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Abstract

With advances in biotechnology and computing power, biological data are being
produced at an exceptional rate. The purpose of this study is to analyze the application
of FPGAs to accelerate high impact production biosequence analysis tools. Compared
with other alternatives, FPGAs offer huge compute power, lower power consumption,
and reasonable flexibility.

BLAST has become the de facto standard in bioinformatic approximate string matching
and so its acceleration is of fundamental importance. It is a complex highly-optimized
system, consisting of tens of thousands of lines of code and a large number of
heuristics. Our idea is to emulate the main phases of its algorithm on FPGA. Ultilizing
our FPGA engine, we quickly reduce the size of the database to a small fraction, and
then use the original code to process the query. Using a standard FPGA-based system,

we achieved 12x speedup over a highly optimized multithread reference code.



Multiple Sequence Alignment (MSA)--the extension of pairwise Sequence Alignment to
multiple Sequences--is critical to solve many biological problems. Previous attempts to
accelerate Clustal-W, the most commonly used MSA code, have directly mapped a
portion of the code to the FPGA. We use a new approach: we apply prefiltering of the
kind commonly used in BLAST to perform the initial all-pairs alignments. This results in
a speedup of from 80x to 190x over the CPU code (8 cores). The quality is comparable
to the original according to a commonly used benchmark suite evaluated with respect to
multiple distance metrics.

The challenge in FPGA-based acceleration is finding a suitable application mapping.
Unfortunately many software heuristics do not fall into this category and so other
methods must be applied. One is restructuring: an entirely new algorithm is applied.
Another is to analyze application utilization and develop accuracy/performance
tradeoffs. Using our prefiltering approach and novel FPGA programming models we
have achieved significant speedup over reference programs. We have applied
approximation, seeding, and filtering to this end. The bulk of this study is to introduce

the pros and cons of these acceleration models for biosequence analysis tools.



1 Introduction

1.1 The Problem

Bioinformatics refers to the analysis and management of scientific data and to the
development of tools and applications that help us organize, retrieve, and process
biological knowledge bases [Dur98][Jon04][Ewe05]. The application of mathematics and
computer science for the modeling of biological processes has been essential to the use
of biotic information for fundamental applications such as understanding life processes
and in high impact applied domains such as drug discovery [Ach07][Jon04].

The key insight in bioinformatics is that biologically significant polymers, such as
proteins and DNA, can be abstracted into character strings of a finite alphabet [Dur98].
Another fundamental observation is that all living cells pass a massive amount of
hereditary features onto their offspring through a process of replication and cell division
[AIbO2]. In other words, nature adapts new sequences from pre-existing sequences.
This opens the door for understanding the functionality of newly discovered sequences:
by comparing a new sequence with known sequences, we can usually detect similarities
that will help us learn about the structure and infer the functionality of that sequence.
This mechanism allows biologists to use approximate string matching (AM) to
determine, for example, how a newly identified protein is related to previously analyzed
proteins, and how it has diverged through mutation [Mah10].

While AM is critical in diverse fields, e.g., text analysis, certain properties of biological
sequences have required creation of biology-specific algorithms. Here the canonical
AM task is Sequence Alignment (SA). For example, Hamming distance, the number of

differing characters, is one way to measure differences between two strings, but does
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not tolerate insertions or deletions (indels). As discussed later, more generalized
scoring is necessary and is most often based on the probability of particular character
mutations and includes indels; it can be handled using dynamic programming (DP)
techniques. These have complexity O(mn) for two strings of size m and n, respectively.
With the exploding size of biological databases, however, DP algorithms have often
proven to be impractical. This has spawned heuristic O(n) algorithms, the most famous
and widely used of these is BLAST [AIt90].

Since the completion of the human genome project, the scientific community has seen a
sharp and rapid growth in the size of publicly available genomic and biotic information.
Due to advances in technology and computing power, biological data are being
produced at an exponential rate; genomic databases now double in size every 15
months [Ben12a]. The complexity of bioinformatic tasks to which sequence alignment is
being applied is increasing just as dramatically. A typical query, say, of a protein with
respect to a database of all other known proteins, requires millions of pairwise SAs. In
Multiple Sequence Alignment (MSA), algorithms often begin with all-to-all pairwise
sequence alignment. And Phylogenetic Analysis can require millions of MSAs. As a
result, the development of faster SA tools and methods continues to be one of the
fundamental challenges in Computational Biology.

Since its invention, BLAST has been based on heuristics [Alt90][Tho94] and algorithmic
development remains an active area of research [Hen10][Hom09][Ken02]. On the other
hand, the acceleration and parallelization of these applications are as important as
algorithmic improvements. For example, the National Center for Biotechnology

Information(NCBI) maintains a BLAST server, that consists of thousands of nodes that



serve the biological community. But while this valuable resource is sufficient for basic
database searches, there remains a huge demand for complex and large-scale
applications. For these acceleration is highly desirable.

Acceleration refers to the use of compute devices other than standard CPUs to speed
up a computation. There are several ways to accelerate an application, the most
popular of which currently is the application of GPUs. But in the case of bioinformatics,
FPGAs have proved to be an excellent match and have often shown superior
performance [Zou12][Ben12a]. The purpose of this study is to analyze and develop
new methods for the application of FPGAs in order to accelerate standard SA
and MSA tools.

FPGAs are off-the-shelf integrated circuits that can be programmed by the user to
perform a specific functionality [Sco10]. The critical challenge in FPGA-based
acceleration is finding a good application mapping that is suitable for hardware
implementation. Unfortunately, the heuristics applied in parallel application
development often do not transfer to the FPGA. As a result, it is often necessary to
restructure the program or to compromise accuracy for the sake of speedup.

We have developed a number of methods based on prefiltering [Mah10],
[Mah12a],[Mah12b]. This method works outside the target application to quickly
reducing the original workload, by 99.99% in the case of BLAST, while retaining the
essential problem information. The target application then executes the remaining
problem and obtains the correct answer in a fraction of the time of the original
unaccelerated application. The advantage of this approach is that it leads to the

compact implementations necessary to get high utilization of the FPGA while not



sacrificing correctness. This study serves to introduce the pros and cons of this

acceleration method for FPGAs as applied to biosequence analysis tools.

1.2 Sequence Analysis Algorithms

The purpose of biosequence analysis is to find the relationship between known and
(potentially) unknown sequences. This helps in discovering their functionality, features
that contribute to their functionality, or the evolutionary relationship between multiple
sequences. Sequence analysis algorithms can be categorized in many dimensions.

Here, we list the most impotent categories:

Pair-wise vs. multiple sequence alignment : pair-wise tries to optimally align two

sequences, MSA tries to find the optimal alignment of multiple sequences

[Smi81][Tho94].

e Gapped vs. ungapped alignment : Gapped allows indels in query and subject
sequences, ungapped do not allow indels [Smi81][Har07]

e Local vs. global alignment : Global alignment have to align all characters in the

two sequences, local alignment do not have this restriction [Smi81][Nee70].

e Optimal vs. suboptimal solutions [Smi81][Ach07].

There are many sequence analysis (SA) tools. Of these tools, the optimal solutions use
some variation of dynamic programming (DP). As already described, however, this
optimality is often not sufficiently important to compensate for their relative slowness
compared with heuristic methods. In particular, BLAST is the dominant SA application;
and of the many BLAST implementations, NCBI BLAST has become the de facto

standard. In fact, biologists tend to ignore any application that deviates from this tool. It
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is sometimes even assumed to be more accurate than the optimal DP methods
because it removes the junk similarities — similarities with no biological root — from the
final report. In this work, we will accelerate NCBI BLAST, the most widely used and one

of the most highly optimized sequence alignment application.

A typical use-case starts with a query sequence. NCBI BLAST compares the query
sequence to a database containing millions of subject sequences. It returns the most
similar sequences alongside the best alignments. NCBI BLAST returns almost identical

results as DP methods and is much faster.

Multiple sequence alignment (MSA) is the extension of pair-wise sequence alignment to
multiple sequences [Gus97]. In a typical use-case, the user is interested in finding the
relationship between thousands of sequences; i.e., finding their common ancestor or
commonalities. The optimal MSA can be found with multidimensional DP, but, because
the time and space complexity of multidimensional DP grows exponentially with the
number of sequences processed, it is impractical and is almost never used. Once
again, heuristics help. The heuristic approach often used in MSA is called progressive
sequence alignment. It consists of a number of phases details of which are provided in
the subsequent chapters. In this work, we will focus in acceleration of CLUSTALW, one

of the most commonly used MSA applications.

1.3 High-Performance Computing with Accelerators

Traditionally, high-performance computing systems were considered to be either
multiprocessing systems or massively parallel processing systems. These systems
incorporate multiple identical CPU nodes in order to speed up a task. The cost-effective

5



use of these systems remains a challenging task. Memory bandwidth limitations and

routing network congestion exacerbate the problem. In recent years, accelerator-based

high-performance computing that exploits application-specific accelerators has gained

more attention. The reason for this is that this method of computing allows a system to

deliver more speedup with more flexibility in the programming interfaces and less power

consumption than the traditional clusters. There are many accelerator based

approaches. In brief, we review some of the alternatives that are currently available:

Multicore: Multicore CPUs are now used everywhere. They are considered the
simplest approach to speeding up applications. They can deliver impressive
speedup if they are not limited by limitations posed by 10 or an application's
inherent serial nature.

Cell processor: Cell processors utilize a single CPU and many vector processors.
They can deliver a high degree of performance in many multimedia and vector-
processing applications [Che07]. Nevertheless, they are considered a
challenging environment for software developers.

GPUs: Graphics processing units (GPUs) have been used to accelerate a variety
of applications [Lin10][Lip88][Nic10]. They are commodity processing units that
are found in every computer. They consist of thousands of simple processing
elements and are suitable for applications that can benefit from parallel floating
point executions.

FPGAs: FPGAs are off-the-shelf hardware accelerators that can be programmed
by the user. We will describe these accelerators in more details in the next

section.



These solutions vary in power consumption, ease of use, time needed for development,
computational capacity and programming models, and cost. All of these options are
constantly used in a variety of applications, and their hardware design and underlying
technology is constantly updated. There is plenty of research being conducted to show
the suitability of each one of these options for a certain application or problem set.
Nevertheless, there is no single consensus platform. Our work studies a large portion of

the high-performance computing platforms for a specific application families.

1.4 FPGA-Based Accelerators

Currently, field programmable gate arrays (FPGAs) are used to accelerate hardware as
a basic block in reconfigurable computing-based high-performance computing. The first
modern-era FPGA was developed 30 years ago. Since then, FPGA technology has
seen many advancements that have made them one of the best acceleration platforms
[Awa09][Don12]. Although early FPGAs consisted of just a few configurable lookup

tables and 10 pins, modern high-end FPGAs consist of:

Hundreds of thousands of reconfigurable lookup tables

e Hundreds of thousands of reconfigurable communication paths
e Thousands of block RAMs

e Thousands of DSP blocks

e Thousands of configurable 10 pins

In addition, FPGA vendors provide hundreds of IP cores and interface modules that
simplify programming of and interfacing to the FPGA. Moreover, FPGAs are one of the

drivers of IC processing technology and follow Moore's Law in parallel with CPUs. This
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means that each new generation of FPGAs nearly doubles in capacity. Thus porting
existing designs to a new generation of FPGAs can immediately boost the performance

of the system.

1.4.1 Programmability

FPGAs were initially used for rapid prototyping ASIC designs. The reprogrammability
features of FPGAs are extremely helpful in the test process and development cycle. To
save time and money, many ASIC developers test their design on an FPGA before
porting it to a die. On the other hand, in comparison to other acceleration engines that
are based on multithreading (multicore, GPU, and cell systems), FPGA development is
much more challenging. For example, when mapping an application to a multicore CPU,
the application developer should consider how to parallelize its application on the
available cores efficiently. When mapping the same application to a FPGA, the
programmer not only needs to know how to parallelize the code but also how to map the
resulting solution to the hardware. Architectural decisions can have huge impact on the
final result. Also, designing high-quality FPGAs that efficiently take advantage of the
available resources on an FPGA requires an experienced designer. Hardware
descriptions languages, in addition to accurate simulation and CAD tools, are used to
hide some of the low-level details of the implementation. Nevertheless, the programmer
often faces an expansive set of considerations to explore before writing the HDL code.

Some of these considerations are as follows:

e Arithmetic precision and mode: For example, fixed-point vs. floating point

arithmetic



e Algorithmic choices: For example, directed calculation vs. FFT

e FPGA interface mode: For example, streaming data vs. random memory access

e Pipelining: How efficient each submodule should work

e Replication: How many units of each sub unit is required to a have balanced
system

e Reusability: If/how to use the existing IP cores

e Latency vs. throughput requirements

e Mapping decisions: Whether to use block RAMs or lookup tables to store specific
data

e Acceleration approach; For example, filtering a large database vs. direct
mapping

e Architectural decisions: Which portions of the code can/should be mapped to the
FPGA and which portions should be run on the host CPU

e Modifications in data structures: How efficiently a reference data structure can be
mapped to an FPGA, what kind of modifications are required to take advantage
of the parallelism in an FPGA

e Mapping limitation: How well an algorithm is mapped to FPGA, for example,
whether it causes routing congestion?

e Memory bandwidth requirements and IO overhead

e Testability: Arguably the most important factor of all

In case of sequence alignment, of all of these factors, only arithmetic choices are

straightforward. All of the other factors can play a big role in the final result.



1.4.2 FPGAs for High-Performance Computing

Performance gain from FPGA acceleration is based on three factors: continuous

payload delivery, parallelization, and pipelining. Together these can combine to

compensate for the FPGAS’ low operating frequency.

Constant payload delivery: In contrast to CPUs, FPGAs generally do not need to
process indexing and other “overhead” instructions. Most applications are
designed to so that each function unit produces payload at every clock cycle.
Pipelining: Pipelining is another form of parallelism. Pipelined hardware
executes multiple instructions simultaneously. Because FPGAs are
reconfigurable, the programmer can create a custom pipeline, often with 50-100
or more stages.

Parallelization: Inside FPGAs, functional units can be replicated in order to

increase performance.

In addition, because FPGAs work at a lower frequency, their power consumption is

the lowest among all acceleration engines.

FPGA-based high-performance computing has its own limitations, such as:

Chip-area limitations: Each FPGA has a limited amount of resources. With the
increasing complexity of applications, it is rarely possible to map an entire
application to an FPGA. This is exacerbated by the fact that complex memory

access patterns create significant area overhead.
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e Designer-expertise limitations: Working with FPGAs requires professional
knowledge and experience. Even in the best case, FPGA designs often require a

substantially longer design time in comparison to pure software solutions.

1.5 High-Performance Reconfigurable Computing for Sequence
Analysis

This study of reconfigurable computing for bioinformatics is significant for two reasons.
The first is the importance of the production applications we are trying to accelerate:
speeding them up will enable more basic science to be performed. The second is the
exploration of the design space for the FPGA-based acceleration of SA. This both
reveals inherent challenges in using FPGAs for SA but also shows the potential

performance gain that one can expect from the FPGA-based acceleration of SA tools.
The challenges of FPGA-based acceleration of SA are as follows:

e With regards to implementation: Sequence analysis tools utilize many heuristics
to speed up the analysis task. Often these heuristics are tailored to better
software implementation without any hardware considerations. Typically, they
have an irregular data access pattern, which makes |0 architecture a big
challenge. The designer must implement a variation of the heuristics in the FPGA
without losing agreement with the reference code. The designer must also be
able to replicate and parallelize his code in order to gain performance. Other
important considerations are how to parallelize the code and how to replicate it
so that the available CAD tools can map the design efficiently to the target

FPGA.
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With regards to performance: A production-level multithreaded SA code that runs
on a high-end CPU with 3 GHz is already highly optimized and efficient.
Accelerating such a code requires very careful design. From the hardware point
of view, one should be able to take advantage of all the resources on the FPGA.
The design units should be small so that they can be replicated. Also, the design
units should be highly efficient and reasonably pipelined. In the pipelined
architecture, there should be no load imbalance. From the software point of
view, there should not be significant overhead in communication or in the
reformatting and preparation of data structures.

With regards to accuracy: Most of the time, when accelerating biosequence
analysis tools, the designer does not have the luxury of losing selectivity to gain
performance. That means that the computations must either be exactly mapped

to the FPGA or that the emulation hardware should be strictly more sensitive.

The purpose of this study is investigate novel solutions in dealing with the challenges
mentioned above. There are a number of previous studies that have tried to accelerate
different SA tools on FPGAs. We will enhance these by proposing new approaches and

investigating the design space.

1.6 Summary of Contributions

Two applications are accelerated in this study NCBI BLAST and CLUSTALW. These
are, respectively, the most commonly used sequence alignment and multiple sequence
alignment tools. For both applications we use prefiltering. At the end of this study, we

present an analysis of the prefiltering approach as an acceleration mechanism.
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1.6.1 Acceleration of NCBI BLAST

NCBI BLAST has become the de facto standard in bioinformatics approximate string
matching and, as already described, its parallelization and acceleration are of
fundamental importance. For example, massively parallel servers for BLAST have been
constructed with the Blue Gene/L [Ran05]. Also, NCBI maintains a large server that
processes hundreds of thousands of searches per day [McG04]. For generic clusters,
mpiBLAST is one of the most popular of several parallel BLAST algorithms [Gar06].
FPGAs have probably been the most popular tool for the acceleration of NCBI BLAST,
with commercial products from TimeLogic [Tim10] and Mitrionics [Mit10] and several

academic efforts [Her07][Jac08][Lav06].

Public access to NCBI BLAST is possible either through the download of code or
directly through a large web-accessible server. This standardization motivates the
design criteria for accelerated BLAST codes; i.e., users not only expect performance to
be significantly upgraded but also that outputs will exactly match the inputs given by the
original system. BLAST implementations run through several phases and return some

number of matches with respect to a statistical measure of likely significance.

The problem is that NCBlI BLAST uses complex heuristics that make it difficult to
simultaneously achieve both substantial speed-up and exact agreement with the original
output. There are several approaches to accelerate NCBI BLAST. One approach is to
profile the code and accelerate the most heavily used modules. This can give an
agreement of outputs but may not achieve any performance gain, given that there are
many paths that add up to bog down execution time. Accelerating enough of these
paths may not be a viable solution, especially on an FPGA where code size translates
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to chip area. A second approach is to restructure the code, modifying or bypassing
some heuristics. This can lead to excellent performance but is unlikely to yield
agreement. Academic FPGA-accelerated BLASTs [Her07][Jac08][Lav06] have mostly
followed one approach or the other. The methods used by the commercial versions are

typically either not publicly available or follow an academic version [Tim10][Mit10].

In this work we use a third approach : prefiltering. The idea behind prefiltering is to
quickly reduce the size of a database to a small fraction and then use the original NCBI
BLAST code to process the query. Agreement is achieved as follows. The prefiltering is
constructed to guarantee that its output is strictly more sensitive than the original code;
that is, no matches are missed but extra matches may be found. The latter can then be
(optionally) removed by running NCBI BLAST on the reduced database. The primary
result is a transparent FPGA-accelerated NCBI BLASTP that achieves both output
identical to the original and a factor of 12x improvement in performance. The
mechanism is the primary intellectual contribution of this work and consists of three
highly efficient filters. The first implements two-hit seeding, the second performs
exhaustive ungapped alignment, and the third performs gapped alignments.
Furthermore, compared to a previous implementation of seeding heuristic, we have
improved the accuracy of the two-hit seeding implementation. Also, we have improved
the architecture of the exhaustive ungapped alignment filter to a degree that it is, now,

orders of magnitude faster than a naive implementation.

1.6.2 Acceleration of CLUSTALW

Multiple sequence alignment is a critical tool for extracting and representing biologically

important commonalities from a set of strings. While pair-wise sequence alignment is
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used to assign possible functions to a protein, MSA goes to the next level. Among its
uses are the prediction of function and secondary (two- and three-dimensional)
structure, identification of the residues important for specificity of function, creation of
alignments of distantly related sequences, and revealing clues about evolutionary
history [Dur98]. While SA is typically used in database searches (finding correlations of
one sequence with millions of anonymous candidates), MSA is generally applied to
some number of sequences that are already hypothesized to have some commonality.
And though it is often the case that some sequences are better understood or more
important than others, MSA is basically an all-to-all matching problem. Another
difference is that, while there is a consensus on the evaluation of pair-wise sequence
alignments, on the basis of Karlin-Altschul statistics, with MSA, there is no objective way
to define an unambiguously correct alignment [Dur98]. Therefore, evaluating MSA
applications requires either expert knowledge or its surrogate through preselected sets

of related sequences and encoded evaluation metrics.

In an MSA workflow, a number of sequences (k) of length n are aligned. The median
value for n is about 300, but it is often closer to 1,000; k can range from a few to a few
thousand sequences. Optimal MSA algorithms have been created by extending
dynamic-programming-based SA to higher dimensions. These are exponentially
complexity O(nk). Applying restrictions like those in [Ben12b] and [Liu11] results in
tremendous speedups, making it plausible for k up to small double digits. A larger Kk,
however, requires the use of heuristics such as progressive refinement [Fen87]. These
codes typically run in three phases: (1) an all-to-all phase where all pairs are aligned

and scored, (2) a tree-building phase where a guided tree is built that has sequences as

15



its leaves and whose interior nodes represent alignment order, and (3) a final phase

where all pairs of nodes are aligned.

The most commonly used MSA code is CLUSTALW [Tho94]. When the FPGA-based
DP method is ported to updated FPGAs and multicore CPUs, the speedup occurs in a
similar range, but with some variance; i.e., from 18x to 58x. We use a different
approach in creating a CLUSTALW-based FPGA-accelerated MSA (FMSA). Just as
BLAST applies multiple passes of heuristics to emulate DP-based SA, so we apply
BLAST-inspired filters to the pair-wise alignments. In particular we use a 2-hit filter
(seeding pass) [Jac08] followed directly in a pipeline by an ungapped alignment
(ungapped extension pass) [Mah10, Her07]. For the latter we emulate the ungapped

mode of NCBI BLASTP.

There are two versions of FMSA, fast (FMSA-f) and emulation (FMSAe). In both cases,
we use a scoring function analogous to the one used by CLUSTALW; i.e., rather than
returning an E-value, FMSA computes a function based on identity counts. In fast mode,
these scores are sent directly to the second phase of CLUSTALW to complete the
processing. In emulation mode, some fraction of the high-scoring pairs are rescored
with the DP-based method of Oliver et al. [Oli06] that emulates the CLUSTALW scoring
function precisely. The result is a factor of from 80x to 189x speedup with respect to an
eight-way parallel CPU code. The quality is comparable to the original according to a

commonly used benchmark suite evaluated with respect to multiple distance metrics.

1.7 Organization of the Rest of the Thesis

The rest of this thesis is as follows:
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Chapter 2 presents an overview of high-performance computing. It describes the
methods used to accelerate different applications with the use of FPGAs, GPUs, and

modern processors. It also presents a brief review of cluster computing.

Chapter 3 describes SA and MSA algorithms in detail. It describes the fundamental
ideas in biosequence analysis, classic algorithms based on DP, and standard heuristic

algorithms that are widely used; i.e., NCBI BLAST and CLUSTALW.

Chapter 4 presents a survey of previous attempts to accelerate SA methods. It includes

all the related work in acceleration of NCBI BLAST, CLUSTALW, and Smith-Waterman.

Chapter 5 presents our FPGA-based accelerated NCBI BLAST, CAAD BLAST. It
includes a detailed description of our seed-generation system and filtering approach. It
presents several optimizations that significantly improve the performance of the final
hardware-accelerated BLAST. It details our implementation on two different acceleration
boards with two different mapping approaches: multiphase and pipelined. In addition, it

provides a scalability analysis on different target FPGAs.

Chapter 6 presents our FPGA-accelerated CLUSTALW, FMSA. We have used an
FPGA to accelerate CLUSTALW in both the emulation and fast mode. Using these two
modes, we present a tradeoff analysis of speedup gain versus accuracy. We also

present the speedup results over the reference code.

