
FPGA Acceleration of
Rigid-Molecule Docking Codes∗†

Bharat Sukhwani Martin C. Herbordt

Computer Architecture and Automated Design Laboratory
Department of Electrical and Computer Engineering

Boston University; Boston, MA 02215

Abstract: Modeling the interactions of biological molecules, or docking is critical both to understand-

ing basic life processes and to designing new drugs. Here we describe the FPGA-based acceleration

of a recently developed, complex, production docking code. We find that it is necessary to extend our

previous 3D correlation structure in several ways, most significantly to support simultaneous com-

putation of several correlation functions. The result for small-molecule docking is a hundred-fold

speed-up of a section of the code that represents over 95% of the original run-time. An additional 2%

is accelerated through a previously described method, yielding a total acceleration of 36× over a sin-

gle core and 10× over a quad-core. We find this approach to be an ideal complement to GPU-based

docking which excels in the protein-protein domain.

1 Introduction

A fundamental operation in biochemistry is the interaction of molecules through non-covalent bonding

or docking (see Figure 1). Modeling molecular docking is critical both to evaluating the effectiveness

of pharmaceuticals and to developing an understanding of life itself. Docking applications are com-

putationally demanding. In drug design, millions of candidate molecules may need to be evaluated

for each molecule of medical importance. As each evaluation can take many CPU-hours, huge pro-

cessing capability must be applied; production facilities typically use large clusters.

While accelerating docking using heterogeneous parallel processors has clear and obvious ben-

efits, there has been surprisingly little work thus far. SymBioSys uses the Cell Broadband Engine

in their eHITS software [12], and Servat, et al. report using the same processor to accelerate the

FTDock code [16]. With GPUs, the only published work so far appears to be in a dissertation by Korb

[8] and work by the current authors [17]. Korb accelerates the structure transformation and scoring

function evaluation phases. Our GPU work accelerates the PIPER docking code [9]; we summarize
∗This work was supported in part by the NIH through award #R01-RR023168-01A1, and facilitated by donations from

XtremeData, Inc., SGI, and Xilinx Corporation. Web: http://www.bu.edu/caadlab.
†EMail: {herbordt|bharats}@bu.edu

1

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 2

Figure 1: Docked complex of two proteins generated using Pymol [13].

this below and compare it with the FPGA approach presented here. The present authors and collab-

orators have also previously used FPGAs to demonstrate proof-of-concept FPGA-based acceleration

of ZDOCK and some other systems [22, 23].

Close shape
complementarity

Collision Non-
intersection

Poor fit

Figure 2: Examples of shape complementarity (from [22]).

The basic computational task for docking is to find the relative offset and rotation (pose) between

a pair of molecules that gives the strongest interaction (see Figure 2). Hierarchical methods are

often used; these include: (i) an initial phase where candidate poses are determined (docking), and

(ii) an evaluation phase where the quality of the highest scoring candidates is rigorously evaluated.

This work describes the FPGA-based acceleration of PIPER, a state-of-the art code that performs

the first of these tasks. PIPER advances the art of rigid molecule docking by minimizing the number

of candidates needing detailed scoring with only modest added complexity [9]. Our methods are

general, however, and can be applied to other rigid molecule docking codes.

Many docking applications including PIPER assume, at least initially, a rigid structure (see Fig-

ure 2). This still allows modeling of various force laws that govern the interaction between molecules,

inluding geometric, electrostatic, atomic contact potential, and others. A standard technique maps

the molecules’ characteristics to three dimensional grids. The most energetically favorable relative

position is determined by summing the voxel-voxel interaction values for each modeled force at all po-

sitions to generate a score, and then repeating this for all possible translations and rotations. Some

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 3

other well-known rigid molecule docking codes with public domain servers are Situs [24], FTDock [5],

ZDOCK [1], Hex [14], GRAMM [21], DOT [19], and PatchDock [15]. Some of the many docking codes

that use rigid molecule docking as a preliminary step are Glide [4], ClusPro [2], and GRAMM-X [20].

The computational complexity of rigid molecule docking is large. With typical grid sizes of N =

128 in each dimension and the total number of angles 10, 000, 1010 relative positions are evaluated

for a single molecule pair. Typically, the outer loop consists of the rotations while the translations

are handled with a 3D correlation. Since the latter require O(N 6) operations, this type of exhaustive

search was long thought to be computationally infeasible [10]. The introduction of the FFT to docking

[7] reduced the complexity of each 3D correlation to O(N 3 log N) for steric (shape only) models;

further work expanded the method to electrostatic [5] and solvation contributions [1].

Docking computations are generally used to model one of two types of interactions: between

proteins (protein-protein docking) or between a protein or other large molecule and a small molecule

(small molecule docking). In the latter case the large molecule is referred to as the substrate or

receptor and the small molecule as the ligand. Protein-protein docking is important for basic science,

while small molecule docking is the method of primary interest in drug discovery. In both cases,

one molecule has a grid size of up to 1283; in protein-protein the second molecule is similar, but in

small-molecule the ligand is typically an order of magnitude smaller (per dimension). This difference

leads to there being a divergence in optimizations, with docking codes sometimes specializing in one

domain or the other. We have found that this divergence emerges in accelerated docking as well.

