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Abstract 

Application specific coprocessor cards are omnipresent in today's high 

performance computing environment.  Computationally intensive applications such as 

graphics, computer vision, and DNA string matching benefit from the extra computing 

power supplied by coprocessor cards. 

This thesis is one aspect of a larger project to implement a high performance 

SIMD coprocessor card (SCC).  Overviews of the SCC design, PC architecture and 

Microsoft Windows NT are presented to familiarize the reader with the underlying 

technology required to host coprocessor cards. 

In order for the SCC to realize its full potential, the host environment must be 

optimized to provide high throughput, low latency communications.  The focus of this 

thesis is to design a suitable host platform for the SCC and to investigate potential 

performance hindrances.  A suite of benchmarks was developed to test the host/ SCC 

communication throughput.  The testing methodology and an analysis of the results are 

presented. 
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1 Introduction 

1.1 Motivation 

Application specific coprocessor cards are become increasingly prevalent in 

today's high performance computing environment.  Computationally intensive 

applications such as graphics, computer vision and DNA string matching are examples of 

the beneficiaries of extra computing power supplied by coprocessor cards.  By nature of 

their design, coprocessor cards are heavily dependent on the hardware platforms that host 

them.  The implication is that the design of the host software system (operating system 

and applications) and the CPU interconnect bus assert significant influence over the 

performance of coprocessors. 

Several standard buses such as ISA, EISA, SCSI and SBus are available on PCs 

and workstations to allow additional hardware to be integrated into the system.  However, 

these buses have a relatively low throughput.  Recently the computer industry has 

adopted the Peripheral Component Interconnect (PCI) bus to alleviate the I/O bottleneck 

between CPUs and system peripherals.  This is increasingly important as new generations 

of high performance peripherals become available.   

Much work has been done on the development of coprocessor cards [8,9,11,12].  

The unifying factors of these designs are that they solve domain specific problems and 

that PCI was selected as the datapath.  However, all of the studies have a common flaw: 

they neglect to investigate the effects of host system software overhead on system 

performance.  In particular, these works focus on the designing the cards, but ignore the 

practical issues involved with using them.  Although their intent was to improve system 

performance by optimizing the hardware to suit the application [8,9,11,12] or simply to 
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measure system bus performance [7,10], they failed to address one key issue: the overall 

system including host, operating system and peripherals needs to be optimized, not just 

the hardware in the coprocessor.  These issues are addressed by this thesis. 

 

1.2 Context: The SIMD Coprocessor Card 

Herbordt et al. [1] have proposed a design for a SIMD Coprocessor Card (SCC).  

The SIMD array is designed to provide high performance for computer vision 

applications by providing a large number of processing elements (PE) and an operating 

frequency greater than 1 GHz.  As the designs mentioned above, it also uses PCI. 

The main difference is that the SCC control is completely hardwired; there is no 

general purpose CPU to control the array.  This approach is necessary to maintain high 

array utilization.  This approach, however, does place additional control responsibilities 

on the host: if the host cannot react immediately to array requests, then the array will idle.  

It is therefore of the utmost importance to optimize the host software to minimize the host 

response latency.  The SCC design is presented in detail in Appendix A. 

The research for this thesis has been done in the context of designing a host and 

software support system for the SCC.  Therefore, it is the intent of this thesis to provide a 

method for quantifying OS overhead and to use this information to optimize the SCC 

system. 

 

1.3 Research Motivation 

The main shortcoming of other research efforts is that they neglect to consider the 

effects of the host design on their coprocessor board.  Instead, their focus was on 
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designing high performance logic for the coprocessor.  They all used the PCI bus to 

interface to the system, presumably because of its potentially high peak throughput (132 

MB/s) and its emergence as the de facto PC coprocessor interface standard.  The issue 

becomes designing a host hardware and software system that can fully use the PCI peak 

bandwidth. 

There are several reasons why both hardware and software design decisions can 

severely affect PCI bus utilization, two of which are as follows.  First, the PCI bus is 

shared among multiple peripherals.  It may be accepTable to block their access to the bus 

for a short time, but not indefinitely.  A potentially catastrophic example of this is when 

the host operating system (OS) needs to swap memory to the hard drive, but the PCI is 

occupied with a large data transfer.  Second, most modern OS’s are multitasking (some 

are also multiprocessing) which by its very nature implies processes cannot monopolize 

the processor (CPU).  Any data transfers to the PCI bus by an application or device driver 

can (and will) be interrupted. 

 

1.4 Related Work 

The PCI Pamette system designed by Moll and Shand [10] is the work most 

closely related to this thesis.  This project provides excellent insight into PCI bus 

performance, including measurements related to application implementation.  The design 

of the PCI Pamette board itself is not important to this thesis as most logic analyzers can 

perform similar functions by using a PCI bus monitor module.  What is important is their 

testing methodology and results. 
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Their results show relatively high bus throughput measurements, but this is 

somewhat misleading as they only partially take host configuration (and OS overhead) 

into account.  Their programmed I/O (PIO) benchmarking is straightforward and 

accounts for OS overhead.  However, their DMA performance test procedure only 

measures bus bandwidth since the traffic was generated by custom hardware and targeted 

the host memory.  This method is accepTable for measuring the bus performance alone, 

but has little bearing on overall system.  This issue needs to be addressed if host 

applications are going to realize benefits from using high performance coprocessor cards. 