Chapter 7 concludes this thesis and provides guidelines and future work for the

acceleration of SA tools.
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2 High-Performance Computing

2.1 Overview

The word “supercomputing” refers to the fastest computing models available at each
time; the computing models which provide the highest throughput and the lowest
latency [Cul97]. The need for faster computers is always growing. A variety of scientific
and industrial applications benefit from the high speed of high-performance computing
[Gok05] [Cul97]. These applications include market analysis, climatology, computation
biology, physics, and many more [Don12]. As an example, the newest generation of
DNA sequencing machines [Hen10] produces massive amounts of data in a very short
amount of time. For instance, one of the main goals of this approach is to provide the
possibility of treatment based on personalized medicine; i.e., using medicine that is
tuned to a specific patient's genetics [Met09]. In order to achieve this goal, the huge
amounts of genomic data that are produced by these next-generation sequencing
machines should be aligned to existing references and analyzed [She08]. This should
be done in the shortest possible time, and this is where high-performance computing

applied to SA can play a basic role.

The speed of computers has increased massively over the past century thanks to the
increase in transistor count on chips over time, a phenomena known as Moore's Law.
Nevertheless, the need for even faster computing resources still exists and will probably
last as long as computers exist. This is generally due to two main factors: (1) the

amount of raw data that is generated over time increases with the speed of computers
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(i.e., the faster computers are, the more we can generate data with them) and (2) the

complexity of the applications working on these data increases with computing power.

High-performance computing is a broad topic that includes many concepts in computer
science and engineering, such as parallel computing, parallel hardware architectures,
routing architectures, memory hierarchy, cluster computing, and custom processing
units. A recent approach in high-performance computing is based on using non-
microprocessor compute units such as FPGAs and GPUS [GokO05][Nic10]. The
architecture of these systems can consist of any collection of GPUs, FPGAs, or custom
ASIC accelerators which are used either singularly or as a cluster of computing
resources. For example, the NOVO-G supercomputer consists of 296 top-end
accelerator FPGAs, 26 Intel quad core Nehalem Xeon processors, and 576 GB total

RAM [Geo11].

The rest of this chapter is as follows. In Section 2.2, we provide a background of high-
performance computing. Sections 2.3 and 2.4 introduce multicore and GPU computing,
respectively. Sections 2.5 and 2.6 provide a review of FPGAs and FPGA-based

accelerators, respectively.

2.2 Background

The traditional classification of high-performance computers is based on Flynn's
taxonomy of computer architectures [Cul97]. In general terms, this taxonomy classifies
two dimensions in parallelism: instruction and data. As a result, Flynn's taxonomy

categorizes high-performance computers into four groups [Don12]:
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1. SISD, in which a single stream of data is processed by a single processing unit.
For example, the traditional single-core PC, which executes a sequential serial
code.

2. SIMD, where, at each cycle, a single instruction is executed on multiple data
streams in parallel. An array processor is a well-known example of this type of
computer. An SIMD instruction set is an instruction set that supports this type of
processing. A well-known example is Intel's SSE extension [Int11].

3. MISD, where multiple instructions that related to a single data item are executed
in parallel. This category subsumes many fault tolerant hardware techniques.

4. MIMD, where multiple instruction streams are executed in parallel and each
instruction stream consumes its own data streams. A well-known example of this

type of architecture is the contemporary multicore superscalar CPU [Pat90].

From another point of view, one can categorize supercomputers into two groups: shared

memory systems and distributed memory systems [Cul97].

In a shared memory system, all the processing units have direct access to a main
system-wide memory. The main idea behind these systems is that the processing units
have equal access to the main memory, and, consequently, the memory transactions
generated by multiple processing units can be handled transparently and evenly
[Don12]. As a result, the programmer does not need to consider the location of the data
on the system and does not need to worry about the efficiency of accessing a certain

data item.
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In a distributed memory system, each processing unit has its own local memory [Cul97].
In a processing system with a distributed memory architecture, each processing node
consists of one or many processing units, each with its own local memory. In order to
provide a node access to another node's local memory, the nodes are interconnected
by network topology. Since, in a distributed memory system, the total provided memory
bandwidth has a direct relationship with the number of processing nodes, these systems
have a clear advantage over shared memory systems with regard to memory bandwidth
and its scalability. Furthermore, in these systems, the speed of each memory is of less
concern in comparison to shared memory systems. On the other hand, distributed
memory systems have their own disadvantages. In comparison to shared memory
systems, in distributed systems, the communication and synchronization overhead
between distributed nodes is higher. Thus, it is possible that the running speed of an
application on this type of systems can suffer from the creation of inter-node

communication bottlenecks [Don12].

A computer cluster is a set of loosely connected computers that work together to the
extent that, in many respects, they can be viewed as a single system. Since the
introduction of the Beowulf cluster in 1994, computer clusters have become widely used
and commercialized. This has been mainly because of their relatively low cost, their
ease of engineering, and their simple setup process [Don12]. The structure of a cluster
usually follows a client server computation model. Often, the computers are connected
via a local area network. Typically, a cluster consists of one or a few server nodes and
lots of client nodes. In these systems, a special middleware software is often run on top

of the operating system. This middleware software orchestrates the operations of
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clients, dispatches the tasks to clients, and retrieves and organizes the results. In order
to provide communication between cluster nodes, several programming approaches
have been used. The two common approaches used in computer clusters massage
passing interface (MPI) and private virtual machine (PVM). The increased power
consumption, in combination with the existing limitations in the total size and volume of

these systems, makes the scalability of computer clusters a big challenge.

In recent years, clusters of high-performance computing nodes that exploit application-
specific hardware accelerators, such as FPGAs and ASIC, have gained popularity
[Geo11]. Factors that have contributed this popularity gain include lower power
consumption, increased flexibility, increased capabilities, significant speedup gains,
increased debugging and testing capabilities, and the fact that upgrading to a new
technology level can be easily handled with the existing programming environments and

CAD tools.

From here, we will give an overview of common high-performance computing systems
based on custom accelerators, but, before that, we will take a look at current multicore
processor technology. The TOP500 lists the 500 most powerful computing systems in

the world [Top13].

2.3 Multicore Processors

Over time, processors have increased extensively in capacity. Increasing chip density
has allowed the extraction of more instruction-level parallelism. The performance of
microprocessors has improved steadily over time because of increasing transistor count

and operating frequencies. However, in the past decade, the performance of a single
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processor has reached a plateau. Issues like energy consumption and heat dissipation
limit operating frequency to about 4 GHz. At this point, the architecture of a single core
hardly benefits from an increase in transistor count. In other words, due to energy
consumption and heat dissipation problems, the operating frequency and complexity of

processors have hit a so-called performance wall.

Since 2003, processor vendors have taken a different approach to increasing the
computing power of processors. This new approach mainly involves integrating multiple

processor cores into a microprocessor and introducing multicore CPUs.

This has caused a revolution in the way efficient programs are written. Nowadays, most
programs benefit from potential performance gains of multithreading. The era of
sequential programming on a single-core CPU has reached an end, and a new interest

in parallel programming has begun with the so-called concurrency revolution [Olu05].

For instance, a 45nm Intel Nehalem Ex processor has eight cores per CPU working with
2.91 GHz clock. It has an aggregate peak memory bandwidth of 43 GB/s and 10 G/s
per memory channel. Several years ago, this microprocessor was considered a shared

memory supercomputer.

Since there are multiple independent processing cores available on each
microprocessor, a programmer can potentially and dramatically increase the
performance of an application. This is usually done by means of implicit or explicit
multithreading. There are several threading libraries available. The two most well-known

threading mechanisms are PThreads and OpenMP.
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With the improvements in the memory bandwidth, a carefully multithreaded code can
achieve linear speedup over a single threaded code for many applications. Of course
the theoretical limit will be the number of cores integrated into the CPU. For example we
noticed this issue in the latest versions of NCBI BLAST. NCBI BLAST which will be
introduced later in this report, is for the most part an embarrassingly parallel sequence
analysis tool. The performance of this application, when run in multithreaded mode,

simply scales linearly with the number of cores in the CPU.

2.4 GPU Computing

Originally, graphics processing units (GPUs) were developed for use as graphics-
rendering engines. Nowadays, GPUs are also used as general purpose acceleration
engines. General purpose GPU computing has become especially popular since
NVIDIA introduced CUDA (compute unified device architecture), a C extension that
enables applications to be ported to GPUs. Nevertheless, GPU programming for

acceleration has its own limitations.

The processing power of GPUs has increased significantly over the past decade. The
first NVIDIA GeForce 3 GPU series that was marketed in 2001 only had a four pixel
pipeline, whereas a more recent NVIDIA Tesla GPU has up to 2,688 streaming
processors [Lin08]. The driving force behind this massive evolution is the ever-growing

demands in the game industry [Nic10].

A GPU consists of many simple floating point processing elements. In this way, a GPU

is essentially a shared memory single instruction multiple thread computing platform.
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Each processing element has a fully pipelined integer unit and a fully pipelined floating

point unit. The threads are executed in groups of 32 called warps.

The following figure shows the internal architecture of an NVIDIA Tesla Geforce 8800

GPU [Lin08].
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Figure 2-1 A Modern GPU Architecture [Lin08]

This GPU consists of 128 streaming processor (SP) cores organized as 16 streaming
multiprocessors (SMs). The streaming processors are clocked at 1.5 GHz. Each
streaming multiprocessor has 16 KB of shared memory. Shared memory is the fastest

memory entity in the GPU memory hierarchy. The shared memory can be accessed by
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all Streaming Processors in a Streaming Multiprocessor. It provides a fast and efficient
way for threads of an SM to communicate and synchronize. Generally speaking, one
can say that a shared memory system has a similar role as a cache in a traditional
CPU, except that it is the responsibility of the programmer to use it efficiently; there is

no automatic caching.

Each SM can execute up to 768 threads without any scheduling overhead. All threads in
an active warp should execute the same instructions. If the threads diverge through
branching, the scheduler will execute the branches serially. This, in turn, will reduce the
performance and efficiency of GPU execution. Synchronization between threads that
are scheduled to be executed on different SMs can be done through the global memory.
This in particular can have a negative impact on the performance of the accelerated

system due to the slower bandwidth of the global memory.

The CUDA programming model simplifies mapping applications to GPU architecture on
the basis of data parallel problem decomposition [Nic10]. The programmer finds
portions of the code that can be parallelized and decomposes the data array into a two-
dimensional grid of thread blocks where each thread block, in turn, is a three-
dimensional collection of threads. When a GPU kernel is called, each streaming
multiprocessor executes up to eight thread blocks, depending on the recourse
requirements of each thread. An active SM which has sufficient resources executes the

thread blocks concurrently as warps of 32 threads.

Compared to other acceleration engines, GPU is more suitable for applications that

show massive SIMD like data parallelism and require lots of floating point calculations.
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The performance gain from GPU acceleration is thus largely moderate (e.g. 5x) and

application dependant.

2.5 FPGAs

Field programmable gate arrays (FPGAs) are prefabricated integrated circuits that can
be programmed by the customer after it is manufactured to become almost any circuit
or system [Awa09]. The idea of programmable devices was introduced and developed
in the 1960s with programmable logic arrays (PLAs), programmable array logic (PAL),
and read-only memory (ROM). A PLA or PAL consist of a regular array of prefabricated
gates with a programmable interconnect architecture. Figure 2-2 shows a PLA

structures.
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Figure 2-2 PLA example
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These architectures only supported a very limited two-level and/or logic and suffered
from significant routing overhead. Implementation of a realistic multilevel logic on these

architectures was not possible because of prohibitive routing and area overhead.

The first modern era FPGA was developed by Xilinx in the 1980s. It was called XC2064,
and it consisted of a number of programmable lookup tables and interconnects. XC2064
had 46 configurable logic blocks (CLBs), each consisting of two three-input lookup
tables. The chip had only 58 I/O pins. Nowadays, almost 30 years later, a high-end
Xilinx FPGA has more than 300,000 CLBs in addition to thousands of other high-end

memory and DSP blocks [Xil13].

The initial market for FPGAs was mainly about prototyping integrated circuits in the
development process of the application-specific integrated circuits. At that time, an
FPGA was used as a less efficient and a demo version of the production level IC, so
that the developer could have the chance to test and debug their circuit multiple times.
Furthermore, a programmer could do this with much less cost and in a significantly
shorter amount of time. Over time, though, FPGAs have evolved so much so that they
have become a competitor in the ASIC market. Nowadays, compared with what they
could have done before, FPGAs can deliver much higher performance. Interestingly,
when compared to other acceleration engines and approaches, such as GPUs and
clusters, FPGAs provide the biggest savings in power consumption other than ASICs

themselves.

A state-of-the-art FPGA consists of a pool of programmable logic blocks, programmable

IO blocks, configurable routing resources, several megabytes of memory block RAMs,
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one or more embedded processing units, such as IBM PowerPCs, and an extensive set
of commonly used DSP blocks, such as multipliers and adders. The programmable logic
block implements the desired functionality, whereas the programmable interconnect
allows the functional blocks to be interconnected as desired by the programmer. The

programmable 1/0O connects the chip to the outside world on the basis of user settings.

The term "field programmable" means that a device can be configured after silicon
fabrication. Thus, a field programmable device provides the possibility for a user to
change the behavior of the device as needed. In order to provide programmability for
FPGAs, three different methodologies, namely Anti-Fuse, EEPROM, and SRAM, have
been used [Kuo08]. Over time, the methodology of SRAM-based programmability has
grown to dominate other methodologies, and, nowadays, almost all commercial FPGAs
use SRAM technology. There are several reasons for the widespread use of SRAM
FPGAs. In contrast to the other two methodologies, SRAM-based technology provides
infinite reprogrammability. While SRAM-based FPGAs use standard CMOS technology,
other methodologies require technological capabilities beyond standard CMOS [Kuo08].
Furthermore, SRAM-based FPGAs are also easier to program and require no additional

devices to program.

In SRAM-based FPGAs, in order to provide reconfigurability in logic blocks and
interconnects, static memory cells are distributed across the FPGA. The most basic
logic element of an FPGA is called a lookup table (LUT). As shown in Figure 2-3, an n
input LUT consists of 2™ static cells and a 2™: 1 multiplexer. The n inputs are connected
to the multiplexer select lines and steer one of the 2™ static cells to the output. In an n
input LUT, any n input logic function can be realized. This can be done by setting the
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desired bits in the static cells of the lookup table. Nowadays, a typical FPGA has four,
five, or six input lookup tables. A six input lookup table can implement any function of 6

bits.

Routing Signals
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Figure 2-3 Static Memory Cells and Lookup Table [Kuo08]

Similarly, static cells are used to steer signals through the reconfigurable interconnects
of the FPGA. As shown in Figure 2-4, the reconfigurability of FPGA interconnects is
provided using multiplexers and static cells. At each junction on the FPGA routing
mesh, a programmable switch based on multiplexers and static cells can connect any
two lines to each other. The programmer connects two signals by setting the proper bits

in the interconnects’ configurable static cells.

Routing Signals

Figure 2-4 Multiplexer and Static Memory cell [Kuo08]

By itself, a LUT implements a combinational logic. In order to provide the possibility of

implementing sequential logic, the output of the lookup table can optionally pass
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through a flip-flop. A static cell configuration bit and a 2:1 multiplexor are used to

provide this option.

Configuration Memory \

Flip Flop
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| input

Figure 2-5 Sequential logic in FPGA
In addition to configurable logic blocks and interconnects, a modern FPGA consists of

an array of independently addressable block RAMs and hundreds of hardwired DSP
blocks along with one or two embedded processor cores. Similar to logic blocks, the
inputs and outputs of these modules can be connected to any other module or logic

block through the programmable interconnects.
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Figure 2-6 FPGA Interconnect Schematic view

At a higher level, the FPGA vendor supplies the necessary IP cores that can be used to
interface with off-chip resources in a flexible and easy-to-use way and the software

drivers to use these IP cores if hardware/software codesign is required.

For more than a decade, FPGAs have been used to accelerate a variety of tools and
applications, including telecommunication and networking applications, signal and
image processing, control systems, biomedical applications, and many other practical

applications [Gok05].

The advantages of using FPGAs in high-performance computing can be summarized

as follows:
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e Higher performance: FPGAs often deliver the highest performance among all
accelerators, particularly for low precision applications. A speedup gain of 10x to
300x using FPGAs is commonly seen in published literature. The main reason for
this is the vast parallelism that can be achieved inside FPGAs by fine-grain
pipelining, coarse-grain replication, and a huge amount of memory bandwidth
from the block RAMs inside FPGAs. In addition, as Moore’s Law remains valid,
the resources in FPGAs increase over time, which increases the possibility for
more parallelism and inherently more performance.

e Lower power consumption: FPGAs consume much less power than CPUs and
GPUs because of their lower operating frequencies.

e Reconfigurability: The fact that FPGAs are reprogrammable gives them a big
advantage over ASICs. Some applications require more frequent reprogramming.
In either case, reconfigurability saves time and money.

e Time to market: The design cycle of FPGAs is much shorter than that of ASICs.

e Technology upgrades: Migrating a design from an old FPGA to a new FPGA
requires little time and effort but can result in a significant gain in performance.

The challenges of FPGA based design include:

e Higher price: FPGAs are more expensive than GPUs and CPUs, and, thus, the
expectations are higher.
e Limited resources: FPGAs have limited resources. It's the developer’s task to

efficiently use these resources in the most efficient way.
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2.6 FPGA-Based Systems

In brief, we state our assumptions about the target systems of this study with FPGA-
based accelerators. These systems are typical for current products. The overall FPGA-
based system consists of some number of standard nodes. Typical node configurations
have one to four accelerator boards plugged into a high-speed connection (e.g., the
front side bus or PCl Express). The host node runs the main application program.
Nodes communicate with the accelerators through function calls. Each accelerator
board consists of one to four FPGAs, memory, and a bus interface. On-board memory
is tightly coupled to each FPGA, either through several interfaces (e.g., 6 x 32 bit) or a
wide bus (128 bit). Currently, 4 GB-64 GB of memory per FPGA is standard. Besides
configurable logic, the FPGA has dedicated components such as independently
accessible multiport memories (e.g., 1,000 x 1 KB) called block RAMs (or BRAMSs) and
a similar number of multipliers. FPGAs used in high-performance reconfigurable
computing typically run at 200 MHz, although, with optimization, substantially higher-
operating frequencies can sometimes be achieved. In this research we have used two
FPGA based acceleration platforms: Gidel board and the Convey machine. Next, we

briefly describe their architectures.

2.6.1 Convey System

A Convey HC-1ex computer is a hybrid processor with a single four-core Intel CPU
(Xeon L5408 2.13 GHz) and four Xilinx FPGAs (Virtex-6 XC6VLX76)
[Bak10][Con13a][Con13b]. There is a total of 24 GB of host and coprocessor memory, a

standard Intel 10 chipset, and a reconfigurable coprocessor based on FPGA
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technology. The system runs 64 bit Linux. The coprocessors are programmed by the
user and can execute custom instructions. The host and coprocessors share the same

virtual address space.

m B 11 101 11 101 101 102
GG GG GG GG GG GG GG GG

Figure 2-7 Convey System Overview [Bak10]

The user logic runs on 4 Xilinx Virtex 6 FPGAs, which Convey refers to as application
engines (AEs). The coprocessor also consists of interface logic, called the application
engine hub (AEH), which connects the coprocessors to the host CPU. It is responsible
for fetching and decoding instructions, executing scalar instructions, and routing host
memory requests to coprocessor memories. In addition to the AEH, the coprocessor
system consists of eight memory controllers that connect the AEH and the AEs to
coprocessor memory modules through a full crossbar network. The memory controller
subsystem can support up to 16 DDR2 memory channels. The memory subsystem can

collectively support up to 8,000 parallel requests and 80 GB/s total bandwidth.
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In addition to user logic, each application engine includes some API logic that
implements the interface between the application engine, the AEH, and the memory
controllers. It also includes dispatch logic that enables the execution of the custom

instruction and some management and debugging interface.

2.6.2 Gidel Board

The Gidel Proce Il board is an FPGA acceleration board that connects to the system
through a PClex bus [Gid10]. The FPGA is an Altera Stratix-1ll 260E. For memory there,
is 4.5 GB of DRAM partitioned into three banks of 2 GB, 2 GB, and 512 MB,
respectively. Each bank has a 64 bit interface and can be accessed independently. One
of the 2 GB and the 512 MB banks run at 333 MHz; the other 2 GB bank runs at 166
MHz. Data is transferred to and from the board by means of direct memory access
(DMA) channels through the PClex bus. The total DMA bandwidth can be up to 1 GB/s.
The Gidel board provides a graphical user interface that is used to generate the
hardware and software interface for the user logic and application. The following figure

shows a block diagram of the Gidel board.
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Figure 2-8 Gidel Board Overview [Gid13]

2.7 Summary
In this chapter we reviewed basic concepts in high performance computing. We took a

brief look at the current status of multicore processors and GPU computing. We gave
an introduction to FPGA architecture. We reviewed the possibilities of acceleration
based high performance computing. At the end we introduced two acceleration
platforms that we will use throughout the thesis Convey machine and Gidel board.
Convey machine is a shared memory super computing platform consisting of 4 high-
end FPGAs. The FPGAs can be programmed to accelerate applications using user
defined custom instructions. Gidel board is a commodity acceleration platform that is
connected to the system's PCI bus. Using vendor provided API and user interfaces the

programmer can communicate with the FPGA (e.g. with a DMA call).
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3 Sequence Analysis: Methods and Algorithms

3.1 Overview

A fundamental insight of bioinformatics is that principal biological polymers such as
proteins and DNA can be abstracted into character strings (sequences). This allows
biologists to use approximate string matching (AM) to determine, for example, how a
newly identified protein is related to those previously analyzed, and how it has diverged
through mutation. While classic dynamic programming methods can be used to this
end, fast methods, such as BLAST, are based on heuristics, and can match a typical
sequence (a query) against a set of known sequences (e.g., the millions in the NR
database) in just a few minutes. Moreover, these heuristics only rarely miss significant
matches. These remarkable results have only increased the importance of BLAST: it is
now often used as the “inner loop” in more complex bioinformatics applications such as

multiple alignment, genomics, and phylogenetics.

Multiple Sequence Alignment is critical to many bioinformatics solutions, e.g., in
determining the structure and function of molecules from putative families of sequences

in phylogenetics and finding the evolutionary relationship between species.

In this chapter we will look at the most important sequence analysis tools and
algorithms. We will start with the basic biology of cell to give an insight into how
sequence analysis comes into play. In Section 3.3 we will overview the fundamental
concepts in sequence analysis. In Section 3.4 we will look at different scoring models

used in sequence analysis. Section 3.5 provides an overview of pairwise sequence
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analysis methods and algorithms including Smith-Waterman and NCBI BLAST. Section
3.6.5 details how statistical significance is determined in sequence analysis use-cases.

Section 3.7 provides details of important multiple sequence alignment methods.

3.2 The Basic Biology of Cell

A fundamental feature of all living organisms is heredity [AlbO2]. A living creature
passes down heredity information to its offspring, specifying a massive detail of
characteristics that its offspring should posses. All living organisms consist of cells.
Regardless of the number of constituent cells, a living organism is generated by cell
divisions from a single cell. Thus, A single cell, not only stores all the hereditary
information in an organism but also has all the resources required to replicate itself. All
cells depend on three principal molecules to function: DNA, RNA, and proteins [Alb02].
A cell's DNA contains the entirety of an organism’s hereditary information. All living cells
store their hereditary genetic information in double-stranded molecules of DNA, which
act as a database of features. The four bases that make up a DNA strand are adenine
(A), guanine (G), cytosine (C), and thymine (T). A DNA strand is often represented as a
chain of nucleotides where each nucleotide consists of a sugar, a phosphate attached
to it, and one of the four bases named above. The long chain of A, T, C, and G
monomers of a DNA strand encodes the genetic information of the living cell that it
belongs to. A single-stranded DNA molecule is extended by adding nucleotides to its
ends. The added base can be any of the four bases, since there is only one sugar-
phosphate backbone. However, in a double-stranded DNA, an A in one strand always

bonds with a T in another; similarly, a C always bonds with a G. This way, during the
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process of replication, a single strand of the DNA is used as a template by the cell to
create identical copies. Because of this constraint in bonding, the term “base pair” is
often used in literature. Since the bonds between bases are much weaker than the
bonds between the phosphate and sugar constituents of the backbone, the two strands
can be pulled apart without breaking the backbone. On the basis of the complementary
bonding constraint described above, the two strands then act as a template to create

two identical copies of the original double-stranded DNA [AlIb02].