In our previous work [22, 23] we showed that, for FPGA-based coprocessors, the original di-

rect correlation–rather than an FFT–is sometimes the preferred method for computing rigid molecule

docking. Two reasons for this are the inherent efficiency with which FPGAs perform convolutions

and the modest precision (2-7 bits) of the original voxel data. Note that this precision goes to 48 or

106 bits (single or double precision imaginary floating point) for the FFT. We also introduced a novel

addressing technique for performing rotation that uses only a modest amount of logic, and whose

latency can be entirely hidden. And finally, we presented an efficient filtering method that computes

on-the-fly the biological importance of the poses and so minimizes host-accelerator communication.

In this work we extend these methods to facilitate integration into PIPER and other docking

codes. In particular, we have added support for (i) pairs of large molecules as necessary for modeling

protein-protein interactions; previously we only supported protein interactions with small molecules,

(ii) the efficient combining of a potentially large number of force models; previously we had flexibility

in the force model, but required it to be simple, and (iii) handling charge reassignment after every

rotation; previously we assumed that charge assignment was done only once. The result is, for

small-molecule docking, a hundred-fold speed-up of PIPER’s correlation computation and a 10-fold

speed up of the entire application. Both these numbers are with respect to a four core processor.

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 4

In this work we also find the limits of the correlation-based approach for current generation FP-

GAs. Since the FFT has the advantage over direct convolution in asymptotic complexity, the question

is at what molecule size does this advantage begin to dominate over other factors, such as precision.

We find that the split occurs almost directly on the small/large molecule boundary. For ligands less

than 253, direct correlation yields significant acceleration; for ligands larger than 323, the FFT, on a

multicore host, is superior.

The particular contributions are modified structures to support these features and the experi-

ments that determine the optimal configuration with respect to several design parameters. The overall

significance is to reduce the typical running time of evaluating a drug candidate from days to hours

thereby dramatically increasing the throughput of computational docking experiments. Further sig-

nificance is the finding with respect to the cross-over point between 3D correlations and FFTs on

FPGAs. This could be of interest in the many other applications where these operations are funda-

mental. And finally, the comparison with multicore processors and with GPUs points to the best ways

to build cost-effective heterogeneous rigid-molecule docking systems using the current generation of

accelerator technology.

The rest of this paper is organized as follows. We next give a brief overview of PIPER. There

follows the basic design for 3D correlation on the FPGA. After that we present details of the novel

structures needed to implement complex correlations. Then comes a summary of other approaches

possible using FPGAs, GPUs, and multicore. We conclude with results, a comparison of approaches,

and discussion.

2 The PIPER Docking Program

2.1 Overview

A primary consideration in docking is preventing the loss of near-native solutions (false negatives); as

a result, rigid molecule codes tend to retain a large number (thousands) of docked conformations for

further analysis even though only a few hundred will turn out to be true hits. “Improving these methods

remains the key to the success of the entire procedure that starts with rigid body docking [9].” PIPER

addresses this issue by augmenting commonly used scoring functions (shape, electrostatics) with

a desolvation computed from pairwise potentials; the rest of this section is based on the primary

reference to that system [9].

Pairwise potentials represent interactions of atoms (or residues) on the interacting molecules.

Different pairs of atoms have different values; these are empirically determined (and sometimes

called knowledge based). For K atom types, there is a K × K interaction matrix; each column (or

row) can be handled with a single correlation resulting in K forward and one reverse FFT. Since K is

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 5

generally around 20 (and up to 160), and since the FFT dominates the computation, use of pairwise

potentials could drastically increase run time. A fundamental innovation in PIPER is the finding that

eigenvalue-eigenvector decomposition can substantially reduce this added complexity. In particular,

“adequate accuracy can be achieved by restricting consideration to the eigenvectors corresponding

to the P largest eigenvalues where 2 ≤ P ≤ 4, and thus performing only 2 to 4 forward and one

reverse FFT calculations.” In practice, however, up to 18 terms are sometimes used.

PIPER’s energy-like scoring function is computed for every rotation of the ligand (smaller

molecule) with respect to the receptor (larger molecule). It is defined on a grid and is expressed

as the sum of P correlation functions for all possible translations α, β, γ of the ligand relative to the

receptor

E(α, β, γ) =
∑

p

∑

i,j,k

Rp(i, j, k)Lp(i + α, j + β, k + γ) (1)

where Rp(i, j, k) and Lp(i + α, j + β, k + γ) are the components of the correlation function defined on

the receptor and the ligand, respectively.

For every rotation, PIPER computes the ligand energy function Lp on the grid and performs

repeated FFT correlations to compute the scores for different energy functions. For each pose, these

energy functions are combined to obtain the overall energy for each pose. Finally, a filtering step

returns some number of poses based on score and distribution.

2.2 PIPER Scoring Functions

The scoring function used in PIPER is based on three criteria: shape complementarity, electrostatic

energy, and desolvation energy (through pairwise potentials). Each of these is expressed as a 3D

correlation sum, and the total energy function is expressed as a weighted sum of these correlation

scores:

E = Eshape + w2Eelec + w3Epair (2)

Shape complementarity refers to how well the two proteins fit geometrically (see Figure 2) and here

is computed as a weighted sum of attractive and repulsive van der Waals (Pauli exclusion) terms, the

latter accounting for atomic overlaps: Eshape = Eattr + w1Erep.

Electrostatic interaction between the two proteins is represented in terms of a simplified Gen-

eralized Born (GB) equation [1]. The electrostatic energy is obtained as a correlation between the

charge on the ligand grid and the potential field on the receptor grid. Unlike in our previous work,

charge distribution is recomputed for every rotation.