 

1.5 Design Criteria and System Specifications 

The design criteria for the host system are as follow: 

1) The host must communicate with the SCC using the PCI bus. 

2) The host and SCC must not monopolize the PCI bus when communicating. 

3) The main thread of the SIMD application must execute on the host CPU.  Also, it 

may not alter the normal operation of the host OS. 

4) A programming environment must be provided so that the SCC can be easily used. 

These design criteria are satisfied by the following design specifications: 

1) The host platform is an Intel x86 based system with a PCI system bus. 

2) The host uses the Microsoft Windows NT 4.0 (WinNT) operating system.  All 

applications and device drivers adhere to WIN32 standards. 

3) The SCC PCI bus device driver conforms to standard WinNT 4.0 I/O Manager 

requirements. 
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4) The SCC API library provides a consistent, hardware independent way for application 

programmers to access the SCC. 

 

1.6 Overview of Results 

The main goal of this research is to investigate the effects of the host system 

implementation on the SCC performance.  This is accomplished by executing benchmark 

applications on the host that perform various sized block data transfers to a simulated 

SCC card (the SCC hardware is still under development).  The benchmarks use different 

combinations of WinNT drivers and interface libraries to see what impact different 

implementations have on the system.  This is quantified by measuring the read and write 

transfer time from the application, driver and PCI bus perspectives. The results are 

analyzed to identify possible I/O bottlenecks. 

The results are surprising in several respects.  First, the data throughput is 

independent of the driver and library implementation.  This is completely unexpected for 

reasons that are discussed in Chapter 4.  Second, the peak throughput is shown to be 

independent of the host CPU frequency.  This result is as expected, since the PCI bus is 

the limiting factor.  Finally, the measured peak data transfer rates are an order of 

magnitude slower than the peak PCI throughput of 132 MB/s.  In most cases, the write 

throughput is approximately 20 MB/s and the read throughput is approximately 5 MB/s.  

The theoretical peak PCI throughput is based on the assumption that the PCI initiator can 

monopolize the bus for the duration of the transfer and that the target memory is fast 

enough to avoid inducing wait states.  This environment is not representative of a 
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normally configured system; however, Moll and Shand [10] provide results for a usable 

system that are still significantly better than the results presented in Chapter 4. 

 

1.7 Thesis Outline 

The next chapter provides an overview of PC hardware and Microsoft Windows 

NT architecture to familiarize the reader with the underlying technology required to host 

coprocessor cards.  Chapter 3 presents the software system designed to host the SCC.  It 

also discusses issues encountered during the development process.  Chapter 4 discusses 

the system performance testing methodology and analyzes the results.  We conclude with 

a discussion and suggestions for future work. 
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2 Underlying Technology 

There are two pervasive standards in the PC industry: Intel x86 processor 

architecture and Microsoft Windows NT.  Any device that is to find wide spread 

acceptance must conform to these standards collectively known as the “WINTEL” 

architecture.  This chapter provides background material related to the WINTEL 

architecture necessary to understand the research results presented later in this thesis. 

 

2.1 PC Architecture 

The PC architecture has evolved significantly since its inception in the early 

1980’s when most of the system was controlled directly by the CPU.  In these XT/AT 

type systems performance was not a significant issue since memory access speeds were 

considerably slower than device access times.  However, over time, I/O bottlenecks 

formed as CPU and memory access speeds increased.  These issues began to be resolved 

by the Intel Pentium series CPUs by distributing system control over a set of system 

chips otherwise known as a motherboard chipset.  This distributed control model freed 

the CPU from stalling on I/O operations and lead to an increase in system performance. 

The PC motherboard designs are heavily influence by the Intel x86 architecture.  

The distributed CPU/chipset model is pervasive in the industry.  This structure is depicted 

in Figure 1. 
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Figure 1: Block Diagram of Typical PC Architecture 

 

The salient feature of this Figure is the hub-like bus structure centered on the 

North Bridge.  The intent of this design is to relieve the CPU of its I/O responsibilities.  

The CPU only has to contend with accessing memory and performing computations.  Pre-

Pentium 2 CPUs used the Back Size Bus (BSB) as a high-speed, dedicated connection to 

the L2 cache.  The BSB was rendered obsolete by the Pentium 2, which integrated the L2 

cache into the CPU chip.  This innovation left the CPU with only the Front Side Bus 
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(FSB) to service.  The FSB is a high-speed (currently 200-266 MHz) local bus that 

connects the CPU to main memory, the graphics controller and the system peripheral bus.  

It is important to note that the FSB operates orders of magnitude faster than the system 

peripheral bus.  The CPU offloads I/O operations to the North Bridge and continues 

operation.  Equally important is the fact that the main memory is on the FBS and not the 

system bus.  This allows the CPU to perform memory operations at high frequencies and 

eliminates system bus contention. 

Aside from the CPU, the North Bridge is the most vital component in the system.  

Its purpose is to provide the interface to main memory, the graphics controller and the 

system bus.  The main idea is that the CPU is now relieved of most I/O processing 

responsibilities. 

In most recent motherboards, the graphics controller is integrated into the system 

via the AGP bus.  The Accelerated Graphics Port (AGP) is a standard proposed by Intel.  

