+05] M. Haselman, M. Beauchamp and. A Wood, S. Hauck, K. Underwood,
and K.S. Hemmert. A comparison of floating point and logarithmic number sys-
tems for fpgas. In Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines, 2005.

[He94] Y. Hwang and et al. Parallelizing molecular dynamics programs for distributed
memory machines: An application of the chaos runtime support library. Tech-
nical Report CS-TR-3374 and UMIACS-TR-94-125, Department of Computer
Science and UMIACS, Maryland, 1994.

[HFKM00] T. Hamada, T. Fukushige, A. Kawai, and J. Makino. PROGRAPE-1: A
programmable, multi-purpose computer for many-body simulations. Publica-
tions of Astronomical Society of Japan, 52:943–954, 2000.

[Hil85] W.D. Hillis. The Connection Machine. The MIT Press, Cambridge, MA, 1985.

[HN05] T. Hamada and N. Nakasato. Massively parallel processors generator for recon-
figurable system. Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines, 2005.

[HP05] J. Hammes and D. Poznanovic. Application development on the src computers,
inc. systems. In Proceedings. 19th IEEE International Conference on Parallel
and Distributed Processing Symposium, pages 78a–78a, 2005.

[HVG+07] M.C. Herbordt, T. VanCourt, Y. Gu, B. Shkhwani, A. Conti, J. Model, and
D. DiSabello. Achieving high performance with FPGA-based computing. IEEE
Computer, 40(3):42–49, 2007.

[IHM05] J.A. Izaguirre, S.S. Hampton, and T. Matthey. Parallel multigrid summation
for the n-body problem. Journal of Parallel and Distributed Computing, 65:949–
962, 2005.

[IMM+02] J. A. Izaguirre, Q. Ma, T. Matthey, J. Willcock, B. Moore T. Slabach, and
G. Via Montes. Overcoming instabilities in verlet-i/r-respa with the mollified
impulse method. In T. Schlick and H. H. Gan, editors, Proceedings of 3rd
International Workshop on Methods for Macromolecular Modeling, volume 24
of Lecture Notes in Computational Science and Engineering. Springer-Verlag,
Berlin, New York, 2002.

[Imp06] Impulse Accelerated Technologies, Inc. Web page. http://www.impulsec.com/,
2006.

[Inc] Cray Inc. Cray arsc presentation xd1 fpga.

[Int07a] Intel Corporation. From a few cores to many: A tera-scale computing research
overview. In White Paper, 2007.

[Int07b] Intel Corporation, www.intel.com. Intel QuickAssist Technology Accelerator
Abstraction Layer (AAL), 2007.

167

[JVS03] Hong Jiang J. V. Sumanth, D. R. Swanson. Performance and cost effectiveness
of a cluster of workstations and md-grape 2 for md simulation. In the Second
International Symposium on Parallel and Distributed Computing, pages 244–249,
2003.

[KATS06] F. Khalili-Araghi, E. Tajkhorshid, and K. Schulten. Dynamics of K+ ion
conduction through Kv1.2. Biophysical Journal: Biophysical Letters, 91:L72–
L74, 2006.

[KDK+01] B. Khailany, W.J. Dally, U.J. Kapasi, P. Mattson, J. Namkoong, J.D. Owens,
B. Towles, A. Chang, , and S. Rixner. Imagine: media processing with streams.
IEEE Micro, 21(2):35–46, 2001.

[Ke99] L. Kale and et al. NAMD2: greater scalability for parallel molecular dynamics.
Journal of Computational Physics, 151:283–312, 1999.

[KM02] M. Karplus and J.A. McCammon. Molecular dynamics simulations of biomolecules.
Nature Structural Biology, 9(9):646–652, 2002.

[KP06] V. Kindratenko and D. Pointer. A case study in porting a production scientific
supercomputing application to a reconfigurable computer. In Proceedings of the
IEEE Symposium on Field-Programmable Custom Computing Machines, 2006.

[KSF+07] C. Kutzner, D. Van Der Spoel, M. Fechner, E. Lindahl, U. Schmitt, B. L. De
Groot, and H. Grubmuller. Software news and update speeding up paral-
lel gromacs on high-latency networks. Journal of Computational Chemistry,
28(12):2075–2084, 2007.

[KUT+97] Y. Komeiji, M. Uebayasi, R. Takata, A. Shimizu, K. Itsukashi, and M. Taiji.
Fast and accurate molecular dynamics simulation of a protein using a special-
purpose computer. Journal of Computational Chemistry, 18(12):1546–1563,
1997.

[Lew94] D. M. Lewis. Interleaved memory function interpolators with application to
anaccurate lns arithmetic unit. IEEE Transactions on Computers, 43(8):974–
982, 1994.

[LYS07] S. L. Lu, P. Yiannacouras, and T. Suh. An fpgabased pentium in a complete
desktop system. In Proceedings of the 2007 ACM/SIGDA 15th international
symposium on Field programmable gate arrays, pages 53–59, 2007.