Desolvation is a measure of change in free energy when a protein-atom/water contact is re-

placed by a protein-atom/protein-atom contact. In PIPER, it is represented using pairwise interaction

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 6

potentials, as previously discussed, through P correlation functions.

2.3 PIPER Program Flow and Performance Profile

Perform once

Read Receptor and
Ligand grids from file

Create receptor grids for different energy
functions and assign values to them

Read parameter, rotation and
coefficient files

Perform (P + 4) forward
FFTs

Compute FFT size based on ligand
and receptor sizes

Compute complex
conjugate of FFT grids

Create ligand grids for different
energy functions

Repeat for each rotation

Repeat for each of (P + 4) grids

Perform forward FFT on
ligand grid

Modulate: Multiply corresponding values on
transformed receptor and ligand grids

Rotate ligand grid by next
incremental angle

For pairwise potential only: Accumulate
the product grid values to a total grid

Perform inverse FFT on
product grid

Perform weighted scoring
and filtering

Best Fit

Figure 3: Program flow of Piper. Blocks in dark green with bold border indicate steps accelerated on

the FPGA.

Figure 3 shows the sequence of steps followed by the PIPER program to perform docking of

a ligand to a receptor. The ligand and receptor atoms are read from input files, along with certain

parameters and coefficients. These are used in scoring, filtering top scores, rotation, and charge

assignment. Next, PIPER determines the size of the padded FFT grid (based on the sizes of the

ligand and receptor) and generates the receptor and ligand grids for the various energy functions.

Then the receptor grids for the energy functions are assigned values and their forward FFTs and

complex conjugates are computed. The number of forward FFTs to be performed equals P + 4.

The “4” are the following: attractive van der Waals, repulsive van der Waals, Born component of

electrostatic energy, and Coulomb component of electrostatic. The “P” are the top P desolvation

terms.

For each rotation, PIPER multiplies the ligand with the next rotation vector and assigns new

values to ligand grids for different energy functions. We leave these two steps to be performed on

the host. After grid assignment, forward FFTs of each ligand grid are performed and the transformed

grid is multiplied with the corresponding transformed receptor grid. The multiplied grid is then inverse

transformed. For the case of the desolvation terms, the inverse transformed grids are accumulated

to obtain the total score for desolvation energy. A weighted sum of the scores for the various energy

functions is then computed and the top scores reported. In our FPGA accelerated version, we perform

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 7

Table 1: PIPER run times for one rotation using a single core of a 2008 2GHz quad-core Xeon

processor. P = 18 so 22 correlations are computed. Steps performed once are negligible over

thousands of iterations.

Phase Run time % total
(seconds)

Ligand rotation 0.00 0%
Charge assignment 0.23 2.3%
FFT of ligand grids 4.51 45.4%
Modulation of grid-pairs 0.22 2.2%
IFFT of ligand grids 4.51 45.4%
Accumulation of desolvation terms 0.24 2.4%
Scoring and filtering 0.23 2.3%
Total 9.94 100%

all the per-rotation steps–except rotation and grid assignment–in the FPGA. This accelerates the bulk

of the work performed by PIPER (see Table 1), but bounds the potential speed-up at about 40×.

Accelerating charge assignment is also possible using the methods developed previously [6].

3 Correlation Structure

AN-1 AN-2 A0

Compute Cell
Receptor
Voxel (Bi)

0

33 32 31 30

23 22 21 20

13 12 11 10

03 02 01 00

FIFO

FIFO

(a)

(b) (c)

Figure 4: Structures to compute 3D correlations: a) standard 1D systolic array, b) extension to 2D

extension with delay lines, and c) full 3D correlation with delay “planes.”

Figure 4 shows the systolic 3D correlation array progressively formed starting from a 1D corre-

lation array [23]. This structure is an extension of the 2D correlation array described in [18]. The

systolic array performs direct correlation at streaming rate. The basic unit of the systolic array is a

compute cell which takes two voxels and computes the voxel-voxel score. The compute cell then

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 8

adds this score to the partial score from the previous cell and outputs the updated partial score. The

operation of the compute cell can be written as

Scoreout = Scorein + F (V oxelL, V oxelR)

where Scorein is the score from the previous compute cell and F (V oxelA, V oxelB) is the function

between the two voxels. For correlation, F (V oxelA, V oxelB) translates to a product between the

two voxels, making the compute cell a simple multiply-accumulate unit (Figure 4a). In our original

implementation, voxels for the ligand grid are stored in the compute cells on the FPGA and the

voxels of the receptor grid are streamed through it, generating one correlation score per cycle. In this

work we have extended the design to support complex correlations (Sections 4.1-4.2) and two large

molecules (see Section 4.3).

As shown in Figure 4a, the 1D correlation structure consists of pipelined compute cells. Every

clock cycle two things happen: one receptor voxel is broadcast to every cell, and the partial scores

computed by each cell are passed to the next cell. The last compute cell generates the total row

score. An advantage of direct correlation is that the function F (V oxelA, V oxelB) can be non-linear;

the FFT method can only handle linear functions.