Just like DNA and RNA, proteins are long, unbranched polymers formed by chaining
many monomeric building blocks. Just like DNA and RNA, the monomeric building
blocks are the same for all proteins. On the other hand, the protein monomers that are
called amino acids are very different from those of DNA and RNA. There are 20 amino
acids, as opposed to the four bases of DNA and RNA. Thus compared with DNA or
RNA strings which consist of 4 symbols, the alphabet of the proteomic strings consists
of 20 symbols. Whereas RNA are considered the translators of the genetic code,
proteins are considered its running engine. Thus, there is generally a functional
relationship between a DNA sequence and a protein sequence. Each protein has its

own genetic functionality that is specified by its sequence of amino acids.

3.3 Fundamentals of Biosequence Analysis

Bioinformatics is the application of computer science and information technology to the
field of biology. The fundamental observation in bioinformatics is that biological entities
like proteins and DNA can be represented as character strings. A DNA (or RNA) is a
sequence made from repeating A, C, G, and T (U in RNA). Similarly, proteins can be

decoded as finite sequences of 20 characters. The theory of evolution states that
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species have evolved over millions of years through a process of incremental change.
With the invention of genome sequencing, scientists have been able to describe the

process of evolution using the genomic sequence analysis.

The information stored in a DNA molecule is the result of evolution over time. This
information is passed from the parent cell to the child cell during the replication process.
Although the replication process is delicately accurate, it can introduce changes in the
DNA sequence. Many factors can affect the accuracy of the replication and introduce
errors. Just like any transmission mechanism, these errors can occur in three forms:
substitution, insertion, or deletion of a symbol from the target result. These changes
can occur in DNA, RNA, or protein sequences. It is expected that two biological
sequences that have many common residues, whether they are DNA nucleotides or
protein amino acids, will exhibit similar features or play similar roles in the development
and functionality of a cell. Thus, sequence analysis methods can be used to detect the
relationship between different biological sequences, to find the functionality of the newly
found genes or proteins, to discover new drugs, or to provide new insights in

understanding life itself.

The most fundamental and routinely asked question in biosequence analysis is
therefore how these sequences are related. In order to answer this question, the two
sequences must be aligned, and the alignments should be evaluated with a biologically
meaningful metric. Durbin et al. lists the key issues involved in sequence analysis as

[Dur98]:

1) Scoring models used to align sequences,
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2) Alignment type and methods

3) Statistical methods used to evaluate the alignment.

In the follows sections, we will take a brief look at each one of these issues.

3.4 Scoring Models

There are many ways to score the similarity between character sequences. The
simplest way to assess an alignment is by using Hamming distance. Hamming distance
assumes that the two sequences being compared are already aligned in order; i.e., the
ith symbol in one sequence is aligned with ith symbol in the other. But biologists usually
do not have the luxury of assuming in order alignment. Since genomic sequences are
subject to insertions and deletions, Hamming distance is not often used in sequence

analysis.

Another way to measure the similarity between two sequences is by using the so-called
edit distance. The edit distance between two sequences is the number of edit
operations that are required in order to transform one sequence into another. The
changes can be the insertion of a symbol, the deletion of a symbol, or the replacement
of one symbol with another. This is also referred as Levenshtein distance. Dynamic
programming can be used to calculate the edit distance. In calculating this distance,
matching residues score zero, and all mismatches, insertions, or deletions are
penalized by one. Similarly, a weighted edit distance can be used. In a weighted edit
distance, two different cost values are used: one for mismatches and one for gaps.
Each insertion or deletion is penalized with D, and each mismatch is penalized with R.

This simple scoring matrix is often used for DNA sequence analysis.
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As explained before, several biological and chemical factors affect errors in the
replication process. Using statistical methods and expert knowledge, biologists have
developed scoring matrices that represent these factors. For example, changing R to Q
is much more biologically plausible than changing E to C. In a scoring matrix, this can
be represented by having a positive score for the R/Q pair and a negative score for the
E/C pair. Then, an alignment of two sequences can be scored with a simple summation.
For each residue pair that is aligned, the corresponding score is added to a total running
score. The gaps can be treated as special characters. Additive scoring has proven to be
the best scoring mechanism for this so far. The following figure shows an alignment and

its score.

Figure 3-1 Sequence Alignment

Statistically speaking, this (and related similar methods) assumes that changes in a
sequence occur independently of each other. In other words, one change does not
affect other changes. As a result, additive scoring is the prevalent scheme in the
analysis of DNA and protein sequences and is used as a standard tool. The following
figure shows blosum62, one of several standard matrices used in protein sequencing

and alignment scoring [Hen92][NCBa].
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Figure 3-2 Blosum62 Matrix
Gaps need special attention. There are two common ways to score gaps: linear or affine

gap penalty. In the linear gap model, a single gap costs a constant (V), and the total
cost of a gap of length (L) is LxV . In affine gap model, opening a gap costs more than

extending it. Thus, a gap of length L costs U +V x(L-1), where U is the gap opening

penalty and V is the gap extension penalty. It has been shown that, in modeling
biological sequence similarities, the affine gap penalty is more accurate than the linear
penalty. The affine gap penalty is slightly more costly computationally—both in

hardware and in software—than the linear gap penalty.

3.5 Pairwise Sequence Alignment with Dynamic Programming

Pair-wise alignment algorithms can be divided into two subcategories: global alignment
algorithms and local alignment algorithms. A global alignment algorithm aligns all of the
residues in one sequence to all of the residues in another one, possibly by inserting

gaps in the sequences. On contrast, in a local alignment algorithm, it is not required to
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include all of the residues of both sequences, and only portions of the sequences that

align better are of interest.

From another point of view, an alignment algorithm can be categorized as gapped or
ungapped. A gapped alignment algorithm allows the insertion of gaps into the
(sub)sequences, whereas an ungapped alignment algorithm does not. An ungapped

alignment aligns contiguous portions of the two sequences.

There are numerous algorithms for solving the approximate string matching problem,
but only a few of them are used for biosequence analysis. In this and the following two
Sections we will look at the alignment algorithms that are commonly used in the
biosequence analysis community, starting with methods based on Dynamic

Programming (DP) and continuing with the most commonly used method, BLAST.

As shown below, an alignment of two sequences can be depicted with a tableau with
one of the two sequences placed on the horizontal axis and the other on the vertical
axis. In this depiction, diagonal arrows represent replacement or matching pairs,
whereas vertical or horizontal arrows represent indels. Contents of the tableau are the

local running match scores.
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Figure 3-3 Alignment tableau

The problem of finding the best alignment between two sequences has all of the
properties needed to make DP a suitable solution; that is, it has an optimal substructure
and contains overlapping subproblems. DP recursion is often used to show the
subproblem structure. Sometimes a tabular grid (similar to one shown in Figure 3-3) is
used to show the DP solution. Each grid location corresponds to a subproblem of the
problem of interest. The value written in each grid location represents the best score for
the corresponding subproblem. In the case of sequence alignment, the subproblems
are the scores of best alignments of the subsequences that are represented by grid

locations.

A typical sequence alignment use-case starts with a query sequence and a database of
known sequences. We call each sequence of this database a subject sequence. The
sequence alignment tool aligns the query sequence with all of the subject sequences in
the database, and those sequences that score high are returned alongside the optimal

alignments that are found.
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The two classic DP algorithms for approximate string matching are refereed as the

Needleman-Wunsch and Smith-Waterman algorithms.

The Needleman-Wunsch algorithm [Nee70] is the classic dynamic programming
algorithm for solving pair-wise, gapped global alignment problems. As with any dynamic
programming algorithm, the optimal solution is calculated from the optimal subproblem

solutions. A matrix of size query length x subject length is created. We call this matrix H.

H, ; is the score of the best global alignment up to residue i in the query and residue j in

the subject. Therefore, the dynamic programming recursion of Needleman-Wunsch,

assuming a linear gap penalty model, can be written as:

Hi;=max{H,,;, +S;;,H;,; -d,H;;, —d}

ij?

In this equation, S, ., which is derived from the score matrix, is the score of aligning

ij?
residue i of the query with residue j of the subject sequence and d is the score of
inserting a gap in either the query or the subject. The first term in the above formula
corresponds to a case where residue i is aligned to residue j, whereas the second and

third terms correspond to a cases in which a gap is inserted to either the query or the

subject. The recursion is initialized by H,; =-jxd,H;, =-jxd to account for the initial

gaps. The best alignment score is calculated at the bottom right corner of the matrix,
and the actual alignment can be written by tracing back the dynamic programming

matrix calculation from the bottom right corner.

In order to calculate the affine gap penalty, the recursion should be rewritten as follows:
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Ei,j = maX{Hi,j—l —Uyg, Ei,j—l —Vy}
F,= max{Hi_l'j —U,, Fiy —vq}
E ,F .}

Hi,j =maX{Hi—1,j—l+S' NEREN

ij?
where

Ho,o = Fo,o = Eo,o =0,
Ep;=Hy; =-U; —(j-D)xv, and F; =0 for j>0,
Fo=H;,=-u,—(i-)xv, and E;, =0 fori>0

In the equations above, E;;calculates the penalty of inserting a gap into the subject

sequence in the affine gap penalty model, F.. calculates the corresponding value for

i,]j

the query sequence, and H, ; is the score of the best global alignment up to residue i in

the query and residue j in the subject.

For a query of length q and a database sequence of length d, the running time of this

algorithm isd x q. This algorithm is guaranteed to find an optimal solution, but its running

time makes it impractical for large database searches.

Perhaps the most renowned dynamic programming algorithm in biosequence analysis is
the Smith-Waterman algorithm [Smi81]. This algorithm is used to find the optimal
gapped local alignment between a query and a database sequence. The algorithm is

very similar to Needleman-Wunsch, and its recursion for linear gap penalty is as follows:

H;=max{H_,,+S;;,H,—d,H ,—d0}

i,j? i-1,j
The initialization condition for this recursionis H;, =H,; =0 fori>0.

Similar to Needleman Wunsch, in case of an affine gap penalty system, the recursions
are rewritten as follows:
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E ;j=max{H;;, —u, E -V}
F;=max{H;,;-u,F,, -V}
Hi;=max{H, ,+S,;,E;,F;.0}
where

E,;=H,;=F,;=0 for j>0,
Fo=H,,=E,=0fori=0

As can be seen, the only difference between this recursion and Needleman-Wunsch is
the addition of zero in the best subsequence alignment score calculation. This small
change enables us to align a portion of the database and sequence and find the best
local alignment. The best alignment can be generated by tracing back from the element
with maximum score in the H matrix until we reach an element with a score of zero.
Similar to the previous algorithm, for a query of length g and a database sequence of

length d, the running time of Smith-Waterman is d xq. The algorithm is guaranteed to

find the best local alignment with possible gaps, but its slow running time in comparison

with heuristic methods makes it less practical for large database searches.

3.6 BLAST

3.6.1 Overview

BLAST is the most dominant heuristic approximate string-matching tool for finding either
gapped or ungapped local alignments between a query and a large collection of
database sequences [Alt90]. Although Smith-Waterman is guaranteed to give optimal
results, there are two major reasons why BLAST is the standard approximate matching

search tool for proteins and DNA. The first reason is speed: NCBI BLAST can be 50 to
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100x faster than Smith-Waterman, and it almost always provides the better quality
results. The speedup gain of BLAST is due to the heuristics that it uses to find the best
alignments. The second reason for the dominance of blast is that it avoids junk matches
thanks to complex heuristics and statistics. Using a naive Smith-Waterman algorithm

will cause several meaningless alignments to be reported.

The fundamental idea of BLAST is to avoid searching the entire database by finding hot
spots in the database sequences that can potentially result in high-scoring alignments.
To this end, NCBI BLAST is divided into three stages, namely word matching,
ungapped extension, and gapped extension. We will look at these stages in the
following sections. This overview is based on that in [Kor03].

3.6.2 Word Matching

The first step is to find short stretches of high similarity between the query and the
subject sequence. Here, a w-mer represents a substring of length w on either the
subject or the query sequence. The first algorithm, which is called the single hit
algorithm, finds the identical w-mers between the query and the subject for DNA and
matches with high scores for proteins. This approach is typically used in DNA searches

with a default length of 11. The matches are called seeds.

Another algorithm, often used in protein sequence alignment, finds two matches of
shorter length between the query and the subject sequence that are positioned close to
each other and on the same diagonal. Here, the matching is not exact, and a threshold
is used to find approximate matches of length w. More precisely, a match can be

represented as a pair (d,,q,) where d,and g, are the coordinates of matching w-mers
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on the subject and the query, respectively. let, (d,,q,) represent another match. A seed

is detected when

0<l|d, —dy|< A

dy—Qo=d; -0

where A is a constant with default value equal to 40. Either the single hit or the two-hit
algorithm gives us the coordinate of the seeds that can be extended by the ungapped
extension phase.

3.6.3 Ungapped Extension

The second stage receives the seeds from the first stage and extends them to find high-
scoring local ungapped alignments called high-scoring segment pairs (HSPs). The
extension is performed to both the left and right of the seed. An early-termination
mechanism is used: i.e., for each extension, a running score is maintained. Starting
from the score of the seed, if aligning the next letters from the query and the subject
increases the running score above the best value seen, then the alignment is extended
to include the letters; if adding the letters reduces the running score by more than a
constant X below the best running score seen during the extension, then the extension
stops. If neither happens, the extension is continued, and the alignment is not enlarged.
Once the extension is stopped, if the score of the extension is above a cutoff value, then
the HSP is saved for the next stage, Otherwise, it is discarded.

3.6.4 Gapped Extension

The final step involves converting the ungapped HSPs from the previous stage into
gapped alignments by extending them to the left and right and adding gaps if
necessary. This stage also uses an early-termination algorithm to minimize the
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extension time. The gapped extension uses DP-like mechanisms similar to that in

Smith-Waterman.

3.6.5 Statistical Evaluation in BLAST
NCBI BLAST reports scores and E-values as measures of the significance of

alignments. For a given query and subject pair, the reported E-value shows the
expected number of alignments with the resulting score. The smaller the E-value, the
more significant the alignment, meaning that there is a smaller chance of having such

an alignment by random noise.

For a query of length q, a database of length d, a score of S between the query, and a

subject sequence from the database, the E-value is determined by

E —Value =kq'de

where k and A are Karlin-Altschul constants calculated from previous simulations

[Kor03]. g’and d’ are the effective lengths of the query and the database, respectively.
The idea of effective length for a query and database comes from the fact that an
optimal alignment usually starts far from the right edge of the sequence [Kor03]. Here,
q and d represent the length of the query and the database, respectively. Additionally,
let N represent the number of subject sequences in the database. The effective
lengths of the query and database can be calculated by the following formulas:

q'=q-I

d'=d—-Nxl

Here, | is an integer value that is called length adjustment, which is calculated by the

BLAST program. Another important parameter in the BLAST statistic is called effective
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search space, and it is equal toq’'xd’. Any alteration of these parameters will result in

incorrect statistical results being reported by the program.

3.7 CLUSTAL-W: Multiple-Sequence Alignment

Another task that biologists routinely perform is the extension of pair-wise sequence
alignment to multiple-sequence alignment (MSA). MSA is used to find the evolutionary
relationship between sequences, to find homologous regions in a groups of sequences,
or to conduct phylogenetic analysis. For sequences that are not closely related, finding
an accurate MSA is a topic of extensive research. MSA can be an expensive algorithm,
both in the time and the amount of space required. Accelerating MSA alignment
algorithms not only provides a better means for biologists to perform their routine tasks,
but it also can assist them in finding better alignments, which can result in
improvements in the accuracy of the MSA. In the following sections, we will look at

some of the well-known algorithms for performing MSA.

3.7.1 Dynamic Programming

We can extend the dynamic programming recursion of the pair-wise sequence
alignment to multiple sequences. In this case, a multidimensional dynamic programming
solution is used. This approach quickly becomes intractable as the number of
sequences grow. Thus, it is worthwhile to notice that using dynamic programming as a

solution for MSA is only used for very small sets of sequences.

3.7.2 Progressive Multiple-Sequence Alignment: ClustalW

The most commonly used method in MSA is the progressive sequence alignment

method, which was originally introduced by Fong and Doolittle in [Fen87]. There are
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several similar progressive MSA methods which vary in some accuracy and
performance details [Tho94], [Not00], [Edg04],[Hig98],[Kat02]. In general, the skeleton

of progressive sequence alignment algorithms consists of the following three stages:

1) The first stage of the algorithm is to construct a distance matrix. For each pair of
sequences, a pair-wise sequence alignment is performed, and some
measurement of distance between the two sequences is stored in a matrix.

2) At stage two of the algorithm, a guided tree is generated using the distance
matrix from stage one. This guided tree is generated using a clustering algorithm,
such as neighborhood-joining or UPGMA.

3) At stage three, the final MSA is generated by following the order of the guided
tree. Starting from the most similar sequences and moving in decreasing
similarity, at each stage, two child nodes (which can be two sequences or
alignments or profiles) are selected and aligned.

Different progressive alignment tools differ by the algorithms that they use in the three
stages above and the subsequent optional optimizations they use to increase

accuracy[Not00][Hig98][Edg04][Kat02].

ClustalW is one of the most widely-used progressive sequence alignment tools [Tho94].
In the first stage, for the construction of distance matrix, this tool uses a percentage of
identities in the best local gapped alignment as a metric. In the second stage, it uses the
classical neighborhood-joining classification to generate the guided tree. Finally, for the
third stage, the tool performs a profile alignment. In a profile alignment, a group of
sequences can be aligned with another group of sequences. In order to get the score of

a position in this group-to-group alignment, the average of the all-to-all scores is used.
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4 Previous Attempts to Accelerate Sequence Analysis

4.1 Overview

55



NCBI maintains a large database of biosequences. The increasing power of technology,
advances in sequencing methods, and widespread interest in biosequence analysis
have resulted in exponential growth in the size of this database. In addition, any
database like the NCBI database should be able to respond to queries from all around
the world in a timely manner. Obviously, the acceleration of tools that search, maintain,
or analyze this vast and ever-growing database would be hugely beneficial. Also, as
previously described, the increasing complexity of these tools provides additional

motivation.

As explained before, there are several methods that can be used to query the sequence
databases, but only a few of them are accepted as standard tools. Among these are the
NCBI basic local alignment search tool (BLAST) and the Smith-Waterman algorithm.
Smith-Waterman is substantially slower. As a result, NCBI uses the heuristic BLAST to
query the database, and, as such, the majority of the bioinformatics community uses
this tool. Any attempt to accelerate NCBI BLAST that results in a disagreement with the
original version will not be accepted in the scientific community, even if the results have
similar or even higher accuracy. On the other hand, even though the acceleration of
NCBI BLAST is important, the software package is highly optimized and complex:
many levels of optimization have been added since the original algorithm was proposed.

This poses great challenges to any attempt to accelerate it.

As we will see, there have been many attempts to accelerate NCBI BLAST using
traditional cluster computing methods. However, these systems usually incur excessive
power consumption and high costs. An FPGA-based accelerator can deliver the same

performance with significantly less power consumption and fraction of the nodes.
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Several academic and industrial attempts have been made to accelerate sequence
analysis algorithms. These works include pure software optimizations on shared
multiprocessor systems, FPGA or ASIC-based hardware accelerators, GPU based

systems, cloud computing and clusters of computers.

When comparing a query to database sequences, the query can be compared with
each subject sequence independently of other subject sequences. With this
observation, we can notice that comparing a query to a database of sequences is an
embarrassingly parallel problem. This is the basis for the so called database
segmentation approach for the acceleration of sequence analysis [Dar03]. In the
database segmentation approach, the database is divided into smaller portions, and
each portion is assigned to a processing unit. This is referred as inter-task

parallelization.

On the other hand, to further increase the speed of a system, especially when using an
accelerator, one needs to parallelize at a finer granularity. This level of parallelism is
called intra-task parallelism, and it refers to parallelism inherent in the comparisons of

the subject characters against query characters.

Usually, the techniques used in software optimization of sequence analysis tools are
based on either cache efficiency considerations or reducing the number of required
instructions in kernel portions of the code. These techniques are hardly useful for
hardware implementations. Most of the time, the dynamic programming recursions are
implemented with a systolic array in hardware. However, the recursions of these

applications are so computationally intensive that the operating frequency of hardware
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are below expectations. Pipelining these recursions is not necessarily useful, either.
Similar problems to what we have mentioned above occur with hardware-accelerating
heuristic applications such as NCBI BLAST. This makes direct mapping of these

software-minded applications to hardware a dubious choice.

In this chapter, we will investigate the previous approaches to accelerating sequence-
analysis tools. The rest of this chapter is as follows. In Section 4.2, we will look at the
best implementations of the Smith-Waterman algorithm. Section 4.3 reviews the
previous attempts for hardware acceleration of the Smith-Waterman algorithm. In
Sections 4.4 and 4.6, we will review the previous cluster-based and accelerator-based
attempts to accelerate NCBI BLAST. In Section 4.7, we will investigate previous

attempts to accelerate multiple sequence alignment applications.

4.2 Software Acceleration of Smith-Waterman

Attempts to accelerate Smith-Waterman date back to the mid ‘90s. One of the first
attempts to map Smith-Waterman to an SIMD architecture is reported in [Alp95]. Alpern
et al. used a combination of optimizations towards a cache-efficient code and SIMD-
based parallelism and achieved a modest speedup over a very early implantation on an

i86 processor.

Wozniak et al. presented an implementation of Smith-Waterman on a Sun Ultra Spark
processor using its SIMD video instructions [Wo0z97]. Their work is based on the intra-
task approach, and it uses the SIMD instructions to parallelize a Smith-Waterman
tableau's cell updates. The key observation is that the cells along the antidiagonals of
the alignment tableau can be processed independently. An example of an antidiagonal
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is shown in Figure 4-1. Using this approach, Wozniak et al. achieved 2x speedup over

the best serial code of their era.
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Figure 4-1 Inherent Parallelism in Smith Waterman Antidiagonals

T. Rognes and E. Seeberg were the first to use SSE/MMX instructions set to implement
an SIMD version of Smith-Waterman on an Intel processor [Rog00]. They also
introduced the concept of the query profile. Using a query profile reduces the number of
score table lookups in the inner loop of the Smith-Waterman recursive implementation.
Thanks to SIMD implementation, query profiling, efficient usage of cache, and some
other optimization techniques they achieved 6-fold speedup over a highly optimized

serial Smith-Waterman.

Farrar used SSE2 to implement a SIMD version of Smith-Waterman [Far07]. In contrast
to previous work, Farrar's query profile is stripped so that the access pattern to the
query profile is more efficient. Because of this improved access pattern, fewer
instruction are executed in the inner loop of the Smith-Waterman dynamic programming
C code. Farrar also proposed using a lazy F function, which helps to minimize the
conditional branches inside the inner loop. As a result of these optimizations, the code

achieved a 2x improvement over previous SIMD implementations.
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Another Smith-Waterman implementation, which is called SWPS3, is an integration of
SIMD and a multithreaded implementation [Sza08]. It can be mapped to both IBM Cell
or to x86/SSE2. The code is based on Farrar's intra-sequence parallelization. It extends

Farrar's implementation to IBM Cell, implementing a multithreaded version.

A similar implementation of Smith-Waterman on PS3 (called CBESW) is described in
[Wir08]. It is an inter-sequence SIMD implementation of Smith-Waterman, and it

achieves up to 3.4 GCUPS (Giga Cells Updates Per Second).