AGP relieves the graphics I/O bottleneck by adding a new dedicated, high-speed datapath 

directly between the chipset (North Bridge) and the graphics controller. This removes 

bandwidth intensive 3D and video traffic from the constraints of the system bus (PCI 

bus). AGP allows the graphics controller to access system memory directly rather than 

having to pre-fetch all data into local graphics memory.  While the PCI bus supports a 

maximum of 132 MB/second, AGP operates at 66 MHz and has a 533 MB/s peak 

throughput. AGP performance is increased by transferring data on both edges of the 66 

MHz clock and with efficient data transfer modes.  AGP supports overlapped requests 

and has extra address lines so a new request can be started while waiting for previous 

access to complete (sideband addressing).  The system level performance increase 
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realized by this design is due to reduced system bus congestion. AGP operates 

concurrently with, and independent from, most transactions on PCI. Further, CPU 

accesses to system memory can proceed concurrently with AGP memory reads by the 

graphics controller. 

Most of the discrete system peripheral control logic has been consolidated into the 

“South Bridge”.  This makes all the peripherals appear as a single device on PCI bus.  

This is important since each PCI bus can only support eight devices without a bridge. 

The final component is the system bus, which connects the various system 

peripherals to the CPU via the North Bridge.  The Peripheral Component Interface (PCI) 

bus was introduced by Intel Corporation in July 1992. It was originally designed as a 

local bus, but was later changed to a high-speed expansion bus.  Since its inception, PCI 

has become the computer industry de facto standard for system buses.  This point is 

supported the Microsoft/Intel PC 99 Guidelines [13] state that computer containing ISA 

and EISA buses will not be certified; effectively “obsoleting” them.  The PCI standard 

specifies four options for address and data bus configurations (refer to Table 1) of which 

the most commonly deployed is 32 bit address/32 bit data with an operating frequency of 

33 MHz.  This configuration has a maximum theoretical throughput of 132 MB/s. 

Aside from throughput, PCI has several other advantages over old buses.  First, it 

is a synchronous bus with block transfer capabilities.  This maximizes data transfer while 

reducing transfer setup overhead.  Second, PCI provides multiple bus master capabilities.  

This allows peripherals to perform peer-to-peer communications without using the CPU 

as an intermediary.  Finally, PCI provides special bus cycles for dynamically configuring 

devices.  This allows devices to be configured before they have been assigned an address. 
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2.2 Coprocessor Cards 

The PC architecture was specifically designed to be extensible by means of 

connecting expansion cards to the system bus.  These cards provide diverse functions 

such as graphics controllers, modems, sound cards and network interfaces.  However, 

they all generically fall into the category of coprocessor cards, i.e., they all offload a 

specific type of processing responsibility from the CPU. 

The most interesting coprocessor cards (to this thesis) are custom boards designed 

to perform dedicated tasks.  These coprocessors only use the PC system as a host to 

provide basic I/O processing.  The main issue is that while coprocessor cards can be built 

to process data with very high throughput, connector pin characteristics and interconnect 

bus speeds restrict data transfer rates between the host and the coprocessor. 

The AC impedance of connector pins significantly affects bus operating 

frequency.  The capacitive and inductive components limit signal rise and fall time.  This 

dictates the maximum operating frequency.  The resistive component limits the pin drive 

capabilities, which determines how far signals can propagate without affecting signal 

integrity.  This situation is exacerbated by the fact that the system bus traces have varying 

impedances and lengths.  This is a normal part of PCB layout, but the damaging result is 

that signals propagate at different rates.  Standard board layout techniques can be 

employed to reduce signal propagation delay; however, they cannot eliminate signal 

propagate mismatch.  Thus, bus interface logic timing must be modified to accommodate 

the slowest signal. 

The system bus I/O bottleneck is a significant issue for coprocessors.  Instruction 

issue and data transfers are throttled by the system bus peak operating frequency and bus 
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utilization.  One solution is to create a custom coprocessor bus; however, this necessitates 

building a custom host or heavily modify an existing one.  This situation can be avoided 

by employing an industry standard system bus. 

 

Bus Type Maximum Throughput Notes 
EISA 33 MB/second in burst.    Standards proposed for 66 and 133 

MB/s bursts.  Has a 32-bit data path. 
SCSI-I 3 MB/second 

Asynchronous 
5 MB/second 
Synchronous 

Has an 8-bit data path. 

Fast SCSI (SCSI-
II) 

10 MB/second 
Synchronous 

Has an 8-bit data path. 

Wide SCSI 
(SCSI-II) 

40 MB/second 
Synchronous  

Fast and Wide SCSI together. 
Has a 32-bit data path. 

PCI 132 MB/second 
264 MB/second 
264 MB/second 
528 MB/second 

33 MHz/ 32 bit data path 
33 MHz/ 64 bit data path 
66 MHz/ 32 bit data path 
66 MHz/ 64 bit data path 

VESA Local Bus 264 MB/second 66 MHz/ 32 bit data path 
IEEE 1496 SBus  200 MB/second 25 MHz/ 64 bit data 25 MHz/ 64 bit 

data 

Table 1: Bus Speed Comparison 

 

Most of buses listed in Table 1 are available in standard PCs and workstations 

with the exception of ISA and EISA.  These buses are being phased out in favor of PCI.  

It is also interesting to note that the Microsoft/Intel PC 99 Guidelines discourage the 

inclusion of ISA and EISA buses in new computers. 