The number of scores generated by each 1D correlation is (Nx + Mx − 1), where Nx and Mx

are the sizes of the two grids along the x-axis. To form a 2D correlation plane by connecting multiple

1D correlation rows, the scores from different 1D rows need to be aligned. This is done by delaying

each row score by (Nx + Mx − 1) cycles before feeding it to the next row. A delay of Nx is inherently

provided by the compute cells. To delay the scores by the remaining Mx−1 cycles, 1D line FIFOs are

used. Similarly, connecting multiple 2D correlation planes to form a 3D space requires plane FIFOs

of size (Mx + Nx − 1) × (Ny − 1).

On typical high-end FPGAs, these FIFOs can be implemented using block RAMs. Note that the

size of the FIFO is proportional to the size of the larger grid Mx. In addition, since the FIFOs are used

to delay the correlation score, the width of the FIFOs depends on the number of bits the correlation

score requires. Although enough block RAMs are present to implement FIFOs for grids of quite large

size, incorporating multiple correlations can pose a problem. This is discussed in the next section

and a modified correlation pipeline is proposed.

4 FPGA Algorithms

4.1 Supporting Multiple Energy Functions: Overview

There are two obvious ways to extend the structure of Section 3 to combine the multiple correla-

tions required of PIPER: compute them singly or together. Neither is by itself preferred. The first

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 9

BABA VwVVVw)(

w1

w2

w3

(a)

(b)

(c)

Figure 5: Shown are three methods of combining multiple correlations in a single pass: a) within a

compute cell, b) upon completion, or c) integrated into the scoring function.

method uses the same control structure as before, but for each different correlation, the FPGA is

reconfigured to the appropriate data types and energy model. The scores must be saved off-chip and

combined. That is, the k FFTs are replaced with k correlations, plus the overhead of reconfiguration

and combining. The second method involves expanding the structure to perform k different correla-

tions simultaneously. This method requires only a single pass through the large grid, and generates k

independent correlation scores per cycle. Recall from Section 2.2, however, that the energy functions

are weighted so that for k functions

Scoreout = Scorein +
k∑

i=1

wi × correlation scorei (3)

Thus combining on-the-fly requires multiplications as well as additions, resulting in (perhaps) a sub-

stantially more complex compute structure. Combining can be done in three ways: within each com-

pute cell, upon completion, or by integrating the weights into the scoring functions. These options are

now examined (see Figure 5).

Combining within the compute cells requires that the weighted sums be computed within each

one. This makes the compute cell more complex (see Figure 5a). For each energy function, the first

multiplier multiplies the two voxels to generate the score, which is then multiplied with the appropriate

weight. Weighted scores of different energy functions are summed up and added to the weighted

score from the previous cell. The problem here is the number of multipliers that this requires: 2k

times the number of cells, or between 512 and 4000 additional multipliers. This is problematic for

current FPGAs and would end up drastically reducing the number of compute cells and hence the

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 10

size of the largest ligand grid that can be supported.

Combining on completion (see Figure 5b) means that we must propagate k independent running

scores through the line and plane FIFOs of Figure 4; the width of the FIFOs must then be increased

by k×. Even with average sized grids, the block RAM requirements to implement the FIFOs are way

over the available block RAMs on present day FPGAs, making this approach impractical.

Integrating the weights into the grids (see Figure 5c) requires significantly increasing the preci-

sion throughout the entire system. This reduces the number of compute cells and thus the throughput.

While a plausible solution, it is still not preferred.

4.2 Supporting Multiple Energy Functions: Augmented Structure

FIFO

FIFO

Weighted
Scorer

Receptor Voxel

Weighted
Plane Score

0
0

New FIFO

Weighted sum of correlation scores
Set of ‘k’ different correlation scores

Figure 6: Shown is the 2D correlation pipeline modified to support complex correlations. The 3D

extension is analogous.

The solution we use is a hybrid: we compute all the energy functions simultaneously and we

combine the running scores once per row (see Figure 6). The resulting structure results in almost

40% savings in block RAM requirements compared to the solution in Figure 5b and almost 38%

reduction in multipliers compared to Figure 5a, for typical receptor-ligand grid sizes. To obtain the

modified structure, the following modifications are required in the correlation structure of Figure 4.

Modified compute cell. The basic compute cell has been extended to compute multiple correlation

functions per cycle. Each cell performs k independent multiply-accumulate operations and outputs k

independent partial correlation scores.

Weighted Scorer. At the end of each 1D correlation row, a new weighed scorer module is added.

It takes k independent partial correlation scores (generated by the current 1D correlation row) and

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 11

Weighted Score

Saturation
Detection

w1

w2

w3

w4

w5

Att. VDW

Rep. VDW

Born Elec.

Coul. Elec.

Prev.
Weighted

Score

Desolvation
Terms

Figure 7: Shown is detail of the end-of-row score combiner. It is pipelined to enable high operating

frequency.

the partial weighted score from previous row and computes a new partial weighted score. It also

checks for saturation of individual scores, setting them to the positive or negative saturation value if

needed. The partial weighted score is then sent to the line FIFO. Note that the FIFO now carries only

one score as opposed to k. To obtain a high operating frequency, the computation is pipelined into 3

stages, as shown in Figure 7.

New FIFO. The scores entering and leaving the FIFO are now weighted sums of individual correlation

scores. The scores computed by the compute nodes are still the k individual correlation sums. Thus,

compute cells cannot simply add the output of the FIFO to their current score. This distinction requires

a modification in the existing pipeline and the compute cells. The compute rows no longer receive the

partial correlation score from the FIFO; instead, a zero is fed into the first cell of each compute row.

The weighted score from the FIFO of the current row is sent directly to the weighted scorer module at

the end of the next row, where it is added to the partial weighted score of that row (as per Equation 3).