A faster implementation of Smith-Waterman was introduced in 2011 by Rognes
[Rog11]. The implementation is available for the general public under the name SWIPE.
The idea was to use SSSE3 instructions to implement an inter-sequence parallelization
of Smith-Waterman. Each subject sequence is mapped to a portion of SSE instruction.

Using six cores, a multithreaded implementation of the code achieves 106 GCUPS.

There are a number of attempts to map the Smith-Waterman algorithm to GPU [Lip88].
CUDASW++2.0 implements Farrar's stripped query profile-based implementation on
GPUs. It utilizes both inter- and intra-sequence parallelism and achieves an average of

16.5 GCUPS.

4.3 Hardware Acceleration of Smith-Waterman

The first attempts to accelerate Smith-Waterman using special-purpose hardware were
done in the late 1980s. P-NAC is considered the first hardware implementation of

Smith-Waterman [Lop87]. It computes the edit distance between genome sequences.
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Since the introduction of P-NAC, we have seen many improvements in the
implementation of genomic Smith-Waterman on hardware. However, these
optimizations do not apply for proteomic Smith-Waterman. The reason behind this
difference can be traced back to the differences in the scoring mechanisms used for
genomic and proteomic sequences. For genomic sequences, only an edit distance is
calculated. On the other hand, for proteomic sequences, a complete scoring matrix is

needed.

One of the most well-known examples of these type of optimizations was presented by
Lipton and Lopresti . They noticed that, if the gap penalty is set to one and the

mismatch penalty is set to two, then the recursion can be rewritten as follows:

HG ) = {H(i —1,j—Dif ((HG—1,))orH(,j—1))=(H3GE-1,j—1)—1))or (S= Q)}

Hi—1,j—1)+2

Using this optimization, it is has been shown that the computation of an H matrix can be
done in modulo-4 encoding [Lip87]. As a result, to record H, only 2 bits are required in
each cell in the alignment tableau. It is clear that such optimization is not practical when
more complicated scoring mechanisms are used. For example, one cannot use this
optimization for proteomic sequence alignment. As a result, hardware implementations
of genomic Smith-Waterman are an order of magnitude faster than hardware

implementations of proteomic Smith-Waterman.

The first hardware implementation of Smith-Waterman that was capable of supporting
protein score tables and affine gap penalties was introduced in 1991 by M. Waterman

[Cho91]. This work, which was called BISP, was the basis of all the future
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improvements in hardware implementation of proteomic Smith-Waterman. The BISP
architecture is based on data-flow graph analysis of the Smith-Waterman algorithm. The

following Figure shows the Smith-Waterman algorithm's dependence graph.

Figure 4-2 BISP Data flow Graph [Cho91]

As shown in Figure 4-2, from the analysis of a data dependence graph (DG), a signal
flow graph (SFG) is derived. The signal flow graph assigns the virtual nodes of the DG
to the actual processing elements in the SFG. The hardware implementation of Smith-
Waterman is a systolic array consisting of identical processing elements chained
together. In this systolic array, there is a one-to-one mapping between processing

elements of the systolic array and nodes of the SFG. With careful analysis of the SFG,
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the structure of each processing element is derived. The structure of each processing

element is shown in Figure 4-3.
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Figure 4-3 BISP Processing Element

Because FPGA resources are limited, one needs to fold the pipeline of the systolic array
in order to support large queries. Oliver et al. proposed a method to do so that was
based on the processing element described in BISP [Oli05] . If a query length is larger
than the maximum number of processing elements (PEs) available on the target FPGA,
the query is divided into multiple portions. The entire subject sequence is streamed
through the systolic array in multiple passes. At each pass, a portion of the alignment
tableau is generated (see Figure 4-4). A FIFO is used to store the intermediate results
corresponding to the last characters of each query segment. When processing the next
query segment, the contents of the FIFO are streamed through the systolic array. The

following figure shows the idea of a folded Smith-Waterman. Figure 4-5 shows the
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architecture of Oliver's Smith-Waterman [Oli04]. Oliver's implementation achieved 5.8

GCUPS on a virtex Il FPGA.
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Figure 4-5 Oliver's SW Processing Element [Oli04]

The most challenging problem with hardware implementation of Smith-Waterman is the
long critical path that limits the operating frequency. For most target FPGAs the critical

path is inside the PE. In Figure 4-3, the critical path is on the feedback path from E to H
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to E. Although this design can be further pipelined to increase the operating frequency,

breaking the feedback path of the PE poses two challenges to the designer.

First, since the value of the each diagonal is dependent on the calculated values of the
previous diagonal, the addition of any pipeline stage requires an additional idle clock
cycle. In other words, the pipelined PE should always wait for the proper values of H, E,
and F to be appear in its inputs so that it can start the calculation. Since the calculation
of the feedback path of each PE does not overlap with other PE calculations, further

pipelining requires additional processing cycles.

Ideally, in a systolic array, to process a subject sequence of length d against a query
sequence of length q, d+q clock cycles are required. This brings us to the second
problem in pipelining the PEs of Smith-Waterman: with finer grain pipelining of Smith-
Waterman's PEs, we will need more clock cycles to fully process each subject
sequence. In other words, if d and g are the lengths of a subject sequence and a query,
respectively, and if each PE is pipelined n times, then the number of required clock
cycles to process the subject sequence becomes n(d+q). It is clear that simple

pipelining of Smith-Waterman PEs will not improve the end-to-end performance.

Zhang et al. proposed a method to implement the "max" operations of the Smith-
Waterman recursion with minimal area on Altera FPGAs [Zha07]. However, in order to
optimally map their max operations to FPGA, they needed to add a flip flop at the end of
each max function. As a result, their design required the same multistage processing
mentioned for the fine-grain pipelining. In order to work around this issue, Zhang et al.

implemented a multiphase Smith-Waterman processing element. In their
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implementation, they used four different clocks with similar frequencies and different
phases shifts. Using these clock signals, they clocked different registers of the PE with
different clocks, thus reducing the effect of multistage pipelining. Zhang's

implementation achieved 25.6 GCUPS on a stratix 1| FPGA.

4.4 Cluster Computing and NCBI BLAST

From a high-level point of view, one can approach the problem of parallelizing NCBI
BLAST in two different ways. On one hand, the incoming queries can be distributed
among multiple processing nodes. This way, one can increase the system throughput.
This approach is called query segmentation or inter-query parallelization in literature. In
this approach each one of the processing nodes works independent of the other ones.
Ideally, in order to avoid memory stalls and routing contentions, each node should have
its own local copy of the entire database. This is a drawback, considering the
exponential growth rate of the genomic databases. This drawback is exacerbated by the
fact that the current genomic databases don't fit entirely on a memory module and
should be read from a hard disk. The second approach is to divide the database among
multiple processing nodes. This is referred to as database segmentation or intra-query
parallelization. Considering the parallel nature of NCBI BLAST, this approach seems
reasonable. In order to accomplish this, there should be a mechanism to collect the
results from a set of worker nodes and produce the final result in the required format. In

[Dar03], the implications of database and query segmentation have been studied.
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There have been several software-based attempts to parallelize NCBI BLAST. E.H. Chi.
et al. studied the efficiency of shared memory multiprocessors for sequence similarity
search problem and concluded that as long as the database fits in the memory of an
individual computation node, and no memory access contention occurs between the
processors, linear scalability in response time and throughput is achievable [Chi97].

This test cases included up to 24 processors.

R.C. Braun et al. [BraO1] used a job scheduler system to submit queries to different
nodes of a cluster of workstations. They showed the possibility of using workstation
clusters to increase the throughput of the blast services. TurboBLAST [Chi02]
parallelizes BLAST on a cluster of workstations, supercomputers, or grids. It uses a
java virtual machine to transparently parallelize BLAST. Each worker node works on a
portion of a database, and a master node merges the results. Similarly, mpiBLAST
parallelizes BLAST using an MPI interface with a database segmentation approach
[Dar03]. There have been numerous other attempts to parallelize BLAST, and all have
the same idea of database segmentation and query batching with minor differences in
underlying job scheduling platforms, algorithms, and support for fault tolerance and

database updates[Mat03][Gar06].

4.5 GPU accelerated NCBI BLASTp

There have been a number of attempts to accelerate BLASTp on GPU. Liu et. al. used
GPUs to accelerate NCBI BLAST in CUDA-BLAST [Liu11]. They used a combination of
coarse grain and fine grain parallelization techniques to map NCBI BLASTp alignments

to GPU threads [Liu11]. Using a GeForce GTX 295, CUDA-BLAST achieves 3x to 4x
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speedup over a quad core Intel CPU. A similar work that only uses coarse grain
parallelization is reported in GPU-BLAST [Pan11] in which each GPU thread handles a
separate subject sequence. In order to load balance the thread the database sequences
are sorted based on their lengths. Using an NVIDIA Fermi C2050 GPU , the authors
reported 1.5x speedup over 4 threaded NCBI BLAST. Another attempt to accelerate
NCBI BLAST using GPUs [Lin10] reports 1.7x to 2.7x speedup over single threaded
executions using an NVIDIA GeForce 8800 GTX GPU . In conclusion, generally a

speedup of 3x to 4x over multithreaded NCBI BLAST appears to be achievable.

4.6 FPGA Accelerators and NCBI BLASTp

In this section, we will describe the most important attempts to accelerate NCBI
BLASTp on FPGAs, namely Tree BLAST and Mercury System. There have been some
other attempts to accelerate other versions of NCBI BLAST, such NCBI BLASTn for
DNA databases or tBLASTx to search a protein sequence against a DNA database
[MurO5][EurQ07]. These early works mostly focused on DNA version of BLAST which is
the simplest of all BLAST versions[Mur05]. We focus on the protein version of BLAST,

BLASTp.

46.1 Tree BLAST

Tree BLAST was first introduced in [Her07] as an attempt to develop a compact and
regular hardware structure that emulates the ungapped extension phase of NCBI
BLAST. Tree BLAST consists of a set of processing nodes that are arranged in a
binary tree structure, as shown in Figure 4-6. The query profile is loaded into the leaves

of the tree. The subject sequence is streamed across the leaves of the tree, and one
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complete score sequence is generated every cycle. Each score sequence corresponds
to a global ungapped mapping of the subject and query characters. Each node
processes two scores. The generated score sequences are processed by the tree to
find the best local ungapped alignment at the root node. The operation of each node is
as follows: each node of the tree maintains four integer variables, Max, Sum,

LeftRunScore, and RightRunScore.

For leaf nodes:

Sum = Left+Right
LeftRunScore=Max(Left,Sum,0)
RightRunScore =Max(Right,Sum,0)
Max =Max(Sum,Left,Right,0)

For internal nodes:

Sum = Left.Sum+Right.Sum

LeftRunScore=Max(Left.LeftRunScore, Right.LeftRunScore+Left.Sum )
RightRunScore=Max(Right.RightRunScore, Left.RightRunScore+Right.Sum )
MaxScore =Max(Left.max,Right.max,Left.RightRunScore+Right.LeftRunScore)
Sum=Left.Sum+Right.Sum

It has been proven that, through the use of these nodes, the root node will output the
score of the best local ungapped alignment between the two sequences [Her07]. The

tree structure has several features that make it suitable for hardware implementation.

1. The tree structure can be pipelined as deeply as required.
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2. The tree structure has a very compact construction that maps well into the
hardware.

3. The tree structure can be structured to an arbitrary size with no additional
complexity.

4. Folding the tree is easy to accomplish without additional hardware overhead.

This makes it possible to trade area with speed.

Figure 4-6 Tree BLAST structure shows a Tree BLAST example.
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Figure 4-6 Tree BLAST structure

Tree BLAST supports the following fundamental options:

e Folding: The tree can be folded to support queries that are larger than what can
fit on the chip. In this case, a portion of the tree is examined at each clock cycle.
For example, if the tree is folded four times, V4 of the query is mapped to the tree,
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and, at each clock cycle, the score corresponding to Y4 of the query is generated.
An update node at the root of the tree receives these four scores that correspond
to different segments of the query, and generates the best score.

e Replication: Small trees can be replicated, thus allowing multiple queries to be
processed simultaneously.

e Arbitrary size: Different tree sizes can be concatenated to generate trees with
sizes that are not power of two. For example, Figure 4-7 shows how to generate

a tree size of 1,664 characters from three tree binary trees.
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Figure 4-7 Arbitrary tree Size

Tree BLAST is used as the basic component in the initial version of CAAD-BLASTp
[Par09]. CAAD-BLASTp implements a pre-filtering mechanism to accelerate NCBI
BLAST. The basic design of CAAD-BLAST is to successively reduce the database (DB)
without removing any potential matches. In the initial preprocessing stage, two
thresholds are calculated: gapped and ungapped thresholds. These thresholds will be
used by the filters in the subsequent stage. First, the DB is filtered by running Tree
BLAST, and a reduced DB’ is generated. Since all the alignments are examined, there

is no need for the seed generation phase. As a result, the first phase of NCBI BLAST
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can be skipped safely without jeopardizing the agreement with NCBI BLAST. The
reduced database (DB’) contains all the sequences that, when compared with the
query, score above a threshold (ungapped threshold). Then, Smith-Waterman is run to
generate a further reduced database DB”. In order to do this the smith-waterman scores
are compared with the gapped threshold. Finally, DB” is formatted and sent to NCBI

BLAST along with the original parameters and query.

In order to have correct results, the internal thresholds that NCBI BLAST use should be
determined, and the E-values in the final report should be computed correctly. Also,
CAAD BLASTYp should ensure that DB” (i) contains all the sequences that NCBI BLAST
would return and (ii) is sufficiently reduced so that the overhead of formatting DB” does

not overwhelm any potential performance gain.

Figure 4-8 shows an overview of the steps required in CAAD BLASTp. The ungapped
filter begins with the FPGA, along with the query and database, to compute the
ungapped alignment scores. For the most promising sequences, scores are returned to
the host, which uses them to specify DB’. For the gapped option, a new threshold is
computed and passed to the FPGA, where the contents of DB” are determined. Finally,
the reduced database (either DB’ or DB”) is formatted to be processed by NCBI

BLASTp.
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Figure 4-8 CAAD BLASTp Overview

Recall that NCBI BLAST returns a statistical significance report. NCBI BLAST code is
integrated with the filters such that it reports the correct E-values and doesn’t miss any
sequences. In order to do this, the required parameters are calculated on the original
database before the filtering process starts and are saved for the final stage. The
profiteering mechanism seems efficient, but it has some drawbacks that can diminish

performance.

One problem with CAAD BLASTYp is that only one subject sequence can be processed
at each time. As a result, when streaming the database, a number of null characters
should be inserted between different subject sequences. The number of null characters

should be equal to query length, a fact which can cause an average of 100% overhead.
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The second major problem with CAAD BLASTDp is that it ignores the seeding heuristic of
NCBI BLAST. The seeding heuristic significantly reduces software runtime by limiting
the positions in the database that need to be examined to a limited fraction of the entire
database. CAAD BLASTp streams in the entire database and, thus, some performance

gain is lost.

Third, running NCBI BLAST on a filtered database can be very time consuming because

of large similarities between sequences and the query.

Fourth, the initial draft of CAAD BLASTp is not fully integrated with NCBI BLAST code.
It requires reformatting the reduced database. This can potentially slow down the

original binary.

CAAD BLASTp is integrated with the C toolkit of NCBI BLAST code. The C toolkit has
since been replaced with a C++ toolkit. The C toolkit is slower and outdated, and the

NCBI has stopped supporting its code.
Overall, these overheads can slow down NCBI BLAST runtime rather than speeding it

up.

4.6.2 Mercury BLASTp

Contrary to CAAD BLASTp, mercury BLASTp implements the NCBI BLAST algorithm
directly on FPGAs [Kri07]. Similar to NCBI BLAST, mercury BLASTp is a chain of three

stages, as shown in the following figure.
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Figure 4-9 BLASTp Pipeline in Mercury[Kri07]

Profiling NCBI BLASTp shows that all three stages take a significant portion of its total
runtime. As a result, the acceleration of all three stages is required to get a reasonable
performance gain. A universally known way of implementing seeding in heuristic-based
approaches of sequence analysis is the use of indexes (sometimes called profiles, or
neighborhoods). NCBI BLAST creates an index of the query as well. A seeding index is
a data structure that is used to find the seeds when comparing the query against a
subject sequence. For a given word size and alphabet and for all possible combinations
of words, the query neighborhood contains the indexes of all locations in the query that

match above a threshold.

Similar to other types of NCBI BLAST, Mercury BLASTp uses an indexing approach to
generate the seeds. In Mercury BLASTp, the query is indexed, and a query
neighborhood is generated. The query neighborhood has all the information required to
generate the seeds. For every possible w-mer, an entry in the lookup table stores a list
of matching w-mer positions on the query (either an approximate or exact location that
is based on the seed generation algorithm). As the database w-mers are scanned,
these positions are retrieved from the lookup table and sent for further processing. In

mercury BLASTp, the query index is divided into two parts: primary and secondary
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tables. Each entry in the primary table contains up to three matching locations in the
query. If the number of matching positions in the query is larger than three, the primary
table stores the number of the matches and a pointer to the secondary table where the
actual matches are stored consecutively. The query neighborhood is indexed for w-
mers of length four, or 4-mers. As a result, it doesn’t fit on the FPGA block RAMs and is
stored off the chip on a memory module. The following figure shows the mercury

system's lookup table data path and word-matching hardware design.
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Figure 4-10 Mercury BLASTp Hit Generation

The generated hits are routed to two hit generation modules. In order to detect two hit
seeds, an array is used which, for every diagonal, stores the position of the most
recently encountered word match. Since sequence word matches can occur at any
position in the subject in window of M diagonals where M is the query length, an array of

length M should be sufficient, but the authors have used an array of length 2M.

The hits should arrive at the two hit units with the order that their database indexes

indicate. Otherwise, there is a chance that some seeds might be missed.

In order to maximize the seed generation performance, both hit generation and two hit

generation modules are replicated. Clearly, without replication, the seed generation can
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become a bottleneck. Dedicated routing buffers steer data from the hit generators to the

2- hit units, as shown in the following figure.
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Figure 4-11 Two Hit Seed Generation

The replicated hit generation units access independent off-chip memory modules in
parallel. In order to balance the workload of each hit unit, the diagonals are multiplexed
amongst the hit units using the least significant portion of the diagonal numbers. The
idea is that, because the hits occur in clusters close to each other, using low-order bits
to assign diagonals to hit units can help in load balancing. Nevertheless, using multiple
hit units and multiplexing the diagonals amongst them causes some challenging
problems. Because the access time to the lookup tables depends on the number of
matches, the seeds may not always arrive in their increasing database position. As a
result, some seeds may not be detected. The authors have used a workaround heuristic
that reduces the impact of this problem, and this heuristic results in reasonable

accuracy (99%).

The next stage of the mercury system emulates NCBI BLAST'S ungapped extension.

Recall that NCBI BLAST uses an early termination mechanism in the ungapped
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extension phase. In extension with the early termination approach, seeds are extended
in both directions. Extension in each direction is terminated as soon as it stops being
promising; i.e., when the running score drops a certain threshold below the maximum
score seen during the extension. This is done to reduce the workload of the CPU. Even
though this optimization is suitable for software implementation, its hardware
implementation is costly. As a result, mercury BLASTp uses another heuristic to simplify
the problem. Instead of an early termination mechanism, mercury BLASTp examines a
fixed window around each seed. The window size is 64 characters wide. With this
approximation, mercury BLASTp implements ungapped extension with a dynamic
programming algorithm. The design is mapped to FPGA as a systolic array. The

resulting implementation achieves 96% to 99 % agreement with the reference.

Ungapped extension filters out most of the seeds. The promising seeds extensions
generate a high-scoring segment pair (HSP) list which is passed to the gapped
extension phase. Similar to the previous phase, mercury BLASTp performs the gapped
extension with the fixed window approximation instead of the original early termination
mechanism. This algorithm, which is basically a dynamic programming solution, is
called banded Smith-Waterman, is mapped to a pipelined systolic array and is

described in [Har07].

Mercury BLASTp is an efficient design. Using two Virtex Il 6000 FPGAs, the authors
have reached 10x to 15x speedups over CPU version. On the other hand, the biggest
drawback is the approximations that have been used to simplify the hardware. Although
the decrease in the accuracy seems insignificant, biologists tend to ignore any tool that
deviates, even with smallest amount, from the standard NCBI BLAST. Therefore, having
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a 100% accurate NCBI BLASTp acceleration that satisfies the cost effectiveness criteria

is a challenging problem.

4.7 Acceleration of Multiple Sequence Alignment

In comparison to NCBI BLAST, there have been fewer attempts to accelerate multiple

sequence alignment algorithms on hardware.

Oliver and et al. designed a systolic array to accelerate the first phase of Clustal-W
[OIi05]. On the basis of the fact that the first phase of Clustal-W takes more than 90% of
the overall runtime, they mapped the first stage of Clustal-W to FPGAs. Recall that the
first stage of Clustal-W calculates a distance matrix, and the metric for the distance
calculation is the number of identities in the best local gapped alignment between
sequences. In order to count the number of identities in the best local ungapped
alignment, Oliver et al. extended the dynamic programming recursive formula of the
Smith-Waterman algorithm to count for the number of identities in the best local gapped
alignment. Using this extension, they mapped the algorithm to a systolic array on

FPGAs.

The idea of this extension is to count the identities based on the path taken in recursive
relation of the Smith-Waterman algorithm. If Smith-Waterman aligns two characters, the
identity condition is checked. Otherwise, the identity count is equal to the identity count

in the direction of gap insertion.

For linear gap penalty, the extensions are as follows. The extension for affine gap

penalty is similar. Given two sequences, S; and S,, a substitution matrix (sbt) and a
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linear gap penalty (a ) and Smith-Waterman recursion relation (as described in section

3.5), the number of identities in the best local gapped alignment is given by N(i, j):

( 0 if HGi,j) =0
NG, j) = N(i—-1,j—1)+m(i,j) if H(G,j)=H@{—1,j—1)+ sbt(S[i],S[))]
W= i N(i,j—1) if HGi,j) =H(i,j— 1) —a
NG —1,)) if HGi,j) =HGi—1,)) -«

1 if S[i] = S[j]

where m(i,j) = { 0 otherwise

Using a VIRTEX Il FPGA, Oliver et al. achieved a speedup of 50x in the first stage.
Nevertheless, they did not implement the remaining stages on the FPGA, which, based

on Amdahl's law, limits the end-to-end speedup to 10x .

Lioyd and Snell proposed a method to implement the third stage of Clustal-W on an
FPGA [Lio11]. The third stage aligns sequences following the order of the guided tree.
It performs a profile alignment for groups of sequences. The third stage takes almost
the entire remaining 10% of the computation of MSA, and so it is critical to accelerate
this stage in order to have reasonable speedup. Lloyd and Snell's profile alignment

algorithm accelerated on an FPGA achieves 150x speedup over Clustal-W third stage.

There are a number of other works that accelerate Clustal-W on clusters of computers.
ClustalW -MPI uses massage passing interface to parallelize Clustal-W on a cluster of
workstations [Li03]. For the first stage, it uses a coarse-grain parallelism approach and
achieves linear speedup. For the last stage, a combination of coarse-and fine-grain

parallelism achieves 4.3x speedup using 16 processors.
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There are also several attempts to accelerate Clustal-W on GPUs. MSA_CUDA reports
the mapping of Clustal-W to a GeForce GTX 280 GPU [YSMO09]. It uses both coarse-
and fine-grain parallelism and maps all three stages to a GPU. A speedup to 37x is
reported over a serial implementation on a Pentium 4 with results comparable to

Clustal-W -MPI with 32 nodes.
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5 CAAD BLAST

5.1 Overview

NCBI BLAST has three phases: identifying short sequences (words) with high-match
scores (seeding), extending those matches without adding gaps (ungapped extension),
and performing gapped extension on selected segments from the previous phase
(gapped extension). For the sequences with the highest scoring alignments, an E-value
(expected value) is computed from the raw alignment score and other parameters.

