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Abstract 

 

With advances in biotechnology and computing power, biological data are being 

produced at an exceptional rate.  The purpose of this study is to analyze  the application 

of FPGAs to accelerate high impact production biosequence analysis tools.  Compared 

with other alternatives, FPGAs offer huge compute power, lower power consumption, 

and reasonable flexibility. 

BLAST has become the de facto standard in bioinformatic approximate string matching 

and so its acceleration is of fundamental importance.  It is a complex highly-optimized 

system, consisting of tens of thousands of lines of code and a large number of 

heuristics. Our idea is to emulate the main phases of its algorithm on FPGA. Utilizing 

our FPGA engine, we quickly reduce the size of the database to a small fraction, and 

then use the original code to process the query. Using a standard FPGA-based system, 

we achieved 12x speedup over a highly optimized multithread reference code.  



Multiple Sequence Alignment (MSA)--the extension of pairwise Sequence Alignment to 

multiple Sequences--is critical to solve many biological problems.  Previous attempts to 

accelerate Clustal-W, the most commonly used MSA code, have directly mapped a 

portion of  the code to the FPGA.  We use a new approach: we apply prefiltering of the 

kind commonly used in BLAST to perform the initial all-pairs alignments.  This results in 

a speedup of from 80x to 190x over the CPU code (8 cores). The quality is comparable 

to the original according to a commonly used benchmark suite evaluated with respect to 

multiple distance metrics. 

The challenge in FPGA-based acceleration is finding a suitable application mapping.  

Unfortunately many software heuristics do not fall into this category and so other 

methods must be applied.  One is restructuring:  an entirely new algorithm is applied.  

Another is to analyze application utilization and develop accuracy/performance 

tradeoffs.  Using our prefiltering approach and novel FPGA programming models we 

have achieved significant speedup over reference programs. We have applied 

approximation, seeding, and filtering to this end.  The bulk of this study is to introduce  

the pros and cons of these acceleration models for biosequence analysis tools. 
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1 Introduction 

1.1 The Problem 
 

Bioinformatics refers to the analysis and management of scientific data and to the 

development of tools and applications that help us organize, retrieve, and process 

biological knowledge bases [Dur98][Jon04][Ewe05]. The application of mathematics and 

computer science for the modeling of biological processes has been essential to the use 

of biotic information for fundamental applications such as understanding life processes 

and in high impact applied domains such as drug discovery [Ach07][Jon04]. 

The key insight in bioinformatics is that biologically significant polymers, such as 

proteins and DNA, can be abstracted into character strings of a finite alphabet [Dur98]. 

Another fundamental observation is that all living cells pass a massive amount of 

hereditary features onto their offspring through a process of replication and cell division  

[Alb02]. In other words, nature adapts new sequences from pre-existing sequences. 

This opens the door for understanding the functionality of newly discovered sequences: 

by comparing a new sequence with known sequences, we can usually detect similarities 

that will help us learn about the structure and infer the functionality of that sequence. 

This mechanism allows biologists to use approximate string matching (AM) to 

determine, for example, how a newly identified protein is related to previously analyzed 

proteins, and how it has diverged through mutation [Mah10].  

While AM is critical in diverse fields, e.g., text analysis, certain properties of biological 

sequences have required creation of biology-specific algorithms.  Here the canonical 

AM task is Sequence Alignment (SA).  For example, Hamming distance, the number of 

differing characters, is one way to measure differences between two strings, but does 
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not tolerate insertions or deletions (indels).  As discussed later, more generalized 

scoring is necessary and is most often based on the probability of particular character 

mutations and includes indels; it can be handled using dynamic programming (DP) 

techniques. These have complexity O(mn) for two strings of size m and n, respectively.  

With the exploding size of biological databases, however, DP algorithms have often 

proven to be impractical.  This has spawned heuristic O(n) algorithms, the most famous 

and widely used of these is BLAST [Alt90]. 

Since the completion of the human genome project, the scientific community has seen a 

sharp and rapid growth in the size of publicly available genomic and biotic information. 

Due to advances in technology and computing power, biological data are being 

produced at an exponential rate; genomic databases now double in size every 15 

months [Ben12a].  The complexity of bioinformatic tasks to which sequence alignment is 

being applied is increasing just as dramatically.  A typical query, say, of a protein with 

respect to a database of all other known proteins, requires millions of pairwise SAs.  In 

Multiple Sequence Alignment (MSA), algorithms often begin with all-to-all pairwise 

sequence alignment.  And Phylogenetic Analysis can require millions of MSAs.  As a 

result, the development of faster SA tools and methods continues to be one of the 

fundamental challenges in Computational Biology. 

Since its invention, BLAST has been based on heuristics [Alt90][Tho94] and algorithmic 

development remains an active area of research [Hen10][Hom09][Ken02].  On the other 

hand, the acceleration and parallelization of these applications are as important as 

algorithmic improvements. For example, the National Center for Biotechnology 

Information(NCBI) maintains a BLAST server, that consists of thousands of nodes  that 



3 
 

serve the biological community.  But while this valuable resource is sufficient for basic 

database searches, there remains a huge demand for complex and large-scale 

applications.  For these acceleration is highly desirable. 

Acceleration refers to the use of compute devices other than standard CPUs to speed 

up a computation.  There are several ways to accelerate an application, the most 

popular of which currently is the application of GPUs.  But in the case of bioinformatics, 

FPGAs have proved to be an excellent match and have often shown superior 

performance [Zou12][Ben12a].  The purpose of this study is to analyze and develop 

new methods for the application of FPGAs in order to accelerate standard SA  

and MSA tools. 

FPGAs are off-the-shelf integrated circuits that can be programmed by the user to 

perform a specific functionality [Sco10]. The critical challenge in FPGA-based 

acceleration is finding a good application mapping that is suitable for hardware 

implementation.  Unfortunately, the heuristics applied in parallel application 

development often do not transfer to the FPGA. As a result, it is often necessary to 

restructure the program or to compromise accuracy for the sake of speedup.  

We have developed a number of methods based on prefiltering [Mah10], 

[Mah12a],[Mah12b].  This method works outside the target application to quickly 

reducing the original workload, by 99.99% in the case of BLAST, while retaining the 

essential problem information.  The target application then executes the remaining 

problem and obtains the correct answer in a fraction of the time of the original 

unaccelerated application.  The advantage of this approach is that it leads to the 

compact implementations necessary to get high utilization of the FPGA while not 
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sacrificing correctness.  This study serves to introduce the pros and cons of this 

acceleration method for FPGAs as applied to biosequence analysis tools. 

1.2 Sequence Analysis Algorithms 
 

The purpose of biosequence analysis is to find the relationship between known and 

(potentially) unknown sequences. This helps in discovering their functionality, features 

that contribute to their functionality, or the evolutionary relationship between multiple 

sequences. Sequence analysis algorithms can be categorized in many dimensions. 

Here, we list the most impotent categories:  

 Pair-wise vs. multiple sequence alignment : pair-wise tries to optimally align two 

sequences, MSA tries to find the optimal alignment of multiple sequences 

[Smi81][Tho94]. 

 Gapped vs. ungapped alignment : Gapped allows indels in query and subject 

sequences, ungapped do not allow indels [Smi81][Har07] 

 Local vs. global alignment : Global alignment have to align all characters in the 

two sequences, local alignment do not have this restriction [Smi81][Nee70]. 

 Optimal vs. suboptimal solutions [Smi81][Ach07].  

There are many sequence analysis (SA) tools.  Of these tools, the optimal solutions use 

some variation of dynamic programming (DP).  As already described, however, this 

optimality is often not sufficiently important to compensate for their relative slowness 

compared with heuristic methods.  In particular, BLAST is the dominant SA application; 

and of the many BLAST implementations, NCBI BLAST has become the de facto 

standard.  In fact, biologists tend to ignore any application that deviates from this tool.  It 
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is sometimes even assumed to be more accurate than the optimal DP methods 

because it removes the junk similarities – similarities with no biological root – from the 

final report. In this work, we will accelerate NCBI BLAST, the most widely used and one 

of the most highly optimized sequence alignment application.  

A typical use-case starts with a query sequence. NCBI BLAST compares the query 

sequence to a database containing millions of subject sequences. It returns the most 

similar sequences alongside the best alignments.  NCBI BLAST returns almost identical 

results as DP methods and is much faster.  

Multiple sequence alignment (MSA) is the extension of pair-wise sequence alignment to 

multiple sequences [Gus97].  In a typical use-case, the user is interested in finding the 

relationship between thousands of sequences; i.e., finding their common ancestor or 

commonalities. The optimal MSA can be found with multidimensional  DP, but, because 

the time and space complexity of multidimensional DP grows exponentially with the 

number of sequences processed, it is impractical and is almost never used.  Once 

again, heuristics help. The heuristic approach often used in MSA is called progressive 

sequence alignment. It consists of a number of phases details of which are provided in 

the subsequent chapters. In this work, we will focus in acceleration of CLUSTALW, one 

of the most commonly used MSA applications. 

1.3 High-Performance Computing with Accelerators 
 

Traditionally, high-performance computing systems were considered to be either 

multiprocessing systems or massively parallel processing systems. These systems 

incorporate multiple identical CPU nodes in order to speed up a task. The cost-effective 
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use of these systems remains a challenging task. Memory bandwidth limitations and 

routing network congestion exacerbate the problem. In recent years, accelerator-based 

high-performance computing that exploits application-specific accelerators has gained 

more attention. The reason for this is that this method of computing allows a system to 

deliver more speedup with more flexibility in the programming interfaces and less power 

consumption than the traditional clusters. There are many accelerator based 

approaches. In brief, we review some of the alternatives that are currently available: 

 Multicore: Multicore CPUs are now used everywhere. They are considered the 

simplest approach to speeding up applications. They can deliver impressive 

speedup if they are not limited by limitations posed by IO or an application's 

inherent serial nature.  

 Cell processor: Cell processors utilize a single CPU and many vector processors. 

They can deliver a high degree of performance in many multimedia and vector-

processing applications [Che07]. Nevertheless, they are considered a 

challenging environment for software developers. 

 GPUs: Graphics processing units (GPUs) have been used to accelerate a variety 

of applications [Lin10][Lip88][Nic10]. They are commodity processing units that 

are found in every computer. They consist of thousands of simple processing 

elements and are suitable for applications that can benefit from parallel floating 

point executions.  

 FPGAs: FPGAs are off-the-shelf hardware accelerators that can be programmed 

by the user. We will describe these accelerators in more details in the next 

section. 
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These solutions vary in power consumption, ease of use, time needed for development, 

computational capacity and programming models, and cost. All of these options are 

constantly used in a variety of applications, and their hardware design and underlying 

technology is constantly updated. There is plenty of research being conducted to show 

the suitability of each one of these options for a certain application or problem set. 

Nevertheless, there is no single consensus platform. Our work studies a large portion of 

the high-performance computing platforms for a specific application families. 

1.4 FPGA-Based Accelerators 
 

Currently, field programmable gate arrays (FPGAs) are used to accelerate hardware as 

a basic block in reconfigurable computing-based high-performance computing. The first 

modern-era FPGA was developed 30 years ago.  Since then, FPGA technology has 

seen many advancements that have made them one of the best acceleration platforms 

[Awa09][Don12].  Although early FPGAs consisted of just a few configurable lookup 

tables and IO pins, modern high-end FPGAs consist of: 

 Hundreds of thousands of reconfigurable lookup tables 

 Hundreds of thousands of reconfigurable communication paths 

 Thousands of block RAMs 

 Thousands of DSP blocks 

 Thousands of configurable IO pins  

In addition, FPGA vendors provide hundreds of IP cores and interface modules that 

simplify programming of and interfacing to the FPGA.  Moreover, FPGAs are one of the 

drivers of IC processing technology and follow Moore's Law in parallel with CPUs. This 
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means that each new generation of FPGAs nearly doubles in capacity. Thus porting 

existing designs to a new generation of FPGAs can immediately boost the performance 

of the system. 

1.4.1 Programmability 
 

FPGAs were initially used for rapid prototyping ASIC designs. The reprogrammability 

features of FPGAs are extremely helpful in the test process and development cycle. To 

save time and money, many ASIC developers test their design on an FPGA before 

porting it to a die. On the other hand, in comparison to other acceleration engines that 

are based on multithreading (multicore, GPU, and cell systems), FPGA development is 

much more challenging. For example, when mapping an application to a multicore CPU, 

the application developer should consider how to parallelize its application on the 

available cores efficiently. When mapping the same application to a FPGA, the 

programmer not only needs to know how to parallelize the code but also how to map the 

resulting solution to the hardware. Architectural decisions can have huge impact on the 

final result. Also, designing high-quality FPGAs that efficiently take advantage of the 

available resources on an FPGA requires an experienced designer. Hardware 

descriptions languages, in addition to accurate simulation and CAD tools, are used to 

hide some of the low-level details of the implementation. Nevertheless, the programmer 

often faces an expansive set of considerations to explore before writing the HDL code. 

Some of these considerations are as follows: 

 Arithmetic precision and mode: For example, fixed-point vs. floating point 

arithmetic 
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 Algorithmic choices: For example, directed calculation vs. FFT 

 FPGA interface mode: For example, streaming data vs. random memory access 

 Pipelining: How efficient each submodule should work 

 Replication: How many units of each sub unit is required to a have balanced 

system 

  Reusability: If/how to use the existing IP cores 

 Latency vs. throughput requirements 

 Mapping decisions: Whether to use block RAMs or lookup tables to store specific 

data 

 Acceleration approach; For example, filtering a large database vs. direct 

mapping  

 Architectural decisions: Which portions of the code can/should be mapped to the 

FPGA and which portions should be run on the host CPU 

 Modifications in data structures: How efficiently a reference data structure can be 

mapped to an FPGA, what kind of modifications are required to take advantage 

of the parallelism in an FPGA 

 Mapping limitation: How well an algorithm is mapped to FPGA, for example, 

whether it causes routing congestion? 

 Memory bandwidth requirements and IO overhead 

 Testability: Arguably the most important factor of all 

In case of sequence alignment, of all of these factors, only arithmetic choices are 

straightforward.  All of the other factors can play a big role in the final result. 
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1.4.2 FPGAs for High-Performance Computing 
 

Performance gain from FPGA acceleration is based on three factors: continuous 

payload delivery, parallelization, and pipelining.  Together these can combine to 

compensate for the FPGAs’ low operating frequency. 

 Constant payload delivery: In contrast to CPUs, FPGAs generally do not need to 

process indexing and other “overhead” instructions.  Most applications are 

designed to so that each function unit produces payload at every clock cycle. 

 Pipelining: Pipelining is another form of parallelism.  Pipelined hardware 

executes multiple instructions simultaneously.  Because FPGAs are 

reconfigurable, the programmer can create a custom pipeline, often with 50-100 

or more stages.  

 Parallelization: Inside FPGAs, functional units can be replicated in order to 

increase performance. 

 In addition, because FPGAs work at a lower frequency, their power consumption is 

the lowest among all acceleration engines. 

FPGA-based high-performance computing has its own limitations, such as: 

 Chip-area limitations: Each FPGA has a limited amount of resources. With the 

increasing complexity of applications, it is rarely possible to map an entire 

application to an FPGA. This is exacerbated by the fact that complex memory 

access patterns create significant area overhead.  
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 Designer-expertise limitations: Working with FPGAs requires professional 

knowledge and experience. Even in the best case, FPGA designs often require a 

substantially longer design time in comparison to pure software solutions.  

1.5 High-Performance Reconfigurable Computing for Sequence 
Analysis 

 

This study of reconfigurable computing for bioinformatics is significant for two reasons.  

The first is the importance of the production applications we are trying to accelerate:  

speeding them up will enable more basic science to be performed.  The second is the 

exploration of the design space for the FPGA-based acceleration of SA. This both 

reveals inherent challenges in using FPGAs for SA but also shows the potential 

performance gain that one can expect from the FPGA-based acceleration of SA tools.  

The challenges of FPGA-based acceleration of SA are as follows: 

 With regards to implementation: Sequence analysis tools utilize many heuristics 

to speed up the analysis task. Often these heuristics are tailored to better 

software implementation without any hardware considerations. Typically, they 

have an irregular data access pattern, which makes IO architecture a big 

challenge. The designer must implement a variation of the heuristics in the FPGA 

without losing agreement with the reference code. The designer must also be 

able to replicate and parallelize his code in order to gain performance. Other 

important considerations are how to parallelize the code and how to replicate it 

so that the available CAD tools can map the design efficiently to the target 

FPGA.  
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 With regards to performance: A production-level multithreaded SA code that runs 

on a high-end CPU with 3 GHz is already highly optimized and efficient. 

Accelerating such a code requires very careful design. From the hardware point 

of view, one should be able to take advantage of all the resources on the FPGA. 

The design units should be small so that they can be replicated. Also, the design 

units should be highly efficient and reasonably pipelined. In the pipelined 

architecture, there should be no load imbalance.  From the software point of 

view, there should not be significant overhead in communication or in the 

reformatting and preparation of data structures.  

 With regards to accuracy: Most of the time, when accelerating biosequence 

analysis tools, the designer does not have the luxury of losing selectivity to gain 

performance. That means that the computations must either be exactly mapped 

to the FPGA or that the emulation hardware should be strictly more sensitive.  

The purpose of this study is investigate novel solutions in dealing with the challenges 

mentioned above. There are a number of previous studies that have tried to accelerate 

different SA tools on FPGAs. We will enhance these by proposing new approaches and 

investigating the design space.  

1.6 Summary of Contributions 
 

Two applications are accelerated in this study NCBI BLAST and CLUSTALW.  These 

are, respectively, the most commonly used sequence alignment and multiple sequence 

alignment tools. For both applications we use prefiltering.  At the end of this study, we 

present an analysis of the prefiltering approach as an acceleration mechanism.  
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1.6.1 Acceleration of NCBI BLAST 

NCBI BLAST has become the de facto standard in bioinformatics approximate string 

matching and, as already described, its parallelization and acceleration are of 

fundamental importance.  For example, massively parallel servers for BLAST have been 

constructed with the Blue Gene/L  [Ran05]. Also, NCBI maintains a large server that 

processes hundreds of thousands of searches per day [McG04].  For generic clusters, 

mpiBLAST is one of the most popular of several parallel BLAST algorithms [Gar06]. 

FPGAs have probably been the most popular tool for the acceleration of NCBI BLAST, 

with commercial products from TimeLogic [Tim10] and Mitrionics [Mit10] and several 

academic efforts [Her07][Jac08][Lav06].  

Public access to NCBI BLAST is possible either through the download of code or 

directly through a large web-accessible server. This standardization motivates the 

design criteria for accelerated BLAST codes; i.e., users not only expect performance to 

be significantly upgraded but also that outputs will exactly match the inputs given by the 

original system. BLAST implementations run through several phases and return some 

number of matches with respect to a statistical measure of likely significance.  

The problem is that NCBI BLAST uses complex heuristics that make it difficult to 

simultaneously achieve both substantial speed-up and exact agreement with the original 

output.  There are several approaches to accelerate NCBI BLAST. One approach is to 

profile the code and accelerate the most heavily used modules. This can give an 

agreement of outputs but may not achieve any performance gain, given that there are 

many paths that add up to bog down execution time. Accelerating enough of these 

paths may not be a viable solution, especially on an FPGA where code size translates 
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to chip area. A second approach is to restructure the code, modifying or bypassing 

some heuristics. This can lead to excellent performance but is unlikely to yield 

agreement. Academic FPGA-accelerated BLASTs [Her07][Jac08][Lav06] have mostly 

followed one approach or the other. The methods used by the commercial versions are 

typically either not publicly available or follow an academic version [Tim10][Mit10]. 

In this work we use a third approach : prefiltering. The idea behind prefiltering is to 

quickly reduce the size of a database to a small fraction and then use the original NCBI 

BLAST code to process the query. Agreement is achieved as follows. The prefiltering is 

constructed to guarantee that its output is strictly more sensitive than the original code; 

that is, no matches are missed but extra matches may be found. The latter can then be 

(optionally) removed by running NCBI BLAST on the reduced database. The primary 

result is a transparent FPGA-accelerated NCBI BLASTP that achieves both output 

identical to the original and a factor of 12x improvement in performance. The 

mechanism is the primary intellectual contribution of this work and consists of three 

highly efficient filters. The first implements two-hit seeding, the second performs 

exhaustive ungapped alignment, and the third performs gapped alignments.   

Furthermore, compared to a previous implementation of seeding heuristic, we have 

improved the accuracy of the two-hit seeding implementation.  Also, we have improved 

the architecture of the exhaustive ungapped alignment filter to a degree that it is, now, 

orders of magnitude faster than a naive implementation.  

1.6.2 Acceleration of CLUSTALW 

Multiple sequence alignment is a critical tool for extracting and representing biologically 

important commonalities from a set of strings. While pair-wise sequence alignment is 
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used to assign possible functions to a protein, MSA goes to the next level. Among its 

uses are the prediction of function and secondary (two- and three-dimensional) 

structure, identification of the residues important for specificity of function, creation of 

alignments of distantly related sequences, and revealing clues about evolutionary 

history [Dur98]. While SA is typically used in database searches (finding correlations of 

one sequence with millions of anonymous candidates), MSA is generally applied to 

some number of sequences that are already hypothesized to have some commonality. 

And though it is often the case that some sequences are better understood or more 

important than others, MSA is basically an all-to-all matching problem. Another 

difference is that, while there is a consensus on the evaluation of pair-wise sequence 

alignments, on the basis of Karlin-Altschul statistics, with MSA, there is no objective way 

to define an unambiguously correct alignment [Dur98]. Therefore, evaluating MSA 

applications requires either expert knowledge or its surrogate through preselected sets 

of related sequences and encoded evaluation metrics. 

In an MSA workflow, a number of sequences (k) of length n are aligned. The median 

value for n is about 300, but it is often closer to 1,000; k can range from a few to a few 

thousand sequences. Optimal MSA algorithms have been created by extending 

dynamic-programming-based SA to higher dimensions. These are exponentially 

complexity O൫n୩൯.  Applying restrictions like those in [Ben12b] and [Liu11] results in 

tremendous speedups, making it plausible for k up to small double digits.  A larger k, 

however, requires the use of heuristics such as progressive refinement [Fen87]. These 

codes typically run in three phases: (1) an all-to-all phase where all pairs are aligned 

and scored, (2) a tree-building phase where a guided tree is built that has sequences as 
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its leaves and whose interior nodes represent alignment order, and (3) a final phase 

where all pairs of nodes are aligned. 

The most commonly used MSA code is CLUSTALW [Tho94]. When the FPGA-based 

DP method is ported to updated FPGAs and multicore CPUs, the speedup occurs in a 

similar range, but with some variance; i.e., from 18× to 58×. We use a different 

approach in creating a CLUSTALW-based FPGA-accelerated MSA (FMSA). Just as 

BLAST applies multiple passes of heuristics to emulate DP-based SA, so we apply 

BLAST-inspired filters to the pair-wise alignments. In particular we use a 2-hit filter 

(seeding pass) [Jac08] followed directly in a pipeline by an ungapped alignment 

(ungapped extension pass) [Mah10, Her07]. For the latter we emulate the ungapped 

mode of NCBI BLASTP. 

There are two versions of FMSA, fast (FMSA-f) and emulation (FMSAe). In both cases, 

we use a scoring function analogous to the one used by CLUSTALW; i.e., rather than 

returning an E-value, FMSA computes a function based on identity counts. In fast mode, 

these scores are sent directly to the second phase of CLUSTALW to complete the 

processing. In emulation mode, some fraction of the high-scoring pairs are rescored 

with the DP-based method of Oliver et al. [Oli06] that emulates the CLUSTALW scoring 

function precisely. The result is a factor of from 80× to 189× speedup with respect to an 

eight-way parallel CPU code. The quality is comparable to the original according to a 

commonly used benchmark suite evaluated with respect to multiple distance metrics.  

1.7 Organization of the Rest of the Thesis 
 

The rest of this thesis is as follows: 
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Chapter 2 presents an overview of high-performance computing. It describes the 

methods used to accelerate different applications with the use of FPGAs, GPUs, and 

modern processors. It also presents a brief review of cluster computing. 

Chapter 3 describes SA and MSA algorithms in detail. It describes the fundamental 

ideas in biosequence analysis, classic algorithms based on DP, and standard heuristic 

algorithms that are widely used; i.e., NCBI BLAST and CLUSTALW. 

Chapter 4 presents a survey of previous attempts to accelerate SA methods. It includes 

all the related work in acceleration of NCBI BLAST, CLUSTALW, and Smith-Waterman. 

Chapter 5 presents our FPGA-based accelerated NCBI BLAST, CAAD BLAST. It 

includes a detailed description of our seed-generation system and filtering approach. It 

presents several optimizations that significantly improve the performance of the final 

hardware-accelerated BLAST. It details our implementation on two different acceleration 

boards with two different mapping approaches: multiphase and pipelined. In addition, it 

provides a scalability analysis on different target FPGAs. 

Chapter 6 presents our FPGA-accelerated CLUSTALW, FMSA. We have used an 

FPGA to accelerate CLUSTALW in both the emulation and fast mode. Using these two 

modes, we present a tradeoff analysis of speedup gain versus accuracy. We also 

present the speedup results over the reference code. 