In order to align this previous weighted score with the scores emerging from the current row, it needs

to be sent through a new FIFO before it enters the weighted scorer. The length of this new FIFO is

equal to the length of the 1D correlation row. For efficient implementation, this new FIFO is merged

with the existing line FIFO. Also, the length of the combined FIFO needs to be adjusted to account

for the delay through the pipeline stages of the weighted scorer.

New voxel data type. In contrast to the earlier design, where each voxel represented only one value,

the new voxel data at every grid point must represent energy values for different energy functions.

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 12

To implement the PIPER energy functions, we have modified the voxel data to contain the following

five (or more) energy values: attractive van der Waals, repulsive van der Waals, Born electrostatics,

Coulomb electrostatics, and P pairwise-potentials. The number of desolvation terms, P , is an input

parameter.

Table 2: Number of bits per voxel for computing various energy functions.

Energy Term Data Type Number of bits
Receptor Ligand

Attractive v. d. Waals Integer 8 4
Repulsive v. d. Waals Integer 4 4
Electrostatics Fixed Point 9 9
Pairwise potentials Fixed Point 9 9

In the serial PIPER code, the energies are represented using single precision floating point

numbers. In our FPGA implementation, we use the fixed point numbers shown in Table 2 with no loss

of precision.

4.3 Supporting Large Ligands

Score
Accumulator

Score
Memory

Ligand
Memory

Controller FSM

Ligand Voxel
Address

Score
Address

Receptor
Memory 3D Correlation

Control Signals

Figure 8: Block diagram of piece-wise docking for computations with large second molecules.

In order to support larger ligand grids, we have implemented a scheme to compute correlation

scores in pieces. Note that the receptor size can still be as large as before. We call this piece-wise

correlation, as it involves loading different pieces of the ligand grid into the FPGA correlation cores

and storing the partial scores in score memory. A new ligand memory is added which stores the

entire ligand. This was not needed earlier since ligand volxels were stored directly in the compute

cells. For each ligand piece, the receptor is streamed through the 3D correlation pipeline and the

partial scores are saved. We have added a new controller to handle the new functions: loading ligand

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 13

grid-pieces, generating the correlation scores, and generating the addresses of score memory where

the current partial scores are accumulated. A new-score accumulator has also been added. This

fetches the current score from the score memory, adds the new partial score to it, and stores it back

to the same location in score RAM. The entire scheme is shown in Figure 8.

Table 3: Resource utilization for piecewise correlation for the Altera Stratix-III family. There is little

overhead due to piecewise support.

Design Resource Utilization
ALUTs Registers

No piecewise support 14650 15694
8 × 8 × 8 ligand
Piecewise support 14987 15920
8 × 8 × 8 ligand
Piecewise support 15035 15934
16 × 16 × 16 ligand
Piecewise support 15132 15953
32 × 32 × 32 ligand

Table 3 compares the logic utilizations for the correlation pipelines with and without support for

piecewise correlation. For this example, a simple compute cell is used with an 8× 8× 8 on-chip array

of cells. The designs in the first two rows both operate on an 8×8×8 ligand; the difference is that the

second has the overhead hardware for swapping. We see that the overhead for supporting piecewise

correlation scheme is minimal. Also, the clock rate is virtually unchanged. The last two rows show

the support required to operate on 163 and 323 ligands, respectively, keeping the number of hardware

cells constant. Clearly, larger correlations can be supported without much increase in the resources

required.

5 Results

5.1 Target Architecture and Operation

The target architecture for FPGA-accelerated PIPER described here has the following characteristics

(typical for current products):

• The overall system consists of a host PC or workstation with an accelerator board plugged

into a high-speed socket (e.g., PCI Express). The host runs the main application program and

communicates with the accelerator through function calls using vendor supplied drivers.

• The accelerator board consists of a high-end FPGA, memory, and a bus interface. On-board

memory is tightly coupled to the FPGA either through several interfaces (e.g., 6 x 32-bit) or a

wide bus (128-bit).

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 14

• Besides configurable logic, the FPGA has dedicated components such as independently ac-

cessible multiport memories (e.g., 1000 x 1KB) and a similar number of multipliers.

Generalizing PIPER to multi-FPGA systems for most docking applications is almost immediate: rota-

tions can be partitioned among accelerators.

Execution of the accelerated code proceeds as follows. Before the correlation between the re-

ceptor and ligand grids is performed, those grids need to be assigned with charges corresponding

to the various energy functions. This is done on the host using the PIPER code. For the receptor,

PIPER assigns the charges only once, since it stays fixed throughout the entire docking process. This

grid is downloaded to the accelerator board memory. For every rotation, the PIPER program rotates

the ligand and updates charges on the ligand grid. This grid is then downloaded into the correlation

cells on the FPGA. In the case of piecewise correlation, the ligand grid is downloaded into off-chip

memory, whence it is loaded as described in Section 4.3.

Once the ligand is downloaded, the FPGA correlation starts, generating one score per cycle.

These scores are passed to a data reduction filter, which selects a pre-specified number of top

scoring positions and stores them in the on-chip block RAMs. Upon completing the correlations

for one rotation, the host program uploads the highest scores and downloads the ligand grid for next

rotation.