Then, database sequences with sufficiently good E-values are reported.

Figure 5-1 shows a conceptual view of the three NCBI BLAST phases. In the first
phase, hotspots in the alignment space of the subject and query sequence are found.
The hotspots are those offsets of the query and subject sequences that satisfy the two-
hit property, as described in section 3.6.2. The word size (w) is typically two or three for
BLASTp, and the significance is determined on the basis of scoring performed with a
scoring matrix, such as BLOSUM 62, and a threshold value. In the extension phase,
seeds are extended in both directions to form high-scoring segment pairs (HSPs).
Extension stops when it ceases to be promising; i.e., when the drop-off from the last
maximum score exceeds a threshold of X. This is referred to as an early-termination
mechanism. In gapped alignment, extension and evaluation are triggered only when an
ungapped alignment satisfies the ungapped threshold. In this phase, seeds are
extended in both directions to form real alignments, possibly by adding gaps to both
sequences. Similar to ungapped extension, the early-termination mechanism is used;

that is, extension stops when the dropoff from the last maximum score exceeds a
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threshold of X. In gapped extension, the extension dropoff threshold X also depends on

gap-opening and gap-extension costs.

sequences tql.ier‘,f. database)

word matching (seeding)

l

ungapped extension

gapped extension

L

evaluation

similarity report

Figure 5-1 conceptual view of the three NCBI BLAST phases

The main idea in CAAD BLASTYp is prefiltering; that is, to quickly reduce the size of the
database to a small fraction and then use the original NCBI BLAST code to process the
query. Agreement is achieved as follows. Prefiltering is guaranteed to be strictly more
sensitive than the original code; that is, no matches are missed, but extra matches may
be found. The latter can then be (optionally) removed by NCBI BLAST. The primary
result is a transparent FPGA-accelerated NCBI BLASTp that achieves output identical
to the original. Because the prefiltering mechanism is more sensitive than the original,

the user may keep the extra outputs at no cost of performance.

The rest of this chapter is organized as follows: in Section 5.2, we describe a basic
overview of the operation of the filters. Next, we describe the two-hit filter in detail.

Section 5.4 describes the exhaustive ungapped alignment. Sections 5.5-5.7 have
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details of the two main architectures of our CAAD BLAST system, results, and a

scalability/portability study.

5.2 Filter Basics

CAAD BLAST uses three FPGA-based filters:

The two-hit filter is based on the two-hit seeding algorithm. All alignments (all
diagonals in Figure 1b) are evaluated based on whether or not they contain a
two-hit seed. The output is a bit vector containing a 1 or 0 for each diagonal,
depending on whether or not the diagonal contains a seed. We base our two-hit
filter on the two-hit seeding algorithm used by Mercury BLAST and described in
[Jac07].

The exhaustive ungapped alignment (EUA) filter scores every possible alignment
between the query and the database. For each sequence in the database, the
filter returns the scores of the highest-scoring alignments. We base our EUA filter
on the TreeBLAST algorithm described in [Her07].

The exhaustive gapped alignment (S-W) filter is based on the Smith-Waterman
algorithm and returns the highest-scoring gapped local alignments for each
sequence in the database. We base our S-W filter on the version of the Smith-

Waterman algorithm described in [Cho91].

Each filter reduces the amount of work that needs to be processed by the next filter.

The two-hit pass provides “hints” to the EUA filter as to which diagonals can be skipped.

As described below, actually skipping diagonals is not cost-effective, but making the

EUA filters drastically more compact is. After compaction, the EUA pass is almost as
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fast as the two-hit pass. The EUA filter prunes at least 95% of the database so that it
does not need to be processed by the S-W filter. The S-W filter prunes the database to

0.1% of the original. The reduced database is then processed by NCBI BLASTp.

All three filters work on the same principal. Each occupies some amount of chip area (in
the FPGA) and holds a copy of the query. Then, it executes as the database streams
through it from off-chip memory. The filter size (in chip area) is related to the query size.
Generally, the filter uses only a fraction of the chip area, and, therefore, it can be
replicated a number of times. If the query is very large, then the filters will still operate
correctly, but it will have reduced performance with a slowdown generally proportional to
the query size. Thus, each filter thus runs in O(N), assuming that the query sequence is

a small multiple of what can fit on a current FPGA, a characteristic of almost all proteins.

5.3 Two-Hit Filter

NCBI BLAST uses two-hit seeds to limit the number of diagonals that need to be
examined. Only a small fraction of the entire stream size has the two-hit property and
needs extension. These percentages as a function of query size are shown in Table

5-1.

Table 5-1. Fraction of alignments having two-hit property as a function of query
size. Queries taken from the NR database.

Query | average | Max
size
256 0.008 0.009
512 0.016 0.028
1024 0.02 0.025

2048 0.027 0.043
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On the basis of the results in Table 5-1, we can see that restricting the stream to those
hotspots that have a two-hit property can have a massive impact on the performance of
a system. In order to exploit the two-hit heuristic in a hardware design, several issues
need to be considered. First, ungapped extension is already very fast; it can be done in
streaming rate (one residue per clock cycle) with the use of TreeBLAST. Thus, in order
to improve, the two-hit filter should run much faster than one residue per clock cycle.
Since this speed-up is unlikely to come from increased operating frequency, it must be
possible to use the two-hit filter to extract more parallelism. This requires significantly
greater potential replication of the generated two-hit cores than for the TreeBLAST
which in turn requires that the two-hit unit cores be significantly smaller than the
TreeBLAST cores. Second, the two-hit filters should improve TreeBLAST performance
enough to compensate for the overhead they impose. The key idea in using a two-hit
filter is to have multiple small filters that can work in parallel. Otherwise, there is no

benefit in generating the seeds for a streaming design like TreeBLAST.

The two-hit filter is based on the NCBI BLASTp two-hit seeding algorithm. All ungapped
alignments are evaluated as to whether or not they contain a two-hit seed. A bit vector
is generated containing a 1 or 0 at each position depending on whether or not the
corresponding alignment contains a seed. The basic function of a two-hit filter is shown
in Figure 5-2. The design is generally similar to the one used in the Mercury BLAST

seeding pass [Jac07].

Below, we will describe a single two-hit filter, and a description of an extension to
multiple filters operating in parallel will follow immediately. We begin with some notes,

an overview of the algorithm, and a critical observation.
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Figure 5-2 Two hit filter
Figure 5-2 shows the subject on the horizontal axis and the query on the vertical axis.
Positions of each w-mer (a short sequence of w residues) are referred to as d, for the
database and q, for the query. If the subject length is d and the query length is q,

there are d + gpossible global ungapped alignments between the database and the

query, which are represented by diagonals in the figure. We refer to each diagonal

(alignment) as a,. The output of the two- hit filter is a bit vector where each bit (b,)
corresponds to an alignment (a, ) and tells whether or not a, has passed the filter (i.e.,
whether or not it has a two-hit seed). That is, a, passes the filter if there are two hits
within the distance threshold (A) (typically 40). If yes, then b, is set; otherwise, it

remains clear.

The basic data structure used to generate the two-hit seeds both in NCBI BLAST and in
the Mercury BLAST system is a lookup table called position list or query index. For each
possible w-mer, the position list stores the positions of all of the w-mers in the query that

exceed the match threshold (typically 11) when aligned with that w-mer. The position list
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has two parts: the primary and the secondary list. Recall that protein sequences consist
of 20 characters. BLAST uses five additional special characters, making the alphabet
size 25. NCBI BLAST’s two-hit seeding uses w-mers of length 3 (3-mers) by default.
Thus, there are 25° possible 3-mers. The primary list has an entry for each of the 25°
possible 3-mers. For any possible 3-mer, if there are three or fewer hits in the query,
then corresponding primary list entry holds all of those positions. If there are more than
three occurrences, then the primary list entry contains the number of occurrences and
the address in the secondary list where entries for those positions are written

consecutively. A status bit indicates the record type.

For each alignment, we keep the position of the most recent hit, if there are any hits at
all. When a new hit occurs on a diagonal, we compare its coordinates with the most
recent hit on that diagonal to decide whether to issue a two-hit or not. Note that the hits
on a given diagonal are generated in increasing order of their database position
because the database is scanned from left to right. An overview of the operation of the

two-hit filter is as follows. On iteration x, database 3-mer d, indexes the position list.

The query positions where matches occur, if any, are retrieved. Figure 5-2 shows three

hits, at query positionsq,, q;, and q,. These correspond, respectively, to the ith

position on alignmenta, , the jth position on alignmenta and the kth position on

X—j !
alignmenta, , . This hit information is then used to determine whether another hit has

occurred on any of these diagonals within the previous 40 positions (as shown in Figure

5-2 for alignmenta, ;).
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The goal is to process the database at a streaming rate. Upon each iteration, a
database 3-mer is processed. The advancement to the next iteration is made as soon

as the hits corresponding to the current iteration are fetched from the position list.

The method is to use a frame of counters, one for each alignment where there could be
match on the current iteration. Given that, on any iteration, only the last q alignments
can be affected, the frame length is equal to this value. This is important because it

makes hardware implementation feasible. As an example, for a hit in alignmenta,_., the

X—] !
corresponding counter that is dedicated for that alignment is read, compared with j, and
updated. If the difference between j and the previous value of the counter is less than A,

then this indicates a two-hit hit occurrence for alignment a, ; and bit b, ; in the bit

vector is set. If the distance between j and the previous value of the counter is more

than A, the counter will update its last seen hit position to j. The counters for a _, and

a,, are also processed similarly. However, for each alignment, advancement is

monotonic; i.e., a hit on a later iteration will never be further back on the diagonal than
the previous one. This guarantees the detection of all of the two-hits and a 100%
agreement with NCBI BLAST. The overall architecture of the two-hit filter is given in

Figure 5-3.
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Figure 5-3 Two-Hit Filter Block Diagram

The hardware implementation consists of four major stages: the hit generation, the

routing, the two-hit generation, and the bit-vector output. These four stages are
described below.

. The Hit Generation

The hit generator performs the following functions consecutively:

1. It reads the next character from the input database stream and increments the

database position counter (subject index).

2. It forms a 3-mer and indexes the position list’s primary section



3. It reads the data from poison list primary section and outputs the hits if any, if
required indexes the secondary section of the position list and outputs the hits

from the secondary section.

In order to process the database in streaming rate, the two-hit filter processes three hits
at each clock cycle. Both the primary and the secondary list are structured to enable the
fetch of three query positions per clock cycle. The following figure shows the general
format of the position list entries. The first bit in the entry, called the status bit, is used to
differentiate between two types of entries. If this bit is not set, then the entry contains up
to three query positions. If the total number of positions is less than three, then the
unused bits are filled with a special null data (i.e., —1). If the status bit is set, the entry
holds a pointer into the secondary section, and the count of the matching words is

stored consecutively in the secondary table.
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Figure 5-4 Two hit filter Query Neighborhood data structure

The first major task of the hit generator is to generate the addresses to the position list

in streaming rate. There are three possibilities for the addresses:

1. It can be generated after a new character is read from the database and a new 3-
mer is formed.

2. It can be the address in the pointer section of an entry retrieved from the primary
section of the position list when the status bit is set to one.

3. It can be the previous address incremented by one while reading the secondary

list.
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Recall that each hit can be represented as a pair (d,,q,) where d, and g, are the

coordinates of the matching w-mers in the database and query, respectively. Each hit
generator has an internal counter that holds the index of the subject 3-mer that is being
processed. At each clock cycle, if the status bit of the data from the position list is zero,
then the three hit positions from the position list are paired with the database counter to
generate the hit pairs. Otherwise, data is read from the secondary table, and up to three
hits are generated per clock cycle in the subsequent cycles. The hits are written to the

routing unit's input FIFOs.

II. Routing
The routing stage is responsible for routing the hits from the hit generator to the two-hit
subunits. It has three input FIFOs that are written by the hit generator and four output
FIFOs that are read by the four two-hit subunits. The hits are multiplexed to the four

output buffers on the basis of the alignment they correspond to. The three matches are

broadcasted to the four output ports. A hit with coordinates (d,,q,) is written to the
output FIFO number (d, —q,)% 4. The output port's control logic checks the input

matches to see if any of them should pass through that port. Each output port has an
arbiter which selects inputs from multiple matches that might be required to be written to
its output FIFOs. Higher priority is given to the matches with minimum subject position.
In this way, the hits on a diagonal arrive in increasing database index to the two-hit unit,
which is required if we want to detect all possible two-hits. The following figure shows a

schematic of the routing circuit.
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Each two-hit generation subunit consists of four modules: an address unit, an update
unit, a counter frame memory unit, and a bit vector memory unit. The update unit
receives the arriving hits from routing FIFOs, reads the old hits on the corresponding
diagonals from the counter frame memory, and generates the output that is written to
the bit vector memory. Recall that the counter frame stores the coordinates of the most

recent hit on a diagonal and has a length equal to the query length.

The memory units are mapped to FPGA’s internal BRAMs. Each two-hit subunit stores
one-fourth of the total counter frame and one-fourth of the total bit vector for a subject

sequence. The address unit generates the read and writes addresses to the bit vector
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e Address Unit

The bit vector and counter frame address from the input hit (d,,q,) are calculated as

follows:

d —
ApD = (4~ +0)

In which, q is the query length. Because the bit vector memory will be updated one

clock cycle after the counter frame memory is read, a register is inserted between the

ADD signal and the bit vector memory’s write address.

e Update Unit
The update unit receives a new hit from the input FIFO and the most recent hit from the
counter frame memory and generates the output bit for the corresponding alignment.
The connections between the update units, address units, and the memories are

depicted in the following figure.
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Figure 5-6 Two-Hit update Subunit
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There are several issues that should be considered in the design of the update unit. In
the following, we will describe them in a typical workflow of the update unit. The two-hit
unit reads the new hit from the input FIFO and the old hit from the counter frame,
respectively. Then, it checks if the hits belong to the same diagonal. If they are from

different diagonals, that is, if (d,; —0,0) o4 # (d,; —dy1) e » then the new hit corresponds to

a new alignment mapped to the same address in the counter frame. This indicates that
a new alignment should be mapped to this counter. In this case, the counter is updated
with the new hit and a 0 is written to the bit vector memory to start the processing of the
hits in this alignment. If they do belong to the same diagonal, the two-hit conditions are
checked. If the conditions are met, a 1 is written to the bit vector memory. Otherwise,

the counter is updated, and no action will be taken in the bit vector memory.

Two observations are critical to the determining accuracy of the two-hit filter. First, the
counter frame memory can have random matches generated from the previous
sequences. These random matches can cause extra two-hits to be committed. In order
to avoid these, a sequence ID is attached to the hit packet and is written to the frame
counter. The content of the counter is only considered valid if the sequence ID of the old
hit matches the sequence ID of the new hit. Otherwise, the counter is updated and a O
is written to the bit vector memory. We noticed that a 4 bit sequence ID gives enough
accuracy to this purpose. Second, the overlapping hits should be managed properly;
otherwise, the number of the seeds that will be reported will be significantly more than
what is required. Recall that, in order to generate a two-hit seed, the two matches under
consideration should not overlap. We take the following approach: if the old and the new

hit overlap, the counter is kept unchanged. In this case, we might miss a two-hit if there
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is a third hit that doesn’t pair with the old hit to generate a two-hit while still generating a
two hit with the new overlapping hit. In order to avoid this, we extend the distance
checking of the two-hit filter by 3. Our results show that the increase in the number of 1s

in the bit vector due to this is negligible.

IV. Bit Vector Output Unit

The output unit provides the output interface of the two-hit units. The details of the
functionality of the output unit differ from system to system. Currently, we have two
architectures for this subunit. One architecture reads the contents of the four bit vector
memories and outputs their contents consecutively as soon as the bits are committed to
the BRAMSs. The other architecture only provides a status bit indicating that the contents
of its bit vector memory are valid until all of it is read out. Both of these architectures
reset the bit vector memory while reading its contents. This way, we prepare the bit

vector memories for the next subject sequence.

The output unit has three states: the starting, processing, and flush state. In the starting
state, the subject index is less than query and subject length. Thus, the output unit
doesn’t commit anything. In the processing state, wherein the subject index is less than
subject length but more than the query length, upon any increase in the subject index,
the output unit can commit one bit. In the flush state, where the subject index is equal to
the subject length, the output unit outputs the remaining bits. During this time, nothing is
written to the BRAMs. The output unit uses counters to count the number of bits read
out. For each subject sequence, the control characters inserted into database stream

help us count the length of each subject sequence and calculate the required bits.
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Note that an incorrect insertion or omission of a bit will change the entire bit vector, and,

therefore, excessive care should be taken to avoid such glitches.

Compared with the seed generation module that is implemented in Mercury BLASTDp,
our two-hit filter has a significant advantage. Our two-hit filter does not use heuristics
and, therefore, has exact agreement with the two-hit seeding algorithm used in NCBI

BLAST.

5.4 EUA Filter

Recall that the key idea behind TreeBLAST is that an ungapped alignment can be
performed with iterative merging using a tree structure that forms a two-dimensional
systolic array. The database sequence is streamed across the leaves of the tree and
one complete score sequence (the set character-character match scores for that
alignment) is generated every cycle. The score sequences are processed by the tree,
which is also pipelined. For each alignment, the score of the best local alignment
emerges after a few cycle delays. The nodes of the tree consist of some basic
comparison logic; the tree size is generally limited by the number of BRAMs on the
FPGA and by the tree area for large queries. The structure can be modified in several

ways to run more efficiently and to handle various cases.

Folding. To handle queries larger than can fit on a single chip, the tree is “folded”.
Rather than generating a scoring sequence every cycle, i cycles are required, where i is
the number of folds. On each clock cycle, 1/i of the score sequence is generated. That

is, the tree is used on multiple iterations to handle the sequence.
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Replication. When queries are small enough to fit multiple trees on a chip, they are

replicated to take advantage of available resources.

The idea behind EUA filter is to couple the database stream with a bit vector indicating
which alignments can safely be ignored (as generated by the two-hit filter). For
example, a 1 in the bit vector corresponds to a position where the alignment must be
processed, and a 0 corresponds to a position where it can be skipped. We now look at

the skipping mechanism.

5.4.1 Theoretical General Skipping

The idea behind general skipping is, on every cycle, to look ahead in the bit vector to
find the next 1 (corresponding to the next alignment to be examined) and then slide the
database the correct number of positions. Ideally, general skipping takes only the
number of cycles equal to the number of ones in the bit vector. The additional hardware
required, however, is complex. For a bit vector, the “look ahead” logic is similar to a
leading one detector used; e.g. in a floating point adder. On each cycle, both the bit
vector and the database stream must be able to , slide any number of positions up to
the maximum number supported. This, in turn, requires that each register in the stream
buffer have a multiplexor (MUX) that is large enough for every possible number of
positions that could be skipped. It also requires complex routing logic. As a result,
support for even a small range of choices makes the logic for general skipping more

expensive than the original tree.
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5.4.2 Skip-Fold Mechanism

Recall that an F-times folded tree is folded to 1/F its original size and requires only 1/F
the logic of the original but requires F cycles per alignment rather than 1. The idea
behind folded skipping is to process unfiltered alignments in F cycles (as before) and to
process the others in only one cycle. The control for this scheme is thus extremely
simple; i.e., there is no need for complex look-ahead or routing logic. Rather, if the bit-
vector value of an alignment is a 0, the database stream simply needs to be shifted; if
the value is a 1, then the filter will continue processing the alignment for a delay of

another F - 1 cycles.

The hardware cost is a slight increase in control complexity; no other additional logic is
needed. The performance benefit of folded skipping can be demonstrated as follows.
Assume that the bit vector for a size N database has O 1s. Without skipping, an F-
folded tree requires roughly F x N cycles to process the database. With skipping, the
number of cycles is N + O x (F — 1). If F is 16 and N/O is 20, then the speedup is
greater than 9x. This speedup occurs independently of the distribution of 1s in the bit
vector. The question is: why bother folding at all? The answer is that folding gives a way
to make the EUA structures (trees) substantially more compact than previously and,
thus, allows them to be replicated. For example, a database of size N and a query of
size M is handled by a single tree (with a single database stream). This takes N cycles.
Now, replace the tree with F trees folded to 1/F their original size. This new structure
now collectively support F database streams, each of which has a throughput that is a
substantial fraction of the original. The limit on the number of trees is generally given by

the query size (M), the number of folds (F), and the number and size of the block RAMs.
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Efficient implementation of Skip-Fold idea depends on the implementation of the Folding
mechanism. A naive approach to implement Folding is to store the results of the root

node in a smaller tree as shown in Figure Figure 5-7-a.
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Figure 5-7 Implementation of a 4x Folded tree

The problem with the naive approach can be seen in the figure as well. The size of the
small tree depends on the number of Folds and can become bigger than the original
folded tree. In order to solve this problem and implement folding effectively, we have
introduced another node type which we call the Fold node. Using the Fold node, the
tree in Figure Figure 5-7-a is implemented as shown in Figure Figure 5-7-b. The fold
node implements a sequential logic version of the NonLeaf node. In contrast with NL
node, it only has one input set. It uses its internal running score set instead of the
second input. At each clock cycle, it merges its input with its internal running score

values( which are initialized to zero), and then updates the running scores. After F

101



clock cycles, it returns the running scores and resets them to zero. Using the Fold node,
the implementation of the skip-fold mechanism and its control logic becomes extremely
simple. If the input 2-Hit bit is zero, the state machine that controls the Fold node stays
in initial state. If the 2-Hit bit is one, it takes additional F-1 clock cycles to return to initial

state and return the result.

5.4.3 Seed Lookup Mechanism

The drawback of folded skipping is that, whereas Os are processed Fx as fast as 1s,

they still take one cycle per character. Because the fraction of Os (Z) is generally 98% to

99% of the stream, processing these null alignments still takes 7 of the cycles,

Z+(1-2)xF
or 75% to 85% for almost all query sequences. The idea behind seed lookup is to limit
the number of positions that can be skipped to a single number (S) (i.e., 16) that is
determined experimentally. That is, the database stream skips either S positions or
none. If there is a sequence of S or more Os, then S skipping is used; otherwise, it is
not. This scheme greatly simplifies the MUX logic. This idea alone will not be as
beneficial as the skip-fold mechanism, but there is another idea that makes constant

skipping extremely beneficial.

During the F clock cycles required by the skip-fold mechanism when EUA is working on
an unfiltered alignment, a seed lookup module can stream in the database and the bit
vector until it finds the next unfiltered diagonal. The seed lookup module finds the next
unfiltered alignment by implementing a constant skip mechanism with S = 16. That is,
during each clock cycle, it either skips one character or 16 consecutive characters until

it finds the next unfiltered alignment. If the constant shift amount is set to 16, with a
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typical F = 16, 16 x 16 = 256 filtered diagonals (0s) can be skipped. The performance
gain is dramatic; only a small number of cycles are spent processing 0s, improving
performance of this phase by more than 4x. Note that variable folded skipping
addresses another significant issue with the EUA filter; i.e., the need to process
artifactual null alignments that are inserted as padding during startup and teardown of

each database sequence.

5.5 CAAD BLAST Architectures

We have implemented the CAAD BLAST filtering system in two different ways:
multiphase and pipelined systems. In the multiphase system, each phase consists of
one filter with the intermediate results stored in off-chip memory. We replicate each
filter as much as possible. Operationally, we load the FPGA with a filter type, generate
the filtering results using that filter and save the results in the external memory. Once
done, we load the FPGA with the next filter. This way, we can replicate the cores
maximally. Because the system consists of three filters, we have to reprogram the

FPGA three times per run (four times if done in succession).

When originally conceived, we believed the multiphase algorithm to be preferable to the
pipelined algorithm described next. The reason for the change is due primarily to two
factors. First, configuration time has become less of a priority in recent FPGA designs
than previously. Whereas a few years ago FPGA configuration took only about a tenth
of a second, it now takes well over a second. Some of this time is due to the FPGAs
themselves being larger, but more important is the commercial decision not to use

board-level resources on the capability of fast configuration. The second reason is that
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we originally overestimated the complexity of the pipelined implementation. While

extremely challenging, it has proved plausible in the time budget of this dissertation.

