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Abstract—High Level Synthesis (HLS) offers a possible
programmability solution for FPGAs by automatically
compiling CPU codes to custom hardware configurations,
but currently delivers far lower hardware quality than
circuits written using Hardware Description Languages
(HDLs). One reason is because the standard set of code
optimizations used by CPU compilers, such as LLVM, are
not well suited for a FPGA back end. Code performance
is impacted largely by the order in which passes are
applied. Similarly, it is also imperative to find a reason-
able number of passes to apply and the optimum pass
parameter values. In order to bridge the gap between hand
tuned and automatically generated hardware, it is thus
important to determine the optimal sequence of passes for
HLS compilations, which could vary substantially across
different workloads.

Machine learning (ML) offers one popular approach
to automate finding optimal compiler passes but requires
selecting the right method. Supervised ML is not ideal since
it requires labeled data mapping workload to optimal (or
close to optimal) sequence of passes, which is computation-
ally prohibitive. Unsupervised ML techniques don’t take
into account the requirement that a quantity representing
performance needs to be maximized. Reinforcement learn-
ing, which represents the problem of maximizing long-
term rewards without requiring labeled data has been
used for such planning problems before. While much
work has been done along these lines for compilers in
general, that directed towards HLS has been limited and
conservative. In this paper, we address these limitations
by expanding both the number of learning strategies for
HLS compiler tuning and the metrics used to evaluate
their impact. Our results show improvements over state-of-
art for each standard benchmark evaluated and learning
quality metric investigated. Choosing just the right strategy
can give an improvement of 23× in learning speed, 4× in
performance potential, 3× in speedup over -O3, and has
the potential to largely eliminate the fluctuation band from
the final results. This work provides basis for an efficient
recommender system enabling developers to choose the
best possible reinforcement learning training options based
on their target goals.

I. INTRODUCTION

High Level Synthesis (HLS) is a critical part of the Field
Programmable Gate Array (FPGA) tool chain since it can
substantially reduce the complexity and turnaround time
for building custom hardware. This is especially crucial
as FPGAs become critical components in the data center
and HPC, e.g., in SmartNICs and disaggregated clusters,
and run a variety of complex applications that must be
coded by programmers without expertise in traditional
logic design. Unlike traditional Hardware Description
Languages (HDLs), HLS can generate hardware directly
from CPU codes by automatically translating sequential
functional descriptions into spatial circuits. This overlap
between CPU and FPGA means new compilers need not
be written from scratch. Rather, existing backend com-
pilers such as LLVM can be modified to target FPGAs.
Such a modification typically involves: i) changing the
optimization strategy for the Intermediate Representation
(IR) code to better map the CPU-like sequential to
FPGA-like spatial programming model, and ii) adding
support for hardware generation through mapping of IR
code fragments to hardware blocks and the intercon-
nects between them. The former is especially important
here since a different back end means simply reusing
CPU optimization strategies delivers far lower hardware
quality than circuits written using Hardware Description
Languages (HDLs) [1], [2].

Since there are dozens of possible optimizations
passes, the number of possible sequences of passes
undergoes combinatorial explosion and discovering the
appropriate optimization strategy for FPGAs is not prac-
tical. Moreover, any discovered optimization strategy has
limited reuse given the diversity of FPGA workloads.
Automating this discovery process is thus essential. One
potential approach is to use supervised machine learning
algorithms to model the relationship between input IR
codes and effective optimization strategies. However,
this approach is not practical due to the complexity of



2

building a required labeled training data set - we hit the
manual discovery roadblock again here. Another, more
promising approach, is to use Reinforcement Learning
(RL). Unlike manual or supervised approaches, RL can
traverse the optimization space for input codes and,
based on system state evolution and reward feedback,
learn the LLVM optimization pass orderings that give
good hardware quality.