Each FPGA accelerator has a certain capacity of correlation cells, e.g., 83 for the Altera Stratix-

III SL340 when running PIPER with P = 4. For larger ligands and larger P , the cell array is used

multiple times per rotation (piece-wise correlation). For smaller ligands and simpler energy functions,

multiple correlations are executed simultaneously, e.g., 8 for a 43 ligand.

We now briefly describe the non-FPGA overhead, including data transfers.

• Initialization. Initialization can take several seconds, but since the overall execution time is on

the order of hours, this time is negligible.

• Host computation. Charge is reassigned to the ligand for every new rotation. For typical ligand

sizes this takes 200ms and can proceed in parallel with the FPGA computation.

• Host-Board data transfers. After initialization, the only data transfers between host and FPGA

board are the ligand (host-to-board) and results (board-to-host). Both are negligible. The data

per ligand is the bytes per voxel (e.g., 8 for P = 4) times the number of voxels (e.g., 83). The

results are the few highest scoring positions and their scores.

• Board-FPGA data transfers. During correlation, receptor data is streamed from board to

FPGA in a single stream. Again, this is 8 bytes wide for P = 4, which represents a fraction

of typical board-FPGA transfer capability.

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 15

5.2 Validation and FPGA-Specific Results

Table 4: Resource utilization per cell for various energy functions.

Energy Function Number of Cell Operation Resources Used
Correlations ALUTs Registers DSPs

Shape Complementarity (2 bits) 1 Bitwise AND 15 17 0
Shape Complementarity + 2 Bitwise 50 41 0
Desolvation (ZDOCK) Operations
Shape Complementarity + 2 Bitwise Ops + 32 74 1
Electrostatics (FTDock, DOT) 1 multiplication
PIPER Energy Function w/o 4 Bitwise Ops + 59 97 2
Pairwise Potential 2 multiplications
PIPER Energy Function w/ 6 Bitwise Ops + 93 109 4
2 Pairwise Potentials 4 multiplications
PIPER Energy Function w/ 8 Bitwise Ops + 127 157 6
4 Pairwise Potential 6 multiplications

All FPGA configurations were created using VHDL. Synthesis and place-and-route were per-

formed using Altera design tools. The target system used to validate the functionality of FPGA-

accelerated PIPER was an XtremeData XD1000 which contains an Altera Stratix-II EP2S180 [25].

Validation was performed with respect to the original PIPER serial code: exact matches were ob-

tained.

Since the Stratix-II is now obsolete we also generated configurations through post place-and-

route for an Altera Stratix-III EPSL340. This method is sufficient to give precisely the resource usage

(see Table 4). For an 83 ligand, the design uses 100% of the DSP blocks and 82% of the combina-

tional logic. The actual number of multipliers required is far more than those available on the chip: the

balance are created from combinational logic. The operating frequency is predicted to be 100MHz.

For true implementations this number is often slightly lower. On the other hand, operating frequen-

cies for this generation FPGA are often in the 200-300 MHz range, so with some optimization higher

performance could be realized.

5.3 Reference Codes

Besides the original single core and FPGA-accelerated versions of PIPER, we have constructed two

other versions: a multithreaded and a GPU accelerated. They differ primarily in the correlation:

specifically in the cross-over point where the FFT is preferred over direct computation. In all cases,

the host was a quad-core Intel Xeon 2GHz processor. The host codes were compiled using standard

optimization settings. Docking results were validated against the original code.

For FPGAs, the reasons to implement correlations directly, rather than with an FFT, include low

precision and a regular compute pipeline. The FFT’s advantage in asymptotic complexity, however,

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 16

means that there must exist a problem size where that method is preferred. Conversely, for multicore

and GPU there may also exist problem sizes small enough for direct correlation to be preferable to

the FFT.

Our reference implementation, the PIPER production code, uses the FFTW package [3]. Run-

ning this on a single core of a quad-core Intel Xeon 2GHz processor, the time for a 1283 FFT is 360ms.

When all four cores are used, the time is 106ms. Direct correlation on multicore is slower for all ligand

sizes greater than 43, which executes in 44ms. In separate work, we performed the same 3D FFT

on a current high-end GPU-based system, the NVIDIA Tesla C1060 (see [17] for details). The Tesla

C1060 has a PCIe interface, 4GB of memory and a single GPU. The GPU itself has an operating

frequency of 1.3GHz and 240 streaming processor cores. For this system, using the NVIDIA library

function, the time for a 1283 FFT is 9.3ms. We also tried direct correlation: this was again slower than

the FFT for all ligand sizes but 43, which executes in 4.1ms.

5.4 Performance Comparisons

FPGA Speedups for Various Energy Functions

1

10

100

1000

10000

4 6 8 16 32
Ligand Grid Edge Size

Sp
ee

du
p

ov
er

 F
FT

 c
or

re
la

tio
n

(lo
g

sc
al

e)

PIPER: SC + Elec + DE
PIPER: SC + Elec
Simple: SC + Elec
Simple: SC

Figure 9: Graph shows speed-up of the FPGA accelerator over a single core versus ligand size for

various energy function combinations. Only the correlation task is evaluated.

1. Performance with respect to various energy functions.

Rigid-molecule docking programs vary in their energy functions. For example, Situs [24] employs

shape complementarity (SC), while FTDock [5], DOT [19], and Hex [14] use both SC and electrostat-

ics. PIPER uses both of these and adds some number of pairwise potential terms. Also, the datatype

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 17

sizes vary with the function: for PIPER they range from 4 to 9 bits; some of the other programs use a

simpler SC function that uses only 1 to 2 bits.