Chapter 7 concludes this thesis and provides guidelines and future work for the 

acceleration of SA tools. 
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2 High-Performance Computing 

2.1 Overview 
 

The word “supercomputing” refers to the fastest computing models available at each 

time; the computing models which provide the highest throughput and the lowest 

latency [Cul97]. The need for faster computers is always growing. A variety of scientific 

and industrial applications benefit from the high speed of high-performance computing 

[Gok05] [Cul97]. These applications include market analysis, climatology, computation 

biology, physics, and many more [Don12]. As an example, the newest generation of 

DNA sequencing machines [Hen10] produces massive amounts of data in a very short 

amount of time. For instance, one of the main goals of this approach is to provide the 

possibility of treatment based on personalized medicine; i.e., using medicine that is 

tuned to a specific patient's genetics [Met09]. In order to achieve this goal, the huge 

amounts of genomic data that are produced by these next-generation sequencing 

machines should be aligned to existing references and analyzed [She08]. This should 

be done in the shortest possible time, and this is where high-performance computing 

applied to SA can play a basic role. 

 The speed of computers has increased massively over the past century thanks to the 

increase in transistor count on chips over time, a phenomena known as Moore's Law. 

Nevertheless, the need for even faster computing resources still exists and will probably 

last as long as computers exist. This is generally due to two main factors: (1) the 

amount of raw data that is generated over time increases with the speed of computers 
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(i.e., the faster computers are, the more we can generate data with them) and (2) the 

complexity of the applications working on these data increases with computing power.   

High-performance computing is a broad topic that includes many concepts in computer 

science and engineering, such as parallel computing, parallel hardware architectures, 

routing architectures, memory hierarchy, cluster computing, and custom processing 

units. A recent approach in high-performance computing is based on using non-

microprocessor compute units such as FPGAs and GPUS [Gok05][Nic10]. The 

architecture of these systems can consist of any collection of GPUs, FPGAs, or custom 

ASIC accelerators which are used either singularly or as a cluster of computing 

resources. For example, the NOVO-G supercomputer consists of 296 top-end 

accelerator FPGAs, 26 Intel quad core Nehalem Xeon processors, and 576 GB total 

RAM [Geo11]. 

The rest of this chapter is as follows. In Section 2.2, we provide a background of  high-

performance computing. Sections 2.3 and 2.4 introduce multicore and GPU computing, 

respectively. Sections 2.5 and 2.6 provide a review of FPGAs and FPGA-based 

accelerators, respectively.  

2.2 Background 
 

The traditional classification of high-performance computers is based on Flynn's 

taxonomy of computer architectures [Cul97]. In general terms, this taxonomy classifies 

two dimensions in parallelism: instruction and data. As a result, Flynn’s taxonomy 

categorizes high-performance computers into four groups [Don12]: 
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1. SISD, in which a single stream of data is processed by a single processing unit. 

For example, the traditional single-core PC, which executes a sequential serial 

code. 

2. SIMD, where, at each cycle, a single instruction is executed on multiple data 

streams in parallel. An array processor is a well-known example of this type of 

computer. An SIMD instruction set is an instruction set that supports this type of 

processing. A well-known example is Intel's SSE extension [Int11].  

3. MISD, where multiple instructions that related to a single data item are executed 

in parallel. This category subsumes many fault tolerant hardware techniques. 

4. MIMD, where multiple instruction streams are executed in parallel and each 

instruction stream consumes its own data streams. A well-known example of this 

type of architecture is the contemporary multicore superscalar CPU [Pat90].  

From another point of view, one can categorize supercomputers into two groups: shared 

memory systems and distributed memory systems [Cul97].  

In a shared memory system, all the processing units have direct access to a main 

system-wide memory. The main idea behind these systems is that the processing units 

have equal access to the main memory, and, consequently, the memory transactions 

generated by multiple processing units can be handled transparently and evenly 

[Don12]. As a result, the programmer does not need to consider the location of the data 

on the system and does not need to worry about the efficiency of accessing a certain 

data item.  
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In a distributed memory system, each processing unit has its own local memory [Cul97]. 

In a processing system with a distributed memory architecture, each processing node 

consists of one or many processing units, each with its own local memory. In order to 

provide a node access to another node's local memory, the nodes are interconnected 

by network topology. Since, in a distributed memory system, the total provided memory 

bandwidth has a direct relationship with the number of processing nodes, these systems 

have a clear advantage over shared memory systems with regard to memory bandwidth 

and its scalability. Furthermore, in these systems, the speed of each memory is of less 

concern in comparison to shared memory systems. On the other hand, distributed 

memory systems have their own disadvantages. In comparison to shared memory 

systems, in distributed systems, the communication and synchronization overhead 

between distributed nodes is higher. Thus, it is possible that the running speed of an 

application on this type of systems can suffer from the creation of inter-node 

communication bottlenecks [Don12]. 

A computer cluster is a set of loosely connected computers that work together to the 

extent that, in many respects, they can be viewed as a single system. Since the 

introduction of the Beowulf cluster in 1994, computer clusters have become widely used 

and commercialized. This has been mainly because of their relatively low cost, their 

ease of engineering, and their simple setup process [Don12]. The structure of a cluster 

usually follows a client server computation model. Often, the computers are connected 

via a local area network. Typically, a cluster consists of one or a few server nodes and 

lots of client nodes. In these systems, a special middleware software is often run on top 

of the operating system. This middleware software orchestrates the operations of 
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clients, dispatches the tasks to clients, and retrieves and organizes the results. In order 

to provide communication between cluster nodes, several programming approaches 

have been used. The two common approaches used in computer clusters massage 

passing interface (MPI) and private virtual machine (PVM). The increased power 

consumption, in combination with the existing limitations in the total size and volume of 

these systems, makes the scalability of computer clusters a big challenge.  

In recent years, clusters of high-performance computing nodes that exploit application-

specific hardware accelerators, such as FPGAs and ASIC, have gained popularity 

[Geo11]. Factors that have contributed this popularity gain include lower power 

consumption, increased flexibility, increased capabilities, significant speedup gains, 

increased debugging and testing capabilities, and the fact that upgrading to a new 

technology level can be easily handled with the existing programming environments and 

CAD tools.  

From here, we will give an overview of common high-performance computing systems 

based on custom accelerators, but, before that, we will take a look at current multicore 

processor technology. The TOP500 lists the 500 most powerful computing systems in 

the world [Top13].  

2.3 Multicore Processors 

Over time, processors have increased extensively in capacity. Increasing chip density 

has allowed the extraction of more instruction-level parallelism. The performance of 

microprocessors has improved steadily over time because of increasing transistor count 

and operating frequencies. However, in the past decade, the performance of a single 
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processor has reached a plateau. Issues like energy consumption and heat dissipation 

limit operating frequency to about 4 GHz. At this point, the architecture of a single core 

hardly benefits from an increase in transistor count. In other words, due to energy 

consumption and heat dissipation problems, the operating frequency and complexity of 

processors have hit a so-called performance wall.  

Since 2003, processor vendors have taken a different approach to increasing the 

computing power of processors. This new approach mainly involves integrating multiple 

processor cores into a microprocessor and introducing multicore CPUs.  

This has caused a revolution in the way efficient programs are written. Nowadays, most 

programs benefit from potential performance gains of multithreading. The era of 

sequential programming on a single-core CPU has reached an end, and a new interest 

in parallel programming has begun with the so-called concurrency revolution [Olu05].  

For instance, a 45nm Intel Nehalem Ex processor has eight cores per CPU working with 

2.91 GHz clock. It has an aggregate peak memory bandwidth of 43 GB/s and 10 G/s 

per memory channel. Several years ago, this microprocessor was considered a shared 

memory supercomputer. 

Since there are multiple independent processing cores available on each 

microprocessor, a programmer can potentially and dramatically increase the 

performance of an application. This is usually done by means of implicit or explicit 

multithreading. There are several threading libraries available. The two most well-known 

threading mechanisms are PThreads and OpenMP.  
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With the improvements in the memory bandwidth, a carefully multithreaded code can 

achieve linear speedup over a single threaded code for many applications. Of course 

the theoretical limit will be the number of cores integrated into the CPU. For example we 

noticed this issue in the latest versions of NCBI BLAST. NCBI BLAST which will be 

introduced later in this report, is for the most part an embarrassingly parallel sequence 

analysis tool. The performance of this application, when run in multithreaded mode, 

simply scales linearly with the number of cores in the CPU. 

2.4 GPU Computing 

 Originally, graphics processing units (GPUs) were developed for use as graphics-

rendering engines. Nowadays, GPUs are also used as general purpose acceleration 

engines. General purpose GPU computing has become especially popular since 

NVIDIA introduced CUDA (compute unified device architecture), a C extension that 

enables applications to be ported to GPUs.  Nevertheless, GPU programming for 

acceleration has its own limitations.  

The processing power of GPUs has increased significantly over the past decade. The 

first NVIDIA GeForce 3 GPU series that was marketed in 2001 only had a four pixel 

pipeline, whereas a more recent NVIDIA Tesla GPU has up to 2,688 streaming 

processors [Lin08]. The driving force behind this massive evolution is the ever-growing 

demands in the game industry [Nic10]. 

A GPU consists of many simple floating point processing elements. In this way, a GPU 

is essentially a shared memory single instruction multiple thread computing platform. 
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Each processing element has a fully pipelined integer unit and a fully pipelined floating 

point unit. The threads are executed in groups of 32 called warps.  

The following figure shows the internal architecture of an NVIDIA Tesla Geforce 8800 

GPU [Lin08]. 

 

Figure 2-1 A Modern GPU Architecture [Lin08] 

 

This GPU consists of 128 streaming processor (SP) cores organized as 16 streaming 

multiprocessors (SMs). The streaming processors are clocked at 1.5 GHz. Each 

streaming multiprocessor has 16 KB of shared memory. Shared memory is the fastest 

memory entity in the GPU memory hierarchy. The shared memory can be accessed by 
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all Streaming Processors in a Streaming Multiprocessor. It provides a fast and efficient 

way for threads of an SM to communicate and synchronize. Generally speaking, one 

can say that a shared memory system has a similar role as a cache in a traditional 

CPU, except that it is the responsibility of the programmer to use it efficiently; there is 

no automatic caching.  

Each SM can execute up to 768 threads without any scheduling overhead. All threads in 

an active warp should execute the same instructions. If the threads diverge through 

branching, the scheduler will execute the branches serially. This, in turn, will reduce the 

performance and efficiency of GPU execution.  Synchronization between threads that 

are scheduled to be executed on different SMs can be done through the global memory. 

This in particular can have a negative impact on the performance of the accelerated 

system due to the slower bandwidth of the global memory.  

The CUDA programming model simplifies mapping applications to GPU architecture on 

the basis of data parallel problem decomposition [Nic10]. The programmer finds 

portions of the code that can be parallelized and decomposes the data array into a two-

dimensional grid of thread blocks where each thread block, in turn, is a three-

dimensional collection of threads. When a GPU kernel is called, each streaming 

multiprocessor executes up to eight thread blocks, depending on the recourse 

requirements of each thread. An active SM which has sufficient resources executes the 

thread blocks concurrently as warps of 32 threads.  

Compared to other acceleration engines,  GPU is more suitable for applications that 

show massive SIMD like data  parallelism and require lots of floating point calculations. 
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The performance gain from GPU acceleration is thus largely  moderate (e.g. 5x) and 

application dependant.      

2.5 FPGAs 
 

Field programmable gate arrays (FPGAs) are prefabricated integrated circuits that can 

be programmed by the customer after it is manufactured to become almost any circuit 

or system [Awa09]. The idea of programmable devices was introduced and developed 

in the 1960s with programmable logic arrays (PLAs), programmable array logic (PAL), 

and read-only memory (ROM).  A PLA or PAL consist of a regular array of prefabricated 

gates with a programmable interconnect architecture. Figure 2-2 shows a PLA 

structures.  

 

Figure 2-2 PLA example 
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These architectures only supported a very limited two-level and/or logic and suffered 

from significant routing overhead. Implementation of a realistic multilevel logic on these 

architectures was not possible because of prohibitive routing and area overhead.  

The first modern era FPGA was developed by Xilinx in the 1980s. It was called XC2064, 

and it consisted of a number of programmable lookup tables and interconnects. XC2064 

had 46 configurable logic blocks (CLBs), each consisting of two three-input lookup 

tables. The chip had only 58 I/O pins. Nowadays, almost 30 years later, a high-end 

Xilinx FPGA has more than 300,000 CLBs in addition to thousands of other high-end 

memory and DSP blocks [Xil13].  

The initial market for FPGAs was mainly about prototyping integrated circuits in the 

development process of the application-specific integrated circuits. At that time, an 

FPGA was used as a less efficient and a demo version of the production level IC, so 

that the developer could have the chance to test and debug their circuit multiple times. 

Furthermore, a programmer could do this with much less cost and in a significantly 

shorter amount of time. Over time, though, FPGAs have evolved so much so that they 

have become a competitor in the ASIC market. Nowadays, compared with what they 

could have done before, FPGAs can deliver much higher performance. Interestingly, 

when compared to other acceleration engines and approaches, such as GPUs and 

clusters, FPGAs provide the biggest savings in power consumption other than ASICs 

themselves.  

A state-of-the-art FPGA consists of a pool of programmable logic blocks, programmable 

IO blocks, configurable routing resources, several megabytes of memory block RAMs, 
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one or more embedded processing units, such as IBM PowerPCs, and an extensive set 

of commonly used DSP blocks, such as multipliers and adders. The programmable logic 

block implements the desired functionality, whereas the programmable interconnect 

allows the functional blocks to be interconnected as desired by the programmer. The 

programmable I/O connects the chip to the outside world on the basis of user settings. 

The term "field programmable" means that a device can be configured after silicon 

fabrication. Thus, a field programmable device provides the possibility for a user to 

change the behavior of the device as needed. In order to provide programmability for 

FPGAs, three different methodologies, namely Anti-Fuse, EEPROM, and SRAM, have 

been used [Kuo08]. Over time, the methodology of SRAM-based programmability has 

grown to dominate other methodologies, and, nowadays, almost all commercial FPGAs 

use SRAM technology. There are several reasons for the widespread use of SRAM 

FPGAs. In contrast to the other two methodologies, SRAM-based technology provides 

infinite reprogrammability. While SRAM-based FPGAs use standard CMOS technology, 

other methodologies require technological capabilities beyond standard CMOS [Kuo08]. 

Furthermore, SRAM-based FPGAs are also easier to program and require no additional 

devices to program. 

In SRAM-based FPGAs, in order to provide reconfigurability in logic blocks and 

interconnects, static memory cells are distributed across the FPGA. The most basic 

logic element of an FPGA is called a lookup table (LUT). As shown in Figure 2-3, an n 

input LUT consists of 2௡ static cells and a 2௡: 1 multiplexer. The n inputs are connected 

to the multiplexer select lines and steer one of the 2௡ static cells to the output. In an n 

input LUT, any n input logic function can be realized. This can be done by setting the 
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desired bits in the static cells of the lookup table. Nowadays, a typical FPGA has four, 

five, or six input lookup tables. A six input lookup table can implement any function of 6 

bits.  

 

Figure 2-3 Static Memory Cells and Lookup Table [Kuo08] 

 

Similarly, static cells are used to steer signals through the reconfigurable interconnects 

of the FPGA. As shown in Figure 2-4, the reconfigurability of FPGA interconnects is 

provided using multiplexers and static cells. At each junction on the FPGA routing 

mesh, a programmable switch based on multiplexers and static cells can connect any 

two lines to each other. The programmer connects two signals by setting the proper bits 

in the interconnects’ configurable static cells.  

 

Figure 2-4 Multiplexer and Static Memory cell [Kuo08] 

 

By itself, a LUT implements a combinational logic. In order to provide the possibility of 

implementing sequential logic, the output of the lookup table can optionally pass 
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through a flip-flop. A static cell configuration bit and a 2:1 multiplexor are used to 

provide this option. 

 

Figure 2-5 Sequential logic in FPGA 

In addition to configurable logic blocks and interconnects, a modern FPGA consists of 

an array of independently addressable block RAMs and hundreds of hardwired DSP 

blocks along with one or two embedded processor cores. Similar to logic blocks, the 

inputs and outputs of these modules can be connected to any other module or logic 

block through the programmable interconnects.  
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Figure 2-6 FPGA Interconnect Schematic view 

 

At a higher level, the FPGA vendor supplies the necessary IP cores that can be used to 

interface with off-chip resources in a flexible and easy-to-use way and the software 

drivers to use these IP cores if hardware/software codesign is required. 

For more than a decade, FPGAs have been used to accelerate a variety of tools and 

applications, including telecommunication and networking applications, signal and 

image processing, control systems, biomedical applications, and many other practical 

applications [Gok05]. 

The advantages of using FPGAs in  high-performance computing can be summarized 

as follows: 
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 Higher performance: FPGAs often deliver the highest performance among all 

accelerators, particularly for low precision applications. A speedup gain of 10x to 

300x using FPGAs is commonly seen in published literature. The main reason for 

this is the vast parallelism that can be achieved inside FPGAs by fine-grain 

pipelining, coarse-grain replication, and a huge amount of memory bandwidth 

from the block RAMs inside FPGAs. In addition, as Moore’s Law remains valid, 

the resources in FPGAs increase over time, which increases the possibility for 

more parallelism and inherently more performance. 

 Lower power consumption: FPGAs consume much less power than CPUs and 

GPUs because of their lower operating frequencies. 

 Reconfigurability: The fact that FPGAs are reprogrammable gives them a big 

advantage over ASICs. Some applications require more frequent reprogramming. 

In either case, reconfigurability saves time and money. 

 Time to market: The design cycle of FPGAs is much shorter than that of ASICs.  

 Technology upgrades: Migrating a design from an old FPGA to a new FPGA 

requires little time and effort but can result in a significant gain in performance. 

The challenges of FPGA based design include: 

 Higher price: FPGAs are more expensive than GPUs and CPUs, and, thus, the 

expectations are higher. 

 Limited resources: FPGAs have limited resources. It’s the developer’s task to 

efficiently use these resources in the most efficient way. 
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2.6 FPGA-Based Systems  
 

In brief, we state our assumptions about the target systems of this study with FPGA-

based accelerators. These systems are typical for current products. The overall FPGA-

based system consists of some number of standard nodes. Typical node configurations 

have one to four accelerator boards plugged into a high-speed connection (e.g., the 

front side bus or PCI Express). The host node runs the main application program. 

Nodes communicate with the accelerators through function calls. Each accelerator 

board consists of one to four FPGAs, memory, and a bus interface. On-board memory 

is tightly coupled to each FPGA, either through several interfaces (e.g., 6 x 32 bit) or a 

wide bus (128 bit). Currently, 4 GB–64 GB of memory per FPGA is standard. Besides 

configurable logic, the FPGA has dedicated components such as independently 

accessible multiport memories (e.g., 1,000 x 1 KB) called block RAMs (or BRAMs) and 

a similar number of multipliers. FPGAs used in high-performance reconfigurable 

computing typically run at 200 MHz, although, with optimization, substantially higher-

operating frequencies can sometimes be achieved. In this research we have used two 

FPGA based acceleration platforms: Gidel board and the Convey machine. Next, we 

briefly describe their architectures.   

2.6.1 Convey System 
 

A Convey HC-1ex computer is a hybrid processor with a single four-core Intel CPU 

(Xeon L5408 2.13 GHz) and four Xilinx FPGAs (Virtex-6 XC6VLX76) 

[Bak10][Con13a][Con13b]. There is a total of 24 GB of host and coprocessor memory, a 

standard Intel IO chipset, and a reconfigurable coprocessor based on FPGA 
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technology. The system runs 64 bit Linux. The coprocessors are programmed by the 

user and can execute custom instructions. The host and coprocessors share the same 

virtual address space. 

 

Figure 2-7 Convey System Overview [Bak10] 

The user logic runs on 4 Xilinx Virtex 6 FPGAs, which Convey refers to as application 

engines (AEs). The coprocessor also consists of interface logic, called the application 

engine hub (AEH), which connects the coprocessors to the host CPU. It is responsible 

for fetching and decoding instructions, executing scalar instructions, and routing host 

memory requests to coprocessor memories. In addition to the AEH, the coprocessor 

system consists of eight memory controllers that connect the AEH and the AEs to 

coprocessor memory modules through a full crossbar network. The memory controller 

subsystem can support up to 16 DDR2 memory channels. The memory subsystem can 

collectively support up to 8,000 parallel requests and 80 GB/s total bandwidth. 
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In addition to user logic, each application engine includes some API logic that 

implements the interface between the application engine, the AEH, and the memory 

controllers. It also includes dispatch logic that enables the execution of the custom 

instruction and some management and debugging interface.  

2.6.2 Gidel Board 
 

The Gidel Proce III board is an FPGA acceleration board that connects to the system 

through a PCIex bus [Gid10]. The FPGA is an Altera Stratix-III 260E. For memory there, 

is 4.5 GB of DRAM partitioned into three banks of 2 GB, 2 GB, and 512 MB, 

respectively. Each bank has a 64 bit interface and can be accessed independently. One 

of the 2 GB and the 512 MB banks run at 333 MHz; the other 2 GB bank runs at 166 

MHz. Data is transferred to and from the board by means of direct memory access 

(DMA) channels through the PCIex bus. The total DMA bandwidth can be up to 1 GB/s. 

The Gidel board provides a graphical user interface that is used to generate the 

hardware and software interface for the user logic and application. The following figure 

shows a block diagram of the Gidel board. 
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Figure 2-8 Gidel Board Overview [Gid13] 

  

2.7 Summary 
In this chapter we reviewed basic  concepts in high performance computing.  We took a 

brief look at the current status of   multicore processors and GPU computing. We gave 

an introduction to FPGA architecture. We reviewed the  possibilities of acceleration 

based high performance  computing. At the end we introduced two acceleration 

platforms that we will use throughout the thesis Convey machine and Gidel board. 

Convey machine is a shared memory super computing  platform consisting of 4 high- 

end  FPGAs. The FPGAs can be programmed to accelerate applications using user 

defined custom  instructions. Gidel board is a commodity acceleration platform that is 

connected to the system's PCI bus. Using vendor provided  API and user interfaces the 

programmer can communicate with the FPGA (e.g. with a DMA call). 
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3 Sequence Analysis: Methods and Algorithms 

3.1 Overview 
 

A fundamental insight of bioinformatics is that principal biological polymers such as 

proteins and DNA can be abstracted into character strings (sequences). This allows 

biologists to use approximate string matching (AM) to determine, for example, how a 

newly identified protein is related to those previously analyzed, and how it has diverged 

through mutation. While classic dynamic programming methods can be used to this 

end, fast methods, such as BLAST, are based on heuristics, and can match a typical 

sequence (a query) against a set of known sequences (e.g., the millions in the NR 

database) in just a few minutes. Moreover, these heuristics only rarely miss significant 

matches. These remarkable results have only increased the importance of BLAST: it is 

now often used as the “inner loop” in more complex bioinformatics applications such as 

multiple alignment, genomics, and phylogenetics. 

Multiple Sequence Alignment is critical to many bioinformatics solutions, e.g., in 

determining the structure and function of molecules from putative families of sequences 

in phylogenetics and finding the evolutionary relationship between species.  

In this chapter we will look at the  most  important sequence analysis tools and 

algorithms. We will start with the basic biology of cell to give an insight into how 

sequence analysis comes into play.    In Section 3.3 we will overview the fundamental 

concepts in sequence analysis. In Section 3.4 we will look at different scoring models 

used in sequence analysis. Section 3.5 provides an overview of  pairwise sequence 
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analysis methods and algorithms including Smith-Waterman and NCBI BLAST. Section 

3.6.5 details how statistical significance is determined in sequence analysis use-cases. 

Section 3.7 provides details of important multiple sequence alignment methods.  

3.2 The Basic Biology of Cell 
 

A fundamental feature of all living organisms is heredity  [Alb02]. A living creature 

passes down heredity information to its offspring, specifying a massive detail of 

characteristics that its offspring should posses. All living organisms consist of cells. 

Regardless of the number of constituent cells, a living organism is generated by cell 

divisions from a single cell. Thus, A single cell, not only stores all the hereditary 

information in an organism but also has all the resources required to replicate itself. All 

cells depend on three principal molecules to function: DNA, RNA, and proteins  [Alb02]. 

A cell's DNA contains the entirety of an organism’s hereditary information. All living cells 

store their hereditary genetic information in double-stranded molecules of DNA, which 

act as a database of features. The four bases that make up a DNA strand are adenine 

(A), guanine (G), cytosine (C), and thymine (T). A DNA strand is often represented as a 

chain of nucleotides where each nucleotide consists of a sugar, a phosphate attached 

to it, and one of the four bases named above. The long chain of A, T, C, and G 

monomers of a DNA strand encodes the genetic information of the living cell that it 

belongs to. A single-stranded DNA molecule is extended by adding nucleotides to its 

ends. The added base can be any of the four bases, since there is only one sugar-

phosphate backbone. However, in a double-stranded DNA, an A in one strand always 

bonds with a T in another; similarly, a C always bonds with a G. This way, during the 
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process of replication, a single strand of the DNA is used as a template by the cell to 

create identical copies. Because of this constraint in bonding, the term “base pair” is 

often used in literature. Since the bonds between bases are much weaker than the 

bonds between the phosphate and sugar constituents of the backbone, the two strands 

can be pulled apart without breaking the backbone. On the basis of the complementary 

bonding constraint described above, the two strands then act as a template to create 

two identical copies of the original double-stranded DNA  [Alb02].  