Despite these issues, coprocessor cards are the best method of implementing 

application specific processors without designing custom host platforms: a standard host 

means that a standard operating system to control it. 
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2.3 Windows NT Architecture 

Microsoft Windows NT (Windows New Technology) 4.0 is a secure, 32-bit 

operating system (OS) that uses a Graphical User Interface (GUI) for graphical, 

interactive user control.  WinNT is a preemptive, multi-tasking OS based on a hybrid 

layered and microkernel architecture.  At the time NT was designed, it was not certain 

what direction operating systems would take in regard to kernel design, POSIX support, 

OS/2 support, etc.  Therefore, the NT architects designed it to be both flexible for adding 

and removing components and porTable by isolating the OS from the hardware with the 

Hardware Abstraction Layer (HAL).  WinNT services, drivers, and HAL are 

implemented in Dynamic Link Libraries (DLL) that are loaded at runtime.  This allows 

them to be changed without relinking the kernel.  This modular design has proven useful 

since WinNT has been ported to four platforms: Intel x86, DEC Alpha, PowerPC and 

MIPS, although support for the PowerPC and MIPS have recently been dropped.  A block 

diagram of the WinNT OS architecture is shown in Figure 2. 
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Figure 2: High Level Block Diagram of Windows NT Architecture 

 

The WinNT environment is divided into two distinct parts based on memory and 

instruction access privileges.  Most processing is done in the user mode.  In this mode, 

the Virtual Memory (VM) system protects the processes’ memory and the CPU blocks 

access to privileged mode instructions.  This mode is considered secure since processes 

cannot affect each other’s memory or access hardware directly.  All user applications and 

most WinNT processes run in this mode.  Time critical and I/O related processes execute 

in kernel mode.  In this mode, the entire address space is accessible and the CPU permits 

privileged instructions to execute.  The best system performance is achieved in kernel 

mode, but the lack of protection allows any kernel mode process to corrupt the OS 

environment. 

There are three groups of WinNT processes that operate in user mode.  System 

Processes are kernel support components that execute outside of kernel mode, but are 

required for WinNT to operate.  These processes include Window Logon, Session 
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Manager and Services Controller, which is used to manage server processes.  The server 

processes provide optional system level services that are not part of the core OS.  

Examples of server processes are the print spooler, the Windows Event Logger and the 

RPC service locator.  The final set of OS related user mode processes is the environment 

subsystems.  User applications use the services provided by these subsystems to emulate 

the WIN32, POSIX and OS/2 programming environments. 

All server processes, environment subsystems, and user applications interact with 

the kernel through the subsystem dynamic link library (DLL) called NTDLL.DLL.  

NTDLL.DLL translates documented user system calls into the appropriate undocumented 

WinNT kernel service call. 

The WinNT design goal of portability is met in part by implementing the 

Hardware Abstraction Layer or (HAL.DLL).  Its purpose is to encapsulate all hardware 

and CPU specific functions into a single DLL.  The HAL provides hardware support for 

accessing timers, the BIOS, and interrupt controls; translating bus addresses; and 

anything else that is machine dependent.  An interesting caveat is that there is no 

mechanism to force kernel mode applications to use the HAL.  However, applications 

that circumvent the HAL risk losing portability. 

The Executive Services and the Kernel comprise what is traditionally thought of 

as the operating system “kernel”.  The WinNT Kernel handles the lowest level OS 

functions.  It is responsible for thread scheduling, exception and interrupt handling, and 

providing low level CPU-specific services to the Executive.  It is loaded into non-paged 

memory, and can never be preempted.  The Executive is the upper layer of the Kernel.  It 

exports kernel services to user mode applications and contains five vital system services: 
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1. The Process Manager is responsible using Kernel services to create and destroy 

processes and threads. 

2. The Virtual Memory Manager (VM) is responsible for mapping processes’ virtual 

memory into physical memory when they execute.  It is also responsible for swapping 

memory pages to disk when the system needs more memory. 

3. The Cache Manager is responsible for caching recently used file data in memory.  

Note: this service does not control the CPU cache. 

4. The Security Monitor enforces system security policies as they pertain to system 

resource access. 

5. The I/O Manager provides device independent I/O processing.  It provides the only 

mechanism for user applications to interface to device drivers.  The I/O Manager will 

be discussed in more detail later in this chapter. 

From the beginning, WinNT was designed to be a fully protected OS.  Security in 

this sense is not specifically aimed at preventing unauthorized use of the system (though 

the Security Monitor provides these services), but refers to preventing processes from 

inadvertently interfering with each other.  The interprocess security policies are enforced 

in hardware by using the virtual memory and privileged instruction capabilities of the 

supported CPUs. 

The Virtual Memory (VM) system makes it impossible for a user mode 

application to directly access a physical address.  The intent of VM is to provide 

processes with what appears to be unlimited memory.  A positive side effect is that 

applications are prevented from corrupting each other’s memory.  Normally this is 
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desirable, but in the case of accessing memory mapped system hardware, this is a 

significant issue.  This is a basic reason why device drivers are required by WinNT. 

Processors also enforce security by providing at least two modes of operation: 

privileged mode and user mode.  When in user mode, the CPU can only execute a subset 

of the full CPU instruction set.  Instructions that are excluded from user mode include 

I/O, CPU mode switching, and special register access instructions.  The CPU must be in 

privileged mode to access these instructions or a protection fault is generated.  This also 

necessitates the use of device drivers. 