Our goal now in presenting the multiphase design is to assess the area and
performance of the system and lay out the foundation for the pipelined system. In the
pipelined system, all three filters are chained together in a single architecture. Thus,
there is no need for reprogramming. On the other hand, the granularity of the cores
decreases, and, therefore, the replication factor will not be maximal. Also, delicate load
balancing is required to make sure that no unit is overloaded. We will discuss both
designs in the subsequent sections. As always, changing technology or commercial

priorities may make one or the other method preferable in future FPGA generations.

5.6 Multiple Phase System on a Gidel Board

5.6.1 System Configuration and Operation

In the multiple phase system CAAD BLAST operation is as follows. For each filter, the
FPGA is configured, the sequence is loaded and the filters are executed. In the first
phase the two-hit filter generates a bit vector that is stored in the on-board memory. In
the second phase the EUA filter reads the bit vector and the database (a second time)
and returns a list of high scoring sequences. It saves their addresses to the onboard

memory; we refer to this reduced database as DB'. In the third phase a Smith
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Waterman filter is run on DB'. Processing continues with the Smith-Waterman filter until
DB” is generated. In the final step, DB” (or DB’ for ungapped alignment) is formatted

and executed with the original NCBI BLAST.

To accomplish this, two problems need to be solved. The first is to get agreement right.
There are two parts: determining the internal thresholds that NCBI BLAST would use,
especially cutoff, and correctly computing the E-values in the final report. The second
and more serious problem is that we need to ensure that DB” both (i) contains all the
sequences that NCBI BLAST would return, and (ii) is sufficiently reduced so that the
overhead of formatting DB” does not overwhelm any potential performance gain. Figure

5-8 shows the global structure of CAAD BLAST.
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Figure 5-8 CAAD BLAST

In the precompute module, the host uses logic from the NCBI code to compute the
various parameters needed to determine cutoffs and Evalues for both ungapped and
gapped options. To ensure that the Evalues match those that would be computed by
the original code, we also pass the original search space information. We have
implemented all three filters on the reference system which contains a Gidel PROCe Il
FPGA board. The FPGA is an Altera Stratix-Ill 260E. At the time of implementation,
this was a high-end device (using the 65nm process), but now is nearly three
generations old. For on-board memory there is 4.5GB of DRAM partitioned into three

banks of 2GB, 2GB, and 512MB, respectively. Each bank has a 64-bit interface and
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can be accessed independently. One of the 2GB and the 512MB banks run at 333MHz;

the other 2GB bank runs at 166MHz.

We have written a daemon code that keeps the database preloaded into staging
memory. Unlike NCBI BLAST the database is unformatted. The user specifies the

query and parameters using the NCBI BLAST interface.

While we currently assume a high-end FPGA, CAAD BLAST is easily decomposable
and also runs well on low-end devices. Assuming sufficient memory bandwidth, the
performance is roughly proportional to the number of BRAMs. The size of on-board

memory should be sufficient to store the database.

5.6.2 Results

For the 2-hit filter, performance depends on the number of filters which, in turn, depends
on the FPGA resources needed for each filter instance. The logic required is trivial,
consisting of less than 1% of that available on the reference FPGA. The on-chip

memory required, on the other hand, is the critical resource.

Table 5-2 Two-Hit Filter Statistics

Query | #of 2-Hit | # of Hits # of excess cycles
Size Filters per DB char | per DB char
81 38 0.064 0.0002
217 35 0.205 0.0100
490 28 0.567 0.0524
838 25 0.891 0.2203
1204 21 1.244 0.3062
2205 14 2.570 0.8790

Table 5-2 Two-Hit Filter Statisticsshows the number of two hit filters that can be

instantiated, using the design described on a high-end Stratix Il FPGA, for a selection
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of sequences from the NR database. The primary design decision therefore has to do
with the structure of the position table, in particular the number of positions per entry in
the primary table. For most query sizes (less than 1K) this number (3) falls out
immediately from the convenience of packing that number of 10-bit addresses into a
single 32-bit word. Also for small queries, having, say, 100 filters does little good: that is
far more than the number of streams that can be supported by the memory interface in
the reference design. For larger queries, there is the possibility of optimization by
trading off table size for number of filters. That is, by having more entries in the primary
table, some accesses to the secondary table can be avoided. But the larger table size
allows fewer filters to be fit on the FPGA and so fewer database streams to be

processed in parallel.

The right two columns in Table 5-2 give an indication of this trade off. The number of
hits per database character (3-mer) is independent of the structure of the position table.
For queries of size 1K, the expected number of hits per position is only slightly more
than 1; having three positions per entry allows the primary table to account for most 3-
mers. For the query of size 2205, however, the secondary table must be accessed
frequently. The rightmost column illustrates this: it shows the number of excess cycles
per database character; i.e., the number of extra cycles needed due to accessing the
secondary table. For small queries, there are virtually no excess cycles, but for the 2205

query, nearly half the cycles are due to secondary table accesses.
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Two-Hit Filter Performance versus Query Size
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Figure 5-9 Graph shows performance as a function of query size for the Two-Hit
filters in the reference design.

The performance of the 2-Hit filter phase depends substantially on the query size.
There are two effects: the number of filters per chip and the amount of throttling that
needs to be done because of references to the secondary table. Experimental results
are shown in Figure 5-9 in terms of cycles per character as a function of query size. For
typical protein sequences, size 100 to 500, the throughput is at least 25-30 characters

per cycle.
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EUA Fliter Performance versus Query Size
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Figure 5-10 Performance as a function of query size for the implementation of the
EUA filter in the reference design.

For the EUA filter phase, the limit on the number of trees (filters) is generally given by
the query size M, the number of folds F, and the number and size of the BRAMSs. For
the reference design, the number of columns of the scoring matrix that can fit in an M9K
BRAM is 32. Since BRAMs are dual ported, it is most efficient to use them to look up
two characters at a time. This places a practical limit of 16 on F. Given the 912 BRAMs
in the reference FPGA, the maximum number of EUA filters is 1824 x F/M, or 96 for M =
300. The graph in Figure 5-10 shows performance in cycles per character as a function
of query size. The upper graph assumes that the computation is memory bandwidth
limited, the lower does not. For the “limited” graph, the range is from 3 to 30 characters

per cycle.
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Table 5-3 Various results for CAAD BLAST. Averages from running sequences of
NR versus NR.

NCBI BLASTP Gapped
exec time on lab PC 46s
Exec time on web server 12-20s

CAAD BLASTP

NR' (sch1) reduction from NR
% of sequences remaining 3.24%
% of residues remaining 6.04%

NR” (S-W) reduction from NR 0.054%

% of sequences remaining 0.088%
% of residues remaining 0.53s
Format overhead NR” 2.62s

NCBI exec. overhead NR”

Table 5-3 contains various results from the filter and reference runs. Our primary
reference system is a 2008 64-bit 3GHz Xeon quad processor (Harpertown X5412) with
8GB of memory. We have used NCBI BLAST 2.2.20 (legacy) for reference and for the
base code of CAAD BLAST. We have implemented all three filters on the reference
system which contains a Gidel PROCe Ill FPGA board. We compiled each with
standard optimization settings and run with default settings. For additional reference we

use the web server at NCBI.

We now discuss some of these results. We note that they are averages; there is
variation as expected from sequences of widely varying sizes. A database sequence is
retained if it contains at least one HSP that scores above the cutoff. The NR database is
reduced by a factor of 17. For gapped processing with Smith-Waterman, NR is reduced
by a factor of 1136 and generally only a few thousand sequences remain. The

formatting overhead includes host processing for the filters.
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Table 5-4 contains performance results of the reference design with respect to the NR

protein database as of 2009. Also shown are results for the unaccelerated host PC and

the NCBI Server.

Table 5-4 Performance of the reference design with respect to the 3.53G residue NR database.

Query size | 2-hit chars/cycle | EUA chars per | S-W and | Total time Total time | Total time
percentile Time cycle time overhead | accelerated | CPU only | NCBI Server
l7Jsptrt10 500 %.5?{SCycle ?O?fSC yele 3.8s 6.4s 26s 14s
o |des . |aus s | o4 | 4es | 208
ggsﬁ 2000 Z(slsycle g{ggcle 7.8s 19.2s 95s 40s

For CAAD BLAST the S-W time is less than the time for the other filters. Most of the
time is in executing the final run of NCBI BLASTP. By percentile we indicate the rough
proportion of queries that are smaller than the size shown [Cou05]. Speed-ups over the
unaccelerated PC range from 4x to 5x. The NCBI Server is a large cluster that

processes queries in parallel according to load.

5.6.3 Scalability Analysis

One issue with FPGA-based systems is that no standards have been adopted as to the
proper configuration of a system for high-performance computing (HPC) with FPGA
coprocessors. This is in stark contrast to GPUs, where application developers and HPC
system builders have a very good idea of what to expect. For FPGAs, on the other
hand, there are wide ranges of both quantity and types of FPGA resources (i.e., on the
FPGA chip). Even more critically, the supporting infrastructure is completely vendor-

dependent and also varies widely. Exacerbating the problem, there are many such
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vendors, and no one vendor has a dominant position in the market or is supported by
either of the major FPGA producers. These board-level parameters include: the amount
of onboard memory, FPGA-memory interface (total bandwidth, latency, number of
streams, and flexibility of the streams), I/O bandwidth, and configuration time. These
differences make it extremely difficult to predict performance for a given application,
even starting with the best reports in literature. The purpose of this section is to allow
users of high-performance, FPGA-based systems and potential developers of such
systems to predict the performance of CAAD BLAST on those systems. Our goal in this
section is to investigate the scalability of CAAD BLAST when mapped to different
FPGAs. This is done in two dimensions: timing and area. With regard to both area and
performance, we have calculated theoretical models that show how the system scales
on different systems. We have based our study on Altera FPGAs and our multiphase

system.

CAAD BLAST consists of four phases:

T_2h = Time to run Two-hit Filter

T_tb = Time to run Exhaustive Ungapped Alignment Filter

T_sw = Time to run Exhaustive Gapped Alignment Filter

T_ncbi = Time to run NCBI BLAST

There is overhead between the phases. This primarily affects the first three (the FPGA)
phases and consists of the time for FPGA reconfiguration before the start of the phase
T_config. There is also some miscellaneous overhead (T_misc), including the time
required to compute the contents of the query-specific data structures, load the FPGAs

with data, and format the database for the final NCBI BLAST pass.
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T total=T 2h+ T tb+ T _sw+ 3*T_config + T_ncbi + T_misc

FPGA Phases in General

Each FPGA phase consists of streaming the database through the FPGA in some
number of streams and outputting some amount of data.

In each term, T_2h, T_tb, and T_sw depend on three things:

1. The database size (Size_db)

2. Streaming bandwidth

3. Various additional factors related to the efficiency with which the bandwidth can be
used

The streaming bandwidth can be limited either by the external bandwidth of the memory
interface (BW_mi) or by the internal bandwidth of the processing configurations
(BW_2h, BW_tb, and BW_sw, respectively, for each phase). The bandwidth of the
memory interface BW_mi can be limited by the FPGA’s |/O BW capacity, but, generally,
FPGA-based systems are constructed to not use more than a fraction of that capacity.
The FPGA I/0 BW, not including the high-speed serial interfaces, is at least 20 GB/s for
any high-end chip produced in the last 5 years, most being much higher. Our Gidel
board, however, has a memory bandwidth of 333 Mhz * 16 B + 167 Mhz * 8 B = 6.7
GB/s. In this application, 333 MHz * 1 2B = 4 GB/s is usable to stream the database.
The internal bandwidth for each configuration is related to the number of parallel filter
units and the operating frequency of those units.

For the various phases:

* P_2h, P_tb, P_sw = various numbers of processors/streams

* F_2h, F_tb, F_sw = various operating frequencies
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Both of these terms, the number of processors, and the operating frequency, depend on
the FPGA resources and the process generation. For each phase, the number of
processors also depends on the query size (S_query). The resource requirements are
in three categories: BRAMSs, logic, and I/O bandwidth. The different phases use these in
different proportions, so the limiting factor varies from phase to phase. With respect to
the 1/0O interface (off-chip memory), substantial overhead logic is required to interface to
the large number of streams possible, especially for the two-hit filter. For example, in the
Gidel system, the database can be partitioned across two memory banks, each of which
has a 64 bit interface. This physical bandwidth can be translated into a number of virtual
streams by the interface logic (16 for the Stratix-lll). These virtual streams are
constructed automatically using vendor tools and can take up to 20% of the FPGA'’s
logic and also a number of BRAMSs. Various additional factors either speed up or slow
down the processing, such as:

+ The amount of data that must be output. One could imagine this cutting into the
external bandwidth capacity. However, with the most recent implementations, the
output stream is small for all phases.

* Speedup and slowdown factors. These are mostly algorithmic, complex, and
phase-specific. These can be substantial and are described in detail below.
Because the replications are totally independent, there is no problem in routing
and mapping.

Scaling to future-generation FPGAs, various FPGA families, and FPGAs of various

vendors. We give the performance numbers as functions of various resource
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capabilities. For logic and components (BRAMs), this is straightforward. For chip 1/O
bandwidth (BW_mi), we make the following observations:
* The glue logic for the Gidel system described takes up to 20% of a Stratix IlI,
10% of a Stratix IV, and a smaller percentage of a Stratix V.
* An alternative way of looking at this is to keep the fraction of logic fixed at 20%.

In that case, the bandwidth supported doubles in each generation.

Phase 1: Two-hit filter -- T_2h
The number P_2h of units depends on the resources available on the device and those
required for the computation. Because the logic requirement is trivial, the BRAMs or
BW_mi are the limiting factor. The number of BRAMs depends on the query size.
We use the following notation to parameterize the BRAM resources available and
required:
T_144 : Total number of M144k BRAMSs available
T _9: Total number of M9k BRAMs available
T_20 : Total number of M20k BRAMSs available
RQ_144: required number of M144ks per query neighborhood for a given query
RQ_9 : required number of M9ks per query neighborhood for a given query
RQ_20 : required number of M20ks per query neighborhood for a given query
RA_9 : additional required number of M9ks per stream for internal calculation

RA_20 : additional required number of M20ks per stream for internal calculation
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The following tables give the area usage of the two-hit filter and the corresponding
replication number. The Stratix Ill and Stratix IV each have some mix of 9 K and 144 K

BRAMSs. The Stratix V has all 2 OK BRAMSs.

Table 5-5 two hit filter area

Query | RP_9 | RP_144 RA 9 RP_20 | RA 20 | ALUT | ALM | Registers
size
256 50 3 12 25 9 1800 1425 799
512 84 6 12 42 9 1800 1425 799
1024 93 6 16 47 9 1800 1425 799
2048 136 8 24 68 13 1800 1425 799

The number of two-hit filters is also affected by the interface overhead. From our
experience with the Gidel interface and the Stratix Ill, we estimate the following
overhead for the Stratix family:

Stratix Ill: For 32 read and write ports, we need 270 M9ks

Stratix IV: For 64 read and write ports, we need 540 M9ks

Stratix V: For 128 read and write ports, we need 540 M20Ks

Including this overhead gives us the following replication sizes:

Table 5-6 two hit filter replication

Query Size | P_2hfor Stratix I1l | P_2h for stratix IV | P_2h for stratix V
256 32 48 96
512 24 32 70
1024 20 32 64
2048 16 22 50

The maximum number of filters on the Stratix Ill and Stratix IV are:
T 9-2x ﬂ xRC 9
T 144 - RQ 144 -
+2x

P_2h_unlimited=2 x
RQ _144 RQ_9+RC_9
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On the Stratix V, the maximum number of filter is:

T 20
RQ_20+2xRC_20

P_2h_unlimited=2 x

The derivation is as follows. In general, this is the total amount of the resource divided
by the amount needed per unit. For the Stratix V, the corrections are due to the fact that
BRAMs are dual-ported and can be used for two streams (RQ_20) or not (RA_20). For
the Stratix Il and Stratix IV, the additional complexity is due to there being two ways to
construct units: (i) out of M144Ks for RQ and M9Ks for RA or (ii) out of M9Ks for both
RQ and RA. The left term has the RQ part of (i) while the right term has the RA parts of
both methods and the RQ part of (ii).

At this point, we could naively compute the time as T_2h =S_db / P_2h*F_2h, but there
other limiting factors, such as:

1. The bandwidth of the memory interface BW_mi might be less than P_2h*F_2h.

2. In our current multiphase implementation, we need to save a bit vector in off-chip
memory. This also consumes BW_mi. However, in our current scheme, this
output bit vector is heavily compressed, so this effect is negligible.

3. Only one DB sequence is allowed to be evaluated at a time by a single two-hit
filter. That is, there can be no overlap among DB sequences. Thus, it takes
roughly 3 x S_q cycles to process a DB sequence because there need to be
three roughly equal-sized phases; i.e., startup, steady-state, and teardown.

4. Less than one character per cycle can be looked up because of the need to go to

the secondary table. On the basis of our experiments, the weighted average of
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the number of clock cycles spent on the secondary table is less than 10% of the
total time calculated above. However, this number, depends on query data and
query size; it has both high variance and increases drastically with large queries.

Sample results from 30 queries are as follows:

Table 5-7 average of the number of clock cycles spent on the secondary table

Query Length | Average Max Min
1-256 1.6% 8% 0%
256-512 7% 16% 1%
512-1024 32% 56% 14%
1024-2048 128% 160% | 81%

Thus, an estimate of the two-hit filter running time, assuming that two-hit filter

throughput is limited by the internal bandwidth, is:

_ 2xS_db+S_qxS_db_#_Seq+S _extra
- P _2hxF _2h

T 2h

Where d_extra=table value *S_db

Fixing the extra cycles at a conservative 1/3, the estimate becomes:

2xS_db+S _db_# seqxS _q
P_2hxF _2h

T 2h=ﬂ><
3

We now need to go back and see where we will be limited by BW_mi.
BW_2h =S _db/T_2h
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For the Stratix Ill, Stratix 1V, and Stratix V, the average numbers of P_2H are 24, 32,
and 70, respectively. Then, the internal bandwidths are 1.3 GB/s, 1.8 GB/s, and 3.9
GB/s, respectively. All of these are less than the raw available bandwidth of our Gidel

board and a small fraction of the of the FPGA’s capacity:

S_db

T 2h = o X 56Mhz

Phase 2: Exhaustive Ungapped Alignment filter (T_tb)

For the EUA filter, the replication of filter units is logic limited. As a result, the total
number of ALMs on the FPGA is divided by the total required ALMs per stream in order
to generate the replication size estimate.

_ total ALMs on FPGA — ALMs used for memory interface
o~ ALMs required per stream

The following tables give the resource usage of the EUA filter and the corresponding

replication number. This includes reserving 20% of the logic for the memory interface.

Table 5-8 TreeBLAST Area and Replication Number for Stratix Ill and Stratix 1V

Query Size | ALUT | ALM Registers | M9k | P_tb for P_tb for
Stratix 11 Stratix IV
1-255 5817 4670 4938 8 16 32
256-511 9574 7815 9113 16 11 21
512-1023 17065 | 14287 | 17474 32 6 14
1024-2047 | 32179 | 27365 | 34203 64 3 6

Table 5-9TreeBLAST Area and Replication Number for Stratix V

Query Size | ALUT | ALM | Registers | M20K | P_tb for Stratix V
1-255 5358 5781 | 4665 8 49
256-511 8714 9848 | 8650 16 32
512-1023 15502 | 18214 | 16627 32 17
1024-2047 | 29059 | 34858 | 32588 64 11
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For EUA, there are two additional factors that affect stream throughput:

1.

Stream padding. Database sequences should not overlap. Therefore, S_q null
characters ($) are inserted between database sequences. Consequently, the
number of characters that must be streamed is the size of the database plus the
number of sequences in the database times the query size: S db + S q
*S _db_# seq.

Fraction of alignments that pass the two-hit filter of phase 1. With the default
folding factor of 16, each “passed alignment” takes 16 cycles. Almost all of the
remaining latency is hidden; i.e., it skips the “nonpassed alignments.” By
convention, we use 1s to signify passes and E_1 to express the ratio of all set bit
in the bit vector to total bit vector size. E_1 varies from 2% to 5% depending on
query size and query composition. The weighted average is close to 2% (see
Table 9 below). Note that these two factors are correlated. Although it is
annoying to need to pad the TreeBLAST filters with null characters, most of the

latency is hidden with the skip mechanism.

Table 5-10 E_1 versus Query Size

S q | average | max
256 0.008 0.009
512 0.016 0.028
1024 0.02 0.025
2048 0.027 0.043

In general, the upper bound on P_tb can be calculated as follows:

avg_seq+q_size 8 off band xE _1x16

P_tb=min(P_tb_unlimited,
avg _seq f _tbf

)

If the throughput of the TreeBLAST filter is limited by the internal bandwidth, then:
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_ (S.db+5_q xS_db_#_Seq) x E_1 X 16

P_tb X F_tb
Again, we now need to go back and see where we will be limited by BW_mi:

T_tb

BW_tb=S_db/T_tb
For the Stratix Ill, Stratix IV, and Stratix V, the average numbers of P_tb are about 10,
20, and 30, respectively. Then the internal bandwidths BW_tb are 6.0 GB/s, 12.0 GB/s,
and 18.0 GB/s, respectively. All of these are greater than the usable BW_mi for that
generation, which is 4 GB/s for the Stratix |l and estimated to be 8 GB/s and 16 GB/s
for the Stratix IV and Stratix V, respectively. Therefore, for current FPGA coprocessor

designs, the true T_tb is likely to be:

Ttb= S_db
-~ BW_mi

Phase 3: Exhaustive Gapped Filter with Smith-Waterman (T_sw)

For the exhaustive gapped filter pass, we use Smith-Waterman. Because the database
has been heavily reduced by the previous phases, little effort has been made so far to
parallelize or otherwise optimize here. Therefore, we assume a single filter which can
be folded as needed for large sequences. The following table shows various statistics.

The number of folds required is ceil(S_g/MaxQuerySize).

Table 5-11 Smith-Waterman

ALUTs per PE 223
ALUTSs per PE w/Folds 227
ALMs per PE 140
ALMs per PEw/ Folds 148
Reqgisters per PE 63
MOIKs per PE 1
M144Ks per array w/Folds 16
Stratix 111-- Max query size w/o folding | 650
Stratix 1V- Max query size w/o folding | 1450
Stratix V- Max query size w/o folding 2500
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The following table shows the average ratios derived from experiment:

Table 5-12 Fraction database remaining after TreeBLAST and before
Smith-Waterman phase

S q S db’in number of chars | S db’ in number of sequences
256 0.01 0.02
512 0.03 0.04
1024 | 0.05 0.09

Assuming that we are limited by the internal bandwidth BW_sw, the time per query is:
T sme S _dbxrdl char+S_qxS_db_# Seqxrdl_seq
- F_sw
where rd1_char is the fraction of the database remaining in characters, and rd1_seq is

the fraction of the database remaining in number of sequences.
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5-11 Expected Timing results based on timing model of CAAD BLAST on
different FPGAs
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5-12 Expected speedup results based on timing model of CAAD BLAST on
different FPGAs

Figures 5-11 and 5-12 show the expected timing and speedup on three generations of
FPGAs. The calculations are based on the timing model described before and the
actual runs on the Gidel board. The timings are based on a version of the NR database
with 5.5G characters and 15.6M sequences. As can be seen the FPGA time is halved
from one generation to the next. This is obviously expected since the FPGA resources
double over time. On the other hand the remaining timings do not change. This makes
the final NCBI BLAST run time a bottleneck in the latest generations. As expected the

speedup linearly increase from one FPGA to the next generation FPGA.