The docking codes generally handle the multiplicity of energy functions by executing multiple

FFTs. Also, there is no advantage to having a small datatype and little advantage to having a small

ligand. The FPGA-accelerated versions differ in three ways: (i) they execute the multiple functions

simultaneously; (ii) the small datatype results in a more efficient configuration and thus more par-

allelism and higher performance; and (iii) the performance is inversely proportional to the number

of elements in the ligand. Figure 9 shows the speed-ups of the FPGA-accelerated versions of four

combinations of energy functions. The series labeled “Simple” represent the energy functions used

in DOT and FTDock while the series labeled “PIPER” represent the more complex PIPER versions of

these functions. “DE” refers to the use of four pairwise potential terms. As expected, the simpler the

energy functions, the greater the speed-up.

Speedup -- Correlation task only

1

10

100

1000

4 8 16 32
Edge size of ligand grid

Sp
ee

du
p

--
lo

g
sc

al
e

Multicore Best (4 cores)
GPU Best
FPGA Direct Correlation

Speedup -- Overall

0

5

10

15

20

25

30

35

40

4 8 16 32
Size of ligand grid

Sp
ee

du
p

Multicore Best (4 cores)
GPU Best
FPGA Direct Correlation

Figure 10: The left panel shows speed-up of the PIPER correlation task for various technologies. The

right panel shows end-to-end speed-up. Eighteen pairwise potential terms are used.

2. Performance of the correlation task for various technologies.

We measure the performance of the correlation task for the PIPER energy functions with four pairwise

potential terms (left panel of Figure 10). For the GPU, multicore, and single core, the FFT was faster

than direct correlation for all ligand sizes but 43. The leftmost data points therefore use that method

for all the technologies, including the single core reference. The crossover point for the FPGA version

is 16 with respect to the GPU and about 30 with respect to a four core processor.

3. Performance of the entire application for various technologies.

For reference we show PIPER run with 10,000 rotations and P = 18 (right panel of Figure 10). The

total run time on a single core is 27.8 hours. When PIPER is used in production, jobs are executed

in batch mode on 1K node IBM BlueGene L.

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 18

When the entire application is run the speed-ups are reduced. The GPU performs filtering as

a separate step, whereas on the FPGA it is pipelined with the correlation and so its latency hidden.

This increases the crossover point slightly. For the FPGA, the limiting factor is the host overhead

(about 200ms per rotation) which dominates the execution time for ligand sizes ≤ 83.

6 Discussion

We have presented an FPGA-based accelerator for a sophisticated, current, production docking code.

In the process, we created a novel addition to our 3D correlation structure to enable effective compu-

tation of complex correlations. This structure reduces FPGA component utilization by 38% to 40%.

We also added support for piecewise correlation to enable efficient computation with large ligands.

The overall result for small-molecule docking is a multi-hundred-fold speed-up for the correlation,

which accounts for 95.4% of the computation. Acceleration of another 2.3% using an existing filtering

method brings the potential total acceleration up to 42× over a single core; of this we currently obtain

36×. Since we achieve a speed-up of 3.4× for a four core implementation, the chip-to-chip speed-up

is 10.5×. Accelerating the remaining 2.3% is work in progress – using a previously developed method

for charge-to-grid assignment [6] appears promising. For protein-protein docking, the GPU’s efficient

FFT makes it the clear choice.

An important question is what these results say about the relative merit of FPGAs, GPUs, and

multicore CPUs for rigid molecule docking and similar computations. With respect to operating fre-

quency, that of multicore processors is about twice that of high-end GPUs, and five times that of

an FPGA’s peak. For floating point performance, the GPU’s peak is four times that of an FPGA’s,

and eight times that of a quadcore processor. A more important measure, however, is the perfor-

mance achieved for production applications and why. Here an FPGA has better performance (for

small molecules) because its configurability allows a match between application and hardware. Two

aspects stand out. One is that the correlation elements in the FPGA are built to the precision avail-

able in the problem, which enables 512 fully pipelined processors. The other is that this correlation

pipeline runs at over 90% capacity. In contrast, the quadcore CPU and the GPU execute their FFTs

(using library functions as described) at 10% and 4% of peak, respectively.

For large molecules, FFT-based correlation dominates. The 3D FFTs of the GPU and the mul-

ticore are superior to any currently available on FPGAs. It may be possible, however, to construct a

competitive 3D for FPGAs. For example, the Altera 1D FFT IP core executes a 128 element FFT in

0.89μs. Since a 3D correlation requires computing approximately 3N 2 1D FFTs of length N , the ideal

3D implementation would take 43.75ms. This core, however, occupies less than 10% of the Stratix-III

EPSL340. If the entire chip could be used, then the latency would be reduced to less than 5ms.

Actual performance, however, depends on a number of factors: memory bandwidth, on-chip storage,

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 19

and routing and control structures. For example, the 1D FFT requires a bandwidth of 576 MB/s.

While current FPGA-based systems support 10 times that memory bandwidth, the interfaces may not

have nearly the flexibility required. The lack of such an FPGA-based FFT is probably indicative of the

relative challenge in programming FPGAs versus GPUs and multicore.