 

2.4 Windows NT I/O Manager 

The I/O Manager is the Executive component that provides user mode 

applications access to hardware resources while still protecting system resources.  The 

upper level of the I/O Manager makes drivers appear as File Objects (similar to VMS and 

UNIX).  User applications use the standard WIN32 file access functions to interface to 

the driver.  The lower level of the I/O Manager packages I/O request information into 

packets call I/O Request Packets (IRP) and delivers the IRP to the appropriate driver.  

This same mechanism can be used by device drivers to communicate with each other to 

create layered drivers.  The basic flow of IRP processing is shown in Figure 3. 

The I/O Manager has several features worth noting.  First, it allows drivers to be 

dynamically loaded and unloaded.  This allows drivers to be managed without rebooting 

the system.  The I/O Manager is also multiprocessor safe.  This feature permits a device 

driver to function properly in multiprocessor systems.  Finally--and most important to 

developers--the I/O Manager supplies the common epilog and prolog required by all 
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drivers.  It builds the IRPs, manages the IRP buffers, routes the IRPs, provides operation 

watchdog timers, and performs clean up functions when the I/O operation is complete.  

All this makes drivers more compact and easier to develop. 
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Figure 3: Windows NT I/O System Structure 

 

2.5 Driver Structure 

The purpose of using IRP packets is to provide a generic method for the I/O 

Manager to communicate with drivers without having specific knowledge of them.  The 

I/O Manager maintains a function dispatch Table for every executing driver.  The type 

and order of the dispatch Table entries are identical for all drivers. 
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Every driver is required to provide an entry point called DriverEntry().  This code 

is responsible for initializing the driver environment, device hardware, and populating the 

dispatch Table.  There are five required dispatch Table entries (functions): 

1) IRP_MJ_CREATE. This function is called when the driver is opened by an 

application. 

2) IRP_MJ_CLOSE. This function is called when the driver is closed. 

3) IRP_MJ_READ.  This function is called when an application calls the WIN32 

ReadFile() function.  This function is generally only used for file system drivers. 

4) IRP_MJ_WRITE.  This function is called when an application calls the WIN32 

WriteFile() function.  This function is generally only used for file system drivers. 

5) The Driver Unload function is called by the I/O Manager when the driver is unloaded.  

It must disable the device hardware and release all OS resources claimed by the driver. 

An important optional function is IRP_MJ_DEVICE_CONTROL.  It is used to 

implement a custom interface to the driver.  When a user application calls the WIN32 

function DeviceIoControl(), the input buffer is sent directly to the driver and the driver 

returns directly data in the output buffer.  The I/O Manager does not interpret or 

otherwise use the data. 

The I/O Manager has two different methods for handling input and output buffers 

passed to drivers: direct I/O and buffered I/O.  In direct I/O, the I/O Manager passes a 

Memory Descriptor List (MDL) containing the location of the input and output buffers in 

the user memory space.  The driver uses the MDL to map the buffers into the driver’s 

address space so that they can be accessed directly by the driver.  In buffered I/O, the I/O 

Manager allocates I/O buffers from the kernel non-pages memory pool.  The contents of 
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the user space input buffer are copied into the input buffer allocated by the I/O Manager.  

The input buffer allocated by the I/O Manager is then forwarded to the driver.  The driver 

output buffer is processed similarly.  The driver stores return data in the system allocated 

output buffer, which is then copied into the user space buffer by the I/O Manager when 

the I/O request is completed.  It seems reasonable to assume that these interface methods 

add significant overhead data transfer operations.  This hypothesis is investigated in this 

thesis. 

When writing device drivers or dealing with the I/O Manager, developers need be 

cautious while performing pointer operations.  Solomon [4] reiterates a previously stated 

point: “Windows NT doesn’t provide any protection for components running in kernel 

mode.”  Code executing in kernel mode has unlimited access to all kernel memory and 

CPU instructions which gives it the power to corrupt the operating system. 
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3 Software System Design 

3.1 Overview 

A flexible, extensible software system is required to support the SCC hardware 

design presented in Appendix A.  In order to the SCC to be usable, several host system 

issues must be addressed: first, how the host interfaces to the SCC and second, how user 

applications use the SCC.  These design criteria must be met within the WinNT and Intel 

x86 architectures.  Fortunately, WinNT provides the well-defined driver structure for 

accessing the hardware, as well as an interface for applications to access driver services. 
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Figure 4: SCC Software Architecture 

 

 The SCC support software structure follows a layered approach as illustrated in 

Figure 4.  This layered architecture assures that each level is isolated from changes in the 

others.  Each interface for layer 0 through layer 2 is dictated by Microsoft.  Adhering to 

these standards provides portability across the various hardware platforms that support 

WinNT.  The layer 0-1 interface is defined by HAL functions.  These functions are only 

accessible while the CPU is in privileged mode.  The layer 1-2 interface is defined by the 

WIN32 file access functions: CreateFile(), WriteFile(), ReadFile() and 
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DeviceIoControl().  No other functions are provided to access the driver from user mode.  

Finally, the layer 2-3 interface is controlled by the SCC Array Interface Library (AIL).  

Its purpose is to provide user applications with a consistent interface to the SCC services 

without requiring specific knowledge of the SCC hardware.  It also provides portability 

by obscuring the specifics of driver calls. 