While existing efforts in RL based HLS tuning have
demonstrated improvements over -O3, they have been
limited in scope. Specifically, these efforts have: i) only
explored a small number of learning strategies, and ii)
evaluated the impact of these strategies using a single
metric for learning quality i.e. speedup over -O3. This
is a significant drawback since learning goals can vary
substantially across FPGA workloads and developer re-
quirements. For example, developers can prioritize lower
turnaround times over largest speed up values. In such
cases, a different learning strategy would be needed
which is able to trade off achieved speed up for a faster
learning rate. Thus, similar to a uniform optimization
strategy, a generic learning strategy is also inefficient.

In this work, we address the above limitation by
expanding both the number of valid learning strategies
for HLS compiler tuning and the metrics used to evaluate
their impact. To achieve this, we start by implement-
ing an existing effort as the baseline strategy - this
strategy trains a reinforcement learning model to learn
the number of times each optimization pass should be
applied. Next, we identify and implement a number of
additional strategies that govern the agent-environment
interaction and can potentially impact learning - we use
these strategies to vary what is being learnt and not
just how it is learnt. Next, we identify speed, fluctuation
band and performance potential as metrics for evaluating
learning quality, in addition to the existing metric of
speedup over -O3. Finally, we evaluate the effectiveness
of our approach by training the RL model using the
Proximal Policy Optimization (PPO) method on all 9
benchmarks evaluated in former work and shortlisted
from CHStone suite and Legup examples.

The specific contributions of this paper are:
• Improving RL for HLS by enabling greater flexi-

bility for developers in making trade offs based on
their target learning goals.

• Identifying four novel learning strategies for HLS
compiler tuning.

• Identifying and utilizing three additional novel met-
rics for learning quality.

• Demonstrating the effectiveness of our approach
by comparing against the state-of-the-art using the
CHStone benchmark suite.

The rest of this paper is organized as follows. Section
II discusses some of the prior work in this area. Section
III discusses the RL framework for HLS compiler tuning
used in existing efforts. Section IV presents our proposed
learning strategies and learning quality metrics. Section
V evaluates the effectiveness of our strategies using
the 9 benchmarks suite. Finally, Section VI gives the
conclusion.

II. RELEVANT WORK

Compilers execute optimization passes to transform pro-
grams into efficient forms by leveraging the hardware
design patterns. Optimization can serve several goals:
reduce area/resource utilization, reduce latency, increase
parallelism, reduce power/energy etc. Modern compilers
offer various compilation options to the user [3]. Com-
pilers provide options to select optimization levels for
different goals (size, speed, debuggability) and within
these goals sometimes allow to adjust for the time
allotted to the optimization passes to control turn-around
times. However, the work performed for each of the
optimization levels is defined statically and on a rather
ad-hoc basis which doesn’t take the problem nor really
the variety of the target hardware into account. Even if
the passes type, number and order applied to different
applications in the standard -Ox level vary, the strategy
is primarily fixed and insufficient [4]. Moreover the
strategy is designed primarily for CPU workloads and
hence not optimal for other specialised back ends like
FPGAs. For simple applications like matrix multiply,
we have seen that with appropriate number of passes
and their ordering, more than 60% improvement in
performance over the standard -O3 is possible.

Compiler optimization problem space for HLS is vast.
Hardware quality is affected not only by the high level
program but also by several other factors such as pass
ordering, the number of passes and their parameter
values. Hand tuned heuristic-based methods that been
formerly proposed for compilers [5] no longer suffice.
Compiler optimization has evolved over the years, from
iterative compilation exploring the enumerations of the
observation space one by one [4], [6] to machine learning
based modeling in which models are trained to make rel-
evant predictions [7], [8]. Recent years have seen a surge
in compiler optimization work employing reinforcement
learning (RL), a subset of machine learning in which
the agent learns continually by trial and error using
its interactions with the environment. Prior research
work employing RL for compiler optimization typically
address the following categories:

1) Those that have looked at phase ordering to tackle
the compiler optimization problem such as [9]–[14].
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Fig. 1. Overall Block Diagram: (i) - generic Reinforcement Learning
(ii) - generic High Level Synthesis flow (iii) - combined, RL based
HLS

Amongst these, [12] is the only state-of-art framework,
to the best of our knowledge, that addresses the problem
particularly using High Level Synthesis for specialised
backends such as FPGAs. Our works builds upon it
to improve the existing approach and explore further
possibilities.