[Mat04] T. Matthey. ProtoMol, an object-oriented framework for prototyping novel
algorithms for molecular dynamics. ACM Transactions on Mathematical Soft-
ware, 30(3):237–265, 2004.

[Mat06] Mathworks. Simulink hdl coder 1. In Datasheet, 2006.

[Men06] O. Mencer. ASC: a stream compiler for computing with FPGAs. IEEE
Transactions on Computer Aided Design of Integrated Circuits and Systems,
15(9):1603–1617, 2006.

168

[MPHL03] O. Mencer, D.J. Pearce, L.W. Howes, and W. Luk. Design space explo-
ration with a stream compiler. In Proceedings of the Conference on Field-
Programmable Technology (FPT), 2003.

[Nal06] Nallatech Ltd., www.nallatech.com. Product Line Card, 2006.

[NSE+99] T. Narumi, R. Susukita, T. Ebisuzaki, G. McNiven, and B. Elmegreen. Molec-
ular dynamics machine: Special-purpose computer for molecular dynamics sim-
ulations. Molecular Simulation, 21(5/6):401–415, 1999.

[NSFE00] T. Narumi, R. Susukita, H. Furusawa, and T. Ebisuzaki. 46 tflops special-
purpose computer for molecular dynamicssimulations: Wine-2. In Proceedings
of the 5th International Conference on Signal Processing (WCCC-ICSP 2000),
pages 575–582, 2000.

[NSK+00] T. Narumi, R. Susukita, T. Koishi, K. Yasuoka, H. Furusawa, A. Kawai, and
T. Ebisuzaki. 1.34 tflops molecular dynamics simulation for nacl with a special-
purpose computer: (mdm). In Proceedings of the ACM/IEEE International
Conference on Supercomputing, page 54, 2000.

[oSBES06] NSF Blue Ribbon Panel on Simulation-Based Engineering Science. Simulation-
BAsed Engineering Science. National Science Foundation, 2006.

[Phi05] Phillips, J.C., et al. Scalable molecular dynamics with NAMD. Journal of
Computational Chemistry, 26:1781–1802, 2005.

[PLM+97] G. La Penna, S. Letardi, V. Minicozzi, S. Morante, G.C. Rossi, and G. Salina.
Parallel computing and molecular dynamics of biological membranes. ArXiv
Physics eprints, Physics/99709024, 1997.

[Poi06] D. Pointer. Personal communication, 2006.

[Pre05] President’s Information Technology Advisory Committee. Computational Sci-
ence: Ensuring America’s Competitiveness. National Coordination Office for In-
formation Technology Research and Development, http://www.nitrd.gov, 2005.

[PV96] D. Pasetto and M. Vanneschi. Machine independent analytical models for cost
evaulation of template-based programs. Technical Report TR-96-08, Dipar-
timento di Informatica, Universita di Pisa, Corso Italia 40, 56125 Pisa, Italy,
1996.

[PW96] A. Peleg and U. Weiser. Mmx technology extension to the intel architecture.
IEEE Micro, 16(4):42–50, 1996.

[PZK02] J. Phillips, G. Zheng, and L. Kale. NAMD: biomolecular simulation on thou-
sands of processors. In Proceedings of the ACM/IEEE International Conference
on Supercomputing, pages 1–18, 2002.

169

[RAJ99] P. Ranganathan, S. Adve, and N. P. Jouppi. Performance of image and video
processing with general-purpose processors and media isa extensions. In ISCA
’99: Proceedings of the 26th annual international symposium on Computer ar-
chitecture, 1999.

[Rap04] D.C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge
University Press, 2004.

[SA75] E. E. Swartzlander and A. G. Alexopoulos. The sign/logarithm number system.
IEEE Transactions on Computers, 24:1238–1242, 1975.

[Sch07] A. Schiller. Einsatz von FPGAs fur molekulardynamische Rechnungen, Diplo-
marbeit. Fachhochschule Aachen, 2007.

[SD01] C. Sagui and T. Darden. Multigrid methods for classical molecular dynamics
simulations of biomolecules. Journal of Chemical Physics, 114:6578–6591, 2001.

[SGTP06] R. Scrofano, M. Gokhale, F. Trouw, and V. Prasanna. A hardware/software
approach to molecular dynamics on reconfigurable computers. In Proceedings
of the IEEE Symposium on Field-Programmable Custom Computing Machines,
2006.

[SI98] R. D. Skeel and J. A. Izaguirre. The five femtosecond time step barrier. In
P. Deuflhard, J. Hermans, B. Leimkuhler, A. Mark, S. Reich, and R. D. Skeel, ed-
itors, Computationa Molecular Dynamics: Challenges, Methods, Ideas, volume
4 of Lecture Notes in Computational Science and Engineering. Springer-Verlag,
Berlin Heidelberg New York, 1998.

[Sil04] Silicon Graphics, Inc., www.sgi.com/pdfs/3721.pdf. Extraordinary Accleration
of Workflows with Reconfigurable Application-Specific Computing from SGI, 2004.