 

3.2 SCC PCI Driver 

The software system requires a Windows NT device driver to communicate with 

the SCC ACU via the host PCI bus.  This component is not optional, as memory mapping 

and privileged mode instructions are required to interface with the SCC memory. 

3.2.1 Design Criteria 

The primary goal of the driver development was to optimize the code to increase 

overall system performance.  The optimization effort focused on the IOCLT dispatch 

code since this is the only code that has a bearing on runtime performance.  The speed of 

the initialization and de-initialization code is irrelevant since their execution occurs when 

the SCC is unusable.  In the end, not much performance was gained from hand tuning the 

driver.  It is impractical to write the driver in any language other than C; recent C 

compilers generate execuTable code almost as efficiently as that produced by a good 

assembly language programmer.  The CPU cache structure can alleviate some of the 

inefficiencies as well. 

The driver was developed to accommodate reentrancy and multiprocessor 

operation.  These capabilities were designed in to provide a path for future system 

expansion.  The only coding overhead incurred is ensuring all variables are allocated 
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from the stack and adding a spin lock to driver dispatch function to ensure exclusive 

access. 

3.2.2 Implementation 

There are essentially four types of WinNT drivers, buffered I/O, direct I/O, 

memory mapped, and DMA based.  The SCC PCI Driver provides functionality to 

support the first three modes in the same driver.  This is possible by defining IOCTLs to 

support the three modes in the same source file.   

The SCC PCI Driver implements the essential WinNT driver functions: a driver 

entry point, device I/O control dispatcher, and a driver unload routine.  These are now 

described. 

  DriverEntry() is the driver entry point.  It has four major responsibilities: 

1) PCI bus enumeration.  It probes the PCI bus for SCC cards and creates a device object 

for each SCC card found. 

2) Creating a symbolic link so that the driver can be accessed by WIN32 file functions. 

3) Initializing SCC hardware for use and mapping its memory into kernel memory. 

4) Initializing the driver function dispatch Table. 

WIN32 DeviceIoControl() calls (which generate IRP_MJ_DEVICE_CONTROL 

IRPs) are handled by the driver Dispatch() function.  It supports nine device I/O control 

functions (IOCTLs), but only four warrant discussion.  The first pair invoke 

IOCTL_SCC_MAP_USER_PHYSICAL_MEMORY (which calls MapMemory())  and 

IOCTL_SCC_UNMAP_USER_PHYSICAL_MEMORY (which calls UnMapMemory()).  

The MapMemory() function maps the SCC memory into the calling application’s 

memory by using several HAL functions.  The virtual address is return to the caller in the 
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pointer supplied by the call.  An excellent example of this is provided in Dekker and 

Newcomer [6] page 375.  UnMapMemory() simply removes the mapping.  The other pair 

is IOCTL_SCC_LOAD_DATA_BLK and IOCTL_SCC_READ_DATA_BLK.  These 

IOCTLS perform the block transfers to and from the SCC memory.  These are 

noteworthy because they use the HAL functions 

WRITE_REGISTER_BUFFER_ULONG() and 

READ_REGISTER_BUFFER_ULONG() to effect the transfer.  The code behind these 

functions is not remarkable (simply assembly language loops), but the functions should 

be used in order to ensure driver portability.  The implementation of these functions may 

vary across NT platforms, but the function prototypes are immuTable. 

The driver unload function, DriverUnload(), must reverse the set-up performed by 

the DriverEntry() routine.  The cleanup process consists of five steps: 

1. Delete the symbolic links.  This deregisters the driver with the NT Object Manager.  

The driver can no longer be reference by name. 

2. Disable the SCC board interrupts and disconnect the driver ISR from the NT ISR list. 

3. Unmap the SCC board memory from kernel address space. 

4. Release the resources that were assigned by HalAssignSlotResources(). 

5. Release the device object. 

The driver functions for creating/opening (IRP_MJ_CREATE), closing 

(IRP_MJ_CLOSE), reading data (IRP_MJ_READ), and writing data (IRP_MJ_WRITE) 

to a device are stubbed.  They have no significant function in this driver, but they must be 

implemented according to WinNT driver standards. 
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3.2.3 Validation Testing 

The SCC driver functionality was verified in several ways.   One is that all driver 

development has an inherent “Go. No Go.” test referred to as the “Blue Screen of Death”.  

Drivers execute unprotected in kernel mode.  If they contain an error, the results are 

typically devastating to WinNT.  If the error is not too severe, the kernel catches it and 

displays the “Blue Screen of Death”.  If the error is server enough, the computer locks up 

and the effects are completely indeterminate. 

The SCC Driver functionality was more methodically tested using two test tools.  

The basic functions were tested using Microsoft WinDBG.  This debugger displays 

messages embedded in checked build drivers if the debugger is active and the debug 

feature of WinNT is enabled at boot time.  Otherwise, message support is disabled.  Test 

messages are embedded in the major blocks of the SCC PCI driver.  A test application 

was written to exercise all of the SCC driver functions and the debug output was 

monitored with WinDBG.  This method proves basic driver functionality, but does not 

verify memory transfer operations. 