Just like DNA and RNA, proteins are long, unbranched polymers formed by chaining 

many monomeric building blocks. Just like DNA and RNA, the monomeric building 

blocks are the same for all proteins. On the other hand, the protein monomers that are 

called amino acids are very different from those of DNA and RNA. There are 20 amino 

acids, as opposed to the four bases of DNA and RNA. Thus compared  with DNA or 

RNA strings which consist of  4 symbols,  the alphabet of the proteomic strings consists 

of 20 symbols.   Whereas RNA are considered the translators of the genetic code, 

proteins are considered its running engine. Thus, there is generally a functional 

relationship between a DNA sequence and a protein sequence. Each protein has its 

own genetic functionality that is specified by its sequence of amino acids. 

3.3 Fundamentals of Biosequence Analysis 

Bioinformatics is the application of computer science and information technology to the 

field of biology. The fundamental observation in bioinformatics is that biological entities 

like proteins and DNA can be represented as character strings. A DNA (or RNA) is a 

sequence made from repeating A, C, G, and T (U in RNA). Similarly, proteins can be 

decoded as finite sequences of 20 characters.  The theory of evolution states that 
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species have evolved over millions of years through a process of incremental change. 

With the invention of genome sequencing, scientists have been able to describe the 

process of evolution using the genomic sequence analysis.  

The information stored in a DNA molecule is the result of evolution over time. This 

information is passed from the parent cell to the child cell during the replication process. 

Although the replication process is delicately accurate, it can introduce changes in the 

DNA sequence. Many factors can affect the accuracy of the replication and introduce 

errors. Just like any transmission mechanism, these errors can occur in three forms: 

substitution, insertion, or deletion of a symbol from the target result.  These changes 

can occur in DNA, RNA, or protein sequences.  It is expected that two biological 

sequences that have many common residues, whether they are DNA nucleotides or 

protein amino acids, will exhibit similar features or play similar roles in the development 

and functionality of a cell.  Thus, sequence analysis methods can be used to detect the 

relationship between different biological sequences, to find the functionality of the newly 

found genes or proteins, to discover new drugs, or to provide new insights in 

understanding life itself. 

The most fundamental and routinely asked question in biosequence analysis is 

therefore how these sequences are related. In order to answer this question, the two 

sequences must be aligned, and the alignments should be evaluated with a biologically 

meaningful metric. Durbin et al. lists the key issues involved in sequence analysis as 

[Dur98]:   

1) Scoring models used to align sequences,  
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2) Alignment type and methods  

3) Statistical methods used to evaluate the alignment. 

In the follows sections, we will take a brief look at each one of these issues. 

3.4 Scoring Models 

There are many ways to score the similarity between character sequences. The 

simplest way to assess an alignment is by using Hamming distance. Hamming distance 

assumes that the two sequences being compared are already aligned in order; i.e., the 

ith symbol in one sequence is aligned with ith symbol in the other. But biologists usually 

do not have the luxury of assuming in order alignment. Since genomic sequences are 

subject to insertions and deletions, Hamming distance is not often used in sequence 

analysis.     

Another way to measure the similarity between two sequences is by using the so-called 

edit distance. The edit distance between two sequences is the number of edit 

operations that are required in order to transform one sequence into another. The 

changes can be the insertion of a symbol, the deletion of a symbol, or the replacement 

of one symbol with another. This is also referred as Levenshtein distance. Dynamic 

programming can be used to calculate the edit distance. In calculating this distance, 

matching residues score zero, and all mismatches, insertions, or deletions are 

penalized by one. Similarly, a weighted edit distance can be used. In a weighted edit 

distance, two different cost values are used: one for mismatches and one for gaps. 

Each insertion or deletion is penalized with D, and each mismatch is penalized with R. 

This simple scoring matrix is often used for DNA sequence analysis. 
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As explained before, several biological and chemical factors affect errors in the 

replication process. Using statistical methods and expert knowledge, biologists have 

developed scoring matrices that represent these factors. For example, changing R to Q 

is much more biologically plausible than changing E to C. In a scoring matrix, this can 

be represented by having a positive score for the R/Q pair and a negative score for the 

E/C pair. Then, an alignment of two sequences can be scored with a simple summation. 

For each residue pair that is aligned, the corresponding score is added to a total running 

score. The gaps can be treated as special characters. Additive scoring has proven to be 

the best scoring mechanism for this so far. The following figure shows an alignment and 

its score. 

D M F C N T E G I A 

| | | | | | | | | | 

T M G - N - E G Q S 

-1 +5 -3 -9 +6 -9 +7 +5 -2 -1 

Figure 3-1 Sequence  Alignment 

 

Statistically speaking, this (and related similar methods) assumes that changes in a 

sequence occur independently of each other.  In other words, one change does not 

affect other changes. As a result, additive scoring is the prevalent scheme in the 

analysis of DNA and protein sequences and is used as a standard tool. The following 

figure shows blosum62, one of several standard matrices used in protein sequencing 

and alignment scoring [Hen92][NCBa].  
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 A R N D C Q E G H I L K M F P S T W Y V B Z X * 
A 4                        
R -1 5                       
N -2 0 6                      
D -2 -2 1 6                     
C 0 -3 -3 -3 9                    
Q -1 1 0 0 -3 5                   
E -1 0 0 2 -4 2 5                  
G 0 -2 0 -1 -3 -2 -2 6                 
H -2 0 1 -1 -3 0 0 -2 8                
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4               
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4              
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5             
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5            
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6           
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7          
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4         
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5        
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11       
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7      
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4     
B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4    
Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4   
X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1  
* -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 1 

Figure 3-2 Blosum62 Matrix 

Gaps need special attention. There are two common ways to score gaps: linear or affine 

gap penalty. In the linear gap model, a single gap costs a constant (V), and the total 

cost of a gap of length (L) is VL . In affine gap model, opening a gap costs more than 

extending it. Thus, a gap of length L costs )1(  LVU , where U is the gap opening 

penalty and V is the gap extension penalty. It has been shown that, in modeling 

biological sequence similarities, the affine gap penalty is more accurate than the linear 

penalty. The affine gap penalty is slightly more costly computationally—both in 

hardware and in software—than the linear gap penalty. 

3.5 Pairwise Sequence Alignment with Dynamic Programming 
 

Pair-wise alignment algorithms can be divided into two subcategories: global alignment 

algorithms and local alignment algorithms. A global alignment algorithm aligns all of the 

residues in one sequence to all of the residues in another one, possibly by inserting 

gaps in the sequences. On contrast, in a local alignment algorithm, it is not required to 
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include all of the residues of both sequences, and only portions of the sequences that 

align better are of interest.  

From another point of view, an alignment algorithm can be categorized as gapped or 

ungapped. A gapped alignment algorithm allows the insertion of gaps into the 

(sub)sequences, whereas an ungapped alignment algorithm does not. An ungapped 

alignment aligns contiguous portions of the two sequences.  

There are numerous algorithms for solving the approximate string matching problem, 

but only a few of them are used for biosequence analysis.  In this and the following two 

Sections we will look at the alignment algorithms that are commonly used in the 

biosequence analysis community, starting with methods based on Dynamic 

Programming (DP) and continuing with the most commonly used method, BLAST. 

As shown below, an alignment of two sequences can be depicted with a tableau with 

one of the two sequences placed on the horizontal axis and the other on the vertical 

axis. In this depiction, diagonal arrows represent replacement or matching pairs, 

whereas vertical or horizontal arrows represent indels. Contents of the tableau are the 

local running match scores. 
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Figure 3-3 Alignment tableau 

 

The problem of finding the best alignment between two sequences has all of the 

properties needed to make DP a suitable solution; that is, it has an optimal substructure 

and contains overlapping subproblems. DP recursion is often used to show the 

subproblem structure. Sometimes a tabular grid (similar to one shown in Figure 3-3) is 

used to show the DP solution.  Each grid location corresponds to a subproblem of the 

problem of interest. The value written in each grid location represents the best score for 

the corresponding subproblem.  In the case of sequence alignment, the subproblems 

are the scores of best alignments of the subsequences that are represented by grid 

locations.   

A typical sequence alignment use-case starts with a query sequence and a database of 

known sequences. We call each sequence of this database a subject sequence. The 

sequence alignment tool aligns the query sequence with all of the subject sequences in 

the database, and those sequences that score high are returned alongside the optimal 

alignments that are found.  
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The two classic DP algorithms for approximate string matching are refereed as the 

Needleman-Wunsch and Smith-Waterman algorithms. 

The Needleman-Wunsch algorithm [Nee70] is the classic dynamic programming 

algorithm for solving pair-wise, gapped global alignment problems. As with any dynamic 

programming algorithm, the optimal solution is calculated from the optimal subproblem 

solutions. A matrix of size query length  subject length is created. We call this matrix H. 

jiH ,  is the score of the best global alignment up to residue i in the query and residue j in 

the subject. Therefore, the dynamic programming recursion of Needleman-Wunsch, 

assuming a linear gap penalty model, can be written as: 

},,max{ 1,,1,1,1, dHdHSHH jijijijiji    

In this equation, jiS , , which is derived from the score matrix, is the score of aligning 

residue i of the query with residue j of the subject sequence and d is the score of 

inserting a gap in either the query or the subject. The first term in the above formula 

corresponds to a case where residue i is aligned to residue j, whereas the second and 

third terms correspond to a cases in which a gap is inserted to either the query or the 

subject. The recursion is initialized by djHdjH ij  0,,0 ,  to account for the initial 

gaps. The best alignment score is calculated at the bottom right corner of the matrix, 

and the actual alignment can be written by tracing back the dynamic programming 

matrix calculation from the bottom right corner. 

In order to calculate the affine gap penalty, the recursion should be rewritten as follows: 
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In the equations above, jiE , calculates the penalty of inserting a gap into the subject 

sequence in the affine gap penalty model, jiF ,  calculates the corresponding value for 

the query sequence, and jiH ,  is the score of the best global alignment up to residue i in 

the query and residue j in the subject. 

For a query of length q and a database sequence of length d, the running time of this 

algorithm is qd  . This algorithm is guaranteed to find an optimal solution, but its running 

time makes it impractical for large database searches. 

Perhaps the most renowned dynamic programming algorithm in biosequence analysis is 

the Smith-Waterman algorithm [Smi81]. This algorithm is used to find the optimal 

gapped local alignment between a query and a database sequence. The algorithm is 

very similar to Needleman-Wunsch, and its recursion for linear gap penalty is as follows: 

}0,,,max{ 1,,1,1,1, dHdHSHH jijijijiji     

The initialization condition for this recursion is 00,00,  iforHH ii .  

Similar to Needleman Wunsch, in case of an affine gap penalty system, the recursions 

are rewritten as follows: 
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As can be seen, the only difference between this recursion and Needleman-Wunsch is 

the addition of zero in the best subsequence alignment score calculation. This small 

change enables us to align a portion of the database and sequence and find the best 

local alignment. The best alignment can be generated by tracing back from the element 

with maximum score in the H matrix until we reach an element with a score of zero. 

Similar to the previous algorithm, for a query of length q and a database sequence of 

length d, the running time of Smith-Waterman is qd  . The algorithm is guaranteed to 

find the best local alignment with possible gaps, but its slow running time in comparison 

with heuristic methods makes it less practical for large database searches. 

 

3.6 BLAST 

3.6.1 Overview  
 

BLAST is the most dominant heuristic approximate string-matching tool for finding either 

gapped or ungapped local alignments between a query and a large collection of 

database sequences [Alt90]. Although Smith-Waterman is guaranteed to give optimal 

results, there are two major reasons why BLAST is the standard approximate matching 

search tool for proteins and DNA. The first reason is speed:  NCBI BLAST can be 50 to 
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100 faster than Smith-Waterman, and it almost always provides the better quality 

results. The speedup gain of BLAST is due to the heuristics that it uses to find the best 

alignments. The second reason for the dominance of blast is that it avoids junk matches 

thanks to complex heuristics and statistics. Using a naïve Smith-Waterman algorithm 

will cause several meaningless alignments to be reported.  

The fundamental idea of BLAST is to avoid searching the entire database by finding hot 

spots in the database sequences that can potentially result in high-scoring alignments. 

To this end, NCBI BLAST is divided into three stages, namely word matching, 

ungapped extension, and gapped extension. We will look at these stages in the 

following sections.  This overview is based on that in [Kor03]. 

3.6.2 Word Matching 
The first step is to find short stretches of high similarity between the query and the 

subject sequence. Here, a w-mer represents a substring of length w on either the 

subject or the query sequence. The first algorithm, which is called the single hit 

algorithm, finds the identical w-mers between the query and the subject for DNA and 

matches with high scores for proteins. This approach is typically used in DNA searches 

with a default length of 11. The matches are called seeds. 

Another algorithm, often used in protein sequence alignment, finds two matches of 

shorter length between the query and the subject sequence that are positioned close to 

each other and on the same diagonal.  Here, the matching is not exact, and a threshold 

is used to find approximate matches of length w. More precisely, a match can be 

represented as a pair ),( 00 qd where 0d and 0q  are the coordinates of matching w-mers 
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on the subject and the query, respectively. let, ),( 11 qd represent another match. A seed 

is detected when 

1100

100

qdqd

Add




 

where A  is a constant with default value equal to 40.  Either the single hit or the two-hit 

algorithm gives us the coordinate of the seeds that can be extended by the ungapped 

extension phase. 

3.6.3 Ungapped Extension 
The second stage receives the seeds from the first stage and extends them to find high-

scoring local ungapped alignments called high-scoring segment pairs (HSPs). The 

extension is performed to both the left and right of the seed.  An early-termination 

mechanism is used: i.e., for each extension, a running score is maintained. Starting 

from the score of the seed, if aligning the next letters from the query and the subject 

increases the running score above the best value seen, then the alignment is extended 

to include the letters; if adding the letters reduces the running score by more than a 

constant X below the best running score seen during the extension, then the extension 

stops.  If neither happens, the extension is continued, and the alignment is not enlarged. 

Once the extension is stopped, if the score of the extension is above a cutoff value, then 

the HSP is saved for the next stage, Otherwise, it is discarded.  

3.6.4 Gapped Extension 
The final step involves converting the ungapped HSPs from the previous stage into 

gapped alignments by extending them to the left and right and adding gaps if 

necessary. This stage also uses an early-termination algorithm to minimize the 
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extension time.  The gapped extension uses DP-like mechanisms similar to that in 

Smith-Waterman. 

3.6.5 Statistical Evaluation in BLAST 
NCBI BLAST reports scores and E-values as measures of the significance of 

alignments. For a given query and subject pair, the reported E-value shows the 

expected number of alignments with the resulting score.  The smaller the E-value, the 

more significant the alignment, meaning that there is a smaller chance of having such 

an alignment by random noise.  

For a query of length q , a database of length d , a score of S between the query, and a 

subject sequence from the database, the E-value is determined by 

SedqkValueE    

where k  and   are Karlin-Altschul constants calculated from previous simulations 

[Kor03].  qand d   are the effective lengths of the query and the database, respectively. 

The idea of effective length for a query and database comes from the fact that an 

optimal alignment usually starts far from the right edge of the sequence [Kor03].  Here, 

q  and d  represent the length of the query and the database, respectively.  Additionally, 

let N  represent the number of subject sequences in the database.  The effective 

lengths of the query and database can be calculated by the following formulas: 

 
lNdd

lqq




 

Here, l  is an integer value that is called length adjustment, which is calculated by the 

BLAST program. Another important parameter in the BLAST statistic is called effective 
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search space, and it is equal to dq  .  Any alteration of these parameters will result in 

incorrect statistical results being reported by the program.  

3.7 CLUSTAL-W: Multiple-Sequence Alignment 

Another task that biologists routinely perform is the extension of pair-wise sequence 

alignment to multiple-sequence alignment (MSA). MSA is used to find the evolutionary 

relationship between sequences, to find homologous regions in a groups of sequences, 

or to conduct phylogenetic analysis.  For sequences that are not closely related, finding 

an accurate MSA is a topic of extensive research.  MSA can be an expensive algorithm, 

both in the time and the amount of space required.  Accelerating MSA alignment 

algorithms not only provides a better means for biologists to perform their routine tasks, 

but it also can assist them in finding better alignments, which can result in 

improvements in the accuracy of the MSA.  In the following sections, we will look at 

some of the well-known algorithms for performing MSA.  

3.7.1 Dynamic Programming 

 We can extend the dynamic programming recursion of the pair-wise sequence 

alignment to multiple sequences. In this case, a multidimensional dynamic programming 

solution is used. This approach quickly becomes intractable as the number of 

sequences grow. Thus, it is worthwhile to notice that using dynamic programming as a 

solution for MSA is only used for very small sets of sequences.  

3.7.2 Progressive Multiple-Sequence Alignment: ClustalW 

The most commonly used method in MSA is the progressive sequence alignment 

method, which was originally introduced by Fong and Doolittle in [Fen87].  There are 
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several similar progressive MSA methods which vary in some accuracy and 

performance details [Tho94], [Not00], [Edg04],[Hig98],[Kat02]. In general, the skeleton 

of progressive sequence alignment algorithms consists of the following three stages: 

1) The first stage of the algorithm is to construct a distance matrix. For each pair of 

sequences, a pair-wise sequence alignment is performed, and some 

measurement of distance between the two sequences is stored in a matrix. 

2) At stage two of the algorithm, a guided tree is generated using the distance 

matrix from stage one. This guided tree is generated using a clustering algorithm, 

such as neighborhood-joining or UPGMA.  

3) At stage three, the final MSA is generated by following the order of the guided 

tree. Starting from the most similar sequences and moving in decreasing 

similarity, at each stage, two child nodes (which can be two sequences or 

alignments or profiles) are selected and aligned.  

Different progressive alignment tools differ by the algorithms that they use in the three 

stages above and the subsequent optional optimizations they use to increase 

accuracy[Not00][Hig98][Edg04][Kat02]. 

ClustalW is one of the most widely-used progressive sequence alignment tools [Tho94]. 

In the first stage, for the construction of distance matrix, this tool uses a percentage of 

identities in the best local gapped alignment as a metric. In the second stage, it uses the 

classical neighborhood-joining classification to generate the guided tree. Finally, for the 

third stage, the tool performs a profile alignment. In a profile alignment, a group of 

sequences can be aligned with another group of sequences. In order to get the score of 

a position in this group-to-group alignment, the average of the all-to-all scores is used.  
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4 Previous Attempts to Accelerate Sequence Analysis  

4.1 Overview 
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NCBI maintains a large database of biosequences. The increasing power of technology, 

advances in sequencing methods, and widespread interest in biosequence analysis 

have resulted in exponential growth in the size of this database. In addition, any 

database like the NCBI database should be able to respond to queries from all around 

the world in a timely manner. Obviously, the acceleration of tools that search, maintain, 

or analyze this vast and ever-growing database would be hugely beneficial.  Also, as 

previously described, the increasing complexity of these tools provides additional 

motivation. 

As explained before, there are several methods that can be used to query the sequence 

databases, but only a few of them are accepted as standard tools. Among these are the 

NCBI basic local alignment search tool (BLAST) and the Smith-Waterman algorithm. 

Smith-Waterman is substantially slower.  As a result, NCBI uses the heuristic BLAST to 

query the database, and, as such, the majority of the bioinformatics community uses 

this tool. Any attempt to accelerate NCBI BLAST that results in a disagreement with the 

original version will not be accepted in the scientific community, even if the results have 

similar or even higher accuracy. On the other hand, even though the acceleration of 

NCBI BLAST is important, the software package is highly optimized and complex:  

many levels of optimization have been added since the original algorithm was proposed. 

This poses great challenges to any attempt to accelerate it.  

As we will see, there have been many attempts to accelerate NCBI BLAST using 

traditional cluster computing methods. However, these systems usually incur excessive 

power consumption and high costs. An FPGA-based accelerator can deliver the same 

performance with significantly less power consumption and fraction of the nodes. 



57 
 

Several academic and industrial attempts have been made to accelerate sequence 

analysis algorithms. These works include pure software optimizations on shared 

multiprocessor systems, FPGA or ASIC-based hardware accelerators, GPU based 

systems, cloud computing and clusters of computers.  

When comparing a query to database sequences, the query can be compared with 

each subject sequence independently of other subject sequences. With this 

observation, we can notice that comparing a query to a database of sequences is an 

embarrassingly parallel problem. This is the basis for the so called database 

segmentation approach for the acceleration of sequence analysis [Dar03]. In the 

database segmentation approach, the database is divided into smaller portions, and 

each portion is assigned to a processing unit.  This is referred as inter-task 

parallelization. 

 On the other hand, to further increase the speed of a system, especially when using an 

accelerator, one needs to parallelize at a finer granularity. This level of parallelism is 

called intra-task parallelism, and it refers to parallelism inherent in the comparisons of 

the subject characters against query characters.  

Usually, the techniques used in software optimization of sequence analysis tools are 

based on either cache efficiency considerations or reducing the number of required 

instructions in kernel portions of the code. These techniques are hardly useful for 

hardware implementations. Most of the time, the dynamic programming recursions are 

implemented with a systolic array in hardware. However, the recursions of these 

applications are so computationally intensive that the operating frequency of hardware 
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are below expectations. Pipelining these recursions is not necessarily useful, either. 

Similar problems to what we have mentioned above occur with hardware-accelerating 

heuristic applications such as NCBI BLAST. This makes direct mapping of these 

software-minded applications to hardware a dubious choice.  

In this chapter, we will investigate the previous approaches to accelerating sequence-

analysis tools. The rest of this chapter is as follows. In Section 4.2, we will look at the 

best implementations of the Smith-Waterman algorithm. Section 4.3 reviews the 

previous attempts for hardware acceleration of the Smith-Waterman algorithm. In 

Sections 4.4 and 4.6, we will review the previous cluster-based and accelerator-based 

attempts to accelerate NCBI BLAST. In Section 4.7, we will investigate previous 

attempts to accelerate multiple sequence alignment applications. 

4.2 Software Acceleration of Smith-Waterman 
 

Attempts to accelerate Smith-Waterman date back to the mid ‘90s. One of the first 

attempts to map Smith-Waterman to an SIMD architecture is reported in [Alp95]. Alpern 

et al. used a combination of optimizations towards a cache-efficient code and SIMD-

based parallelism and achieved a modest speedup over a very early implantation on an 

i86 processor. 

Wozniak et al. presented an implementation of Smith-Waterman on a Sun Ultra Spark 

processor using its SIMD video instructions [Woz97]. Their work is based on the intra-

task approach, and it uses the SIMD instructions to parallelize a Smith-Waterman 

tableau's cell updates. The key observation is that the cells along the antidiagonals of 

the alignment tableau can be processed independently. An example of an antidiagonal 
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is shown in Figure 4-1. Using this approach, Wozniak et al. achieved 2 speedup over 

the best serial code of their era.  

 0 C R U A N B C 
0 0 0 0 0 0 0 0 0 
C 0 10 5 ?     
R 0 3   ?      
N 0 ?       
D 0        

Figure 4-1 Inherent Parallelism in Smith Waterman Antidiagonals 

 

T. Rognes and E. Seeberg were the first to use SSE/MMX instructions set to implement 

an SIMD version of Smith-Waterman on an Intel processor [Rog00]. They also 

introduced the concept of the query profile. Using a query profile reduces the number of 

score table lookups in the inner loop of the Smith-Waterman recursive implementation. 

Thanks to SIMD implementation, query profiling, efficient usage of cache, and some 

other optimization techniques they achieved 6-fold speedup over a highly optimized 

serial Smith-Waterman. 

Farrar used SSE2 to implement a SIMD version of Smith-Waterman [Far07]. In contrast 

to previous work, Farrar's query profile is stripped so that the access pattern to the 

query profile is more efficient. Because of this improved access pattern, fewer 

instruction are executed in the inner loop of the Smith-Waterman dynamic programming 

C code. Farrar also proposed using a lazy F function, which helps to minimize the 

conditional branches inside the inner loop. As a result of these optimizations, the code 

achieved a 2 improvement over previous SIMD implementations.  
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Another Smith-Waterman implementation, which is called SWPS3, is an integration of 

SIMD and a multithreaded implementation [Sza08]. It can be mapped to both IBM Cell 

or to x86/SSE2. The code is based on Farrar's intra-sequence parallelization. It extends 

Farrar's implementation to IBM Cell, implementing a multithreaded version. 

A similar implementation of Smith-Waterman on PS3 (called CBESW) is described in 

[Wir08]. It is an inter-sequence SIMD implementation of Smith-Waterman, and it 

achieves up to 3.4 GCUPS (Giga Cells Updates Per Second).   

A faster implementation of Smith-Waterman was introduced in 2011 by Rognes 

[Rog11]. The implementation is available for the general public under the name SWIPE. 

The idea was to use SSSE3 instructions to implement an inter-sequence parallelization 

of Smith-Waterman. Each subject sequence is mapped to a portion of SSE instruction. 

Using six cores, a multithreaded implementation of the code achieves 106 GCUPS. 

There are a number of attempts to map the Smith-Waterman algorithm to GPU [Lip88]. 