2) Others that analyze specific parameters with respect
to compiler passes for example inferring appropriate
vectorization and interleaving factors for the loops in
the code [15], Improving the register allocation problem
in compilers such as in [16]. Polyhedral models that
optimize loops in the program and try to find an optimal
schedule for the instructions in the defined polyhedral
[17]–[19]. MLGO [20] where machine learning is ap-
plied with respect to the inlining pass.

3)Proposed frameworks and platforms such as Super-
sonic [21] to choose and tune a RL architecture for code
optimization tasks, CompilerGym [22] that consolidates
some compiler optimization frameworks into a platform
to motivate research under the hood and generic tuning
frameworks such as OpenTuner [23].

III. BACKGROUND

In this section we delve deeper into reinforcement learn-
ing and high-level synthesis and how the two can be
combined for compiler tuning. Figure 1 part (i) shows
the generic RL flow,1 part (ii) shows the generic high
level synthesis flow and 1 part (iii) shows the combined
RL based HLS.

A. Reinforcement Learning

Reinforcement learning relies on a trial-and-error mech-
anism in order to learn, as opposed to labeled data in
supervised learning. There are two major components
to a RL framework: i) Environment: the problem that
we are trying to learn to solve, and ii) Agent: used to
perturb the environment and learn based on feedback.
The smallest unit of Environment-Agent interaction is

typically a Step. At each Step, the Agent predicts an
Action that the Environment should take e.g. the next
move in a game of chess. After taking the action, the
Environment returns a Reward indicating the impact of
the Action, as well as an updated State which represents
the change in the Environment as a result of taking the
Action. The next Step then starts and a new Action is
predicted.

The above process continues till the Environment
indicates that a conclusion has been reached e.g. the
game of chess has ended. This collection of Steps,
from the first predicted action Action to the Action
that causes the Environment to reach a conclusion, is
referred to as an Episode. At the end of an Episode,
the Environment is reset and a new Episode starts. A
collection of such episodes is referred to as an Iteration.
The agent is updated once per iteration. The number of
Episodes per Iteration can vary significantly based on
a number of factors. At the end of each Iteration, the
learning portion of a RL framework updates a Policy
(deterministic/stochastic strategy) about which Actions
cause Agents to maximize their long-term, cumulative
rewards. RL assumes that the environment is Markov
i.e. that the updated state also depends on the previous
state and the action taken. It also assumes that the action
taken is only dependent on the current state.

B. High Level Synthesis

High Level Synthesis (HLS) allows developers to im-
plement workloads using High Level Language (HLL)
codes, such as C, which can be compiled into circuits.
Typical HLS compilation flows involve: 1) using a
Parser to convert HLL codes into a generic Intermediate
Representation (IR), 2) running an Optimizer on the
IR that use a series of codes transformation passes to
optimize the code, and 3) mapping optimized IR code
fragments to hardware blocks and adding an appropriate
interconnect using an HDL Generator by replacing the
normal CPU-specific back end of the compiler. The
optimization step (2) is critical since it can improve
hardware quality by increasing parallelism and reducing
dependencies/hazards in the code structure [24].

C. RL based HLS compiler tuning

The overall reinforcement learning framework for a
high level synthesis compiler is illustrated in Figure 1.
Reinforcement learning in this case requires specifying
and tuning several components:

i) an action space that specifies appropriate actions
that are suggested by the agent. Code optimization in
compilers such as LLVM, is implemented as Passes.
These operate on the intermediate representation(IR) of
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the code and either analyse or transform portions of the
program [3]. An action is usually the pass to apply next.
Each pass transforms the IR into a valid yet, modified
IR.