Since the SCC board is still under development, it is desirable to have a known 

good target to verify memory operations.  The Cyclone i960 development board provides 

a suiTable environment for this task.  The board provides an Intel i960 CPU with an 

onboard debug monitor and a user interface via a serial port.  The i960 also has a PCI 

interface that provides access the board DRAM.  The validation test consists of a test 

application executing on the host that uses the driver to perform a write/readback/verify 

test on the i960 memory.  The i960 debug monitor is used to examine the i960 memory 

for the proper test patterns. 
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3.3 Array Interface Library 

3.3.1 AIL Design 

The purpose of the Array Interface Library (AIL) is to provide programmers with 

a consistent environment for accessing the SCC.  This serves several purposes.  First, the 

programmer is not required to know the inner workings of the SCC hardware.  The 

application programming interface (API) allows data and/or programs to be sent/ 

retrieved from the array by making a function call.  Second, applications are completely 

insulated from changes to the hardware and/or device driver.  A library port allows the 

system to target alternate hardware platforms and/or host operating systems.  The AIL 

was designed to be fully reentrant and to support multiple SCC cards in the host platform. 

There are four versions of the AIL available: 

1. Static linked C library 

2. Static linked C++ library 

3. C WIN32 Dynamic Link Library (DLL) 

4. C++ DLL 

This provides programmers with as many implementation options as possible.  In 

addition, this provides a means to compare the system level performance of static 

libraries vs. DLLs and C vs. C++. 

The different versions of the AIL are derived from the static link C library source 

stream.  A stub was added to facilitate DLL use and a C++ wrapper class was developed 

to support object oriented programming.  For the remaining discussion, AIL will refer to 

the static linked C version of the library. 

The AIL provides API functions to: 
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1. Read and writes blocks of data from/to SCC memory. 

2. Read the SCC driver information. 

3. Load basic program blocks into SCC memory and execute them. 

4. Issue directives to the ACU. 

5. Wait for and process feedback from the SCC array. 

These functions segregate into two general categories: low level primitives to 

interface to driver and perform basic data transfers, and higher level, SCC specific 

interface functions.  The following sections discuss the design concepts of the AIL 

functions and are not intended to be an AIL tutorial. 

3.3.2 Library Interface Functions 

SccLibraryOpen() opens a connection to the specified SCC.  It returns a handle 

that uniquely identifies this connection and this handle used by the other library functions 

to identify which SCC they are accessing.  The complement function is 

SccLibraryClose().  This function must be called when the connection to the SCC is no 

longer needed. 

The definition of the handle is arbitrary from the user viewpoint; it is simply a 

way to identify with which SCC card to communicate.  From the AIL implementation 

standpoint, the handle is actually the WIN32 handle returned from the CreateFile() call 

that opened the SCC driver.  This is a good example of the complex implementation 

details obscured from the application programmer by the AIL. 

The AIL provides the SccWriteBlock() and SccReadBlock() functions to facilitate 

transfer between user applications and the SCC.  These are the only functions that user 

applications should use for data exchange with the SCC, mainly because they obscure the 
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transport mechanism.  Based on the experimental test results presented in Chapter 4, the 

AIL uses the services of the direct I/O driver for data transfer.  In this configuration, the 

WinNT I/O Manager provides addition protection against programming errors.  

In the ideal AIL implementation, all other AIL functions would use these low-

level data transfer primitives.  This would minimize the impact of changing layer 1 

drivers.  However, the current AIL functions call the WIN32 driver interface functions 

directly in an effort to improve performance.  This optimization, however, is shown to be 

unnecessary based on the library performance test results in Chapter 4. 

The ACU interface functions are built on the low-level primitives and they 

provide the programmer hardware-independent methods for controlling the SCC ACU.  

They obscure details such as control and status register format and memory address.  A 

description of the functions is listed in Table 2. 

 

Function Description 
SccWaitOnCondition() This function polls the SCC status register until the 

conditions specified by the bit mask are met.  This is used 
primarily to stall the main application thread until array 
feedback is available. 

SccReadFeedback() This function returns the current value of the SCC feedback 
queue. 

SccWriteImmediate() This function inserts an immediate value into the SCC input 
queue. 

SccReadStatusRegister() This function returns the current value of the SCC status 
register. 

SccWriteStatusRegister() This function writes a value to the SCC status register. 

Table 2: List of SCC Interface Functions 

 

A group of functions is provided to interface with the layer 1 driver (See Table 3).  

These functions are provided primarily for testing purposes. 
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Function Description 
SccGetDriverInfo() This function returns the copyright and version information from 

the driver.  It can be used as a simple test to verify driver 
operation. 

SccGetPciInfo() This function returns the PCI bus information detected by the 
driver during bus enumeration. 

SccGetCardCount() This function returns the number of SCC boards found on the PCI 
bus during bus enumeration. 

SccResetCard() This function forces the SCC board to reset. 
SccGetStatus() This function returns the current status of the driver.  This is 

currently limited to indicating if another application has locked 
the SCC board as a resource. 

Table 3: List of Driver Interface Functions 

 

The AIL provides two functions to gather system performance information and 

are used here to gather test data during the system performance evaluation.  The function 

SccGetTimer() calls into the driver to return the value of the CPU 64 bit performance 

counter.  The instruction (RDTSC) used to read this timer is a privileged mode 

instruction so it must be executed from within the driver.  The function 

SccGetElapsedTime() returns the time the previous driver call took to complete.  This 

was used here to determine the amount of time data transfers to the SCC took from the 

perspective of the driver. 