CUDASW++2.0 implements Farrar's stripped query profile-based implementation on 

GPUs. It utilizes both inter- and intra-sequence parallelism and achieves an average of 

16.5 GCUPS.  

 

4.3 Hardware Acceleration of Smith-Waterman 
 

The first attempts to accelerate Smith-Waterman using special-purpose hardware were 

done in the late 1980s. P-NAC is considered the first hardware implementation of 

Smith-Waterman [Lop87]. It computes the edit distance between genome sequences. 
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Since the introduction of P-NAC, we have seen many improvements in the 

implementation of genomic Smith-Waterman on hardware. However, these 

optimizations do not apply for proteomic Smith-Waterman. The reason behind this 

difference can be traced back to the differences in the scoring mechanisms used for 

genomic and proteomic sequences. For genomic sequences, only an edit distance is 

calculated. On the other hand, for proteomic sequences, a complete scoring matrix is 

needed.   

One of the most well-known examples of these type of optimizations was presented by 

Lipton and Lopresti . They noticed that, if the gap penalty is set to one and the 

mismatch penalty is set to two, then the recursion can be rewritten as follows: 

Hሺi, jሻ ൌ ቊ
Hሺi െ 1, j െ 1ሻ	if		൫	൫Hሺi െ 1, jሻor	Hሺi, j െ 1ሻ൯ ൌ ሺHሺi െ 1, j െ 1ሻ െ 1ሻ൯	or		ሺS ൌ Qሻ

Hሺi െ 1, j െ 1ሻ ൅ 2
ቋ 

Using this optimization, it is has been shown that the computation of an H matrix can be 

done in modulo-4 encoding [Lip87]. As a result, to record H, only 2 bits are required in 

each cell in the alignment tableau. It is clear that such optimization is not practical when 

more complicated scoring mechanisms are used. For example, one cannot use this 

optimization for proteomic sequence alignment. As a result, hardware implementations 

of genomic Smith-Waterman are an order of magnitude faster than hardware 

implementations of proteomic Smith-Waterman.  

The first hardware implementation of Smith-Waterman that was capable of supporting 

protein score tables and affine gap penalties was introduced in 1991 by M. Waterman 

[Cho91]. This work, which was called BISP, was the basis of all the future 
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improvements in hardware implementation of proteomic Smith-Waterman. The BISP 

architecture is based on data-flow graph analysis of the Smith-Waterman algorithm. The 

following Figure shows the Smith-Waterman algorithm's dependence graph. 

 

Figure 4-2 BISP Data flow Graph [Cho91] 

 

As shown in Figure 4-2, from the analysis of a data dependence graph (DG), a signal 

flow graph (SFG) is derived. The signal flow graph assigns the virtual nodes of the DG 

to the actual processing elements in the SFG. The hardware implementation of Smith-

Waterman is a systolic array consisting of identical processing elements chained 

together. In this systolic array, there is a one-to-one mapping between processing 

elements of the systolic array and nodes of the SFG. With careful analysis of the SFG, 
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the structure of each processing element is derived. The structure of each processing 

element is shown in Figure 4-3. 

 

Figure 4-3 BISP Processing Element 

 

Because FPGA resources are limited, one needs to fold the pipeline of the systolic array 

in order to support large queries. Oliver et al. proposed a method to do so that was 

based on the processing element described in BISP [Oli05] . If a query length is larger 

than the maximum number of processing elements (PEs) available on the target FPGA, 

the query is divided into multiple portions. The entire subject sequence is streamed 

through the systolic array in multiple passes. At each pass, a portion of the alignment 

tableau is generated (see Figure 4-4).  A FIFO is used to store the intermediate results 

corresponding to the last characters of each query segment. When processing the next 

query segment, the contents of the FIFO are streamed through the systolic array. The 

following figure shows the idea of a folded Smith-Waterman.  Figure 4-5 shows the 
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architecture of Oliver's Smith-Waterman [Oli04]. Oliver's implementation achieved 5.8 

GCUPS on a virtex II FPGA.  

 

Figure 4-4 Folded Smith Waterman  

 

 

Figure 4-5 Oliver's SW Processing Element [Oli04] 

 

The most challenging problem with hardware implementation of Smith-Waterman is the 

long critical path that limits the operating frequency. For most target FPGAs the critical 

path is inside the PE. In Figure 4-3, the critical path is on the feedback path from E to H 
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to E. Although this design can be further pipelined to increase the operating frequency, 

breaking the feedback path of the PE poses two challenges to the designer. 

First, since the value of the each diagonal is dependent on the calculated values of the 

previous diagonal, the addition of any pipeline stage requires an additional idle clock 

cycle. In other words, the pipelined PE should always wait for the proper values of H, E, 

and F to be appear in its inputs so that it can start the calculation. Since the calculation 

of the feedback path of each PE does not overlap with other PE calculations, further 

pipelining requires additional processing cycles.  

Ideally, in a systolic array, to process a subject sequence of length d against a query 

sequence of length q, d+q clock cycles are required. This brings us to the second 

problem in pipelining the PEs of Smith-Waterman: with finer grain pipelining of Smith-

Waterman's PEs, we will need more clock cycles to fully process each subject 

sequence. In other words, if d and q are the lengths of a subject sequence and a query, 

respectively, and if each PE is pipelined n times, then the number of required clock 

cycles to process the subject sequence becomes n(d+q). It is clear that simple 

pipelining of Smith-Waterman PEs will not improve the end-to-end performance.  

 Zhang et al. proposed a method to implement the "max" operations of the Smith-

Waterman recursion with minimal area on Altera FPGAs [Zha07]. However, in order to 

optimally map their max operations to FPGA, they needed to add a flip flop at the end of 

each max function. As a result, their design required the same multistage processing 

mentioned for the fine-grain pipelining.  In order to work around this issue, Zhang et al. 

implemented a multiphase Smith-Waterman processing element. In their 
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implementation, they used four different clocks with similar frequencies and different 

phases shifts. Using these clock signals, they clocked different registers of the PE with 

different clocks, thus reducing the effect of multistage pipelining. Zhang's 

implementation achieved 25.6 GCUPS on a stratix II FPGA.    

 

4.4 Cluster Computing and NCBI BLAST 

From a high-level point of view, one can approach the problem of parallelizing NCBI 

BLAST in two different ways. On one hand, the incoming queries can be distributed 

among multiple processing nodes. This way, one can increase the system throughput. 

This approach is called query segmentation or inter-query parallelization in literature. In 

this approach each one of the processing nodes works independent of the other ones. 

Ideally, in order to avoid memory stalls and routing contentions, each node should have 

its own local copy of the entire database. This is a drawback, considering the 

exponential growth rate of the genomic databases. This drawback is exacerbated by the 

fact that the current genomic databases don't fit entirely on a memory module and 

should be read from a hard disk. The second approach is to divide the database among 

multiple processing nodes. This is referred to as database segmentation or intra-query 

parallelization. Considering the parallel nature of NCBI BLAST, this approach seems 

reasonable. In order to accomplish this, there should be a mechanism to collect the 

results from a set of worker nodes and produce the final result in the required format. In 

[Dar03], the implications of database and query segmentation have been studied.  
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There have been several software-based attempts to parallelize NCBI BLAST. E.H. Chi. 

et al. studied the efficiency of shared memory multiprocessors for sequence similarity 

search problem and concluded that as long as the database fits in the memory of an 

individual computation node, and no memory access contention occurs between the 

processors, linear scalability in response time and throughput is achievable [Chi97]. 

This test cases included up to 24 processors. 

 R.C. Braun et al. [Bra01] used a job scheduler system to submit queries to different 

nodes of a cluster of workstations. They showed the possibility of using workstation 

clusters to increase the throughput of the blast services. TurboBLAST [Chi02] 

parallelizes  BLAST on a cluster of workstations, supercomputers, or grids. It uses a 

java virtual machine to transparently parallelize BLAST. Each worker node works on a 

portion of a database, and a master node merges the results. Similarly, mpiBLAST 

parallelizes BLAST using an MPI interface with a database segmentation approach 

[Dar03]. There have been numerous other attempts to parallelize BLAST, and all have 

the same idea of database segmentation and query batching with minor differences in 

underlying job scheduling platforms, algorithms, and support for fault tolerance and 

database updates[Mat03][Gar06]. 

4.5 GPU accelerated NCBI BLASTp 
 

There have been a number of attempts to  accelerate BLASTp on GPU. Liu et. al. used 

GPUs to accelerate NCBI BLAST in CUDA-BLAST [Liu11]. They used a combination of 

coarse grain and fine  grain parallelization techniques to map NCBI BLASTp alignments  

to GPU threads [Liu11]. Using a GeForce GTX 295, CUDA-BLAST achieves 3x to 4x 
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speedup over a quad core Intel CPU. A similar work that only uses coarse grain 

parallelization is reported in GPU-BLAST [Pan11] in which each GPU thread handles a 

separate subject sequence. In order to load balance the thread the database sequences 

are sorted based on their lengths. Using an NVIDIA Fermi C2050 GPU , the authors 

reported 1.5x speedup over 4 threaded NCBI BLAST. Another attempt to accelerate 

NCBI BLAST using GPUs [Lin10] reports 1.7x to 2.7x speedup over single threaded 

executions using an NVIDIA GeForce 8800 GTX GPU .  In conclusion, generally a 

speedup of 3x to 4x over multithreaded NCBI BLAST appears to be achievable.   

 

4.6 FPGA Accelerators and NCBI BLASTp 

In this section, we will describe the most important attempts to accelerate NCBI 

BLASTp on FPGAs, namely Tree BLAST and Mercury System. There have been some 

other attempts to accelerate other versions of NCBI BLAST, such NCBI BLASTn for 

DNA databases or tBLASTx to search a protein sequence against a DNA database 

[Mur05][Eur07]. These early works mostly focused on DNA version of BLAST which is 

the simplest of all BLAST versions[Mur05]. We focus on the protein version of BLAST, 

BLASTp.  

4.6.1 Tree BLAST 

Tree BLAST was first introduced in [Her07] as an attempt to develop a compact and 

regular hardware structure that emulates the ungapped extension phase of NCBI 

BLAST.  Tree BLAST consists of a set of processing nodes that are arranged in a 

binary tree structure, as shown in Figure 4-6. The query profile is loaded into the leaves 

of the tree. The subject sequence is streamed across the leaves of the tree, and one 



69 
 

complete score sequence is generated every cycle. Each score sequence corresponds 

to a global ungapped mapping of the subject and query characters. Each node 

processes two scores. The generated score sequences are processed by the tree to 

find the best local ungapped alignment at the root node. The operation of each node is 

as follows: each node of the tree maintains four integer variables, Max, Sum, 

LeftRunScore, and RightRunScore. 

 For leaf nodes:  

Sum = Left+Right 

LeftRunScore=Max(Left,Sum,0) 

RightRunScore =Max(Right,Sum,0) 

Max =Max(Sum,Left,Right,0) 

For internal nodes: 

Sum = Left.Sum+Right.Sum 

LeftRunScore=Max(Left.LeftRunScore, Right.LeftRunScore+Left.Sum ) 

RightRunScore=Max(Right.RightRunScore, Left.RightRunScore+Right.Sum ) 

MaxScore =Max(Left.max,Right.max,Left.RightRunScore+Right.LeftRunScore) 

Sum=Left.Sum+Right.Sum 

 

It has been proven that, through the use of these nodes, the root node will output the 

score of the best local ungapped alignment between the two sequences [Her07]. The 

tree structure has several features that make it suitable for hardware implementation.  

1. The tree structure can be pipelined as deeply as required.  



70 
 

2. The tree structure has a very compact construction that maps well into the 

hardware.  

3. The tree structure can be structured to an arbitrary size with no additional 

complexity. 

4. Folding the tree is easy to accomplish without additional hardware overhead. 

This makes it possible to trade area with speed. 

 

Figure 4-6 Tree BLAST structure shows a Tree BLAST example.  

 

Figure 4-6 Tree BLAST structure 

 

Tree BLAST supports the following fundamental options: 

 Folding: The tree can be folded to support queries that are larger than what can 

fit on the chip. In this case, a portion of the tree is examined at each clock cycle. 

For example, if the tree is folded four times, ¼ of the query is mapped to the tree, 
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and, at each clock cycle, the score corresponding to ¼ of the query is generated. 

An update node at the root of the tree receives these four scores that correspond 

to different segments of the query, and generates the best score. 

 Replication: Small trees can be replicated, thus allowing multiple queries to be 

processed simultaneously.  

 Arbitrary size: Different tree sizes can be concatenated to generate trees with 

sizes that are not power of two. For example, Figure 4-7 shows how to generate 

a tree size of 1,664 characters from three tree binary trees. 

 

Figure 4-7 Arbitrary tree Size 

Tree BLAST is used as the basic component in the initial version of CAAD-BLASTp 

[Par09]. CAAD-BLASTp implements a pre-filtering mechanism to accelerate NCBI 

BLAST. The basic design of CAAD-BLAST is to successively reduce the database (DB) 

without removing any potential matches. In the initial preprocessing stage, two 

thresholds are calculated: gapped and ungapped thresholds. These thresholds will be 

used by the filters in the subsequent stage. First, the DB is filtered by running Tree 

BLAST, and a reduced DB’ is generated. Since all the alignments are examined, there 

is no need for the seed generation phase. As a result, the first phase of NCBI BLAST 
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can be skipped safely without jeopardizing the agreement with NCBI BLAST. The 

reduced database (DB’) contains all the sequences that, when compared with the 

query, score above a threshold (ungapped threshold). Then, Smith-Waterman is run to 

generate a further reduced database DB”. In order to do this the smith-waterman scores 

are compared with the gapped threshold. Finally, DB” is formatted and sent to NCBI 

BLAST along with the original parameters and query.  

In order to have correct results, the internal thresholds that NCBI BLAST use should be 

determined, and the E-values in the final report should be computed correctly. Also, 

CAAD BLASTp should ensure that DB” (i) contains all the sequences that NCBI BLAST 

would return and (ii) is sufficiently reduced so that the overhead of formatting DB” does 

not overwhelm any potential performance gain. 

 Figure 4-8 shows an overview of the steps required in CAAD BLASTp.  The ungapped 

filter begins with the FPGA, along with the query and database, to compute the 

ungapped alignment scores. For the most promising sequences, scores are returned to 

the host, which uses them to specify DB’. For the gapped option, a new threshold is 

computed and passed to the FPGA, where the contents of DB” are determined. Finally, 

the reduced database (either DB’ or DB”) is formatted to be processed by NCBI 

BLASTp.  
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Figure 4-8 CAAD BLASTp Overview 

 

Recall that NCBI BLAST returns a statistical significance report. NCBI BLAST code is 

integrated with the filters such that it reports the correct E-values and doesn’t miss any 

sequences. In order to do this, the required parameters are calculated on the original 

database before the filtering process starts and are saved for the final stage. The 

profiteering mechanism seems efficient, but it has some drawbacks that can diminish 

performance. 

One problem with CAAD BLASTp is that only one subject sequence can be processed 

at each time. As a result, when streaming the database, a number of null characters 

should be inserted between different subject sequences. The number of null characters 

should be equal to query length, a fact which can cause an average of 100% overhead. 
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The second major problem with CAAD BLASTp is that it ignores the seeding heuristic of 

NCBI BLAST. The seeding heuristic significantly reduces software runtime by limiting 

the positions in the database that need to be examined to a limited fraction of the entire 

database. CAAD BLASTp streams in the entire database and, thus, some performance 

gain is lost. 

Third, running NCBI BLAST on a filtered database can be very time consuming because 

of large similarities between sequences and the query. 

Fourth, the initial draft of CAAD BLASTp is not fully integrated with NCBI BLAST code. 

It requires reformatting the reduced database. This can potentially slow down the 

original binary. 

CAAD BLASTp is integrated with the C toolkit of NCBI BLAST code. The C toolkit has 

since been replaced with a C++ toolkit. The C toolkit is slower and  outdated, and the 

NCBI has stopped supporting its code.  

Overall, these overheads can slow down NCBI BLAST runtime rather than speeding it 

up. 

4.6.2 Mercury BLASTp 

Contrary to CAAD BLASTp, mercury BLASTp implements the NCBI BLAST algorithm 

directly on FPGAs [Kri07]. Similar to NCBI BLAST, mercury BLASTp is a chain of three 

stages, as shown in the following figure. 
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Figure 4-9 BLASTp Pipeline in Mercury[Kri07] 

Profiling NCBI BLASTp shows that all three stages take a significant portion of its total 

runtime. As a result, the acceleration of all three stages is required to get a reasonable 

performance gain. A universally known way of implementing seeding in heuristic-based 

approaches of sequence analysis is the use of indexes (sometimes called profiles, or 

neighborhoods). NCBI BLAST creates an index of the query as well. A seeding index is 

a data structure that is used to find the seeds when comparing the query against a 

subject  sequence. For a given word size and alphabet and for all possible combinations 

of words, the query neighborhood contains the indexes of all locations in the query that 

match above a threshold. 

Similar to other types of NCBI BLAST, Mercury BLASTp uses an indexing approach to 

generate the seeds. In Mercury BLASTp, the query is indexed, and a query 

neighborhood is generated. The query neighborhood has all the information required to 

generate the seeds. For every possible w-mer, an entry in the lookup table stores a list 

of matching w-mer positions on the query (either an approximate or exact location that 

is based on the seed generation algorithm). As the database w-mers are scanned, 

these positions are retrieved from the lookup table and sent for further processing. In 

mercury BLASTp, the query index is divided into two parts: primary and secondary 
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tables. Each entry in the primary table contains up to three matching locations in the 

query. If the number of matching positions in the query is larger than three, the primary 

table stores the number of the matches and a pointer to the secondary table where the 

actual matches are stored consecutively. The query neighborhood is indexed for w-

mers of length four, or 4-mers.  As a result, it doesn’t fit on the FPGA block RAMs and is 

stored off the chip on a memory module. The following figure shows the mercury 

system's lookup table data path and word-matching hardware design.  

 

Figure 4-10 Mercury BLASTp Hit Generation 

The generated hits are routed to two hit generation modules. In order to detect two hit 

seeds, an array is used which, for every diagonal, stores the position of the most 

recently encountered word match. Since sequence word matches can occur at any 

position in the subject in window of M diagonals where M is the query length, an array of 

length M should be sufficient, but the authors have used an array of length 2M.  

The hits should arrive at the two hit units with the order that their database indexes 

indicate. Otherwise, there is a chance that some seeds might be missed.  

In order to maximize the seed generation performance, both hit generation and two hit 

generation modules are replicated. Clearly, without replication, the seed generation can 
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become a bottleneck. Dedicated routing buffers steer data from the hit generators to the 

2- hit units, as shown in the following figure. 

 

Figure 4-11 Two Hit Seed Generation 

 The replicated hit generation units access independent off-chip memory modules in 

parallel. In order to balance the workload of each hit unit, the diagonals are multiplexed 

amongst the hit units using the least significant portion of the diagonal numbers. The 

idea is that, because the hits occur in clusters close to each other, using low-order bits 

to assign diagonals to hit units can help in load balancing. Nevertheless, using multiple 

hit units and multiplexing the diagonals amongst them causes some challenging 

problems. Because the access time to the lookup tables depends on the number of 

matches, the seeds may not always arrive in their increasing database position. As a 

result, some seeds may not be detected. The authors have used a workaround heuristic 

that reduces the impact of this problem, and this heuristic results in reasonable 

accuracy (99%). 

 The next stage of the mercury system emulates NCBI BLAST’S ungapped extension. 

Recall that NCBI BLAST uses an early termination mechanism in the ungapped 
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extension phase. In extension with the early termination approach, seeds are extended 

in both directions. Extension in each direction is terminated as soon as it stops being 

promising; i.e., when the running score drops a certain threshold below the maximum 

score seen during the extension. This is done to reduce the workload of the CPU. Even 

though this optimization is suitable for software implementation, its hardware 

implementation is costly. As a result, mercury BLASTp uses another heuristic to simplify 

the problem. Instead of an early termination mechanism, mercury BLASTp examines a 

fixed window around each seed. The window size is 64 characters wide. With this 

approximation, mercury BLASTp implements ungapped extension with a dynamic 

programming algorithm. The design is mapped to FPGA as a systolic array. The 

resulting implementation achieves 96% to 99 % agreement with the reference. 

Ungapped extension filters out most of the seeds. The promising seeds extensions 

generate a high-scoring segment pair (HSP) list which is passed to the gapped 

extension phase. Similar to the previous phase, mercury BLASTp performs the gapped 

extension with the fixed window approximation instead of the original early termination 

mechanism. This algorithm, which is basically a dynamic programming solution, is 

called banded Smith-Waterman, is mapped to a pipelined systolic array and is 

described in [Har07]. 

 Mercury BLASTp is an efficient design. Using two Virtex II 6000 FPGAs, the authors 

have reached 10 to 15x speedups over CPU version. On the other hand, the biggest 

drawback is the approximations that have been used to simplify the hardware. Although 

the decrease in the accuracy seems insignificant, biologists tend to ignore any tool that 

deviates, even with smallest amount, from the standard NCBI BLAST. Therefore, having 
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a 100% accurate NCBI BLASTp acceleration that satisfies the cost effectiveness criteria 

is a challenging problem. 

4.7 Acceleration of Multiple Sequence Alignment 

In comparison to NCBI BLAST, there have been fewer attempts to accelerate multiple 

sequence alignment algorithms on hardware.  

Oliver and et al. designed a systolic array to accelerate the first phase of Clustal-W 

[Oli05]. On the basis of the fact that the first phase of Clustal-W takes more than 90% of 

the overall runtime, they mapped the first stage of Clustal-W to FPGAs. Recall that the 

first stage of Clustal-W calculates a distance matrix, and the metric for the distance 

calculation is the number of identities in the best local gapped alignment between 

sequences. In order to count the number of identities in the best local ungapped 

alignment, Oliver et al. extended the dynamic programming recursive formula of the 

Smith-Waterman algorithm to count for the number of identities in the best local gapped 

alignment. Using this extension, they mapped the algorithm to a systolic array on 

FPGAs. 

The idea of this extension is to count the identities based on the path taken in recursive 

relation of the Smith-Waterman algorithm. If Smith-Waterman aligns two characters, the 

identity condition is checked. Otherwise, the identity count is equal to the identity count 

in the direction of gap insertion.  

For linear gap penalty, the extensions are as follows. The extension for affine gap 

penalty is similar.  Given two sequences, ଵܵ and ܵଶ, a substitution matrix (sbt) and a 
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linear gap penalty (ߙ	) and Smith-Waterman recursion relation (as described in section 

3.5), the number of identities in the best local gapped alignment is given by Nሺi, jሻ: 

ܰሺ݅, ݆ሻ ൌ

ە
۔

ۓ
,ሺ݅ܪ	݂݅																																																									0 ݆ሻ ൌ 0

ܰሺ݅ െ 1, ݆ െ 1ሻ ൅ ݉ሺ݅, ݆ሻ							݂݅		ܪሺ݅, ݆ሻ ൌ ሺ݅ܪ െ 1, ݆ െ 1ሻ ൅ ,ሺܵሾ݅ሿݐܾݏ ܵሾ݆ሻሿ
ܰሺ݅, ݆ െ 1ሻ																																				݂݅	ܪሺ݅, ݆ሻ ൌ ,ሺ݅ܪ ݆ െ 1ሻ െ ߙ
ܰሺ݅ െ 1, ݆ሻ																																				݂݅	ܪሺ݅, ݆ሻ ൌ ሺ݅ܪ െ 1, ݆ሻ െ ߙ

 

,ሺ݅݉	݁ݎ݄݁ݓ ݆ሻ ൌ ቄ1					݂݅	ܵሾ݅ሿ ൌ ܵሾ݆ሿ
݁ݏ݅ݓݎ݄݁ݐ݋							0

 

Using a VIRTEX II FPGA, Oliver et al. achieved a speedup of 50x in the first stage. 

Nevertheless, they did not implement the remaining stages on the FPGA, which, based 

on Amdahl's law, limits the end-to-end speedup to 10x . 

Lioyd and Snell proposed a method to implement the third stage of Clustal-W on an 

FPGA  [Lio11]. The third stage aligns sequences following the order of the guided tree. 

It performs a profile alignment for groups of sequences. The third stage takes almost 

the entire remaining 10% of the computation of MSA, and so it is critical to accelerate 

this stage in order to have reasonable speedup. Lloyd and Snell's profile alignment 

algorithm accelerated on an FPGA achieves 150x  speedup over Clustal-W third stage. 

There are a number of other works that accelerate Clustal-W on clusters of computers. 

ClustalW -MPI uses massage passing interface to parallelize Clustal-W on a cluster of 

workstations [Li03]. For the first stage, it uses a coarse-grain parallelism approach and 

achieves linear speedup. For the last stage, a combination of coarse-and fine-grain 

parallelism achieves 4.3x speedup using 16 processors.   
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There are also several attempts to accelerate Clustal-W on GPUs. MSA_CUDA reports 

the mapping of Clustal-W to a GeForce GTX 280 GPU [YSM09]. It uses both coarse- 

and fine-grain parallelism and maps all three stages to a GPU. A speedup to 37x is 

reported over a serial implementation on a Pentium 4 with results comparable to 

Clustal-W -MPI with 32 nodes.    

 

 

 

 

 

 

 

 

 

 

 

 

 



82 
 

5 CAAD BLAST 
 

5.1 Overview 
 

NCBI BLAST has three phases: identifying short sequences (words) with high-match 

scores (seeding), extending those matches without adding gaps (ungapped extension), 

and performing gapped extension on selected segments from the previous phase 

(gapped extension). For the sequences with the highest scoring alignments, an E-value 

(expected value) is computed from the raw alignment score and other parameters. 