ii) an observation space that characterises the envi-
ronment and provides its state representation after an
action is applied. In this case, it can be (a) a statistical
analysis of the IR into a vector of features such as
information extracted from the code about the loops,
arithmetic operations, memory blocks etc. [25], (b) a run-
time profiling of the program source code to dynamically
characterise the system [26], (c) a graph based modeling
of the feature set using Abstract Syntax Trees (ASTs),
Control and Data flow graphs (CDFGs), graph based
embeddings of Single Static Assignment (SSA) [27] (d)
DNNs, LSTM or other neural nets to characterise the
target code into a vector of features [28], [29], (e) A
vector of applied passes (action history) or a histogram
of applied passes (action histogram) to define the state
of the environment (f) a concatenation/tuple of multiple
aforementioned states.

iii) a reward computation mechanism that provides
feedback to the agent in terms of the efficacy of the
applied action and configures the frequency of reward
computation. For high level synthesis this is usually de-
pendent on the HLS tool used [30]–[32]. Most prior work
have used cycle count as a reasonable metric for reward.
However, other metrics such as post-routing Frequency,
wall clock times, area and resource utilization details etc
can also be used for comparison [4]. Cycle count can be
estimated a) using software profiling as in Legup [33]
b) simulating VHDL/Verilog code using tools such as
Modelsim [34] or c) estimating from the Control Flow
Graphs (CFGs). For the overall reinforcement learning
framework, the reward has to be structured carefully for
example, each good intermediate step of training returns
a less negative reward, while a bad intermediate step
returns a more negative reward, and achieving the goal
by the agent returns a large positive reward. This ensures
the agent learns in an effective manner and does not get
trapped in a vicious cycle while trying to maximise its
rewards.

v) the environment which in this case, embodies the
application program and its various configurations. It
also encapsulates the High Level Synthesis tool that
supports user specified custom optimization passes. HLS
is like a compiler however, the difference between CPU-
targeting compilers and HLS environments is that in case
of the latter the "instruction set" is not fixed and can
be created alongside the logic which then uses these
instructions. It has a front end where high level language
(HLL) code is converted to language independent format

such as intermediate representation (IR). At the middle-
end, optimizations are applied to modify the IR and
generate a new one. At the back-end, the HLS tool
also contains some mechanism of returning performance
estimates (clock cycle count, resource utilization etc) to
execute the application code.

While numerous efforts have used reinforcement
learning for compiler space, there is still a need to un-
derstand the options available in hyper-parameter explo-
ration of the compiler reinforcement learning framework
i.e. optimising step of training, episode length, and a
quantitative analysis of the state, action and reward space
for high level synthesis compilers in particular. Our goal
in this work, is to highlight this research area and make
valuable contributions.

IV. LEARNING STRATEGIES

In this section, we start off by discussing the base learn-
ing strategy. Next we discuss the 4 additional strategies
implemented in our work. Finally we talk about learning
quality metrics that can be used to compare the impact
of these strategies.

A. Base Learning Strategy

Our base learning strategy, based on Autophase [12], is
given below.

• Environment: The environment is composed of
Legup HLS tool [30] and the specific application.
It outputs a count of the number of clock cycles
needed to execute the target application.

• Agent: Proximal Policy Optimization(PPO) is used
as the reinforcement learning agent [35].

• Action: Each action represents a single optimization
pass. This appended to an ordered list of actions for
the episode, which in turn is used during compila-
tion.

• State: A histogram of applied passes is used to
represent the state - this is referred to as an action
histogram. To implement this histogram, a list equal
to length of passes is initialised and each element
of the list is incremented and updated when a pass
corresponding to the pass number is applied. The
agent learns to map the distribution of number of
passes applied, to the next pass that should be
applied, in order to maximize the averaged/expected
(across episodes) sum of rewards across time-steps
in an episode.

• Reward: The reward is defined as the difference in
cycle count between the previous step of training
and the current step - lower cycle count thus results
in a higher reward value. Reward is set to a default
value of 0 for each step, except for the last step in



5

the episode in which the actual clock cycle count
is obtained from the HLS tool. The “previous step”
reward value for the first step is set to the cycle
count for the -O0 flag. Maximum Reward is defined
as the highest value of reward obtained by any
episode during training.