5.7 The Pipelined System on a Convey Machine

Theoretically, from a parallelization point of view, the multiphase system is an ideal
solution, the reason being the fully parallel nature of the filters. For all three filters, the

workload can be distributed between replicated modules with the only overhead coming
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from the distribution and support of the multiple streams. The modules themselves can
be replicated as many times as possible, taking advantage of all the available resources
on the chip. The major problem with this approach is the time needed for
reprogramming. Although FPGAs generally support programmability in milliseconds,
most commercial boards need at least a full second to program the FPGA. This extra
overhead slows down the original application. Thus, we decided to chain all filters
together. In this Section, we introduce the pipelined system. The pipelined system is

implemented on the Convey machine and its Xilinx FPGA.

5.7.1 System Configuration and Operation

A database server reads the database from a disk in Fasta format and creates the
database data structures that are required by the hardware. The server then shares
this data structure through a shared memory interprocessor communication mechanism
with the client BLAST applications. Each protein residue is encoded as a binary value
between 0 and 25. In order to indicate the end of a sequence, each database sequence
is appended with a special control character. The control character is used by the
hardware to separate the processing of subject sequences. Its binary encoded value is
26. The subject sequences are extended with dummy letters such that they are all
multiples of 16 characters in length. This is required to simplify the operation of the

hardware, particularly the 16x mechanism described earlier.

The database is organized in two main parts: sequence array and offset array. All of
the subject sequences are concatenated together and stored in the sequence array.
The sequences are separated with the special control character described above. The

starting locations of the subject sequences are stored sequentially in the offset array.
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For each subject sequence, the starting character’s location, relative to the first

character in the sequence array, is stored in the offset array.

Each EUA unit is responsible for processing a portion of the database. The partitioning
of the workload between multiple FPGAs and multiple EUA units is performed with a
data structure that we call the context array. Each FPGA has its own context. A
context contains the following information: a pointer to the subject array, a pointer to the
offset value that corresponds to the first sequence that should be processed by the unit,
the number of sequences that should be processed by the unit, and a pointer to a

memory location to store the generated results.

In order to retrieve the first sequence, the EUA unit adds the offset value of the first
sequence to the subject array’s address. Subsequently the EUA unit will read the
subject sequences from the subject array until the required number of sequences is
processed. The offsets are used to interleave and distribute the subject sequences

among two-hit units.

5.7.2 Pipelined Filters

Two hit .
:'Eﬁlter :>D_:I Tgltzlt
& [Two hitlu5 T
E:bﬁr:er I :}U—h Tree —>
0 ba_" Blast
0 | Two hit
O fiter ) x
= .
Two hit Db Stream i
I:::'I‘"lltﬁr ::)_

Figure 5-13 pipelined filtering unit
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Figure 5-13 shows the overall scheme of a single-filter bank. Parallel database streams
feed the two-hit filters, which, in turn, send the 0/1 stream to an EUA filter. A copy of

the database is streamed to the EUA filter, where it is coupled with the 0/1 stream.

Subject Stream Subject Stream
Il g JL L
‘ 2 hit 2 hit 2 hit 2 hit
| Glue logic | Glue logic
E L £
o m
o £
FC) EUA - EUA (T 3
| — s T 2,
oy | Glue Logic 5
0 J L w0
Subject i/ gmith Waterman

Stream —

Filtered Database (tags)

Figure 5-14 Block diagram of Accelerated BLAST

This structure is replicated a number of times depending on the size of the query and
the FPGA. In the final stage, the highest scoring database sequences from all of the
banks are processed with a single S-W module. Speed matching between the two-hit
and EUA stages is accomplished as follows. The EUA filter processes data (a single
sequence) from a single two-hit filter at a time. Processed sequences from the other
two-hit filters in the bank are buffered. Through the mechanism described in the
previous subsection, the EUA filter is capable of consuming three to five characters per
cycle; that is, data from buffered filtered sequences are transferred to the EUA filter F
characters at a time (in this study, F = 16). After processing the data of one two-hit
filter, the EUA filter starts working on the next sequence from the next two-hit filter. In

order to load balance, the database sequences are sorted by length and multiplexed
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among multiple two-hit filters. As a result, the time required to process successive

sequences is nearly equal.

Coupling with the S-W filter is accomplished as follows. For each database sequence,
the EUA filter compares the maximum score generated with a constant threshold. If this
score is larger than the threshold, the EUA filter writes the address of the sequence to a
FIFO. The S-W unit reads these addresses, streams the subject sequences, and

calculates the maximum scores.

5.7.3 Accessing On Board Memory: The Jump FIFO Interface

Throughout the multiple designs, FPGAs, and FPGA platforms, a uniform interface is
used to access the external memory and retrieve the required data. Following the
terminology of the Gidel IP library, we call module the jump FIFO interface. Its interface

consists of the following five signals.

e Jump: requests a “jump” to a specific address in the memory,

e Address: the address of the memory to jump to, when the jump signal is set,

e Data: the data that is being transferred through the port,

e Read/Write: sequential read/write requests,

e Ready: Interface ready for the next transaction. This can be interpreted as data
valid in case of reading, and output port ready to receive another data in case of

write.

The jump FIFO interface is basically a FIFO interface, except that it has an embedded

jump functionality. In case of reading for example, when jump is set, the FIFO should
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load the data from the external memory from the address specified in the address port
as soon as possible, and it should disable the ready signal until the new data arrives.
There are several instances of this interface in the system. The jump interface was
originally used and developed by the GIDEL company as part of their board's multiport
memory controller IP core, and it proved to be a simple and efficient interface once we
ported the design to the CONVEY computer. As shown in Figure 5-14, each EUA unit
is connected to multiple two-hit units. For each EUA module, there is an address
module that is responsible for interleaving the offsets among its two-hit units. As an
example, consider a case when there are three two-hit units per EUA. In this case,
while the EUA unit processes subject sequences sequentially, the two-hit filter i reads

and processes sequences as 3k + i where K is an integer.

5.7.4 Glue Logic Modules

In order to simplify the design and streamline its reusability, we have implemented a
module called stream_maker that, given a sequence of offsets, accesses the external
memory through a jump FIFO interface and generates the character stream as if the
offsets were not originally interleaved. stream_maker has a FIFO that is written by the
address units and contains the offsets of the sequences that should be fetched.
stream_maker generates the character stream which is fed to the two-hit filter.
Similarly, once a sequence passes the EUA filter, its offsets are written to a
stream_maker FIFO. The stream_maker generates the character stream for the S-W

module, which, in turn, performs another level of filtering.
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5.7.5 RTL Optimizations

For queries of up to 256 characters, accelerated BLAST (on each FPGA) consists of
five clusters of two-hit/EUA filters, each with five two-hit filters feeding a single 16x
folded EUA filter. In turn, these five clusters feed a single S-W filter (2x folding). Larger
queries have analogous implementations.

The initial synthesis returned an unacceptably poor operating frequency. We tried
reducing the design size, but the problem was not ameliorated until only an
unacceptably small fraction of the potential chip capacity was in use. Instead, we
solved this problem through two RTL mechanisms: floor planning modules with respect
to BRAMs and redesigning the logic to reduce fan-outs and the lengths of the
communication channels.

There are two problems that need to be dealt with through RTL-level logic: mapping
function I/O to physical I/O and reducing path delay. These are both handled primarily
through the creation of three modular communication interfaces: simple FIFO, jump
FIFO, and a direct register-based interface. These interfaces are described further
below. Using these interfaces, we can place each core anywhere on the FPGA and
keep its communication off of the critical path by simply specifying an appropriate
number of pipeline stages. Other optimizations include replicating registers to reduce
fan-out and eliminating the reset circuit as much as possible. The simple FIFO interface
serves as our flexible general purpose intermodule communication mechanism and is

used especially to foster module independence and avoid the creation of long paths.
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Figure 5-15 Accelerated BLAST external interfaces for

Figure 5-15 shows the external 1/O interfaces for the accelerated BLAST configuration
that supports sequences of length up to 256 characters. Note that there are 26 x 1B
streams and 5 x 16B streams operating continuously and that there are a number of
others that are used for initialization, data offload, and synchronization. These must be
mapped to the physical 1/0O provided by the Convey HC-1ex: that is, the 16 x 4B
memory channels that can operate independently at over 300 MHz. The mechanism

we use is the jump FIFO interface described above.

131



Wait for the

—* Jump_in Jump out |—»  first Sequence

—> . Jump_in FIFO
Address_in Address_out —»

—> i _ 5 Jump_in .
Req_in Req_out Ready to Wait for output

<—| Ready out Ready in | read Data FIFO empty

«—| Data out Data_in P Fmt T

Jump Buffer

Wait for local FIFO empty

Figure 5-16 Jump 10 Interface and Signals

A block diagram and a signals interface for the jump FIFO are given in Figure 5-16. Itis
a generalization of the simple FIFO in that it communicates with external memory at a
specified address. The jump FIFOs are mapped to the Convey physical memory
interface through the Convey memory crossbar module which routes memory

transactions to the correct memory interface.

5.7.6 Replicating and Balancing the Components

We find the optimal number two-hit filters per EUA filter by measuring the fraction of idle
cycles in the EUA filter as a function of the number of two-hit filters and the query size.
The results are shown in Table 5-13 Balance between two-hit and EUA filters.and

indicate that three to five two-hit filters per EUA filter is optimal.
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Table 5-13 Balance between two-hit and EUA filters.

Sr‘;i'a’oﬁ'ﬁz Ratio of 2-Hit EUA Filter
to EUA Filter | Percent Idle Cycles

256 : -
0.008 6 0

512 2 14
0.016 3 0.14
1024 2 13
0.020 3 0.06
2048 2 12
0.027 3 0.03

Overall, the EUA filter enables the database to be reduced by at least 97% for most
query sequences. Therefore, the S-W filter can be compacted substantially through
folding and still obtain adequate performance. The optimally folded S-W filter consumes
characters of the reduced database DB at the same rate that characters of the original
database DB are consumed by the two-hit filters. The raw results are shown in Table
5-14.

Table 5-14 optimal number of folds in the SW filter
Reduction Number of Folds for SW | Number of Folds for SW

Query Size db to db’ Filter (Virtex6) Filter (Stratix V)
256 0.01 7 4
512 0.03 4 2
1024 0.05 4 2
2048 0.07 5 2

When integrated into the overall system, the number of folds is either two, four, or eight.
From the preceding discussion, we see that a speed-matched bank of filters contains
from three to five two-hit filters and one EUA filter folded to affect 16x replication. A

single S-W filter is shared by all of the filter banks and folded to affect 2x to 8x
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replication. The number of filter banks themselves that can fit on an FPGA is a function

of query size and FPGA resources.

5.7.7 Floor Planning

We apply floor planning in two layers. The first layer is applied internally to the two-hit
filters and the second layer is applied for the higher-level modules consisting of the two-
hit filters that feed individual EUA filters. We found it sufficient to map BRAMs to
particular modules and let the synthesis tools continue handling the logic placement.
Although the two-hit filters each require only a small amount of area, their logic is
complex and, more significantly, does not lend itself to pipelining. That is, pipeline
stages would increase the time required to process each character, violating our most
basic design constraint; i.e., flowing the database through the FPGA at a streaming rate
of one character per cycle.

The critical path is the lookup of database w-mers in the query (see Figure 5-4). In the
“fast” case, there are three or fewer matches in the query. In the “slow” case, there are
more and a secondary table must be accessed. The complete two-hit filter is shown in
Figure 5-3. Each fetched entry must be processed in one clock cycle, meaning that a
newly computed address needs to be issued to the position list. As a result, the
addressing circuit contains a combinational path that starts with the output of the

position list and continues to the address input of the same position list.
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The FPGA consists of a pool of CLBs and BRAMS as shown in Figure 5-17. We
number the BRAM columns from the left from 0 to 11. Of these, 4 to 7 are used by the
interface logic and the API; this leaves 0 to 3 and 8 to 11 for user logic. To floorplan the
two-hit filters, we place the BRAMs for the position lists in a square, minimizing the path

length, as shown in Figure 5-18.
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Figure 5-18 Two-hit filter after floor planning
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At the next level, the EUA filter BRAMSs are placed as close as possible to those of the

two-hit filter (see Figure 5-19).
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5.7.8

Integration and Results

Table 5-15 Per component resource utilization for the Alterashows the results for the

Altera Stratix IV EP4SE820H4013, and Table 5-16 shows the results for the Xilinx

Virtex-6 XC6VLX7601. We find that the Stratix IV, depending on query size, can fit 5, 5,

4, or 3 filter banks for a total of 25, 15, 12, or 9 input streams. The Virtex-6 can fit,

depending on query size, 3, 3, 2, or 1 filter banks for a total of 15, 9, 6, or 3 input

streams.
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Table 5-15 Per component resource utilization for the Altera

Stratix-IV
Query Size Logic Utilization
;ﬁﬁ'gtarggrrfs Component ALM | MIK | M144K
Qe<ont 5 two hit 5771 | 250/100 | _0/9
Ronact 1EUA (16 Folded) | 4084 8 0
v 1SW (16 Folded) | 1475 | 8216 | 12/0
Total 11363 | 266 12
Ge<s12 3 two hit 3544 | 200/60 | 0/10
Sl 1EUA (16 Folded) | 6888 16 0
o 1SW (8 Folded) | 5296 | 32/240 | 12/0
Total 15750 | 248 12
3 two hit 3625 | 258/72 | 0/12
%56?30344 1EUA (16 Folded) | 12540 | 32 0
o 1SW (8 Folded) | 10473 | 647272 | 12/0
Total 26660 | 354 12
3 two hit 3704 | 368/96 | 0/16
%56?30334 1EUA (16 Folded) | 23998 | 64 0
AN 1SW (8 Folded) | 20412 | 128/336 | 12/0
Total 48163 | 496 16
Total Available (Stratix 1V) 325000 | 1610 60

Table 5-16 Per component resource utilization for the Xilinx

VirtexVI
Query Size Logic Utilization
Replications .
2_Hit Streams Component Slices BRAMSs/FIFOs

5 two hit 3921 159

S:ffg 1EUA (16 Folded) | 2103 8
B 1SW (16 Folded) | 1227 56
Total 7313 223
3 two hit 2496 128

S:flg 1EUA (16 Folded) | 3590 16
2h§t=9 1SW (8 Folded) | 4595 80
Total 10725 224
3 two hit 2534 134

%35180324 1EUA (16 Folded) | 6304 32
2h§t=6 1SW (8 Folded) | 8804 112
Total 17687 278
3 two hit 2537 140

%35180314 1EUA (16 Folded) | 12064 64
2h§t=9 1 SW (8 Folded) | 17152 176
Total 31801 380
Total Available (Stratix IV) 18560 720
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For the following tests, we use a protein database with 15.4 M sequences and 5.4 G
characters. The reference tests are run on the Convey machine's CPU which is a four-
core Intel CPU (Xeon L5408 2.13 GHz). We chose this reference processor because it
is of the same technical generation as the FPGAs in our system. All the reference and
accelerated tests were done with the latest NCBI BLAST with the -num threads 4
option; this forces maximum useful parallelism for both the reference code and the CPU
part of the accelerated code. In NCBI BLAST, the traceback code that generates the
actual alignments is not threaded and, therefore, is completely serial in both reference
and accelerated tests.

NCBI BLAST provides a wide range of user options that vary such quantities as internal
thresholds and the quantity of results provided. The internal thresholds control
sensitivity and, thus, the amount of work to be done. Varying them has comparable
effect on both reference and accelerated execution. Accelerated BLAST and NCBI
BLAST are not identical; however, accelerated BLAST executes exhaustive ungapped
and gapped alignments, whereas NCBI BLAST executes gapped and ungapped
extensions with complex heuristics. In order to guarantee no false negatives, it may
therefore be necessary to increase the sensitivity (i.e., lower the threshold) in the
accelerated BLAST. Note that, as long, as all false negatives are eliminated this does
not change the overall output, and the final run of NCBI BLAST still uses the user
specified thresholds and eliminates false positives. In contrast to the sensitivity
parameters, those for output affect primarily the CPU-only part of the accelerated code.

The default is to return the top 500 sequences of any possible statistical significance.
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Given that the traceback code is serial (and given Amdahl’'s Law), permissive output

has a disproportionate detrimental effect on the performance of accelerated BLAST.

We run four tests varying the following parameters: ungapped alignment threshold,

gapped alignment threshold, E-value, and number of match sequences returned.

Results are summarized in Table 5-18 .

Table 5-17 Percentage of Sequences Remaining After EUA and Smith Waterman

Filters
Test | DB' Reduction% | DB" Reduction%
1 0.13 0.035
2 2.15 0.034
3 0.02 0.014
4 1.28 0.034

Table 5-18 Various tests of reference and accelerated BLAST for queries up to
256 characters.

Test | Ref. 1 4 Post- | Post-Filter 1 4 1 FPGA 4 Acc %

Time | FPGA | FPGAs | Filter | Traceback | FPGA | FPGAs | Speedup | FPGAs

Filter Filter | Search Total Total Speedup

Only Only

1 46.5 7.1 1.9 1.5 1.9 10.5 5.3 4.4x 8.8x 98.4%
2 456 | 10.5 2.9 1.5 1.7 13.7 6.1 3.2x 7.5x 100%
3 48.9 7.3 2.0 1.2 1.3 9.8 4.5 5.0x 10.9x 96.4%
4 47.0 8.1 2.2 14 0.4 9.9 4.0 4.7x 11.7x 100%

Table 5-19 Tests 2 and 4 (see text) of reference and accelerated BLAST for all

gueries.
Test Ref 1 4 Post- | Post-Filter 1 4 1 FPGA 4 Acc %
Time | FPGA | FPGAs Filter | Traceback | FPGA | FPGAs | Speedup | FPGAs
Filter Filter Search Total Total Speedup
Only Only
2 78.5 12.6 3.4 2.4 0.99 16.0 6.8 4.9x 11.5x 99.99
4 68.2 11.2 3.0 2.2 0.80 14.2 6.0 4.8x 11.4x 100

First, we note the general effectiveness of the filtering mechanisms: depending on

thresholds, the EUA filter reduces the original database from 98% to 99.98%, whereas

the S-W filter reduces it by from 99.97% to 99.99%.
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In Test 1. Reference and Accelerated NCBI BLAST have default parameters (E-value =
10, max target sequences = 500). The EUA threshold is set to the ungapped extension
threshold of NCBI BLAST, whereas the S-W threshold is set to the gapped extension
threshold. In this baseline test, we note that there are some false negatives, although
none ever appear in the top 100 of returned sequences.

In Test 2. All parameters are again set to default, but for accelerated BLAST, the EUA
threshold is reduced by 12. This selection is based on the analysis of the EUA and S-W
scores of the missing sequences in comparison to their corresponding threshold.
Because the S-W threshold is not changed, the reduced databases sizes (DB”) are not
significantly changed either. As a result, the postfilter timing remains the same.
Reducing the EUA threshold increases the FPGA streaming time slightly. However, the
accuracy is improved to 100% (no misses) but with a reduction in performance.

In Test 3. The E-value is reduced from the default value of 10 to 1.0 E-5 such that the
returned sequences are more statistically meaningful. An E-value of 10 is considered
too permissive for these sizes of databases. This test assesses the effect of the E-value
on the performance and accuracy. As in Test 1, the thresholds used by FPGAs are
those calculated by NCBI BLAST during ungapped and gapped extension. The
reduction in E-values has little effect on the FPGA streaming time. However, the post-
FPGA processing time is reduced producing slightly better speedup. The number of
false negatives, however, increases to a greater value than the original.

In Test 4. The EUA threshold is reduced by 20%. Also, both reference and accelerated
BLAST are tested with max target sequences of 50, which forces the tool to report the

top 50 sequences only. The selection of 20% reduction as the EUA threshold, as
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opposed to a constant reduction of 12 (as in Test 2) is based on the analysis of the
scores of the missing sequences in Test 3. Because in Test 3 we used a more
restrictive E-value, the default thresholds increased. The comparison of the scores of
the missing sequences and the default thresholds in the other tests shows that with a
20% reduction in EUA threshold we can achieve 100% agreement.

Overall, this use case shows optimal performance and accuracy results. Table 5-19
shows results from Tests 2 and 4 done for a general set of 600 queries selected
randomly from NR. We note that the end-to-end speedup of accelerated BLAST is

around 5x when using a single FPGA and over 11x when using 4 FPGAs.

5.8 Summary

In this chapter, NCBI BLAST, the de facto standard for biosequence analysis is
accelerated based on a novel pre-filtering approach. The prefiltering technique reduces
the database size to a fraction of the original using three filters that emulate the three
main phases of NCBI BLAST. The filters are either identical representations of the
original or strictly more sensitive than the reference: that is, they might return more hits

but they do not miss any hits that the reference might return.

For the word matching phase we used a two hit filter which returns a bit victor indicating
exactly which diagonals have the two-hit property. Our two-hit filter is compact and
accurate. The generated bit vector is used by the next filter: the Exhaustive Ungapped
Alignment filter. The EUA filer emulates the ungapped extension phase of NCBI BLAST.
Based on two novel techniques we effectively coupled the Two-Hit filter's bit vector with

the EUA filter, such that the augmented EUA unit does not need prohibitive control logic
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in order to skip the unpromising diagonals. Based on these optimizations our EUA filter
is capable of consuming 3 to 5 residues per clock cycle depending on the query size.
We load balanced system by replicating some number of two-hit filters per EUA filter.
Using a single Virtex-6 FPGA, our pipelined system achieved 4x to 5x speedup over a

four threaded CPU code without losing any sensitivity.
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6 CLUSTALW

6.1 Overview
Biologists use approximate string-matching for pair-wise sequence alignment (SA) to

determine, for example, how a newly identified protein is related to those previously
analyzed and how it has diverged through mutation. Multiple-sequence alignment
(MSA) extends this idea to more than two sequences: gaps are inserted as necessary
to define a mapping of the sequences to rows of a matrix such that all columns have at

least one letter.

MSA is the critical tool for extracting and representing biologically important, yet
(potentially) faint or widely dispersed, commonalities from a set of strings [Gus97].
While SA is used to assign possible functions to a protein, MSA goes to the next level.
Among its uses are prediction of function and secondary (two- and three-dimensional)
structure, identification of the residues important for specificity of function, creation of
alignments of distantly related sequences, and revealing clues about evolutionary

history [Bar01].

While SA is typically used in database search (finding correlations of one sequence with
millions of anonymous candidates), MSA is generally applied to some number of
sequences that are already hypothesized to have some commonality, and, though it is
often the case that some sequences are better understood or more important than
others, MSA is basically an all-to-all matching problem. Another difference is that,

whereas there is a consensus on the evaluation of SA alignments on the basis of Karlin-
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Altschul statistics, with MSA there is no objective way to define an unambiguously

correct alignment [Dur98].

These last facts have the following consequence. Evaluating MSA applications requires
either expert knowledge or its surrogate through preselected sets of related sequences
(e.g., BAIBBASE [Bah01] ) and encoded evaluation metrics (e.g., MetAl [Bla11] or
BaliScore [Bah01]). In an MSA workflow, a number of sequences k of length n are
aligned. The median value for n is about 300 but is often closer to 1,000, whereas k can

range from a few to a few thousand sequences or more.

Optimal MSA algorithms have been created by extending DP-based SA to higher
dimensions. These have exponential complexity in the number of sequences O(nk).
Applying restrictions (see e.g., [Ben12b], [Car88]) results in tremendous speedups
making them plausible for k up to small double digits. A larger k, however, requires the
use of heuristics; these are generally a version of progressive refinement [Fen87].
These codes typically run in three phases: (i) an all-to-all phase where all pairs are
aligned and scored, (ii) a tree-building phase where a guide tree is built that has
sequences as its leaves and whose interior nodes represent alignments, and (iii) a final

phase where all pairs of nodes are aligned.