Then, database sequences with sufficiently good  E-values are reported. 

Figure 5-1 shows a conceptual view of the three NCBI BLAST phases. In the first 

phase, hotspots in the alignment space of the subject and query sequence are found. 

The hotspots are those offsets of the query and subject sequences that satisfy the two-

hit property, as described in section 3.6.2. The word size (w) is typically two or three for 

BLASTp, and the significance is determined on the basis of scoring performed with a 

scoring matrix, such as BLOSUM 62, and a threshold value. In the extension phase, 

seeds are extended in both directions to form high-scoring segment pairs (HSPs). 

Extension stops when it ceases to be promising; i.e., when the drop-off from the last 

maximum score exceeds a threshold of X. This is referred to as an early-termination 

mechanism. In gapped alignment, extension and evaluation are triggered only when an 

ungapped alignment satisfies the ungapped threshold. In this phase, seeds are 

extended in both directions to form real alignments, possibly by adding gaps to both 

sequences. Similar to ungapped extension, the early-termination mechanism is used; 

that is, extension stops when the dropoff from the last maximum score exceeds a 
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threshold of X. In gapped extension, the extension dropoff threshold X also depends on 

gap-opening and gap-extension costs. 

 

Figure 5-1 conceptual view of the three NCBI BLAST phases 

 

The main idea in CAAD BLASTp is prefiltering; that is, to quickly reduce the size of the 

database to a small fraction and then use the original NCBI BLAST code to process the 

query. Agreement is achieved as follows. Prefiltering is guaranteed to be strictly more 

sensitive than the original code; that is, no matches are missed, but extra matches may 

be found. The latter can then be (optionally) removed by NCBI BLAST. The primary 

result is a transparent FPGA-accelerated NCBI BLASTp that achieves output identical 

to the original. Because the prefiltering mechanism is more sensitive than the original, 

the user may keep the extra outputs at no cost of performance.  

The rest of this chapter is organized as follows: in Section 5.2, we describe a basic 

overview of the operation of the filters. Next, we describe the two-hit filter in detail.  

Section 5.4 describes the exhaustive ungapped alignment.  Sections 5.5-5.7 have 
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details of the two main architectures of our CAAD BLAST system, results, and a 

scalability/portability study.  

5.2  Filter Basics 
 

CAAD BLAST uses three FPGA-based filters:  

 The two-hit filter is based on the two-hit seeding algorithm. All alignments (all 

diagonals in Figure 1b) are evaluated based on whether or not they contain a 

two-hit seed. The output is a bit vector containing a 1 or 0 for each diagonal, 

depending on whether or not the diagonal contains a seed. We base our two-hit 

filter on the two-hit seeding algorithm used by Mercury BLAST and described in 

[Jac07]. 

 The exhaustive ungapped alignment (EUA) filter scores every possible alignment 

between the query and the database. For each sequence in the database, the 

filter returns the scores of the highest-scoring alignments. We base our EUA filter 

on the TreeBLAST algorithm described in [Her07]. 

 The exhaustive gapped alignment (S-W) filter is based on the Smith-Waterman 

algorithm and returns the highest-scoring gapped local alignments for each 

sequence in the database. We base our S-W filter on the version of the Smith-

Waterman algorithm described in [Cho91]. 

Each filter reduces the amount of work that needs to be processed by the next filter. 

The two-hit pass provides “hints” to the EUA filter as to which diagonals can be skipped. 

As described below, actually skipping diagonals is not cost-effective, but making the 

EUA filters drastically more compact is. After compaction, the EUA pass is almost as 
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fast as the two-hit pass. The EUA filter prunes at least 95% of the database so that it 

does not need to be processed by the S-W filter. The S-W filter prunes the database to 

0.1% of the original. The reduced database is then processed by NCBI BLASTp. 

All three filters work on the same principal. Each occupies some amount of chip area (in 

the FPGA) and holds a copy of the query. Then, it executes as the database streams 

through it from off-chip memory. The filter size (in chip area) is related to the query size. 

Generally, the filter uses only a fraction of the chip area, and, therefore, it can be 

replicated a number of times. If the query is very large, then the filters will still operate 

correctly, but it will have reduced performance with a slowdown generally proportional to 

the query size. Thus, each filter thus runs in O(N), assuming that the query sequence is 

a small multiple of what can fit on a current FPGA, a characteristic of almost all proteins. 

5.3 Two-Hit Filter 
 

NCBI BLAST uses two-hit seeds to limit the number of diagonals that need to be 

examined. Only a small fraction of the entire stream size has the two-hit property and 

needs extension. These percentages as a function of query size are shown in Table 

5-1. 

Table 5-1.  Fraction of alignments having two-hit property as a function of query 
size.  Queries taken from the NR database. 

Query 
size 

average Max 

256 0.008 0.009 
512 0.016 0.028 
1024 0.02 0.025 
2048 0.027 0.043 
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On the basis of the results in Table 5-1, we can see that restricting the stream to those 

hotspots that have a two-hit property can have a massive impact on the performance of 

a system. In order to exploit the two-hit heuristic in a hardware design, several issues 

need to be considered. First, ungapped extension is already very fast; it can be done in 

streaming rate (one residue per clock cycle) with the use of TreeBLAST.  Thus, in order 

to improve, the two-hit filter should run much faster than one residue per clock cycle.  

Since this speed-up is unlikely to come from increased operating frequency, it must be 

possible to use the two-hit filter to extract more parallelism.  This requires significantly 

greater potential replication of the generated two-hit cores than for the TreeBLAST 

which in turn requires that the two-hit unit cores be significantly smaller than the 

TreeBLAST cores.  Second, the two-hit filters should improve TreeBLAST performance 

enough to compensate for the overhead they impose. The key idea in using a two-hit 

filter is to have multiple small filters that can work in parallel. Otherwise, there is no 

benefit in generating the seeds for a streaming design like TreeBLAST. 

The two-hit filter is based on the NCBI BLASTp two-hit seeding algorithm. All ungapped 

alignments are evaluated as to whether or not they contain a two-hit seed. A bit vector 

is generated containing a 1 or 0 at each position depending on whether or not the 

corresponding alignment contains a seed. The basic function of a two-hit filter is shown 

in Figure 5-2. The design is generally similar to the one used in the Mercury BLAST 

seeding pass [Jac07]. 

Below, we will describe a single two-hit filter, and a description of an extension to 

multiple filters operating in parallel will follow immediately. We begin with some notes, 

an overview of the algorithm, and a critical observation.  
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Figure 5-2 Two hit filter 

Figure 5-2 shows the subject on the horizontal axis and the query on the vertical axis. 

Positions of each w-mer (a short sequence of w residues) are referred to as xd  for the 

database and yq  for the query. If the subject length is d  and the query length is q , 

there are d + qpossible global ungapped alignments between the database and the 

query, which are represented by diagonals in the figure. We refer to each diagonal 

(alignment) as ia . The output of the two- hit filter is a bit vector where each bit ( ib ) 

corresponds to an alignment ( ia ) and tells whether or not ia  has passed the filter (i.e., 

whether or not it has a two-hit seed). That is, ia  passes the filter if there are two hits 

within the distance threshold ( A ) (typically 40). If yes, then ib  is set; otherwise, it 

remains clear. 

The basic data structure used to generate the two-hit seeds both in NCBI BLAST and in 

the Mercury BLAST system is a lookup table called position list or query index. For each 

possible w-mer, the position list stores the positions of all of the w-mers in the query that 

exceed the match threshold (typically 11) when aligned with that w-mer. The position list 
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has two parts: the primary and the secondary list. Recall that protein sequences consist 

of 20 characters. BLAST uses five additional special characters, making the alphabet 

size 25. NCBI BLAST’s two-hit seeding uses w-mers of length 3 (3-mers) by default. 

Thus, there are 325  possible 3-mers. The primary list has an entry for each of the 325  

possible 3-mers. For any possible 3-mer, if there are three or fewer hits in the query, 

then corresponding primary list entry holds all of those positions. If there are more than 

three occurrences, then the primary list entry contains the number of occurrences and 

the address in the secondary list where entries for those positions are written 

consecutively. A status bit indicates the record type. 

For each alignment, we keep the position of the most recent hit, if there are any hits at 

all. When a new hit occurs on a diagonal, we compare its coordinates with the most 

recent hit on that diagonal to decide whether to issue a two-hit or not. Note that the hits 

on a given diagonal are generated in increasing order of their database position 

because the database is scanned from left to right. An overview of the operation of the 

two-hit filter is as follows. On iteration x, database 3-mer xd  indexes the position list. 

The query positions where matches occur, if any, are retrieved. Figure 5-2 shows three 

hits, at query positions iq , jq , and kq . These correspond, respectively, to the ith 

position on alignment
ixa  , the jth position on alignment jxa  , and the kth position on 

alignment kxa  .  This hit information is then used to determine whether another hit has 

occurred on any of these diagonals within the previous 40 positions (as shown in Figure 

5-2 for alignment jxa  ).  
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The goal is to process the database at a streaming rate. Upon each iteration, a 

database 3-mer is processed. The advancement to the next iteration is made as soon 

as the hits corresponding to the current iteration are fetched from the position list.  

The method is to use a frame of counters, one for each alignment where there could be 

match on the current iteration. Given that, on any iteration, only the last q alignments 

can be affected, the frame length is equal to this value. This is important because it 

makes hardware implementation feasible. As an example, for a hit in alignment jxa  , the 

corresponding counter that is dedicated for that alignment is read, compared with j, and 

updated. If the difference between j and the previous value of the counter is less than A, 

then this indicates a two-hit hit occurrence for alignment jxa   and bit jxb   in the bit 

vector is set. If the distance between j and the previous value of the counter is more 

than A, the counter will update its last seen hit position to j. The counters for kxa  and 

lxa   are also processed similarly. However, for each alignment, advancement is 

monotonic; i.e., a hit on a later iteration will never be further back on the diagonal than 

the previous one. This guarantees the detection of all of the two-hits and a 100% 

agreement with NCBI BLAST. The overall architecture of the two-hit filter is given in 

Figure 5-3. 
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Figure 5-3 Two-Hit Filter Block Diagram 

 

The hardware implementation consists of four major stages: the hit generation, the 

routing, the two-hit generation, and the bit-vector output. These four stages are 

described below. 

I. The Hit Generation 

The hit generator performs the following functions consecutively: 

1. It reads the next character from the input database stream and increments the 

database position counter (subject index). 

2. It forms a 3-mer and indexes the position list’s primary section 
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3. It reads the data from poison list primary section and outputs the hits if any, if 

required indexes the secondary section of the position list and outputs the hits 

from the secondary section.  

In order to process the database in streaming rate, the two-hit filter processes three hits 

at each clock cycle. Both the primary and the secondary list are structured to enable the 

fetch of three query positions per clock cycle. The following figure shows the general 

format of the position list entries. The first bit in the entry, called the status bit, is used to 

differentiate between two types of entries. If this bit is not set, then the entry contains up 

to three query positions. If the total number of positions is less than three, then the 

unused bits are filled with a special null data (i.e., 1). If the status bit is set, the entry 

holds a pointer into the secondary section, and the count of the matching words is 

stored consecutively in the secondary table.  
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Figure 5-4 Two hit filter Query Neighborhood data structure 

 

The first major task of the hit generator is to generate the addresses to the position list 

in streaming rate. There are three possibilities for the addresses:  

1. It can be generated after a new character is read from the database and a new 3-

mer is formed. 

2. It can be the address in the pointer section of an entry retrieved from the primary 

section of the position list when the status bit is set to one.  

3. It can be the previous address incremented by one while reading the secondary 

list.  
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Recall that each hit can be represented as a pair ),( yx qd  where xd  and yq  are the 

coordinates of the matching w-mers in the database and query, respectively. Each hit 

generator has an internal counter that holds the index of the subject 3-mer that is being 

processed. At each clock cycle, if the status bit of the data from the position list is zero, 

then the three hit positions from the position list are paired with the database counter to 

generate the hit pairs. Otherwise, data is read from the secondary table, and up to three 

hits are generated per clock cycle in the subsequent cycles. The hits are written to the 

routing unit's input FIFOs. 

II. Routing 

The routing stage is responsible for routing the hits from the hit generator to the two-hit 

subunits. It has three input FIFOs that are written by the hit generator and four output 

FIFOs that are read by the four two-hit subunits. The hits are multiplexed to the four 

output buffers on the basis of the alignment they correspond to. The three matches are 

broadcasted to the four output ports. A hit with coordinates ),( yx qd  is written to the 

output FIFO number 4%)( yx qd  . The output port’s control logic checks the input 

matches to see if any of them should pass through that port. Each output port has an 

arbiter which selects inputs from multiple matches that might be required to be written to 

its output FIFOs. Higher priority is given to the matches with minimum subject position. 

In this way, the hits on a diagonal arrive in increasing database index to the two-hit unit, 

which is required if we want to detect all possible two-hits. The following figure shows a 

schematic of the routing circuit. 
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Figure 5-5 Two-Hit Filter Routing 

 

III. Two-Hit Generation 

Each two-hit generation subunit consists of four modules: an address unit, an update 

unit, a counter frame memory unit, and a bit vector memory unit. The update unit 

receives the arriving hits from routing FIFOs, reads the old hits on the corresponding 

diagonals from the counter frame memory, and generates the output that is written to 

the bit vector memory. Recall that the counter frame stores the coordinates of the most 

recent hit on a diagonal and has a length equal to the query length. 

The memory units are mapped to FPGA’s internal BRAMs. Each two-hit subunit stores 

one-fourth of the total counter frame and one-fourth of the total bit vector for a subject 

sequence. The address unit generates the read and writes addresses to the bit vector 

and counter frame memories.  
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 Address Unit  

The bit vector and counter frame address from the input hit ),( yx qd are calculated as 

follows:  

4

)( qqd
ADD yx 

  

In which, q  is the query length. Because the bit vector memory will be updated one 

clock cycle after the counter frame memory is read, a register is inserted between the 

ADD  signal and the bit vector memory’s write address. 

 Update Unit  

 The update unit receives a new hit from the input FIFO and the most recent hit from the 

counter frame memory and generates the output bit for the corresponding alignment. 

The connections between the update units, address units, and the memories are 

depicted in the following figure. 

 

Figure 5-6 Two-Hit update Subunit 
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There are several issues that should be considered in the design of the update unit. In 

the following, we will describe them in a typical workflow of the update unit. The two-hit 

unit reads the new hit from the input FIFO and the old hit from the counter frame, 

respectively. Then, it checks if the hits belong to the same diagonal. If they are from 

different diagonals, that is, if newyxoldyx qdqd )()( 1100  , then the new hit corresponds to 

a new alignment mapped to the same address in the counter frame. This indicates that 

a new alignment should be mapped to this counter. In this case, the counter is updated 

with the new hit and a 0 is written to the bit vector memory to start the processing of the 

hits in this alignment. If they do belong to the same diagonal, the two-hit conditions are 

checked. If the conditions are met, a 1 is written to the bit vector memory. Otherwise, 

the counter is updated, and no action will be taken in the bit vector memory.  

Two observations are critical to the determining accuracy of the two-hit filter. First, the 

counter frame memory can have random matches generated from the previous 

sequences. These random matches can cause extra two-hits to be committed. In order 

to avoid these, a sequence ID is attached to the hit packet and is written to the frame 

counter. The content of the counter is only considered valid if the sequence ID of the old 

hit matches the sequence ID of the new hit. Otherwise, the counter is updated and a 0 

is written to the bit vector memory. We noticed that a 4 bit sequence ID gives enough 

accuracy to this purpose. Second, the overlapping hits should be managed properly; 

otherwise, the number of the seeds that will be reported will be significantly more than 

what is required. Recall that, in order to generate a two-hit seed, the two matches under 

consideration should not overlap. We take the following approach: if the old and the new 

hit overlap, the counter is kept unchanged. In this case, we might miss a two-hit if there 
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is a third hit that doesn’t pair with the old hit to generate a two-hit while still generating a 

two hit with the new overlapping hit. In order to avoid this, we extend the distance 

checking of the two-hit filter by 3. Our results show that the increase in the number of 1s 

in the bit vector due to this is negligible. 

IV. Bit Vector Output Unit 

The output unit provides the output interface of the two-hit units. The details of the 

functionality of the output unit differ from system to system. Currently, we have two 

architectures for this subunit. One architecture reads the contents of the four bit vector 

memories and outputs their contents consecutively as soon as the bits are committed to 

the BRAMs. The other architecture only provides a status bit indicating that the contents 

of its bit vector memory are valid until all of it is read out. Both of these architectures 

reset the bit vector memory while reading its contents. This way, we prepare the bit 

vector memories for the next subject sequence. 

The output unit has three states: the starting, processing, and flush state. In the starting 

state, the subject index is less than query and subject length. Thus, the output unit 

doesn’t commit anything. In the processing state, wherein the subject index is less than 

subject length but more than the query length, upon any increase in the subject index, 

the output unit can commit one bit. In the flush state, where the subject index is equal to 

the subject length, the output unit outputs the remaining bits. During this time, nothing is 

written to the BRAMs. The output unit uses counters to count the number of bits read 

out. For each subject sequence, the control characters inserted into database stream 

help us count the length of each subject sequence and calculate the required bits.  
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Note that an incorrect insertion or omission of a bit will change the entire bit vector, and, 

therefore, excessive care should be taken to avoid such glitches. 

Compared with the seed generation module that is implemented in Mercury BLASTp, 

our two-hit filter has a significant advantage. Our two-hit filter does not use heuristics 

and, therefore, has exact agreement with the two-hit seeding algorithm used in NCBI 

BLAST.  

5.4 EUA Filter 
 

Recall that the key idea behind TreeBLAST is that an ungapped alignment can be 

performed with iterative merging using a tree structure that forms a two-dimensional 

systolic array. The database sequence is streamed across the leaves of the tree and 

one complete score sequence (the set character-character match scores for that 

alignment) is generated every cycle. The score sequences are processed by the tree, 

which is also pipelined. For each alignment, the score of the best local alignment 

emerges after a few cycle delays. The nodes of the tree consist of some basic 

comparison logic; the tree size is generally limited by the number of BRAMs on the 

FPGA and by the tree area for large queries. The structure can be modified in several 

ways to run more efficiently and to handle various cases. 

 Folding. To handle queries larger than can fit on a single chip, the tree is “folded”. 

Rather than generating a scoring sequence every cycle, i cycles are required, where i is 

the number of folds. On each clock cycle, 1/i of the score sequence is generated. That 

is, the tree is used on multiple iterations to handle the sequence.  
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Replication. When queries are small enough to fit multiple trees on a chip, they are 

replicated to take advantage of available resources.  

The idea behind EUA filter is to couple the database stream with a bit vector indicating 

which alignments can safely be ignored (as generated by the two-hit filter). For 

example, a 1 in the bit vector corresponds to a position where the alignment must be 

processed, and a 0 corresponds to a position where it can be skipped. We now look at 

the skipping mechanism.  

5.4.1 Theoretical General Skipping 
 

The idea behind general skipping is, on every cycle, to look ahead in the bit vector to 

find the next 1 (corresponding to the next alignment to be examined) and then slide the 

database the correct number of positions. Ideally, general skipping takes only the 

number of cycles equal to the number of ones in the bit vector. The additional hardware 

required, however, is complex. For a bit vector, the “look ahead” logic is similar to a 

leading one detector used; e.g. in a floating point adder. On each cycle, both the bit 

vector and the database stream must be able to , slide any number of positions up to 

the maximum number supported. This, in turn, requires that each register in the stream 

buffer have a multiplexor (MUX) that is large enough for every possible number of 

positions that could be skipped. It also requires complex routing logic. As a result, 

support for even a small range of choices makes the logic for general skipping more 

expensive than the original tree. 
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5.4.2 Skip-Fold Mechanism 
 

Recall that an F-times folded tree is folded to 1/F its original size and requires only 1/F 

the logic of the original but requires F cycles per alignment rather than 1. The idea 

behind folded skipping is to process unfiltered alignments in F cycles (as before) and to 

process the others in only one cycle. The control for this scheme is thus extremely 

simple; i.e., there is no need for complex look-ahead or routing logic. Rather, if the bit-

vector value of an alignment is a 0, the database stream simply needs to be shifted; if 

the value is a 1, then the filter will continue processing the alignment for a delay of 

another F − 1 cycles. 

The hardware cost is a slight increase in control complexity; no other additional logic is 

needed. The performance benefit of folded skipping can be demonstrated as follows. 

Assume that the bit vector for a size N database has O 1s. Without skipping, an F-

folded tree requires roughly F × N cycles to process the database. With skipping, the 

number of cycles is N + O × (F − 1). If F is 16 and N/O is 20, then the speedup is 

greater than 9×. This speedup occurs independently of the distribution of 1s in the bit 

vector. The question is: why bother folding at all? The answer is that folding gives a way 

to make the EUA structures (trees) substantially more compact than previously and, 

thus, allows them to be replicated. For example, a database of size N and a query of 

size M is handled by a single tree (with a single database stream). This takes N cycles. 

Now, replace the tree with F trees folded to 1/F their original size. This new structure 

now collectively support F database streams, each of which has a throughput that is a 

substantial fraction of the original. The limit on the number of trees is generally given by 

the query size (M), the number of folds (F), and the number and size of the block RAMs. 
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Efficient implementation of Skip-Fold idea depends on the implementation of the Folding 

mechanism. A naive approach to  implement Folding is to store the results of the root 

node in a smaller tree as shown in Figure Figure 5-7-a.   

 

Figure 5-7 Implementation of a 4x Folded tree 

 

The problem with the naive approach can be seen in the figure as well. The size of the 

small tree depends on the number of Folds and can become bigger than the original 

folded tree. In order to solve this problem and implement folding effectively, we have 

introduced another node type which we call the Fold node. Using the Fold node, the 

tree in Figure Figure 5-7-a is implemented as shown in Figure Figure 5-7-b. The fold 

node implements a sequential logic version of the NonLeaf node. In contrast with NL 

node, it only has one input set. It uses its internal running score set instead of the 

second input. At each clock cycle, it merges its input with its internal  running score 

values( which are initialized to zero), and then updates the running scores.  After F 
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clock cycles, it returns the running scores and resets them to zero. Using the Fold node, 

the implementation of the skip-fold mechanism and its control logic becomes extremely 

simple. If the input 2-Hit bit is zero, the state machine that controls the Fold node stays 

in initial state. If the 2-Hit bit is one, it takes additional F-1 clock cycles to return to initial 

state and return the result.   

5.4.3 Seed Lookup Mechanism 
 

The drawback of folded skipping is that, whereas 0s are processed F× as fast as 1s, 

they still take one cycle per character. Because the fraction of 0s (Z) is generally 98% to 

99% of the stream, processing these null alignments still takes 
௓

௓ାሺଵି௓ሻൈி
 of the cycles, 

or 75% to 85% for almost all query sequences. The idea behind seed lookup is to limit 

the number of positions that can be skipped to a single number (S) (i.e., 16) that is 

determined experimentally. That is, the database stream skips either S positions or 

none. If there is a sequence of S or more 0s, then S skipping is used; otherwise, it is 

not. This scheme greatly simplifies the MUX logic. This idea alone will not be as 

beneficial as the skip-fold mechanism, but there is another idea that makes constant 

skipping extremely beneficial. 

During the F clock cycles required by the skip-fold mechanism when EUA is working on 

an unfiltered alignment, a seed lookup module can stream in the database and the bit 

vector until it finds the next unfiltered diagonal. The seed lookup module finds the next 

unfiltered alignment by implementing a constant skip mechanism with S = 16. That is, 

during each clock cycle, it either skips one character or 16 consecutive characters until 

it finds the next unfiltered alignment. If the constant shift amount is set to 16, with a 
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typical F = 16, 16 × 16 = 256 filtered diagonals (0s) can be skipped. The performance 

gain is dramatic; only a small number of cycles are spent processing 0s, improving 

performance of this phase by more than 4×. Note that variable folded skipping 

addresses another significant issue with the EUA filter; i.e., the need to process 

artifactual null alignments that are inserted as padding during startup and teardown of 

each database sequence. 

5.5 CAAD BLAST Architectures 
 

We have implemented the CAAD BLAST filtering system in two different ways: 

multiphase and pipelined systems. In the multiphase system, each phase consists of 

one filter with the intermediate results stored in off-chip memory.  We replicate each 

filter as much as possible. Operationally, we load the FPGA with a filter type, generate 

the filtering results using that filter and save the results in the external memory. Once 

done, we load the FPGA with the next filter.  This way, we can replicate the cores 

maximally.  Because the system consists of three filters, we have to reprogram the 

FPGA three times per run (four times if done in succession). 

When originally conceived, we believed the multiphase algorithm to be preferable to the 

pipelined algorithm described next.  The reason for the change is due primarily to two 

factors.  First, configuration time has become less of a priority in recent FPGA designs 

than previously.  Whereas a few years ago FPGA configuration took only about a tenth 

of a second, it now takes well over a second.  Some of this time is due to the FPGAs 

themselves being larger, but more important is the commercial decision not to use 

board-level resources on the capability of fast configuration.  The second reason is that 
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we originally overestimated the complexity of the pipelined implementation.  While 

extremely challenging, it has proved plausible in the time budget of this dissertation. 