• Episode size: The episode size is fixed to 45 passes.
This also places an upper bound on the size of
action histogram.

Fig. 2. Strategy 1: Pass Ordering. Here we impact the state by
passing information about the pass order to the agent and evaluating
the impact on its learning policy.

B. Strategy 1: Pass Ordering

In a typical set of compiler optimization passes, both
the repetition and ordering of individual passes impact
the outcome of the optimization process. In the base
learning strategy above, pass repetition is available as
the action histogram while pass ordering is available as a
list that is passed to the HLS tool during the compilation
process. This means that, while both pass repetition and
order are factored in during reward calculation, only the
pass repetition is used to represent state. This means that
the same state can potentially correspond to substantially
different reward values - these collisions can potentially
negatively impact learning. To address this, we propose a
new learning strategy that explicitly takes pass ordering
into account. This can be done using two methods.

In Method 1, instead of using action histogram as
the observation space, we use action history to learn
the optimal pass ordering. Here, each value in the
observation space is the actual pass that was applied at
the corresponding step of training. Just like the action
histogram, a fixed number of passes are applied in
each episode and thus the observation space has known
bounds.

In Method 2, the reward computation frequency is
varied while the observation space continues to be the
action histogram. In the base learning strategy, the actual
reward from the HLS tool is calculated once per episode
while all other steps use a default reward value. This
corresponds to a reward frequency of 1, and only assigns
a non-zero reward to the observation space represented
by a complete histogram. In order to vary the reward
frequency, we evaluate additional frequency values. For
a reward frequency of less than the episode size, the
HLS tool is invoked to give the cycle count after every
fixed number of actions. In this case, instead of ordering
between individual passes, we factor in the ordering
of multiple sets of passes. For example, for a reward
frequency of 2 and maximum episode size of 45, we get
the reward from the HLS tool after 23 and 45 passes. For
a reward frequency equal to the maximum episode size,
reward is computed every step once an action is applied.
In this case the complete ordering information for indi-
vidual passes is factored in (represented by incremental
changes to the action histogram).

Fig. 3. Strategy 2: Action Tuples. In this case multiple actions are
applied as opposed to a single action.

C. Strategy 2: Action Tuples

As discussed in Strategy 1, pass ordering has an impact
on learning and can be factored in by modifying the ob-
servation space and reward frequency. Another approach
to factoring in pass ordering is through action tuples.
Unlike Strategy 1, which focuses on learning a global
pass ordering, this strategy is aimed at determining
groups of passes that work well together i.e. local pass
ordering. To achieve this, we modify the action space
to represent a tuple of passes as opposed to individual
ones. That is, at each step, the agent predicts multiple



6

passes to apply. The maximum number of applied passes
is kept (approximately) the same, which means that the
episode size is reduced by an appropriate factor based
on the size of the action tuple. Having a large tuple
size for the action space allows the agent to learn which
passes work well together and how to apply these tuples,
which in turn can improve learning. However, if the tuple
sizes become too large, the agent can take substantially
longer to learn them. In the extreme case, this would
be equivalent to trying to predict the entire set of pass
orderings in a single step - the neural net for this can
become fairly large.

Fig. 4. Strategy 3: Episode Sizing. In this case the number of steps
that constitute a single episode of training are varied to evaluate the
imapct on learning quality.

D. Strategy 3: Episode Sizing

The size of an episode can also impact the learning
quality since it determines the dimensions of the action
histogram and the maximum number of passes that
are applied. Having a smaller episode size means the
upper bound on the size of the action histogram is
lower, which can improve learning. However, the entire
sequence of optimal passes must be specified within the
limited number of steps. This not only limits the room
for redundancy or sub-optimal passes, but it might not
be possible to do so if the episode size is smaller than
the size of the optimal pass ordering sequence. On the
other hand, larger episode sizes have a greater margin
for sub-optimal passes, but can have drawbacks such as
greater combinations of action histograms. There are two
methods for varying episode size.