The most commonly used MSA code is CLUSTALW [Tho94], but, although it is
exponentially more efficient than the optimal methods, it still takes hours to days of CPU
time for larger runs. Given that MSA is often a subroutine of a more complex task, such

as finding evolutionary relationships, its acceleration is critical.
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We now review some of the previous work. The first phase of CLUSTALW consists of
over 90% of the execution time. It has been accelerated both with FPGAs [OIli05] and
GPUs [Lip88]. Both of these studies follow the serial code in using dynamic
programming (DP) for the all-pairs alignments and report factors of 40x to 50x
speedups over a single core, respectively. We find that when the FPGA-DP method is
ported to updated FPGAs and multicore CPUs, the speedup is in a similar range, but
with some variance; i.e., from 18x to 58x. Lloyd and Snell have accelerated a generic
third phase, which, for CLUSTALW, takes most of the remaining time on FPGAs, and

obtained a speedup of up to 150x versus a single core [Lio11].

We use a different approach in creating a CLUSTALW-based, FPGA-accelerated MSA
(FMSA). Just as BLAST applies multiple passes of heuristics to emulate DP-based SA,
so we apply BLAST-inspired filters to the pair-wise alignments. In particular, we use a
two-hit filter (seeding pass) [Jac08] followed directly in a pipeline by an ungapped
alignment (ungapped extension pass) [Mah10],[Her07]. For the latter, we emulate the

ungapped mode of NCBI BLASTp [Mah12a].

There are two versions of FMSA: fast (FMSAf) and emulation (FMSAe).v In both cases,
we use a scoring function analogous to that used by CLUSTALW; i.e., rather than
returning an E-value, FMSA computes a function based on identity counts. In fast
mode, these scores are sent directly to the second phase of CLUSTALW to complete
the processing. In emulation mode, some fraction of the high-scoring pairs are rescored
using the DP-based method of Oliver et al. [Oli06]that emulates the CLUSTALW scoring

function precisely. The result is a factor of from 80x to 189x speedup with respect to
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eight-way parallel CPU code with the lower number corresponding to achieving results

with quality comparable to the original.

The primary contribution of the work in this Chapter is an FPGA-accelerated version of
ClustalW that achieves both substantial speedup over previous methods for
computationally intensive data sets and high quality results that, especially in emulation
mode, closely agree with those generated by the original code. The mechanism is the
primary intellectual contribution of this Chapter and has three parts: (i) the overall
approach where we apply prefiltering based on ungapped alignment and rescore as
necessary, (ii) the modification of the original components to support an MSA rather
than an SA scoring function, and (iii) the redesign of the filter sequence into a pipeline to
avoid costly system overhead and reconfiguration. The significance is that—when
coupled with the work of Oliver, et al. [Oli06], and of Lloyd and Snell [Lio11]—this could
become the FPGA-accelerated MSA method of choice. We have developed FMSA

using a standard high-end PC with a Gidel PROCe lll accelerator board.

The rest of this chapter is organized as follows. We begin with a brief review of
progressive alignment for MSA and ClustalW. Section 6.3 details our FPGA based

ClustalW and Section 6.4 describes the results.

6.2 BACKGROUND

6.2.1 Basics of MSA for Biological Sequences

There are a number of heuristic MSA codes that use progressive sequence alignment.

They differ in three ways: (i) the order of alignments, (ii) whether there is a single
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growing alignment or multiple subfamilies that are later aligned to each other, and (iii)
the procedure used to align score sequences and alignments against an existing
sequence or alignment. Generally, a binary tree is constructed to guide the order of

alignments with the most similar pairs--being the most reliable--being aligned first.

Scoring MSAs is an active area of research, but a commonly used metric is the sum-of-
pairs (SP) score. This is a direct extension of pair-wise scoring. We follow the
discussion in [Gus97]: given a multiple alignment M of k strings, an induced pairwise
alignment between strings Si and Sj is obtained by removing all rows except for the ith
and jth. The pair-wise score can be calculated using a standard SA function, or one

selected for MSA. The SP score is the sum of all of the pair-wise scores.

In order to test the quality of an MSA algorithm, a preferred method is to evaluate it with
a golden or reference data set; i.e., an alignment that has been created by a domain
expert to deal with a specific, realistic, biological scenario. The BAIIBASE 2.1
benchmark alignment database contains a number of case studies giving both
sequences and a putative ideal reference alignment. Quality (determined by running the
program BAliScore) is based on the SP score and computed as follows. For all columns
in the test alignment and for each pair of residues, a score of 1 is given if the residues
are aligned with each other in the reference alignment, and a 0 is given otherwise. This

sum is normalized by the scores computed for the reference alignment.

A recent paper describes another set of distance measures for MSAs as follows :
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hd: Simple homology distance gives the possibility that a randomly selected base
x from an MSA will be aligned to a different location against a sequence

randomly selected from the remaining sequences that do not contain x.

ssp: Symmetrized SP score is a symmetrized version of the SP score defined

above.

pi: Positional information is incorporated into hd where gaps occur.

6.2.2 CLUSTALW Overview

From Table 6-1, we see that most of the effort is in phase 1; that is what we accelerate
here. CLUSTALW improves the original progressive alignment methods by adding a
number of heuristics. Most of these are incorporated into the second and third phases;

and so need not be described here.

Table 6-1 PROFILE OF CLUSTALW BASE CODE W.R.T. VARIOUS DATA SETS

Benchmark | #0ofSeq | Phasel | Phase?2 | Phase 3
BB: MYB 180 88.0% 0.3% 11.7%
BB: 7tm 128 90.4% 0.04% 9.5%
NCBI 1 231 95.4% 0.2% 4.4%
NCBI 2 1000 91.4% 0.4% 8.0%
Average -- 91.3% 0.2% 8.4%

The first phase creates a matrix of alignment scores for all sequence pairs. Note that
the CLUSTALW code appears to have been modified since the original paper; this is the
code to which we refer. The scoring itself requires multiple passes. In the first two, a
best local alignment is found with the use of a variation of the Myers and Miller

algorithm, which uses a variation of global alignment with dynamic programming.
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In the third pass, the actual score is determined from a count of the number of identical
residue pairs in the optimal alignment. Then, this number is divided by the minimum of
the lengths of the two sequences to create a similarity measure. Next, the result is
subtracted from one to get the distance measure between the two sequences. One
important point is that Myers and Miller is a memory efficient recursive global alignment
algorithm: it divides the alignment space in half by dividing one sequence in half. It then
finds the optimal point on the other sequence such that the concatenation of the two
alignments of the subsequences on either side of the midpoint maximizes the global
score. In this process it properly handles possible gaps in the neighborhood of the

optimal midpoint.

We give this detail to show the challenge in exactly emulating the CLUSTALW scoring
function. Besides the complexity, there can be multiple optimal alignments or traces
between sequences; choosing the wrong one will lead to disagreement with the
reference code. Oliver, et al., in their acceleration of the pairwise alignment phase

[OIi06] (with a method based on S-W), have achieved near perfect agreement.

6.3 DESIGN AND IMPLEMENTATION

6.3.1 Design Overview

In all-pairs alignment, FMSA constructs a database of the sequences to be multiply
aligned and consecutively matches sequences against the remainder. Although DP-

based methods have excellent performance with respect to software, heuristic methods
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are much faster still, in the same way that BLAST is substantially faster than S-W.

FMSA uses two FPGA-based filters we have used previously to accelerate BLAST:
* The two-hit filter
» The exhaustive ungapped alignment (EUA) filter

For FMSAe we add an additional FPGA pass. The idea here is to expend marginal
additional effort to improve agreement with the original code. For each sequence we
rescore the highest scoring 10% of the sequences with the DP-based scoring function

[OIi06] that nearly perfectly emulates the CLUSTALW scoring function.

6.3.2 FMSA Scoring

Before describing the details of the FMSA filters, we present some results of various
possible scoring functions. We begin by introducing some terminology. Si is an input
string, LGA(Si and Sj) represents the optimal local gapped alignment between Si and Sj
Score(Alignmenti) returns the raw score of an Alignmenti, NID(Alignmenti) returns the
number of identical residue pairs in an Alignment i, LUA(SI, Sj, k) represent the kth best
local ungapped alignment between Si and Sj on the basis the raw scores. For each pair
of sequences Si and Sj, CLUSTALW calculates the distance as follows:

NID(LGAC(Si, S)))
B min(len(Si), len(S)))

dist,qr(Si,Sj) = 1

Because our proposed method involves rescoring top pairs to improve agreement, we
are looking for the scoring function which returns, as much as possible, the same top
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scores as CLUSTALW. We tested five method as described below. The first three try to
approximate the best local gapped alignment as a collection of some number of top
local ungapped alignments. The 4th and 5th methods try to find a correlation between

the identity count and the raw score of the top scoring alignments.

1) Find the best ungapped local alignment and count the number of identities:

NID(LUA(S,Sj, 1))
min(len(Si), len(S)))

dist,(Si,Sj) =1 —

2) Same as method 1, except add the top two best local ungapped alignments:

. Sy =1 —
dist,(Si, Sj) min(len(Si, Sj))

3) Same as methods 1 and 2, except add the top five best local ungapped alignments:

> _ NID(LUA(SI, Sj, k))
min(len(Si, Sj))

dist;(Si,Sj) =1 —

This method is similar to the ungapped option in NCBI BLASTp.
4) Find the best local ungapped alignment and use the raw score:

> _,score(LUA(SI, Sj, k))
min(len(Si, Sj))

dist,(Si,Sj) =1 —

5) Find the best local gapped alignment and use the raw score (S-W):

Score(LGA(Si, S))
min(len(Si, Sj))

dists(Si,Sj) = 1

The evaluation of these scoring functions is shown in Figure 6-1.
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Correlation of filter scores to reference scores
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Figure 6-1 correlation of approximate filter scores to reference sores in clustal-w

The series shows the fraction of high-scoring pairs that must be rescored to guarantee
that some top fraction of the high scoring pairs of CLUSTALW are matched. The lower
the series the better. Note that, for method 3, rescoring 10% of the highest scoring pairs
covers the top 3.6% from CLUSTALW. For method 1, nearly 30% must be rescored to

achieve the same result.

Table 6-2 MEASURE OF THE BIAS AND STANDARD DEVIATION IN PAIRWISE
SCORES BETWEEN ORIGINAL CLUSTALW AND FILTER OUTPUT

Database | # of Seq | Avg. of diffs | STD of diffs.
7tm 128 -0.01 0.03
Myb 180 -0.02 0.09
NCBI 231 -0.05 0.03

We selected method 3 for use by FMSAe. Table 6-2 shows the result of comparing all of

the scores generated by FMSAe with CLUSTALW.
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6.3.3 Filter Details

From the previous section we see that the scoring function requires finding the top
ungapped alignments and then scanning them for identities. We use a two stage
process. In the first, we follow standard BLAST procedure and eliminate all alignments
where there are not any two seed matches within a certain distance (two-hit filter). In the
second, we simultaneously perform two functions; i.e., we exhaustively scan all
alignments for high-scoring ungapped local alignments and we count the identities in

those alignments.

] Scores,
::ﬁ:."‘tm Nt T bit and
= er E vector indexes
o Two hit LN Tree ) pPQ =
7 filter | Blast To _
@ _ Two hit Dynamic
filter % program-
- = . ming
:;&11;;“:; hit Db Stream i module

Figure 6-2 Filtering Pipeline for ClustalW

The designs of the two-hit filter and the exhaustive ungapped alignment filter are
described in previous chapters, here we give a brief reminder. Figure 6-2 shows the
overall scheme; i.e., parallel database streams feed the two-hit filters, which in turn feed
a EUA filter. This structure is replicated some number of times depending on the sizes
of the strings and of the FPGA. The EUA filter is capable of consuming three to five

characters at each clock thanks to the two-hit filter data. The EUA reads in 16
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characters and the corresponding filter bits as required. After processing of the data of

one two-hit-filter, it starts working on the next sequence from the next two-hit filter.

In order to keep all of the units busy, the database sequences are sorted based on
length and multiplexed among multiple two-hit filters. As a result the time required to
process successive sequences is nearly equal. Note that there are two priority queues
in the design. One priority queue is inside the EUA module and stores the top five local
ungapped alignment scores. Another priority queue is outside EUA module to store the
indexes of the top 10% scoring sequences. After EUA streams the entire database, the
data in this second priority queue is passed to the dynamic programming module to

perform the refinement.

6.4 RESULTS

We have implemented FMSA system on our Gidel Proc Ill board which is described in
Section 2.6.2. For the Stratix Ill, for most problem sizes, we are able to map 16 two-hit
filter units and 4 EUA units in a pipeline as described. For small problems with a
maximum sequence size of less than 256, we can map eight replications (32 two-hit
filters); if the sequence is larger than 1,024 we can map two replications (8 two-hit
filters). The maximum sequence size in the database is used to pick the proper
programming file to load to the FPGA. With 1 GB/s DMA capacity on the board, the
transfer of sequence neighborhoods from host to the device memory takes a negligible
fraction of a second. Much more bandwidth is available in current FPGA-based

systems.
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On the device, with two memory modules, each with nearly 4 GB/s bandwidth, 16 two-
hit filters and 4 TreeBLAST modules easily work in parallel without hitting the bandwidth
barrier. With the current working frequency of 140 Mhz, the required bandwidth adds up
to 32 x 140 M = 4.5 GBs. For the emulation mode, each DP processing element
requires 160 ALMs and one memory BRAM (M9k). On the Stratix Ill, if the maximum
sequence size is less than 256, we can map two replications of the systolic array to
FPGA, whereas, for 256-512 (average case) we can fit one instance. For larger
sequences, folding is necessary. When folded n times, the streaming rate is reduced by

a factor of n.

Table 6-3 QUALITY MEASURE OF FMSA-F AND ORIGINAL CLUSTALW WITH
RESPECT TO THE BALIBASE BENCHMARK SUITE USING SP FROM
THEBALISCORE CODE.

Database | #of Seq. | ClustalW | FMSA-F
7tm 128 0.822 0.747
Myb 180 0.969 0.850
Kinase3 19 0.777 0.827
Kinase2 18 0.739 0.738
lajsa 28 0.405 0.464
lidy 27 0.591 0.554
1lvl 24 0.836 0.881
laboA 5 0.688 0.558
1lcf 6 0.947 0.928

Recall that FMSA can run in two modes: fast and emulation. Table 6-3 shows a
measure of quality of the FMSAf with respect to the BAIIBASE benchmark and the SP
metric. Although not conclusive, we note that the results are not unreasonable, even

without rescoring.
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Table 6-4 QUALITY MEASURE OF FMSA-F AND ORIGINAL CLUSTALW WITH
RESPECT TO THE BALIBASE BENCHMARK SUITE USING SP FROM THE
BALISCORE CODE.

Database ClustalW vs. FMSA-f vs FMSA-f vs. FMSA-e vs. FMSA-e vs.
Reference ClustalW Reference ClustalW Reference

Myb 0.97 0.84 0.85 0.98 0.99

7tm 0.82 0.78 0.76 0.88 0.80

NCBI - 0.93 - 0.94 -

Table 6-5 QUALITY MEASURE OF FMSA-F, FMSA-E, AND ORIGINAL CLUSTALW
WITH RESPECT TO THE BALIBASE BENCHMARK SUITE USING
VARIOUSDISTANCE METRICS FROM METAL [Blal1]

Database | ClustalW v. Reference FMSA-f v. Reference FMSA-e v. Reference

Hd Ssp Pi hd ssp Pi hd ssp pi
Myhb 0.28 0.55 0.26 0.38 0.61 0.33 0.27 0.54 0.24
7tm 0.30 0.38 0.24 0.37 0.47 0.31 0.32 0.41 0.26

More detailed quality results, albeit for fewer sequences, are given in Table 6-4 and
Table 6-5. We use the two larger studies from BAIIBASE plus a synthetic database
generated from NCBI BLASTp where we simply scanned a random sequence and
retained the top 231 scoring sequences from NR. In Table 6-4 we use the SP metric
from BaliScore. We compare the original CLUSTALW code, FMSAf, and FMSAe to the
reference MSA. We find that FMSAe has a nearly identical quality to CLUSTALW, but
FMSAf also shows a high degree of agreement. We also compare FMSA with
CLUSTALW. For FMSAe, we find a high correlation; not surprisingly, FMSAf is not as
correlated but still has a high correlation. In Table 6-5 , we show results with respect to
the MetAl distance metrics. Again, we compare the original CLUSTALW code, FMSA(,
and FMSAe to the reference MSA. For FMSAe, we again find that the distance from the
reference MSA is nearly identical to that of CLUSTALW, FMSAf lagging somewhat but

still clearly in the same range.
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Table 6-6 PERFORMANCE FOR MSA RUNS OF 1000 SEQUENCES. ALL TIMES IN
SECONDS. THE 8 CORE PC ASSUMES IDEAL PARALLELIZATION. DP, FMSA-
F,AND FMSA-E COLUMNS GIVE BOTH TIME AND SPEED-UP WITH RESPECT TO

8 CORE PC.
Max Seq. Overhead FPGA filter | FPGA PC(8 core) DP FMSA-E FMSA-F
Len. rescore
256 0.9 0.2 0.3 150 3.5/43x 1.4/107x 1.1/136x
512 1.6 0.7 0.7 434 7.5/58x 3.0/145x 2.3/189x
1024 2.4 1.2 3.0 549 31/18x 6.6/83x 3.6/152x

Table 6-6 shows performance of the original CLUSTALW, its DP-based acceleration,
and the acceleration with FMSAf and FMSAe on the reference system. For the CPU-
only version, we simply assume the best case of perfect eight-way threading. This
appears to be about a factor of two more than has been achieved so far (see [Lio11] for
a discussion), but appears to be plausible. The performance of FMSAf is that of FMSAe
minus the FPGA rescore time and a small amount of the overhead. We note that FMSA
is from 83x to 189x faster than the CPU version and from 2.5x to 8.4x faster than the

DP-based method. The greater advantage is for the larger problem size.

6.5 Summary

In this chapter we described an FPGA-accelerated MSA program based on ClustalW. It
differs from previous accelerations in that it uses BLAST heuristics rather than dynamic
programming. We used our Two-Hit filter and EUA filter to approximate the DP method.
In order to do so we augmented the EUA filter to count the identities in addition to the
raw score. We showed that a combination of the top local ungapped alignments have

sufficient correlation with the best local gapped alignment.
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Our system achieves many-fold speedup over the DP-based code, which itself has
better performance than the CUDA version. We have created two versions, one that
successfully emulates ClustalW, the other that gives results of somewhat lower quality,

but with roughly twice the performance.
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7 Conclusion and Future Work

We conclude this study by summarizing our work in acceleration of biosequence
analysis tools. We present our reflections on using filtering for their acceleration. Finally,

we will present some guidelines for future work.

7.1 Summary

In this work, we have studied and tested various acceleration engines for biosequence
analysis tools. Our research includes FPGA-based acceleration, FPGA-based
algorithm design, performance analysis, scalability analysis, system-level testing and
verification, and algorithmic optimizations/approximations for hardware acceleration.

We implemented two acceleration engines for NCBI BLASTp. We conducted extensive
system-level tests on two different acceleration systems. We were able to generate
transparent results compared to production-level code. We also implemented and
tested a production-level acceleration engine for a multiple sequence alignment tool.
We demonstrated significant speedup over the original code with reasonable accuracy
using a novel approximation method.

We learned the following lessons from our study:

Prefiltering is a tricky approach to accelerating database query and processing
applications. A prefiltering approach can be defined as follows: a fast-filtering engine
that is based on an approximation method is used to reduce the size of the database to
a small fraction of the original. The filter should be more sensitive than the original code.

While it can return more sequences than the reference code, it should return all the
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sequences that the reference returns. There are several challenges with the application

of prefiltering for acceleration purposes:

Postfilter overhead: Often, a filter reduces the size of the database, but the
actual results are produced after the reduced database is generated. The runtime
of this postfiltering calculation should be a small fraction of the original, otherwise
the filter will act as an overhead. This is especially true when the software uses
seed-based heuristics (as is the case with most of the sequence analysis tools).

Accuracy and performance tradeoff: Given that accuracy is a soft constraint,
the programmer can trade off accuracy and performance. In such a case, it is
possible to use approximation and even heuristics in order to simplify the
hardware design and boost performance. Unfortunately, this is not always a
given. On one hand, if the designer can find an approximation that is more
sensitive than the original code, perfect accuracy can be achieved, and,
assuming, the postfilter job can be efficiently performed on the host, the

performance gain can be impressive.

Implementation of seeding heuristic in hardware requires very careful design.

Throughout this study, we learned that the implementation and exploitation of a seeding

heuristic in hardware can be both challenging and beneficial. The FPGA block RAMs

provide a convenient parallel interface for accessing seeding indexes or profiles. On

one hand, seeding indexes that are mapped to hardware block RAMs or lookup tables

use precious resources. The designer should assess the pros and cons of the

performance gain vs. the resource usage. The designer should also consider the

overhead of combining the seeding output with the rest of the tool chain. Obviously,

160



adapting the phases after seeding in order to take advantage of the information should
not impose massive overhead on the original filter.

Given that there is no overhead in reprogramming, a multiphase system can
deliver the highest performance among all the acceleration engines of a multi-
stage heuristic sequence analysis tool. The general rule of thumb in engineering is to
keep the design simple. A multiphase system follows this same idea. Sequence
analysis applications are often fully parallelizable. This applies to the substages of the
application as well. Thus, the programmer can replicate each stage's hardware units
maximally, run each stage in hardware, save the results, and start the next stage. The
design benefits from the removal of glue logic and the overhead of stalling that are
inevitable in any data-dependent execution an algorithm on a tool chain.

Any streaming memory interface has its own overhead. Memory modules provide
the best throughput when data are read or written sequentially. Random memory
access can be up to 16x more costly than sequential access. This encourages the
designer to use streaming interface. Interestingly for sequence analysis, streaming
looks ideal; each subject sequence is a character string that can be read sequentially.
On the other hand, implementing a fully tested and reliable streaming interface can be
challenging if several streams must be bundled. For example, we spent a great deal of
time testing our multiphase system, which required the accurate alignment of the bit
vector and the database stream in the EUA filter. The best solution is usually to
combine a complete streaming interface with occasional random access in order to

improve the reliability of the system.
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Careful load balancing is required to gain performance in a pipelined system.
Stalling is inevitable in a pipelined system with data-dependent heuristics. Thus careful
load balancing based on statistical analysis and simulation is needed.

For applications like NCBI BLAST, which have multiple phases that are equally
time consuming, FPGA acceleration is especially challenging. First one needs to
note that the more complicated an application is, the harder it is to map it to an FPGA.
BLAST is certainly a complicated application with many heuristics. Second, the three
phases of BLASTp contribute equally to the running time. Third, high profile tools like
BLAST are constantly being updated and improved. Finally, software acceleration
solutions based on multithreading, SIMD extensions, and GPUs also offer significant
speedups.

Approximation can help the FPGA designer if there is room for any divergence
from the production code. For example, in acceleration of Clustal-W, we achieved an
order of magnitude speed-up over an exact FPGA based solution. This was mainly due
to the fact that we approximated the distance matrix using a more compact and highly
optimized EUA engine. An optimization that is only marginally useful for the CPU

implementation turned out to be highly beneficial for the FPGA version.

7.2 Future Directions

For further study, there are a number of directions that can be considered.

e porting the tool chain system to Virtex-7
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The latest Convey machine uses high end Virtex-7 FPGAs. It would be interesting to
port the tool chain system to this machine and to measure its performance. Our IO
interface currently support up to 36 streams. Porting to Virtex-7 will require additional

changes to the 10 interface so that we can at lease support 72 streams.

e Acceleration of other versions of NCBI BLAST
NCBI BLAST has several versions. We have analyzed the most challenging version,
NCBI BLASTp, which is used for protein sequence alignments. NCBI BLASTn, for
example, is used to align genomic sequences. Only two bits are required to represent
genomic residues, and alignment scoring is performed with a simple weighted edit
distance. These are both ideal for FPGAs because they can be efficiently mapped to

small modul-4 processing units.

e Acceleration of next-generation sequencing tools

Next-generation sequencing machines can generate billions of short or long reads in a
very short amount of time. Compared to the traditional shotgun sequencing approach,
they demand to a larger degree more throughput and computational capacity. It would
be interesting to study the possibility of accelerating these tools based on our filtering

and seeding approach.
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