Our goal now in presenting the multiphase design is to assess the area and 

performance of the system and lay out the foundation for the pipelined system. In the 

pipelined system, all three filters are chained together in a single architecture. Thus, 

there is no need for reprogramming. On the other hand, the granularity of the cores 

decreases, and, therefore, the replication factor will not be maximal. Also, delicate load 

balancing is required to make sure that no unit is overloaded. We will discuss both 

designs in the subsequent sections.  As always, changing technology or commercial 

priorities may make one or the other method preferable in future FPGA generations. 

 

 

5.6 Multiple Phase System on a Gidel Board 
 

5.6.1 System Configuration and Operation  
 

In the multiple phase system CAAD BLAST operation is as follows. For each filter, the 

FPGA is configured, the sequence is loaded and the filters are executed. In the first 

phase the two-hit filter generates a bit vector that is stored in the on-board memory.  In 

the second phase the EUA filter reads the bit vector and the database (a second time) 

and returns a list of high scoring sequences.  It saves their addresses to the onboard 

memory; we refer to this reduced database as DB'.  In the third phase a Smith 
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Waterman filter is run on DB'.  Processing continues with the Smith-Waterman filter until 

DB” is generated.  In the final step, DB” (or DB’ for ungapped alignment) is formatted 

and executed with the original NCBI BLAST. 

To accomplish this, two problems need to be solved.  The first is to get agreement right. 

There are two parts: determining the internal thresholds that NCBI BLAST would use, 

especially cutoff, and correctly computing the E-values in the final report.  The second 

and more serious problem is that we need to ensure that DB” both (i) contains all the 

sequences that NCBI BLAST would return, and (ii) is sufficiently reduced so that the 

overhead of formatting DB” does not overwhelm any potential performance gain. Figure 

5-8 shows the global structure of CAAD BLAST.  
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Figure 5-8 CAAD BLAST 

 

In the precompute module, the host uses logic from the NCBI code to compute the 

various parameters needed to determine cutoffs and Evalues for both ungapped and 

gapped options.  To ensure that the Evalues match those that would be computed by 

the original code, we also pass the original search space information.  We have 

implemented all three filters on the reference system which contains a Gidel PROCe III 

FPGA board.  The FPGA is an Altera Stratix-III 260E.  At the time of implementation, 

this was a high-end device (using the 65nm process), but now is nearly three 

generations old.  For on-board memory there is 4.5GB of DRAM partitioned into three 

banks of 2GB, 2GB, and 512MB, respectively.  Each bank has a 64-bit interface and 
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can be accessed independently.  One of the 2GB and the 512MB banks run at 333MHz; 

the other 2GB bank runs at 166MHz. 

We have written a daemon code that keeps the database preloaded into staging 

memory.  Unlike NCBI BLAST the database is unformatted. The user specifies  the 

query and parameters using the NCBI BLAST interface. 

While we currently assume a high-end FPGA, CAAD BLAST is easily decomposable 

and also runs well on low-end devices.  Assuming sufficient memory bandwidth, the 

performance is roughly proportional to the number of BRAMs.  The size of on-board 

memory should be sufficient to store the database. 

5.6.2 Results 
 

For the 2-hit filter, performance depends on the number of filters which, in turn, depends 

on the FPGA resources needed for each filter instance. The logic required is trivial, 

consisting of less than 1% of that available on the reference FPGA. The on-chip 

memory required, on the other hand, is the critical resource.  

Table 5-2 Two-Hit Filter Statistics 

Query  
Size 

# of 2-Hit  
Filters 

# of Hits  
per DB char 

# of excess cycles  
per DB char 

81 
217 
490 
838 

1204 
2205 

38 
35 
28 
25 
21 
14 

0.064 
0.205 
0.567 
0.891 
1.244 
2.570 

0.0002 
0.0100 
0.0524 
0.2203 
0.3062 
0.8790 

 

Table 5-2 Two-Hit Filter Statisticsshows the number of two hit filters that can be 

instantiated, using the design described on a high-end Stratix III FPGA, for a selection 
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of sequences from the NR database. The primary design decision therefore has to do 

with the structure of the position table, in particular the number of positions per entry in 

the primary table. For most query sizes (less than 1K) this number (3) falls out 

immediately from the convenience of packing that number of 10-bit addresses into a 

single 32-bit word. Also for small queries, having, say, 100 filters does little good: that is 

far more than the number of streams that can be supported by the memory interface in 

the reference design. For larger queries, there is the possibility of optimization by 

trading off table size for number of filters. That is, by having more entries in the primary 

table, some accesses to the secondary table can be avoided. But the larger table size 

allows fewer filters to be fit on the FPGA and so fewer database streams to be 

processed in parallel.  

The right two columns in Table 5-2 give an indication of this trade off. The number of 

hits per database character (3-mer) is independent of the structure of the position table. 

For queries of size 1K, the expected number of hits per position is only slightly more 

than 1; having three positions per entry allows the primary table to account for most 3-

mers. For the query of size 2205, however, the secondary table must be accessed 

frequently. The rightmost column illustrates this: it shows the number of excess cycles 

per database character; i.e., the number of extra cycles needed due to accessing the 

secondary table. For small queries, there are virtually no excess cycles, but for the 2205 

query, nearly half the cycles are due to secondary table accesses. 
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Figure 5-9 Graph shows performance as a function of query size for the Two-Hit 
filters in the reference design.  

 

 The performance of the 2-Hit filter phase depends substantially on the query size. 

There are two effects: the number of filters per chip and the amount of throttling that 

needs to be done because of references to the secondary table. Experimental results 

are shown in Figure 5-9 in terms of cycles per character as a function of query size.  For 

typical protein sequences, size 100 to 500, the throughput is at least 25-30 characters 

per cycle.   
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Figure 5-10 Performance as a function of query size for the implementation of the 
EUA filter in the reference design. 

 

For the EUA filter phase, the limit on the number of trees (filters) is generally given by 

the query size M, the number of folds F, and the number and  size of the BRAMs. For 

the reference design, the number of columns of the scoring matrix that can fit in an M9K 

BRAM  is 32. Since BRAMs are dual ported, it is most efficient to use them to look up 

two characters at a time. This places a practical limit of 16 on F. Given the 912 BRAMs 

in the reference FPGA, the maximum number of EUA filters is 1824 × F/M, or 96 for M = 

300. The graph in Figure 5-10 shows performance in cycles per character as a function 

of query size.  The upper graph assumes that the computation is memory bandwidth 

limited, the lower does not. For the “limited” graph, the range is from 3 to 30 characters 

per cycle.  
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Table 5-3 Various results for CAAD BLAST. Averages from running sequences of 
NR versus NR. 

NCBI BLASTP Gapped 

exec time on lab PC 
Exec time on web server 

46s 
12-20s 

CAAD BLASTP  
NR'  (sch1) reduction from NR 
%  of sequences remaining 
%  of residues remaining 
 
NR” (S-W) reduction from NR 
%  of sequences remaining 
% of residues remaining 
 
Format overhead NR” 
NCBI exec. overhead NR” 

 
3.24% 
6.04% 
 
0.054% 
0.088% 
0.53s 
 
2.62s 

 

Table 5-3 contains various results from the filter and reference runs. Our primary 

reference system is a 2008 64-bit 3GHz Xeon quad processor (Harpertown X5412) with 

8GB of memory. We have used NCBI BLAST 2.2.20 (legacy) for reference and for the 

base code of CAAD BLAST. We have implemented all three filters on the reference 

system which contains a Gidel PROCe III FPGA board. We compiled each with 

standard optimization settings and run with default settings. For additional reference we 

use the web server at NCBI. 

We now discuss some of these results. We note that they are averages; there is 

variation as expected from sequences of widely varying sizes. A database sequence is 

retained if it contains at least one HSP that scores above the cutoff. The NR database is 

reduced by a factor of 17. For gapped processing with Smith-Waterman, NR is reduced 

by a factor of 1136 and generally only a few thousand sequences remain.  The 

formatting overhead includes host processing for the filters.  
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Table 5-4 contains performance results of the reference design with respect to the NR 

protein database as of 2009.  Also shown are results for the unaccelerated host PC and 

the NCBI Server.  

Table 5-4 Performance of the reference design with respect to the 3.53G residue NR database. 

Query size  
percentile 

2-hit chars/cycle 
Time 

EUA chars per 
cycle time 

S-W and 
overhead

Total time  
accelerated

Total time  
CPU only 

Total time  
NCBI Server 

Up to 500 
78th 

25/Cycle 
1.3s 

20/Cycle 
1.3s 3.8s 6.4s 26s 14s 

Up to 1000 
97th 

18/Cycle 
1.9s 

11/Cycle 
2.4s 5.3s 9.4s 46s 20s 

Up to 2000 
99.5th 

7/Cycle 
4.8s 

4/Cycle 
6.6s 7.8s 19.2s 95s 40s 

 

For CAAD BLAST the S-W time is less than the time for the other filters. Most of the 

time is in executing the final run of NCBI BLASTP. By percentile we indicate the rough 

proportion of queries that are smaller than the size shown [Cou05]. Speed-ups over the 

unaccelerated PC range from 4× to 5×. The NCBI Server is a large cluster that 

processes queries in parallel according to load. 

5.6.3 Scalability Analysis  
 

One issue with FPGA‐based systems is that no standards have been adopted as to the 

proper configuration of a system for high-performance computing (HPC) with FPGA 

coprocessors. This is in stark contrast to GPUs, where application developers and HPC 

system builders have a very good idea of what to expect. For FPGAs, on the other 

hand, there are wide ranges of both quantity and types of FPGA resources (i.e., on the 

FPGA chip). Even more critically, the supporting infrastructure is completely vendor-

dependent and also varies widely. Exacerbating the problem, there are many such 
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vendors, and no one vendor has a dominant position in the market or is supported by 

either of the major FPGA producers. These board‐level parameters include: the amount 

of onboard memory, FPGA‐memory interface (total bandwidth, latency, number of 

streams, and flexibility of the streams), I/O bandwidth, and configuration time. These 

differences make it extremely difficult to predict performance for a given application, 

even starting with the best reports in literature. The purpose of this section is to allow 

users of high-performance, FPGA‐based systems and potential developers of such 

systems to predict the performance of CAAD BLAST on those systems. Our goal in this 

section is to investigate the scalability of CAAD BLAST when mapped to different 

FPGAs. This is done in two dimensions: timing and area. With regard to both area and 

performance, we have calculated theoretical models that show how the system scales 

on different systems. We have based our study on Altera FPGAs and our multiphase 

system.  

CAAD BLAST consists of four phases: 

T_2h = Time to run Two-hit Filter 

T_tb = Time to run Exhaustive Ungapped Alignment Filter 

T_sw = Time to run Exhaustive Gapped Alignment Filter 

T_ncbi = Time to run NCBI BLAST 

There is overhead between the phases. This primarily affects the first three (the FPGA) 

phases and consists of the time for FPGA reconfiguration before the start of the phase 

T_config. There is also some miscellaneous overhead (T_misc), including the time 

required to compute the contents of the query‐specific data structures, load the FPGAs 

with data, and format the database for the final NCBI BLAST pass. 
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T_total = T_2h + T_tb + T_sw + 3*T_config + T_ncbi + T_misc 

 
FPGA Phases in General 
 
Each FPGA phase consists of streaming the database through the FPGA in some 

number of streams and outputting some amount of data. 

In each term, T_2h, T_tb, and T_sw depend on three things: 

1. The database size (Size_db) 

2. Streaming bandwidth 

3. Various additional factors related to the efficiency with which the bandwidth can be 

used 

The streaming bandwidth can be limited either by the external bandwidth of the memory 

interface (BW_mi) or by the internal bandwidth of the processing configurations 

(BW_2h, BW_tb, and BW_sw, respectively, for each phase). The bandwidth of the 

memory interface BW_mi can be limited by the FPGA’s I/O BW capacity, but, generally, 

FPGA‐based systems are constructed to not use more than a fraction of that capacity. 

The FPGA I/O BW, not including the high‐speed serial interfaces, is at least 20 GB/s for 

any high‐end chip produced in the last 5 years, most being much higher. Our Gidel 

board, however, has a memory bandwidth of 333 Mhz * 16 B + 167 Mhz * 8 B = 6.7 

GB/s. In this application, 333 MHz * 1 2B = 4 GB/s is usable to stream the database. 

The internal bandwidth for each configuration is related to the number of parallel filter 

units and the operating frequency of those units. 

For the various phases: 

• P_2h, P_tb, P_sw = various numbers of processors/streams 

• F_2h, F_tb, F_sw = various operating frequencies 
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Both of these terms, the number of processors, and the operating frequency, depend on 

the FPGA resources and the process generation. For each phase, the number of 

processors also depends on the query size (S_query). The resource requirements are 

in three categories: BRAMs, logic, and I/O bandwidth. The different phases use these in 

different proportions, so the limiting factor varies from phase to phase. With respect to 

the I/O interface (off‐chip memory), substantial overhead logic is required to interface to 

the large number of streams possible, especially for the two‐hit filter. For example, in the 

Gidel system, the database can be partitioned across two memory banks, each of which 

has a 64 bit interface. This physical bandwidth can be translated into a number of virtual 

streams by the interface logic (16 for the Stratix‐III). These virtual streams are 

constructed automatically using vendor tools and can take up to 20% of the FPGA’s 

logic and also a number of BRAMs. Various additional factors either speed up or slow 

down the processing, such as: 

• The amount of data that must be output. One could imagine this cutting into the 

external bandwidth capacity. However, with the most recent implementations, the 

output stream is small for all phases. 

• Speedup and slowdown factors. These are mostly algorithmic, complex, and 

phase‐specific. These can be substantial and are described in detail below. 

Because the replications are totally independent, there is no problem in routing 

and mapping. 

Scaling to future-generation FPGAs, various FPGA families, and FPGAs of various 

vendors. We give the performance numbers as functions of various resource 
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capabilities. For logic and components (BRAMs), this is straightforward. For chip I/O 

bandwidth (BW_mi), we make the following observations: 

• The glue logic for the Gidel system described takes up to 20% of a Stratix III, 

10% of a Stratix IV, and a smaller percentage of a Stratix V. 

• An alternative way of looking at this is to keep the fraction of logic fixed at 20%. 

In that case, the bandwidth supported doubles in each generation. 

 

Phase 1: Two-hit filter ‐‐ T_2h 

The number P_2h of units depends on the resources available on the device and those 

required for the computation. Because the logic requirement is trivial, the BRAMs or 

BW_mi are the limiting factor. The number of BRAMs depends on the query size. 

We use the following notation to parameterize the BRAM resources available and 

required: 

T_144 : Total number of M144k BRAMs available 

T_9 : Total number of M9k BRAMs available 

T_20 : Total number of M20k BRAMs available 

RQ_144: required number of M144ks per query neighborhood for a given query 

RQ_9 : required number of M9ks per query neighborhood for a given query 

RQ_20 : required number of M20ks per query neighborhood for a given query 

RA_9 : additional required number of M9ks per stream for internal calculation 

RA_20 : additional required number of M20ks per stream for internal calculation 
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The following tables give the area usage of the two-hit filter and the corresponding 

replication number. The Stratix III and Stratix IV each have some mix of 9 K and 144 K 

BRAMs. The Stratix V has all 2 0K BRAMs. 

 

Table 5-5 two hit filter area 

Query 
size 

RP_9 RP_144 RA_9 RP_20 RA_20 ALUT ALM Registers 

256 50 3 12 25 9 1800 1425 799 
512 84 6 12 42 9 1800 1425 799 
1024 93 6 16 47 9 1800 1425 799 
2048 136 8 24 68 13 1800 1425 799 

 
The number of two-hit filters is also affected by the interface overhead. From our 

experience with the Gidel interface and the Stratix III, we estimate the following 

overhead for the Stratix family: 

Stratix III: For 32 read and write ports, we need 270 M9ks 

Stratix IV: For 64 read and write ports, we need 540 M9ks 

Stratix V: For 128 read and write ports, we need 540 M20Ks 

Including this overhead gives us the following replication sizes: 

 

Table 5-6 two hit filter replication 

Query  Size P_2h for Stratix III P_2h for stratix IV P_2h for stratix V 

256 32 48 96 
512 24 32 70 
1024 20 32 64 
2048 16 22 50 

 

 
The maximum number of filters on the Stratix III and Stratix IV are: 

P_2h_unlimited=
9_9_

9_
144_

144_
29_

2
144_

144_
2

RCRQ

RC
RQ

T
T

RQ

T




   
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On the Stratix V, the maximum number of filter is: 
 

    P_2h_unlimited=
20_220_

20_
2

RCRQ

T


  

 
The derivation is as follows. In general, this is the total amount of the resource divided 

by the amount needed per unit. For the Stratix V, the corrections are due to the fact that 

BRAMs are dual-ported and can be used for two streams (RQ_20) or not (RA_20). For 

the Stratix III and Stratix IV, the additional complexity is due to there being two ways to 

construct units: (i) out of M144Ks for RQ and M9Ks for RA or (ii) out of M9Ks for both 

RQ and RA. The left term has the RQ part of (i) while the right term has the RA parts of 

both methods and the RQ part of (ii). 

At this point, we could naively compute the time as T_2h = S_db / P_2h*F_2h, but there 

other limiting factors, such as: 

1. The bandwidth of the memory interface BW_mi might be less than P_2h*F_2h. 

2. In our current multiphase implementation, we need to save a bit vector in off‐chip 

memory. This also consumes BW_mi. However, in our current scheme, this 

output bit vector is heavily compressed, so this effect is negligible. 

3. Only one DB sequence is allowed to be evaluated at a time by a single two‐hit 

filter. That is, there can be no overlap among DB sequences. Thus, it takes 

roughly 3 x S_q cycles to process a DB sequence because there need to be 

three roughly equal-sized phases; i.e., startup, steady‐state, and teardown.  

4. Less than one character per cycle can be looked up because of the need to go to 

the secondary table. On the basis of our experiments, the weighted average of 
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the number of clock cycles spent on the secondary table is less than 10% of the 

total time calculated above. However, this number, depends on query data and 

query size; it has both high variance and increases drastically with large queries. 

Sample results from 30 queries are as follows: 

 

Table 5-7 average of the number of clock cycles spent on the secondary table 

Query Length Average Max Min 

1-256 1.6% 8% 0% 

256-512 7% 16% 1% 

512-1024 32% 56% 14% 

1024-2048 128% 160% 81% 

 

 
Thus, an estimate of the two-hit filter running time, assuming that two‐hit filter 

throughput is limited by the internal bandwidth, is: 

 

hFhP

extraSSeqdbSqSdbS
hT

2_2_

___#___2
2_




  

 

Where d_extra=table_value * S_db 

 

Fixing the extra cycles at a conservative 1/3, the estimate becomes: 
 

hFhP

qSseqdbSdbS
hT

2_2_

___#__2

3

4
2_




  

 
We now need to go back and see where we will be limited by BW_mi. 

BW_2h = S_db/T_2h 
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For the Stratix III, Stratix IV, and Stratix V, the average numbers of P_2H are 24, 32, 

and 70, respectively. Then, the internal bandwidths are 1.3 GB/s, 1.8 GB/s, and 3.9 

GB/s, respectively. All of these are less than the raw available bandwidth of our Gidel 

board and a small fraction of the of the FPGA’s capacity:  

ܶ_2݄ ൌ
ܵ_ܾ݀

ܲ_2݄ ൈ ݖ݄ܯ56
 

 
Phase 2: Exhaustive Ungapped Alignment filter (T_tb) 

For the EUA filter, the replication of filter units is logic limited. As a result, the total 

number of ALMs on the FPGA is divided by the total required ALMs per stream in order 

to generate the replication size estimate. 

Ptb ൌ
total	ALMs	on	FPGA	 െ 	ALMs	used	for	memory	interface

ALMs	required	per	stream
 

 
The following tables give the resource usage of the EUA filter and the corresponding 

replication number.  This includes reserving 20% of the logic for the memory interface. 

Table 5-8 TreeBLAST Area and Replication Number for Stratix III and Stratix IV 

Query Size ALUT ALM Registers M9k P_tb for  
Stratix III 

P_tb for 
 Stratix IV 

1-255 5817 4670 4938 8 16 32 
256-511 9574 7815 9113 16 11 21 
512-1023 17065 14287 17474 32 6 14 
1024-2047 32179 27365 34203 64 3 6 

 
 

Table 5-9TreeBLAST Area and Replication Number for Stratix V 

Query Size ALUT ALM Registers M20K P_tb for Stratix V 
1-255 5358 5781 4665 8 49 
256-511 8714 9848 8650 16 32 
512-1023 15502 18214 16627 32 17 
1024-2047 29059 34858 32588 64 11 
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For EUA, there are two additional factors that affect stream throughput: 

1. Stream padding. Database sequences should not overlap. Therefore, S_q null 

characters ($) are inserted between database sequences. Consequently, the 

number of characters that must be streamed is the size of the database plus the 

number of sequences in the database times the query size: S_db + S_q 

*S_db_#_seq. 

2. Fraction of alignments that pass the two‐hit filter of phase 1. With the default 

folding factor of 16, each “passed alignment” takes 16 cycles. Almost all of the 

remaining latency is hidden; i.e., it skips the “nonpassed alignments.” By 

convention, we use 1s to signify passes and E_1 to express the ratio of all set bit 

in the bit vector to total bit vector size. E_1 varies from 2% to 5% depending on 

query size and query composition. The weighted average is close to 2% (see 

Table 9 below). Note that these two factors are correlated. Although it is 

annoying to need to pad the TreeBLAST filters with null characters, most of the 

latency is hidden with the skip mechanism. 

 

Table 5-10 E_1 versus Query Size 

S_q average max 
256 0.008 0.009 
512 0.016 0.028 
1024 0.02 0.025 
2048 0.027 0.043 

 
In general, the upper bound on P_tb can be calculated as follows: 

P_tb= )
_

161__

_

_avg_seq
ited,P_tb_unlimmin(

tbff

Ebandoff

seqavg

sizeq 



 

If the throughput of the TreeBLAST filter is limited by the internal bandwidth, then: 
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ܾݐ_ܶ ൌ
ሺܵ_ܾ݀ ൅ 	ݍ_ܵ ൈ ሻݍ݁ܵ_#_ܾ݀_ܵ ൈ 1_ܧ ൈ 16	

ܾݐ_ܲ ൈ ܾݐ_ܨ
 

Again, we now need to go back and see where we will be limited by BW_mi: 

BW_tb = S_db/T_tb 

For the Stratix III, Stratix IV, and Stratix V, the average numbers of P_tb are about 10, 

20, and 30, respectively. Then the internal bandwidths BW_tb are 6.0 GB/s, 12.0 GB/s, 

and 18.0 GB/s, respectively. All of these are greater than the usable BW_mi for that 

generation, which is 4 GB/s for the Stratix III and estimated to be 8 GB/s and 16 GB/s 

for the Stratix IV and Stratix V, respectively. Therefore, for current FPGA coprocessor 

designs, the true T_tb is likely to be: 

 

T_tb ൌ
ܵ_ܾ݀
݅݉_ܹܤ

 

 
 
Phase 3: Exhaustive Gapped Filter with Smith‐Waterman (T_sw) 
 
For the exhaustive gapped filter pass, we use Smith‐Waterman. Because the database 

has been heavily reduced by the previous phases, little effort has been made so far to 

parallelize or otherwise optimize here. Therefore, we assume a single filter which can 

be folded as needed for large sequences. The following table shows various statistics. 

The number of folds required is ceil(S_q/MaxQuerySize). 

 

Table 5-11 Smith‐Waterman 

ALUTs per  PE 223 
ALUTs per PE w/Folds 227 

ALMs per PE 140 
ALMs per PEw/ Folds 148 

Registers per PE 63 
M9Ks per PE 1 

M144Ks per array w/Folds 16 
Stratix III-- Max query size w/o folding 650 
Stratix IV- Max query size w/o folding 1450 
Stratix V- Max query size w/o folding 2500 
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The following table shows the average ratios derived from experiment: 
 

Table 5-12 Fraction database remaining after TreeBLAST and before 
Smith‐Waterman phase 

S_q S_db’ in number of chars S_db’ in number of sequences 
256 0.01 0.02 
512 0.03 0.04 
1024 0.05 0.09 

 
Assuming that we are limited by the internal bandwidth BW_sw, the time per query is: 

swF

seqrdSeqdbSqScharrddbS
smT

_

_1__#___1_
_


  

where rd1_char is the fraction of the database remaining in characters, and rd1_seq is 

the fraction of the database remaining in number of sequences.  

 

5-11  Expected Timing results based on timing model of CAAD BLAST on 
different FPGAs  
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5-12 Expected speedup results based on timing model of CAAD BLAST on 
different FPGAs 

 

Figures 5-11 and 5-12 show the expected timing and speedup on three generations of 

FPGAs. The calculations are based on the timing model described before and the 

actual runs  on the Gidel board. The timings are based on a version of the NR database 

with 5.5G characters and 15.6M sequences. As can be seen the FPGA time is halved 

from one generation to the next.  This is obviously expected since the FPGA resources 

double over time. On the other hand the remaining timings do not change. This makes 

the final NCBI BLAST run time a bottleneck in the latest generations. As expected the 

speedup linearly increase from one FPGA to the next generation FPGA. 