[Ske99] R.D. Skeel. Integration schemes for molecular dynamics and related applica-
tions. In M. Ainsworth, J. Levesley, and M. Marletta, editors, The Graduate
Student’s Guide to Numerical Analysis. Springer-Verlag, Berlin, 1999.

[Sny86] L. Snyder. Type architectures, shared memory, and the corollary of modest
potential. Annual Review of Computer Science, 1:289–317, 1986.

[SP04] R. Scrofano and V. Prasanna. Computing lennard-jones potentials and forces
with reconfigurable hardware. In International Conference on Engineering of
Reconfigurable Systems and Algorithms, 2004.

[SP06] R. Scrofano and V. Prasanna. Preliminary investigation of advanced electro-
statics in molecular dynamics on reconfigurable computers. In Proceedings of
the ACM/IEEE International Conference on Supercomputing, 2006.

[SRC05] SRC Computer, Inc., www.srccomp.com. SRC C Programming Environment
v2.0 Guide, 2005.

170

[SRC06] SRC Computer, Inc. Web page. www.srccomp.com, 2006.

[SSB+99] T. Schlick, R.D. Skeel, A.T. Brunger, L.V. Kale, J.A. Board, J. Hermans, and
K. Schulten. Algorithmic challenges in computational molecular biophysics.
Journal of Computational Physics, 151:9–48, 1999.

[SSOB02] H. Shan, J. P. Singh, L. Oliker, and R. Biswas. A comparison of three
programming models for adaptive applications on the origin2000. Journal of
Parallel and Distributed Computing, 62(2):241–266, 2002.

[STH02] R.D. Skeel, I. Tezcan, and D.J. Hardy. Multiple grid methods for classical
molecular dynamics. Journal of Computational Chemistry, 23:673–684, 2002.

[Swa87] E.E. Swartzlander. Systolic Signal Processing Systems. Marcel Drekker, Inc.,
1987.

[SZB96] S.j. Stuart, R. Zhou, and B.J. Berne. Molecular dynamics with multiple
time scales: The selection of efficient reference system propagators. Journal of
Chemical Physics, 105(4):1426–1436, 1996.

[Tec07] Maxeler Technologies. http://www.maxeler.com/, 2007.

[TKA02] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A language for
streaming applications. In CC ’02: Proceedings of the 11th International Con-
ference on Compiler Construction, 2002.

[TMK+99] S. Toyoda, H. Mihagawa, K. Kitamura, T. Amisake, E. Hashimoto, H. Ikeda,
A. Kusumi, and N. Miyakawa. Development of MD engine: High-speed acceler-
ator with parallel processor design for molecular dynamics simulations. Journal
of Computational Chemistry, 20(2):185–199, 1999.

[TNO+03] M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N. Takada, and
A. Konagaya. Protein Explorer: A petaflops special-purpose computer system
for molecular dynamics simulations. In Supercomputing, 2003.

[Tre04] N. Tredennick. Reconfigurable systems emerge. Keynote Talk, the Interna-
tional Conference on Field Programmable Logic and Applications, August 2004.

[Van04] D. Van der Spoel. Gromacs exercises. CSC Course, Espo, Finland, February
2004.

[Ver67] L. Verlet. Computer experiments on classical fluids. i. thermodynamical prop-
erties of lennard-jones molecules. Physical Review, 159:98–103, 1967.

[VGH04] T. VanCourt, Y. Gu, and M.C. Herbordt. FPGA acceleration of rigid molecule
interactions. In Proceedings of the International Conference on Field Pro-
grammable Logic and Applications, 2004.

171

[VH06] T. VanCourt and M.C. Herbordt. Application-dependent memory interleaving
enables high performance in FPGA-based grid computations. In Proceedings
of the International Conference on Field Programmable Logic and Applications,
pages 395–401, 2006.

[VHB03] T. VanCourt, M.C. Herbordt, and R. Barton. Case study of a functional
genomics application for an FPGA-based coprocessor. In Proceedings of the
International Conference on Field Programmable Logic and Applications, pages
365–374, 2003.

[VHB04] T. VanCourt, M.C. Herbordt, and R. Barton. Microarray data analysis using
an FPGA-based coprocessor. Microprocessors and Microsystems, 28(4):213–
222, 2004.

[VLH+05] D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, and H.J.C.
Berendsen. GROMACS: fast, flexible, and free. Journal of Computational
Chemistry, 26:1701–1718, 2005.

[Xil03] Xilinx, Inc. Virtex-II Pro. Platform FPGAs: Functional Description, 2003.

[Xil06] Xilinx, Inc. Product Specification — Xilinx LogiCore Floating Point Operator
v2.0, 2006.

[Xil07] Xilinx, Inc. Fast Fourier Transform v4.1 Product Specification, 2007.

[Xtr07a] XtremeData, Inc., www.xtremedata.com. XD1000 BLOCK DIAGRAM, 2007.

[Xtr07b] XtremeData, Inc., www.xtremedata.com. XD1000 Development System, 2007.

[Yav06] I. Yavneh. Why multigrid methods are so efficient. Computing in Science and
Engineering, 8:12–22, 2006.