The FPGA’s place, for the time-being at least, is clearly with small molecule docking: a factor

of 10× speed-up there means that many more drug alternatives can be examined. This advantage

increases substantially for applications with simple energy functions (see Figure 9). The highest

impact, however, may be in applications that dock very small ligands. Such molecular fragments are

used in computational solvent mapping for the critical application of determining druggable hot-spots

within binding sites [11]. For this application, efficient charge assignment, would enable speed-ups

of over 100×. Since our charge assignment algorithm depends on complex memory interleaving, the

small ligand size is likely to simplify its implementation.

The significance of this work is in its potential to drastically increase the pace of discovery in

both basic science and in drug discovery. As PIPER gets integrated into the popular online ClusPRO

system [2], the impact of this work should increase further.

Acknowledgments. We thank members of the Structural Bioinformatics group at Boston University

for their help in understanding the PIPER code. We also thank the anonymous reviewers for their

many helpful corrections and suggestions.

References

[1] Chen, R., and Weng, Z. A novel shape complementarity scoring function for protein-protein

docking. Proteins: Structure, Function, and Genetics 51 (2003), 397–408.

[2] Comeau, S., Gatchell, D., Vajda, S., and Camacho, C. ClusPro: an automated docking and

discrimination method for the prediction of protein complexes. Bioinformatics 20, 1 (2004), 45–

50.

[3] FFTW Web Page. Available at www.fftw.org, Accessed 1/2009.

[4] Friesner, R.A., et al. Glide: A new approach for rapid, accurate docking and scoring. 1. method

and assessment of docking strategy. Journal of Medicinal Chemistry 47 (2004), 1739–1749.

[5] Gabb, H., Jackson, R., and Sternberg, M. Modelling protein docking using shape complemen-

tarity, electrostatics, and biochemical information. Journal of Molecular Biology 272 (1997),

106–120.

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 20

[6] Gu, Y., and Herbordt, M. FPGA-based multigrid computations for molecular dynamics simu-

lations. In Proc. IEEE Symp. on Field Programmable Custom Computing Machines (2007),

pp. 117–126.

[7] Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A., Aflalo, C., and Vakser, I. Molec-

ular surface recognition: Determination of geometric fit between proteins and their ligands by

correlation techniques. Proc. Nat. Acad. Sci. 89 (1992), 2195–2199.

[8] Korb, O. Efficient Ant Colony Optimization Algorithms for Structure- and Ligand-Based Drug

Design. PhD thesis, University of Konstanz, 2008.

[9] Kozakov, D., Brenke, R., Comeau, S., and Vajda, S. PIPER: an FFT-based protein docking

program with pairwise potentials. Proteins: Structure, Function, and Genetics 65 (2006), 392–

406.

[10] Kuntz, I., Blaney, J., Oatley, S., Langridge, R., and Ferrin, T. A geometric approach to

macromolecule-ligand interactions. Journal of Molecular Biology 161 (1982), 269–288.

[11] Landon, M., Lancia, Jr., D., Yu, J., Thiel, S., and Vajda, S. Identification of hot spots within

druggable binding regions by computational solvent mapping of proteins. Journal of Medicinal

Chemistry 50, 6 (2007), 1231–1240.

[12] May, M. Playstation cell speeds docking programs. Bio-IT World July 14 (2008).

[13] Pymol. http://pymol.sourceforge.net, 2008.

[14] Ritchie, D., and Kemp, G. Protein docking using spherical polar fourier correlations. Proteins:

Structure, Function, and Genetics 39 (2000), 178–194.

[15] Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., and Wolfson, H. PatchDock and SymmDock:

servers for rigid and symmetric docking. Nucleic Acids Research 33 (2005).

[16] Servat, H., Gonzalez-Alvarez, C., Aguilar, X., Cabrera-Benitez, D., and Jimenez-Gonzalez, D.

Drug design issues on the Cell BE. In Proc. 3rd International Conference on High Performance

and Embedded Architectures and Compilers (2008), pp. 176–190.

[17] Sukhwani, B., and Herbordt, M. GPU acceleration of a production molecular docking code. In

Proc. General Purpose Computation Using GPUs (2009).

[18] Swartzlander, E. Systolic Signal Processing Systems. Marcel Dekker, Inc., 1987.

[19] TenEyck, L., Mandell, J., Roberts, V., and Pique, M. Surveying molecular interactions with dot.

In Proc Supercomputing ’95 (1995).

[20] Tovchigrechko, A., and Vakser, I. GRAMM-X public web server for protein-protein docking.

Nucleic Acids Research 34 (2006), W310–W314.

[21] Vakser, I., Matar, O., and Lam, C. A systematic study of low-resolution recognition in protein-

protein complexes. Proc. Nat. Acad. Sci. 96 (1999), 8477–8482.

Uncorrected Manuscript -- NOT A PROOF

B. Sukhwani & M.C. Herbordt / FGPA Docking 21

[22] VanCourt, T., Gu, Y., and Herbordt, M. FPGA acceleration of rigid molecule interactions. In Proc.

IEEE Conference on Field Programmable Logic and Applications (2004).

[23] VanCourt, T., and Herbordt, M. Rigid molecule docking: FPGA reconfiguration for alternative

force laws. Journal on Applied Signal Processing v2006 (2006), 1–10.

[24] Wriggers, W., Milligan, R., and McCammon, J. Situs: A package for docking crystal structures

into low-resolution maps from electron microscopy. Journal of Structural Biology 125 (1999),

185–195.

[25] XtremeData, Inc. XD1000 Development System. www.xtremedata.com, Accessed 2/2009.

Uncorrected Manuscript -- NOT A PROOF