5.7 The Pipelined System on a Convey Machine 
 

Theoretically, from a parallelization point of view, the multiphase system is an ideal 

solution, the reason being the fully parallel nature of the filters.  For all three filters, the 

workload can be distributed between replicated modules with the only overhead coming 
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from the distribution and support of the multiple streams.  The modules themselves can 

be replicated as many times as possible, taking advantage of all the available resources 

on the chip. The major problem with this approach is the time needed for 

reprogramming.  Although FPGAs generally support programmability in milliseconds, 

most commercial boards need at least a full second to program the FPGA. This extra 

overhead slows down the original application. Thus, we decided to chain all filters 

together. In this Section, we introduce the pipelined system. The pipelined system is 

implemented on the Convey machine and its Xilinx FPGA.  

5.7.1 System Configuration and Operation  

 
A database server reads the database from a disk in Fasta format and creates the 

database data structures that are required by the hardware.  The server then shares 

this data structure through a shared memory interprocessor communication mechanism 

with the client BLAST applications.  Each protein residue is encoded as a binary value 

between 0 and 25. In order to indicate the end of a sequence, each database sequence 

is appended with a special control character.  The control character is used by the 

hardware to separate the processing of subject sequences.  Its binary encoded value is 

26.  The subject sequences are extended with dummy letters such that they are all 

multiples of 16 characters in length.  This is required to simplify the operation of the 

hardware, particularly the 16x mechanism described earlier.  

The database is organized in two main parts: sequence array and offset array.  All of 

the subject sequences are concatenated together and stored in the sequence array. 

The sequences are separated with the special control character described above. The 

starting locations of the subject sequences are stored sequentially in the offset array. 
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For each subject sequence, the starting character’s location, relative to the first 

character in the sequence array, is stored in the offset array. 

Each EUA unit is responsible for processing a portion of the database. The partitioning 

of the workload between multiple FPGAs and multiple EUA units is performed with a 

data structure that we call the context array.  Each FPGA has its own context.  A 

context contains the following information: a pointer to the subject array, a pointer to the 

offset value that corresponds to the first sequence that should be processed by the unit, 

the number of sequences that should be processed by the unit, and a pointer to a 

memory location to store the generated results. 

In order to retrieve the first sequence, the EUA unit adds the offset value of the first 

sequence to the subject array’s address.  Subsequently the EUA unit will read the 

subject sequences from the subject array until the required number of sequences is 

processed.  The offsets are used to interleave and distribute the subject sequences 

among two-hit units.  

5.7.2 Pipelined Filters  

 

Figure 5-13 pipelined filtering unit 
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Figure 5-13 shows the overall scheme of a single-filter bank. Parallel database streams 

feed the two-hit filters, which, in turn, send the 0/1 stream to an EUA filter.  A copy of 

the database is streamed to the EUA filter, where it is coupled with the 0/1 stream.  

 

Figure 5-14 Block diagram of Accelerated BLAST 

 

This structure is replicated a number of times depending on the size of the query and 

the FPGA.  In the final stage, the highest scoring database sequences from all of the 

banks are processed with a single S-W module.  Speed matching between the two-hit 

and EUA stages is accomplished as follows.  The EUA filter processes data (a single 

sequence) from a single two-hit filter at a time.  Processed sequences from the other 

two-hit filters in the bank are buffered.  Through the mechanism described in the 

previous subsection, the EUA filter is capable of consuming three to five characters per 

cycle; that is, data from buffered filtered sequences are transferred to the EUA filter F 

characters at a time (in this study, F = 16).  After processing the data of one two-hit 

filter, the EUA filter starts working on the next sequence from the next two-hit filter.  In 

order to load balance, the database sequences are sorted by length and multiplexed 
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among multiple two-hit filters. As a result, the time required to process successive 

sequences is nearly equal. 

Coupling with the S-W filter is accomplished as follows.  For each database sequence, 

the EUA filter compares the maximum score generated with a constant threshold.  If this 

score is larger than the threshold, the EUA filter writes the address of the sequence to a 

FIFO. The S-W unit reads these addresses, streams the subject sequences, and 

calculates the maximum scores. 

5.7.3 Accessing On Board Memory:  The Jump FIFO Interface 
 

Throughout the multiple designs, FPGAs, and FPGA platforms, a uniform interface is 

used to access the external memory and retrieve the required data.  Following the 

terminology of the Gidel IP library, we call module the jump FIFO interface.  Its interface 

consists of the following five signals.  

 Jump:  requests a “jump” to a specific address in the memory,  

 Address:  the address of the memory to jump to, when the jump signal is set,  

 Data:  the data that is being transferred through the port,  

 Read/Write:  sequential read/write requests,  

 Ready:  Interface ready for the next transaction. This can be interpreted as data 

valid in case of reading, and output port ready to receive another data in case of 

write.  

The jump FIFO interface is basically a FIFO interface, except that it has an embedded 

jump functionality.   In case of reading for example, when jump is set, the FIFO should 
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load the data from the external memory from the address specified in the address port 

as soon as possible, and it should disable the ready signal until the new data arrives. 

There are several instances of this interface in the system.  The jump interface was 

originally used and developed by the GIDEL company as part of their board's multiport 

memory controller IP core, and it proved to be a simple and efficient interface once we 

ported the design to the CONVEY computer.  As shown in Figure 5-14, each  EUA unit 

is connected to multiple two-hit units.  For each EUA module, there is an address 

module that is responsible for interleaving the offsets among its two-hit units.  As an 

example, consider a case when there are three two-hit units per EUA.  In this case, 

while the EUA unit processes subject sequences sequentially, the two-hit filter i reads 

and processes sequences as 3k + i where k is an integer.  

5.7.4 Glue Logic Modules  
 

In order to simplify the design and streamline its reusability, we have implemented a 

module called stream_maker that, given a sequence of offsets, accesses the external 

memory through a jump FIFO interface and generates the character stream as if the 

offsets were not originally interleaved.  stream_maker has a FIFO that is written by the 

address units and contains the offsets of the sequences that should be fetched. 

stream_maker generates the character stream which is fed to the two-hit filter.  

Similarly, once a sequence passes the EUA filter, its offsets are written to a 

stream_maker FIFO. The stream_maker generates the character stream for the S-W 

module, which, in turn, performs another level of filtering. 
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5.7.5 RTL Optimizations  
 

For queries of up to 256 characters, accelerated BLAST (on each FPGA) consists of 

five clusters of two-hit/EUA filters, each with five two-hit filters feeding a single 16x 

folded EUA filter. In turn, these five clusters feed a single S-W filter (2x folding).  Larger 

queries have analogous implementations. 

The initial synthesis returned an unacceptably poor operating frequency.  We tried 

reducing the design size, but the problem was not ameliorated until only an 

unacceptably small fraction of the potential chip capacity was in use.  Instead, we 

solved this problem through two RTL mechanisms:  floor planning modules with respect 

to BRAMs and redesigning the logic to reduce fan-outs and the lengths of the 

communication channels. 

There are two problems that need to be dealt with through RTL-level logic: mapping 

function I/O to physical I/O and reducing path delay.  These are both handled primarily 

through the creation of three modular communication interfaces: simple FIFO, jump 

FIFO, and a direct register-based interface. These interfaces are described further 

below. Using these interfaces, we can place each core anywhere on the FPGA and 

keep its communication off of the critical path by simply specifying an appropriate 

number of pipeline stages.  Other optimizations include replicating registers to reduce 

fan-out and eliminating the reset circuit as much as possible.  The simple FIFO interface 

serves as our flexible general purpose intermodule communication mechanism and is 

used especially to foster module independence and avoid the creation of long paths.  
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Figure 5-15 Accelerated BLAST external interfaces for 

 

Figure 5-15 shows the external I/O interfaces for the accelerated BLAST configuration 

that supports sequences of length up to 256 characters.  Note that there are 26 x 1B 

streams and 5 x 16B streams operating continuously and that there are a number of 

others that are used for initialization, data offload, and synchronization.  These must be 

mapped to the physical I/O provided by the Convey HC-1ex: that is, the 16 x 4B 

memory channels that can operate independently at over 300 MHz.  The mechanism 

we use is the jump FIFO interface described above.  
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Figure 5-16 Jump IO Interface and Signals  

 

A block diagram and a signals interface for the jump FIFO are given in Figure 5-16.   It is 

a generalization of the simple FIFO in that it communicates with external memory at a 

specified address. The jump FIFOs are mapped to the Convey physical memory 

interface through the Convey memory crossbar module which routes memory 

transactions to the correct memory interface. 

5.7.6 Replicating and Balancing the Components 
 

We find the optimal number two-hit filters per EUA filter by measuring the fraction of idle 

cycles in the EUA filter as a function of the number of two-hit filters and the query size. 

The results are shown in Table 5-13 Balance between two-hit and EUA filters.and 

indicate that three to five two-hit filters per EUA filter is optimal. 
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Table 5-13 Balance between two-hit and EUA filters. 

Query Size 
Fraction 1s 

 

Ratio of 2-Hit 
to EUA Filter 

EUA Filter 
Percent Idle Cycles 

256 
0.008 

4 13 
5 1.5 
6 0 

512 
0.016 

2 14 
3 0.14 

1024 
0.020 

2 13 
3 0.06 

2048 
0.027 

2 12 
3 0.03 

 

Overall, the EUA filter enables the database to be reduced by at least 97% for most 

query sequences.  Therefore, the S-W filter can be compacted substantially through 

folding and still obtain adequate performance.  The optimally folded S-W filter consumes 

characters of the reduced database DB at the same rate that characters of the original 

database DB are consumed by the two-hit filters. The raw results are shown in Table 

5-14.  

Table 5-14 optimal number of folds in the SW filter 

Query Size 
Reduction 
db to db' 

Number of Folds for SW 
Filter (Virtex6) 

Number of Folds for SW 
Filter (Stratix V) 

256 0.01 7 4 
512 0.03 4 2 
1024 0.05 4 2 
2048 0.07 5 2 

 

When integrated into the overall system, the number of folds is either two, four, or eight. 

From the preceding discussion, we see that a speed-matched bank of filters contains 

from three to five two-hit filters and one EUA filter folded to affect 16× replication. A 

single S-W filter is shared by all of the filter banks and folded to affect 2× to 8× 
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replication. The number of filter banks themselves that can fit on an FPGA is a function 

of query size and FPGA resources.  

5.7.7 Floor Planning 
 

We apply floor planning in two layers. The first layer is applied internally to the two-hit 

filters and the second layer is applied for the higher-level modules consisting of the two-

hit filters that feed individual EUA filters. We found it sufficient to map BRAMs to 

particular modules and let the synthesis tools continue handling the logic placement. 

Although the two-hit filters each require only a small amount of area, their logic is 

complex and, more significantly, does not lend itself to pipelining. That is, pipeline 

stages would increase the time required to process each character, violating our most 

basic design constraint; i.e., flowing the database through the FPGA at a streaming rate 

of one character per cycle. 

The critical path is the lookup of database w-mers in the query (see  Figure 5-4).  In the 

“fast” case, there are three or fewer matches in the query.  In the “slow” case, there are 

more and a secondary table must be accessed.  The complete two-hit filter is shown in  

Figure 5-3.  Each fetched entry must be processed in one clock cycle, meaning that a 

newly computed address needs to be issued to the position list.  As a result, the 

addressing circuit contains a combinational path that starts with the output of the 

position list and continues to the address input of the same position list.   
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Figure 5-17 Cells in an FPGA 

 

The FPGA consists of a pool of CLBs and BRAMS as shown in Figure 5-17.  We 

number the BRAM columns from the left from 0 to 11.  Of these, 4 to 7 are used by the 

interface logic and the API; this leaves 0 to 3 and 8 to 11 for user logic.  To floorplan the 

two-hit filters, we place the BRAMs for the position lists in a square, minimizing the path 

length, as shown in Figure 5-18.  

 

Figure 5-18 Two-hit filter after floor planning 
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At the next level, the EUA filter BRAMs are placed as close as possible to those of the 

two-hit filter (see Figure 5-19). 

 

Figure 5-19 Module after floor planning 

 

5.7.8  Integration and Results 
 

Table 5-15 Per component resource utilization for the Alterashows the results for the 

Altera Stratix IV EP4SE820H40I3, and Table 5-16 shows the results for the Xilinx 

Virtex-6 XC6VLX7601.  We find that the Stratix IV, depending on query size, can fit 5, 5, 

4, or 3 filter banks for a total of 25, 15, 12, or 9 input streams.  The Virtex-6 can fit, 

depending on query size, 3, 3, 2, or 1 filter banks for a total of 15, 9, 6, or 3 input 

streams.  
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Table 5-15 Per component resource utilization for the Altera 

Stratix-IV 

Query Size 
Replications 

2-Hit Streams 

Logic Utilization 

Component ALM M9K M144K 

Qs<256 
Reps=5 
2hSt=25 

5 two hit 5771 250/100 0/9 
1 EUA (16 Folded) 4084 8 0 
1 SW (16 Folded) 1475 8/216 12/0 

Total 11363 266 12 

Qs<512 
Reps=5 
2hSt=15 

3 two hit 3544 200/60 0/10 
1 EUA (16 Folded) 6888 16 0 
1 SW (8 Folded) 5296 32/240 12/0 

Total 15750 248 12 

Qs<1024 
Reps=4 
2hSt=12 

3 two hit 3625 258/72 0/12 
1 EUA (16 Folded) 12540 32 0 
1 SW (8 Folded) 10473 64/272 12/0 

Total 26660 354 12 

Qs<1024 
Reps=3 
2hSt=9 

3 two hit 3704 368/96 0/16 
1 EUA (16 Folded) 23998 64 0 
1 SW (8 Folded) 20412 128/336 12/0 

Total 48163 496 16 
Total Available (Stratix IV)  325000 1610 60 

 

Table 5-16 Per component resource utilization for the Xilinx 

VirtexVI 

Query Size 
Replications 

2-Hit Streams 

Logic Utilization 

Component Slices BRAMs/FIFOs 

Qs<256 
Reps=3 
2hSt=15 

5 two hit 3921 159 
1 EUA (16 Folded) 2103 8 
1 SW (16 Folded) 1227 56 

Total 7313 223 

Qs<512 
Reps=3 
2hSt=9 

3 two hit 2496 128 
1 EUA (16 Folded) 3590 16 
1 SW (8 Folded) 4595 80 

Total 10725 224 

Qs<1024 
Reps=2 
2hSt=6 

3 two hit 2534 134 
1 EUA (16 Folded) 6304 32 
1 SW (8 Folded) 8804 112 

Total 17687 278 

Qs<1024 
Reps=1 
2hSt=9 

3 two hit 2537 140 
1 EUA (16 Folded) 12064 64 
1 SW (8 Folded) 17152 176 

Total 31801 380 
Total Available (Stratix IV)  18560 720 
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For the following tests, we use a protein database with 15.4 M sequences and 5.4 G 

characters.  The reference tests are run on the Convey machine's CPU which is a four-

core Intel CPU (Xeon L5408 2.13 GHz).  We chose this reference processor because it 

is of the same technical generation as the FPGAs in our system.  All the reference and 

accelerated tests were done with the latest NCBI BLAST with the -num threads 4 

option; this forces maximum useful parallelism for both the reference code and the CPU 

part of the accelerated code. In NCBI BLAST, the traceback code that generates the 

actual alignments is not threaded and, therefore, is completely serial in both reference 

and accelerated tests.  

NCBI BLAST provides a wide range of user options that vary such quantities as internal 

thresholds and the quantity of results provided. The internal thresholds control 

sensitivity and, thus, the amount of work to be done. Varying them has comparable 

effect on both reference and accelerated execution. Accelerated BLAST and NCBI 

BLAST are not identical; however, accelerated BLAST executes exhaustive ungapped 

and gapped alignments, whereas NCBI BLAST executes gapped and ungapped 

extensions with complex heuristics. In order to guarantee no false negatives, it may 

therefore be necessary to increase the sensitivity (i.e., lower the threshold) in the 

accelerated BLAST. Note that, as long, as all false negatives are eliminated this does 

not change the overall output, and the final run of NCBI BLAST still uses the user 

specified thresholds and eliminates false positives. In contrast to the sensitivity 

parameters, those for output affect primarily the CPU-only part of the accelerated code. 

The default is to return the top 500 sequences of any possible statistical significance.  
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Given that the traceback code is serial (and given Amdahl’s Law), permissive output 

has a disproportionate detrimental effect on the performance of accelerated BLAST. 

We run four tests varying the following parameters: ungapped alignment threshold, 

gapped alignment threshold, E-value, and number of match sequences returned. 

Results are summarized in Table 5-18 .  

Table 5-17 Percentage of Sequences Remaining After EUA and Smith Waterman 
Filters 

Test DB' Reduction% DB" Reduction% 
1 0.13 0.035 
2 2.15 0.034 
3 0.02 0.014 
4 1.28 0.034 

 

Table 5-18 Various tests of reference and accelerated BLAST for queries up to 
256 characters. 

Test Ref. 
Time 

1 
FPGA 
Filter 
Only 

4 
FPGAs 
Filter 
Only 

Post-
Filter 

Search

Post-Filter 
Traceback

1 
FPGA
Total 

4 
FPGAs
Total 

1 FPGA 
Speedup 

4 
FPGAs 

Speedup 

Acc %

1 46.5 7.1 1.9 1.5 1.9 10.5 5.3 4.4x 8.8x 98.4%
2 45.6 10.5 2.9 1.5 1.7 13.7 6.1 3.2x 7.5x 100% 
3 48.9 7.3 2.0 1.2 1.3 9.8 4.5 5.0x 10.9x 96.4%
4 47.0 8.1 2.2 1.4 0.4 9.9 4.0 4.7x 11.7x 100% 

 

Table 5-19 Tests 2 and 4 (see text) of reference and accelerated BLAST for all 
queries. 

Test Ref 
Time 

1 
FPGA  
Filter 
Only 

4 
FPGAs 
Filter 
Only 

Post-
Filter 

Search

Post-Filter 
Traceback

1 
FPGA 
Total 

4 
FPGAs
Total 

1 FPGA 
Speedup 

4 
FPGAs 

Speedup

Acc %

2 78.5 12.6 3.4 2.4 0.99 16.0 6.8 4.9x 11.5x 99.99 
4 68.2 11.2 3.0 2.2 0.80 14.2 6.0 4.8x 11.4x 100 

 

First, we note the general effectiveness of the filtering mechanisms: depending on 

thresholds, the EUA filter reduces the original database from 98% to 99.98%, whereas 

the S-W filter reduces it by from 99.97% to 99.99%. 
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In Test 1. Reference and Accelerated NCBI BLAST have default parameters (E-value = 

10, max target sequences = 500). The EUA threshold is set to the ungapped extension 

threshold of NCBI BLAST, whereas the S-W threshold is set to the gapped extension 

threshold. In this baseline test, we note that there are some false negatives, although 

none ever appear in the top 100 of returned sequences. 

In Test 2. All parameters are again set to default, but for accelerated BLAST, the EUA 

threshold is reduced by 12. This selection is based on the analysis of the EUA and S-W 

scores of the missing sequences in comparison to their corresponding threshold. 

Because the S-W threshold is not changed, the reduced databases sizes (DB”) are not 

significantly changed either. As a result, the postfilter timing remains the same. 

Reducing the EUA threshold increases the FPGA streaming time slightly. However, the 

accuracy is improved to 100% (no misses) but with a reduction in performance. 

In Test 3. The E-value is reduced from the default value of 10 to 1.0 E-5 such that the 

returned sequences are more statistically meaningful. An E-value of 10 is considered 

too permissive for these sizes of databases. This test assesses the effect of the E-value 

on the performance and accuracy. As in Test 1, the thresholds used by FPGAs are 

those calculated by NCBI BLAST during ungapped and gapped extension. The 

reduction in E-values has little effect on the FPGA streaming time. However, the post-

FPGA processing time is reduced producing slightly better speedup. The number of 

false negatives, however, increases to a greater value than the original. 

In Test 4. The EUA threshold is reduced by 20%. Also, both reference and accelerated 

BLAST are tested with max target sequences of 50, which forces the tool to report the 

top 50 sequences only. The selection of 20% reduction as the EUA threshold, as 
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opposed to a constant reduction of 12 (as in Test 2) is based on the analysis of the 

scores of the missing sequences in Test 3. Because in Test 3 we used a more 

restrictive E-value, the default thresholds increased. The comparison of the scores of 

the missing sequences and the default thresholds in the other tests shows that with a 

20% reduction in EUA threshold we can achieve 100% agreement. 

Overall, this use case shows optimal performance and accuracy results. Table 5-19  

shows results from Tests 2 and 4 done for a general set of 600 queries selected 

randomly from NR. We note that the end-to-end speedup of accelerated BLAST is 

around 5x when using a single FPGA and over 11x when using 4 FPGAs. 

5.8 Summary  

 

In this chapter, NCBI BLAST, the de facto standard for biosequence analysis is 

accelerated based on a novel pre-filtering approach.  The prefiltering technique reduces 

the database size to a fraction of the original using three filters that emulate the three 

main phases of NCBI BLAST.  The filters are either identical representations of the 

original or strictly more sensitive than the reference:  that is, they might return more hits 

but they do not miss any hits that the reference might return.   

For the word matching phase we used a two hit filter which returns a bit victor indicating 

exactly which diagonals have the two-hit  property.  Our two-hit filter is compact and 

accurate. The generated bit vector is used by the next filter: the Exhaustive Ungapped 

Alignment filter. The EUA filer emulates the ungapped extension phase of NCBI BLAST. 

Based on two novel techniques we effectively coupled the Two-Hit filter's bit vector with 

the EUA filter, such that the augmented EUA unit does not need prohibitive control logic 
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in order to skip the unpromising diagonals.  Based on these optimizations our EUA filter 

is capable of consuming 3 to 5 residues per clock cycle depending on the query size. 

We load balanced system by replicating some number of two-hit filters per EUA filter. 

Using a single Virtex-6 FPGA, our pipelined system achieved 4x to 5x speedup over a 

four threaded CPU code without losing  any sensitivity.        
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6 CLUSTALW 

6.1 Overview 
Biologists use approximate string-matching for pair-wise sequence alignment (SA) to 

determine, for example, how a newly identified protein is related to those previously 

analyzed and how it has diverged through mutation. Multiple-sequence alignment 

(MSA) extends this idea to more than two sequences: gaps are inserted as necessary 

to define a mapping of the sequences to rows of a matrix such that all columns have at 

least one letter. 

MSA is the critical tool for extracting and representing biologically important, yet 

(potentially) faint or widely dispersed, commonalities from a set of strings [Gus97]. 

While SA is used to assign possible functions to a protein, MSA goes to the next level. 

Among its uses are prediction of function and secondary (two- and three-dimensional) 

structure, identification of the residues important for specificity of function, creation of 

alignments of distantly related sequences, and revealing clues about evolutionary 

history [Bar01]. 

While SA is typically used in database search (finding correlations of one sequence with 

millions of anonymous candidates), MSA is generally applied to some number of 

sequences that are already hypothesized to have some commonality, and, though it is 

often the case that some sequences are better understood or more important than 

others, MSA is basically an all-to-all matching problem. Another difference is that, 

whereas there is a consensus on the evaluation of SA alignments on the basis of Karlin-
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Altschul statistics, with MSA there is no objective way to define an unambiguously 

correct alignment [Dur98].  

These last facts have the following consequence.  Evaluating MSA applications requires 

either expert knowledge or its surrogate through preselected sets of related sequences 

(e.g., BAliBASE [Bah01] ) and encoded evaluation metrics (e.g., MetAl [Bla11] or 

BaliScore [Bah01]).  In an MSA workflow, a number of sequences k of length n are 

aligned. The median value for n is about 300 but is often closer to 1,000, whereas k can 

range from a few to a few thousand sequences or more. 

Optimal MSA algorithms have been created by extending DP-based SA to higher 

dimensions. These have exponential complexity in the number of sequences Oሺ݊௞). 

Applying restrictions (see e.g., [Ben12b], [Car88]) results in tremendous speedups 

making them plausible for k up to small double digits.  A larger k, however, requires the 

use of heuristics; these are generally a version of progressive refinement [Fen87].  

These codes typically run in three phases: (i) an all-to-all phase where all pairs are 

aligned and scored, (ii) a tree-building phase where a guide tree is built that has 

sequences as its leaves and whose interior nodes represent alignments, and (iii) a final 

phase where all pairs of nodes are aligned.  

The most commonly used MSA code is CLUSTALW [Tho94], but, although it is 

exponentially more efficient than the optimal methods, it still takes hours to days of CPU 

time for larger runs.  Given that MSA is often a subroutine of a more complex task, such 

as finding evolutionary relationships, its acceleration is critical. 
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We now review some of the previous work.  The first phase of CLUSTALW consists of 

over 90% of the execution time.  It has been accelerated both with FPGAs [Oli05] and 

GPUs [Lip88].  Both of these studies follow the serial code in using dynamic 

programming (DP) for the all-pairs alignments and report factors of 40× to 50× 

speedups over a single core, respectively.  We find that when the FPGA-DP method is 

ported to updated FPGAs and multicore CPUs, the speedup is in a similar range, but 

with some variance; i.e., from 18× to 58×.  Lloyd and Snell have accelerated a generic 

third phase, which, for CLUSTALW, takes most of the remaining time on FPGAs, and 

obtained a speedup of up to 150× versus a single core [Lio11].   