In Method 1, we use static episode sizing. Similar to
the base learning strategy, we fix the episode size for
the duration of learning. In Method 2, we use dynamic

episode sizing. Here, we train the agent to learn not
only the pass frequency that maximises reward, but also
the number of passes to apply within an episode. We
insert a stop condition within the list of possible passes.
Whenever, a stop pass is suggested by the agent, the
training episode is terminated and the environment is
reset after computing the reward. This reward is then
mapped to the action histogram of the passes applied in
that episode before the stop pass. The expectation is that
the agent will learn the shortest sequence of passes that
gives the highest reward.

Fig. 5. Strategy 4: -O3 Backend. In this strategy -O3 flag is applied
at the end of each episode to train the agent to perform better than
the compiler standard of -O3 level.

Fig. 6. Learning quality metrics and how they are calculated
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E. Strategy 4: -O3 Backend

In the above strategies, our goal has been to learn the
optimal pass ordering for the HDL generator back end.
That is, what is the optimal code structure that allows the
HDL generator to map code fragments and CFGs to high
quality hardware. It assumes that the CPU and FPGA
back ends are completely orthogonal and an entirely new
optimization strategies must be learnt. However, this is
not always the case and there is some potential overlap
in how CPUs and FPGAs leverage different forms of
parallelism.

This strategy aim to reuse the default CPU opti-
mization strategy of a compiler instead of deriving a
completely new one from scratch. Specifically, this is
done by redefining the back end and, instead of targeting
the HDL generator, learning the code transformations
that enable the -O3 flag to be effective. Implementing
the -O3 back end involves adding the -O3 flag to the
action histogram before the HLS tool is invoked for clock
cycle calculation. We also reduce the episode size to 25
(instead of the default 25) since we are not learning a
complete optimization strategy.

F. Learning Quality Metrics

Figure 6 illustrates the different metrics used to evaluate
learning quality for given training run.

i) Speedup over -03: This is defined as the ratio of
the maximum reward obtained by any episode during
training, and the reward from the -O3 flag.

i) Learning speed: This is defined as the number of
iterations taken to reach 90% of the peak reward value.
Peak reward value is defined to be the highest average
reward value achieved across all training iterations.

ii) Performance potential achieved: This is defined as
the ratio of the peak reward to the maximum reward
obtained by any episode during training.

iii) Fluctuation band: This is the difference between
the maximum and minimum average reward observed in
the last 7% iterations of a training run.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The framework is setup using Open AI Gym (0.21.0)
to provide the unified environment interface for the
reinforcement learning framework, Ray (1.7.0) to pro-
vide the unified API for reinforcement learning and its
RLlib library to provide the agent interface. Tensorflow
(2.6.0) is used for machine learning tasks together with
Keras (2.6.0) to provide the neural net API for Python
(3.9). To ensure standardization, each test is run using 2
workers on a standard multi-core CPU, a total training

time of 300 iterations and the same initial seed value
for random number generation. The same 9 benchmarks
used in Autophase [12] are evaluated in this work.
These include 6 CHStone benchmarks [36]: adpcm, aes,
blowfish, gsm, motion and sha; and 3 benchmarks from
Legup examples: matrixmultiply, dhrystone and qsort.

Similar to Autophase, we use Legup [33] as the HLS
tool, which is built by modifying the LLVM 3.5 com-
piler. While we are constrained in using an older version
of the LLVM compiler due to Legup, the methods for
learning effective optimization strategies and generating
high quality HDL code are applicable to the latest
versions as well.

B. Baseline Strategy Validation

To validate our baseline implementation, which is based
on Autophase, we run each of the 9 benchmarks eval-
uated in the paper. The maximum reward for each
benchmark is computed by letting it run at the baseline
configuration for around 10,000 iterations, and then
setting the maximum reward as the highest performance
achieved. The means of maximum rewards we obtained
as a results of the above matches the 26% efficiency over
the -O3 flag of the LLVM compiler stated by the authors
in [12].