We use a different approach in creating a CLUSTALW-based, FPGA-accelerated MSA 

(FMSA). Just as BLAST applies multiple passes of heuristics to emulate DP-based SA, 

so we apply BLAST-inspired filters to the pair-wise alignments.  In particular, we use a 

two-hit filter (seeding pass) [Jac08] followed directly in a pipeline by an ungapped 

alignment (ungapped extension pass) [Mah10],[Her07].  For the latter, we emulate the 

ungapped mode of NCBI BLASTp [Mah12a].   

There are two versions of FMSA: fast (FMSAf) and emulation (FMSAe).v In both cases, 

we use a scoring function analogous to that used by CLUSTALW; i.e., rather than 

returning an E-value, FMSA computes a function based on identity counts.  In fast 

mode, these scores are sent directly to the second phase of CLUSTALW to complete 

the processing. In emulation mode, some fraction of the high-scoring pairs are rescored 

using the DP-based method of Oliver et al. [Oli06]that emulates the CLUSTALW scoring 

function precisely.  The result is a factor of from 80× to 189× speedup with respect to 
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eight-way parallel CPU code with the lower number corresponding to achieving results 

with quality comparable to the original.  

The primary contribution of the work in this Chapter is an FPGA-accelerated version of 

ClustalW that achieves both substantial speedup over previous methods for 

computationally intensive data sets and high quality results that, especially in emulation 

mode, closely agree with those generated by the original code.  The mechanism is the 

primary intellectual contribution of this Chapter and has three parts: (i) the overall 

approach where we apply prefiltering based on ungapped alignment and rescore as 

necessary, (ii) the modification of the original components to support an MSA rather 

than an SA scoring function, and (iii) the redesign of the filter sequence into a pipeline to 

avoid costly system overhead and reconfiguration. The significance is that—when 

coupled with the work of Oliver, et al. [Oli06], and of Lloyd and Snell [Lio11]—this could 

become the FPGA-accelerated MSA method of choice. We have developed FMSA 

using a standard high-end PC with a Gidel PROCe III accelerator board.  

The rest of this chapter is organized as follows. We begin with a brief review of 

progressive alignment for MSA and ClustalW.  Section 6.3 details our FPGA based 

ClustalW and Section 6.4 describes the results. 

6.2 BACKGROUND  
 

6.2.1 Basics of MSA for Biological Sequences 
 

There are a number of heuristic MSA codes that use progressive sequence alignment. 

They differ in three ways: (i) the order of alignments, (ii) whether there is a single 
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growing alignment or multiple subfamilies that are later aligned to each other, and (iii) 

the procedure used to align score sequences and alignments against an existing 

sequence or alignment. Generally, a binary tree is constructed to guide the order of 

alignments with the most similar pairs--being the most reliable--being aligned first.  

Scoring MSAs is an active area of research, but a commonly used metric is the sum-of-

pairs (SP) score. This is a direct extension of pair-wise scoring. We follow the 

discussion in [Gus97]: given a multiple alignment M of k strings, an induced pairwise 

alignment between strings Si and Sj is obtained by removing all rows except for the ith 

and jth. The pair-wise score can be calculated using a standard SA function, or one 

selected for MSA. The SP score is the sum of all of the pair-wise scores.  

In order to test the quality of an MSA algorithm, a preferred method is to evaluate it with 

a golden or reference data set; i.e., an alignment that has been created by a domain 

expert to deal with a specific, realistic, biological scenario. The BAliBASE 2.1 

benchmark alignment database contains a number of case studies giving both 

sequences and a putative ideal reference alignment. Quality (determined by running the 

program BAliScore) is based on the SP score and computed as follows. For all columns 

in the test alignment and for each pair of residues, a score of 1 is given if the residues 

are aligned with each other in the reference alignment, and a 0 is given otherwise. This 

sum is normalized by the scores computed for the reference alignment.  

A recent paper describes another set of distance measures for MSAs as follows : 
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hd: Simple homology distance gives the possibility that a randomly selected base 

x from an MSA will be aligned to a different location against a sequence 

randomly selected from the remaining sequences that do not contain x. 

ssp: Symmetrized SP score is a symmetrized version of the SP score defined 

above. 

pi: Positional information is incorporated into hd where gaps occur. 

6.2.2 CLUSTALW Overview 
 

From Table 6-1, we see that most of the effort is in phase 1; that is what we accelerate 

here.  CLUSTALW improves the original progressive alignment methods by adding a 

number of heuristics.  Most of these are incorporated into the second and third phases;  

and so need not be described here. 

Table 6-1 PROFILE OF CLUSTALW BASE CODE W.R.T. VARIOUS DATA SETS 

Benchmark # of Seq Phase 1 Phase 2 Phase 3 
BB: MYB 180 88.0% 0.3% 11.7% 
BB: 7tm 128 90.4% 0.04% 9.5% 
NCBI 1 231 95.4% 0.2% 4.4% 
NCBI 2 1000 91.4% 0.4% 8.0% 
Average -- 91.3% 0.2% 8.4% 

 

 

The first phase creates a matrix of alignment scores for all sequence pairs. Note that 

the CLUSTALW code appears to have been modified since the original paper; this is the 

code to which we refer. The scoring itself requires multiple passes. In the first two, a 

best local alignment is found with the use of a variation of the Myers and Miller 

algorithm, which uses a variation of global alignment with dynamic programming.  
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In the third pass, the actual score is determined from a count of the number of identical 

residue pairs in the optimal alignment. Then, this number is divided by the minimum of 

the lengths of the two sequences to create a similarity measure. Next, the result is 

subtracted from one to get the distance measure between the two sequences. One 

important point is that Myers and Miller is a memory efficient recursive global alignment 

algorithm: it divides the alignment space in half by dividing one sequence in half. It then 

finds the optimal point on the other sequence such that the concatenation of the two 

alignments of the subsequences on either side of the midpoint maximizes the global 

score. In this process it properly handles possible gaps in the neighborhood of the 

optimal midpoint. 

We give this detail to show the challenge in exactly emulating the CLUSTALW scoring 

function. Besides the complexity, there can be multiple optimal alignments or traces 

between sequences; choosing the wrong one will lead to disagreement with the 

reference code. Oliver, et al., in their acceleration of the pairwise alignment phase 

[Oli06] (with a method based on S-W), have achieved near perfect agreement. 

 

6.3 DESIGN AND IMPLEMENTATION  

6.3.1  Design Overview 
 

In all-pairs alignment, FMSA constructs a database of the sequences to be multiply 

aligned and consecutively matches sequences against the remainder. Although DP-

based methods have excellent performance with respect to software, heuristic methods 
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are much faster still, in the same way that BLAST is substantially faster than S-W. 

FMSA uses two FPGA-based filters we have used previously to accelerate BLAST: 

 • The two-hit filter 

• The exhaustive ungapped alignment (EUA) filter  

For FMSAe we add an additional FPGA pass. The idea here is to expend marginal 

additional effort to improve agreement with the original code. For each sequence we 

rescore the highest scoring 10% of the sequences with the DP-based scoring function 

[Oli06] that nearly perfectly emulates the CLUSTALW scoring function. 

 

6.3.2  FMSA Scoring 
 

Before describing the details of the FMSA filters, we present some results of various 

possible scoring functions. We begin by introducing some terminology. Si is an input 

string, LGA(Si and Sj) represents the optimal local gapped alignment between Si and Sj 

Score(Alignmenti) returns the raw score of an Alignmenti, NID(Alignmenti) returns the 

number of identical residue pairs in an Alignment i, LUA(Si, Sj, k) represent the kth best 

local ungapped alignment between Si and Sj on the basis the raw scores. For each pair 

of sequences Si and Sj, CLUSTALW calculates the distance as follows:  

,௥௘௙ሺܵ݅ݐݏ݅݀ ݆ܵሻ ൌ 1 െ
,ሺܵ݅ܣܩܮሺܦܫܰ ݆ܵሻሻ

min	ሺ݈݁݊ሺܵ݅ሻ, ݈݁݊ሺ݆ܵሻሻ
 

Because our proposed method involves rescoring top pairs to improve agreement, we 

are looking for the scoring function which returns, as much as possible, the same top 
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scores as CLUSTALW. We tested five method as described below. The first three try to 

approximate the best local gapped alignment as a collection of some number of top 

local ungapped alignments. The 4th and 5th methods try to find a correlation between 

the identity count and the raw score of the top scoring alignments.  

1) Find the best ungapped local alignment and count the number of identities:  

,ଵሺܵ݅ݐݏ݅݀ ݆ܵሻ ൌ 1 െ
,ሺܵ݅ܣܷܮሺܦܫܰ ݆ܵ, 1ሻሻ
min	ሺ݈݁݊ሺܵ݅ሻ, ݈݁݊ሺ݆ܵሻሻ

 

2) Same as method 1, except add the top two best local ungapped alignments:  

,ଶሺܵ݅ݐݏ݅݀ ݆ܵሻ ൌ 1 െ
∑ ,ሺܵ݅ܣܷܮሺܦܫܰ ݆ܵ, ݇ሻሻଶ
௞ୀଵ

min	ሺ݈݁݊ሺܵ݅, ݆ܵሻሻ
 

3) Same as methods 1 and 2, except add the top five best local ungapped alignments: 

,ଷሺܵ݅ݐݏ݅݀ ݆ܵሻ ൌ 1 െ
∑ ,ሺܵ݅ܣܷܮሺܦܫܰ ݆ܵ, ݇ሻሻହ
௞ୀଵ

min	ሺ݈݁݊ሺܵ݅, ݆ܵሻሻ
 

This method is similar to the ungapped option in NCBI BLASTp. 

4) Find the best local ungapped alignment and use the raw score:  

,ସሺܵ݅ݐݏ݅݀ ݆ܵሻ ൌ 1 െ
∑ ,ሺܵ݅ܣܷܮሺ݁ݎ݋ܿݏ ݆ܵ, ݇ሻሻହ
௞ୀଵ

min	ሺ݈݁݊ሺܵ݅, ݆ܵሻሻ
 

5) Find the best local gapped alignment and use the raw score (S-W): 

,ହሺܵ݅ݐݏ݅݀ ݆ܵሻ ൌ 1 െ
,ሺܵ݅ܣܩܮሺ݁ݎ݋ܿܵ ݆ܵሻሻ
min	ሺ݈݁݊ሺܵ݅, ݆ܵሻሻ

 

The evaluation of these scoring functions is shown in Figure 6-1. 
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Figure 6-1 correlation of approximate filter scores to reference sores in  clustal-w 

 

The series shows the fraction of high-scoring pairs that must be rescored to guarantee 

that some top fraction of the high scoring pairs of CLUSTALW are matched. The lower 

the series the better. Note that, for method 3, rescoring 10% of the highest scoring pairs 

covers the top 3.6% from CLUSTALW. For method 1, nearly 30% must be rescored to 

achieve the same result.  

Table 6-2 MEASURE OF THE BIAS AND STANDARD DEVIATION IN PAIRWISE 

SCORES BETWEEN ORIGINAL CLUSTALW AND FILTER OUTPUT 

Database # of Seq Avg. of diffs STD of diffs. 
7tm 128 -0.01 0.03 
Myb 180 -0.02 0.09 
NCBI 231 -0.05 0.03 

 

We selected method 3 for use by FMSAe. Table 6-2 shows the result of comparing all of 

the scores generated by FMSAe with CLUSTALW.  
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6.3.3 Filter Details  
 

From the previous section we see that the scoring function requires finding the top 

ungapped alignments and then scanning them for identities. We use a two stage 

process.  In the first, we follow standard BLAST procedure and eliminate all alignments 

where there are not any two seed matches within a certain distance (two-hit filter). In the 

second, we simultaneously perform two functions; i.e., we exhaustively scan all 

alignments for high-scoring ungapped local alignments and we count the identities in 

those alignments.  

 

Figure 6-2 Filtering Pipeline for ClustalW 

 

The designs of the two-hit filter and the exhaustive ungapped alignment filter are 

described in previous chapters, here we give a brief reminder.  Figure 6-2 shows the 

overall scheme; i.e., parallel database streams feed the two-hit filters, which in turn feed 

a EUA filter. This structure is replicated some number of times depending on the sizes 

of the strings and of the FPGA. The EUA filter is capable of consuming three to five 

characters at each clock thanks to the two-hit filter data. The EUA reads in 16 
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characters and the corresponding filter bits as required. After processing of the data of 

one two-hit-filter, it starts working on the next sequence from the next two-hit filter. 

In order to keep all of the units busy, the database sequences are sorted based on 

length and multiplexed among multiple two-hit filters. As a result the time required to 

process successive sequences is nearly equal. Note that there are two priority queues 

in the design. One priority queue is inside the EUA module and stores the top five local 

ungapped alignment scores. Another priority queue is outside EUA module to store the 

indexes of the top 10% scoring sequences. After EUA streams the entire database, the 

data in this second priority queue is passed to the dynamic programming module to 

perform the refinement. 

6.4 RESULTS 
 

We have implemented FMSA system on our  Gidel Proc III board which is described in 

Section 2.6.2.  For the Stratix III, for most problem sizes, we are able to map 16 two-hit 

filter units and 4 EUA units in a pipeline as described.  For small problems with a 

maximum sequence size of less than 256, we can map eight replications (32 two-hit 

filters); if the sequence is larger than 1,024 we can map two replications (8 two-hit 

filters). The maximum sequence size in the database is used to pick the proper 

programming file to load to the FPGA. With 1 GB/s DMA capacity on the board, the 

transfer of sequence neighborhoods from host to the device memory takes a negligible 

fraction of a second.  Much more bandwidth is available in current FPGA-based 

systems. 
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On the device, with two memory modules, each with nearly 4 GB/s bandwidth, 16 two-

hit filters and 4 TreeBLAST modules easily work in parallel without hitting the bandwidth 

barrier.  With the current working frequency of 140 Mhz, the required bandwidth adds up 

to 32 x 140 M = 4.5 GBs.  For the emulation mode, each DP processing element 

requires 160 ALMs and one memory BRAM (M9k). On the Stratix III, if the maximum 

sequence size is less than 256, we can map two replications of the systolic array to 

FPGA, whereas, for 256-512 (average case) we can fit one instance. For larger 

sequences, folding is necessary.  When folded n times, the streaming rate is reduced by 

a factor of n.  

Table 6-3 QUALITY MEASURE OF FMSA-F AND ORIGINAL CLUSTALW WITH 
RESPECT TO THE BALIBASE BENCHMARK SUITE USING SP FROM 

THEBALISCORE CODE. 

Database # of Seq. ClustalW FMSA-F 
7tm 128 0.822 0.747 
Myb 180 0.969 0.850 
Kinase3 19 0.777 0.827 
Kinase2 18 0.739 0.738 
1ajsa 28 0.405 0.464 
1idy 27 0.591 0.554 
1lvl 24 0.836 0.881 
1aboA 5 0.688 0.558 
1lcf 6 0.947 0.928 

 

Recall that FMSA can run in two modes: fast and emulation. Table 6-3 shows a 

measure of quality of the FMSAf with respect to the BAliBASE benchmark and the SP 

metric. Although not conclusive, we note that the results are not unreasonable, even 

without rescoring. 
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Table 6-4 QUALITY MEASURE OF FMSA-F AND ORIGINAL CLUSTALW WITH 
RESPECT TO THE BALIBASE BENCHMARK SUITE USING SP FROM THE 

BALISCORE CODE. 

Database ClustalW vs. 
Reference 

FMSA-f vs 
ClustalW 

FMSA-f vs. 
Reference 

FMSA-e vs. 
ClustalW 

FMSA-e vs. 
Reference 

Myb 0.97 0.84 0.85 0.98 0.99 
7tm 0.82 0.78 0.76 0.88 0.80 
NCBI - 0.93 - 0.94 - 
 

Table 6-5 QUALITY MEASURE OF FMSA-F, FMSA-E, AND ORIGINAL CLUSTALW 
WITH RESPECT TO THE BALIBASE BENCHMARK SUITE USING 

VARIOUSDISTANCE METRICS FROM METAL [Bla11] 

Database ClustalW v. Reference FMSA-f v. Reference FMSA-e v. Reference 
Hd Ssp Pi hd ssp Pi hd ssp pi 

Myb 0.28 0.55 0.26 0.38 0.61 0.33 0.27 0.54 0.24 
7tm 0.30 0.38 0.24 0.37 0.47 0.31 0.32 0.41 0.26 

 

More detailed quality results, albeit for fewer sequences, are given in Table 6-4 and 

Table 6-5. We use the two larger studies from BAliBASE plus a synthetic database 

generated from NCBI BLASTp where we simply scanned a random sequence and 

retained the top 231 scoring sequences from NR. In Table 6-4 we use the SP metric 

from BaliScore. We compare the original CLUSTALW code, FMSAf, and FMSAe to the 

reference MSA. We find that FMSAe has a nearly identical quality to CLUSTALW, but 

FMSAf also shows a high degree of agreement. We also compare FMSA with 

CLUSTALW. For FMSAe, we find a high correlation; not surprisingly, FMSAf is not as 

correlated but still has a high correlation. In Table 6-5 , we show results with respect to 

the MetAl distance metrics. Again, we compare the original CLUSTALW code, FMSAf, 

and FMSAe to the reference MSA. For FMSAe, we again find that the distance from the 

reference MSA is nearly identical to that of CLUSTALW, FMSAf lagging somewhat but 

still clearly in the same range. 
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Table 6-6 PERFORMANCE FOR MSA RUNS OF 1000 SEQUENCES. ALL TIMES IN 
SECONDS. THE 8 CORE PC ASSUMES IDEAL PARALLELIZATION. DP, FMSA-

F,AND FMSA-E COLUMNS GIVE BOTH TIME AND SPEED-UP WITH RESPECT TO 
8 CORE PC. 

Max Seq. 
Len. 

Overhead FPGA filter FPGA 
rescore 

PC(8 core) DP FMSA-E FMSA-F 

256 0.9 0.2 0.3 150 3.5/43x 1.4/107x 1.1/136x 
512 1.6 0.7 0.7 434 7.5/58x 3.0/145x 2.3/189x 
1024 2.4 1.2 3.0 549 31/18x 6.6/83x 3.6/152x 

 

Table 6-6 shows performance of the original CLUSTALW, its DP-based acceleration, 

and the acceleration with FMSAf and FMSAe on the reference system. For the CPU-

only version, we simply assume the best case of perfect eight-way threading. This 

appears to be about a factor of two more than has been achieved so far (see [Lio11] for 

a discussion), but appears to be plausible. The performance of FMSAf is that of FMSAe 

minus the FPGA rescore time and a small amount of the overhead. We note that FMSA 

is from 83× to 189× faster than the CPU version and from 2.5× to 8.4× faster than the 

DP-based method. The greater advantage is for the larger problem size. 

6.5 Summary 
 

In this chapter we described an FPGA-accelerated MSA program based on ClustalW.  It 

differs from previous accelerations in that it uses BLAST heuristics rather than dynamic 

programming.  We used our Two-Hit filter and EUA filter to approximate the DP method. 

In order to do so we augmented the EUA filter to count the identities in addition to the 

raw score. We showed that a combination of the top local ungapped alignments have 

sufficient correlation with the best local gapped alignment.     
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 Our system achieves many-fold speedup over the DP-based code, which itself has 

better performance than the CUDA version. We have created two versions, one that 

successfully emulates ClustalW, the other that gives results of somewhat lower quality, 

but with roughly twice the performance.       
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7 Conclusion and Future Work 
 

We conclude this study by summarizing our work in acceleration of biosequence 

analysis tools. We present our reflections on using filtering for their acceleration. Finally, 

we will present some guidelines for future work.  

7.1 Summary 

 

In this work, we have studied and tested various acceleration engines for biosequence 

analysis tools.  Our research includes FPGA-based acceleration, FPGA-based 

algorithm design, performance analysis, scalability analysis, system-level testing and 

verification, and algorithmic optimizations/approximations for hardware acceleration.  

We implemented two acceleration engines for NCBI BLASTp.  We conducted extensive 

system-level tests on two different acceleration systems.  We were able to generate 

transparent results compared to production-level code.  We also implemented and 

tested a production-level acceleration engine for a multiple sequence alignment tool. 

We demonstrated significant speedup over the original code with reasonable accuracy 

using a novel approximation method. 

 We learned the following lessons from our study: 

Prefiltering is a tricky approach to accelerating database query and processing 

applications. A prefiltering approach can be defined as follows: a fast-filtering engine 

that is based on an approximation method is used to reduce the size of the database to 

a small fraction of the original. The filter should be more sensitive than the original code. 

While it can return more sequences than the reference code, it should return all the 
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sequences that the reference returns. There are several challenges with the application 

of prefiltering for acceleration purposes: 

 Postfilter overhead: Often, a filter reduces the size of the database, but the 

actual results are produced after the reduced database is generated. The runtime 

of this postfiltering calculation should be a small fraction of the original, otherwise 

the filter will act as an overhead. This is especially true when the software uses 

seed-based heuristics (as is the case with most of the sequence analysis tools).  

 Accuracy and performance tradeoff: Given that accuracy is a soft constraint, 

the programmer can trade off accuracy and performance. In such a case, it is 

possible to use approximation and even heuristics in order to simplify the 

hardware design and boost performance. Unfortunately, this is not always a 

given. On one hand, if the designer can find an approximation that is more 

sensitive than the original code, perfect accuracy can be achieved, and, 

assuming, the postfilter job can be efficiently performed on the host, the 

performance gain can be impressive. 

Implementation of seeding heuristic in hardware requires very careful design. 

Throughout this study, we learned that the implementation and exploitation of a seeding 

heuristic in hardware can be both challenging and beneficial. The FPGA block RAMs 

provide a convenient parallel interface for accessing seeding indexes or profiles. On 

one hand, seeding indexes that are mapped to hardware block RAMs or lookup tables 

use precious resources. The designer should assess the pros and cons of the 

performance gain vs. the resource usage. The designer should also consider the 

overhead of combining the seeding output with the rest of the tool chain. Obviously, 
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adapting the phases after seeding in order to take advantage of the information should 

not impose massive overhead on the original filter. 

Given that there is no overhead in reprogramming, a multiphase system can 

deliver the highest performance among all the acceleration engines of a multi-

stage heuristic sequence analysis tool. The general rule of thumb in engineering is to 

keep the design simple. A multiphase system follows this same idea. Sequence 

analysis applications are often fully parallelizable. This applies to the substages of the 

application as well. Thus, the programmer can replicate each stage's hardware units 

maximally, run each stage in hardware, save the results, and start the next stage. The 

design benefits from the removal of glue logic and the overhead of stalling that are 

inevitable in any data-dependent execution an algorithm on a tool chain.  

Any streaming memory interface has its own overhead. Memory modules provide 

the best throughput when data are read or written sequentially. Random memory 

access can be up to 16x more costly than sequential access. This encourages the 

designer to use streaming interface. Interestingly for sequence analysis, streaming 

looks ideal; each subject sequence is a character string that can be read sequentially. 

On the other hand, implementing a fully tested and reliable streaming interface can be 

challenging if several streams must be bundled. For example, we spent a great deal of 

time testing our multiphase system, which required the accurate alignment of the bit 

vector and the database stream in the EUA filter. The best solution is usually to 

combine a complete streaming interface with occasional random access in order to 

improve the reliability of the system.  



162 
 

Careful load balancing is required to gain performance in a pipelined system. 

Stalling is inevitable in a pipelined system with data-dependent heuristics. Thus careful 

load balancing based on statistical analysis and simulation is needed. 

For applications like NCBI BLAST, which have multiple phases that are equally 

time consuming, FPGA acceleration is especially challenging.  First one needs to 

note that the more complicated an application is, the harder it is to map it to an FPGA. 

BLAST is certainly a complicated application with many heuristics.  Second, the three 

phases of  BLASTp  contribute equally to the running time.  Third, high profile tools like 

BLAST are constantly being updated and improved.  Finally, software acceleration 

solutions based on multithreading, SIMD extensions, and GPUs also offer significant 

speedups. 

Approximation can help the FPGA designer if there is room for any divergence 

from the production code.  For example, in acceleration of Clustal-W, we achieved an 

order of magnitude speed-up over an exact FPGA based solution. This was mainly due 

to the fact that we approximated the distance matrix using a more compact and highly 

optimized EUA engine.  An optimization that is only marginally useful for the CPU 

implementation turned out to be highly beneficial for the FPGA version. 

7.2 Future Directions 
 

For further study, there are a number of directions that can be considered. 

 porting the tool chain system to Virtex-7 
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The latest Convey machine uses high end Virtex-7 FPGAs. It would be interesting to 

port the tool chain system to this machine and to measure its performance. Our IO 

interface currently support up to 36 streams. Porting to Virtex-7 will require additional  

changes to the IO interface so that we can at lease support 72 streams. 

 Acceleration of other versions of NCBI BLAST  

NCBI BLAST has several versions. We have analyzed the most challenging version, 

NCBI BLASTp, which is used for protein sequence alignments. NCBI BLASTn, for 

example, is used to align genomic sequences. Only two bits are required to represent 

genomic residues, and alignment scoring is performed with a simple weighted edit 

distance. These are both ideal for FPGAs because they can be efficiently mapped to 

small modul-4 processing units.  

 Acceleration of next-generation sequencing tools 

Next-generation sequencing machines can generate billions of short or long reads in a 

very short amount of time. Compared to the traditional shotgun sequencing approach, 

they demand to a larger degree more throughput and computational capacity. It would 

be interesting to study the possibility of accelerating these tools based on our filtering 

and seeding approach.  
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