C. Aggregate Results

Figure 7 shows the results for each standard application
used and every strategy investigated. Note that results
for each quality metric are normalized with respect to
each application. The average gives the arithmetic mean
for each strategy over all applications. Below we discuss
our findings with respect to each learning quality metric.

1) Learning Speed
Figure 7a shows how learning speed is impacted by

strategies. Higher learning speed is more preferable
since it means the agent can train faster. We note that on
average Strategy 4 takes the least number of iterations
to reach 90% of the peak reward value achieved. Overall
up to 23× improvement in learning speed is possible
if the correct learning strategy is selected versus an
inefficient strategy.

2) Performance Potential Achieved
From figure 7b we can see that that most strategies

exhibit reasonable performance potential however, some
strategies notably give poor performance for certain
applications. For matrixmultiply, setting the state as
action history and using dynamic sizing gives drastically
poor performance. However, for other applications such
as adpcm, blowfish, sha these result in high performance
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Fig. 7. Normalized Results for each metric with respect to the standard application and strategy used. A higher learning speed, higher
performance potential, lower fluctuation band and a higher speedup over -O3 are desirable.

TABLE I
BEST STRATEGY IN TERMS OF EACH BENCHMARK AND METRIC

Benchmark Learning speed Performance potential Fluctuation band Speedup over -O3
adpcm Strategy_4 multiple Strategy2_5 Strategy2_5
aes Strategy_4 multiple Strategy3_Method2 All except Strategy_4
matrixmul multiple multiple Strategy3_Method2 all
blowfish Strategy1_Method2_45 multiple Strategy2_5 multiple
dhrystone Strategy1_Method2_2 multiple Strategy2_5 Strategy_4
gsm Strategy_4 multiple Strategy2_2 Strategy_4
motion Strategy_4 Strategy_4 Strategy3_Method2 multiple
qsort Strategy_4 Strategy_4 Strategy2_5 multiple
sha Strategy3_Method1_25 multiple Strategy3_Method2 multiple

and even better than the baseline. Overall up to 4×
improvement in performance potential is achievable by
selecting the best strategy.

3) Fluctuation Band
A high fluctuation band means that the ripple in

final steady state reward is high hence the confidence
value is low. From figure 7c we can see that on average
Strategy2_5 gives the best results in terms of the
fluctuation band. On average Strategy1_Method2_2
results in the highest ripple. For motion, it is
possible to largely eliminate the ripple by selecting
Strategy3_Method2. From actual values, we note that
more than 7700× improvement in fluctuation band is
possible through the selection of reasonable strategy.

4) Speedup over -O3
As seen in figure 7d, up to 3% improvement in

speedup over -O3 is possible by selecting the right
strategy. Most strategies give a reasonable speedup over
-O3. However, depending on the application, some like

Strategy1_Method2_45 and Strategy3_Method1_100
give pretty poor performance for blowfish benchmark.
Overall up to 3× improvement in speedup over -O3 is
possible by choosing the correct strategy.

5) Strategy Selection
Table I gives the best strategy for each benchmark

and metric. Where more than one strategies favor the
particular test case, multiple is seen. For matrixmultiply,
all strategies give a speedup over -O3 hence showing that
for this benchmark, the standard compiler optimization
strategy is highly inadequate. For aes, Strategy_4 leads
to a degradation of the metric, speedup over -O3. An
important deduction is that there is no one strategy
that fits all. Different strategies favor different design
criterion and it is up to the developer to choose according
to their requirements.

VI. CONCLUSION

In this paper, we have explored a number of learning
strategies that enable developers to customise their de-
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sign according to their respective learning goals. To do
this, we have proposed 4 additional learning strategies.
We have also analyzed the results using 3 additional
metrics that encapsulate developer goals more effectively
when compared with the single speedup over -O3 stan-
dard metric. Results show there is no one size fit all
solution: different learning strategies give best results
in terms of different metrics. Choosing just the right
strategy can give an improvement of 23× in learning
speed, 4× in performance potential, 3× in speedup
over -O3 and has the potential to largely eliminate the
fluctuation band from the final results.
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