The AIL also contains a pair of functions to memory map the SCC memory 

directly into user application memory.  SccMapMemory() performs the map function and 

SccUnmapMemory() frees memory when it is no longer needed.  These functions are 

provided primarily for use in the memory mapped layer 1 driver and should not be used 

by user applications.  The main problem is there is no protection for the kernel memory 
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when mapped to user memory space and an errant program could easily corrupt WinNT 

operation. 

The AIL software architecture provides a flexible, modular interface to the SCC.  

Each layer provides an avenue for portability and protection from errant programming.  It 

would be simple to port the software system to a non-Intel WinNT environment; 

essentially a recompile.  For other operating systems, however, the driver (which is 

inherently OS dependent) would have to be rewritten; however, its basic structure could 

be applied to UNIX and LINUX. 

 

3.4 Benchmark Applications 

The AIL affords the application programmer a high degree of flexibility in how to 

use the SCC.  The question becomes, how much does all this flexibility cost?  Part of the 

SCC software system is a series of benchmark applications to measure the performance 

of the driver and the AIL components.  More specifically, they attempt to quantify the OS 

overhead associated with each WinNT driver type discussed previously as well as the 

library implementation overhead (static linked library vs. DLL).  The goal is to determine 

what effect drivers and/or libraries have on the overall system performance.  The 

benchmark applications specifics are discussed in the next chapter. 
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4 Results 

This chapter discusses experimental results in this thesis.  The primary goal here 

is to investigate the effects of the host software implementation on the SCC performance.  

This is accomplished by executing benchmark applications that perform various sized 

block transfers targeting a simulated SCC.  The Cyclone i960 development board is used 

for testing since the SCC is still under development.  The i960 board also has the added 

advantages of providing an onboard debug monitor and a known good PCI interface. 

The benchmarks used different combinations of WinNT drivers and interface 

libraries to test the impact of various software implementations on the SCC system.  Data 

transfer times are measured from the application, driver and PCI bus perspectives in an 

effort to identify possible I/O bottlenecks. 

The rest of the chapter presents the testing methodology followed by the SCC 

driver, the AIL library overhead, and finally the PCI bus utilization test results. 

 

4.1 Testing Methodology 

The research focuses on determining the effects of WinNT overhead on system 

performance.  There are two hypotheses under study.  The first is that memory mapped 

drivers have a significant performance advantage over both the buffered I/O and direct 

I/O drivers.  This seems intuitive, as the involvement of the I/O Manager in data transfer 

operations must be slower than writing directly to the target memory.  The second 

hypothesis is that the statically linked implementation of the AIL provides better 

performance than the C++ and DLL versions.  The rationale is that the code from static 

linked libraries is directly linked into the application; it is executed from the same code 
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segment as the rest of the application.  On the other hand, WinNT DLLs are loaded into 

kernel memory on demand and applications resolve the execution addresses at runtime.  

C++ versions are tested primarily because of the long-standing debate as to its impact on 

code efficiency. 

A suite of benchmark applications was developed to test these hypotheses.  The 

benchmarks are standard WIN32 console applications written to test the PCI throughput 

between the host CPU and the SCC.  PCI bus throughput is considered the critical factor 

in determining overall system performance since SCC array and host CPU operating 

frequencies are significantly faster than the PCI bus.  The benchmarks are designed to 

write then read back data blocks from the i960 board (simulated SCC).  The block sizes 

range from 4 bytes to 2 MB with the block size doubled for each iteration.  The 

benchmark pseudo code is: 

Main() 
{ 
 for(  block_size=4; block_size<=2MB; block_size*=2 ) 
 { 
  read timer for app start time; 
  do driver transaction; 
  get driver run time; 
  read timer for app end time 
  Tapp = Tend – Tstart; 
  Write numbers to log file; 
 } 
} 
 

Block transfer time is an important performance measure for all systems that use 

coprocessor cards.  The SCC is designed for vision and graphics applications.  These 

types of problems require large blocks of data in the form of images to be frequently 

moved between the host and SCC.  Code segments also have to be loaded from the host 

to the SCC.  Particularly for the SCC, small block transfers are also important.  The user 
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applications on the host regularly send directives to the ACU and write to the control 

register.  User applications also read the SCC status and feedback registers to control 

program flow.  These operations are all time critical. 

Three performance measurements are taken by the benchmarks.  First, the block 

transfer time is measured from the application viewpoint.  This is the most important 

parameter since it reflects the total runtime of the application.  It includes OS overhead, 

compiler and library inefficiencies, and system bus utilization (assuming a constant 

workload).  The second measurement is the time spent in the driver performing the data 

transfer.  The purpose of this measurement is to quantify how much OS overhead is 

associated with the application and how efficiently the driver executes.  In theory, the OS 

overhead is the time in the driver subtracted from the value of the application timer.  The 

final measurement is the amount of time the transfer actually takes on the PCI bus.  This 

can be measured using a PCI bus analyzer; in the case of this investigation an HP 1671E 

with a FuturePlus Systems FS2005 PCI probe.  This is a difficult measurement to take, 

but it shows the actual transfer time.  This value subtracted from the application time and 

the driver time represents the OS overhead for the respective operation.  The application 

and driver overhead measurements indicate where the system inefficiencies reside. 

Collecting accurate timing information is challenging.  WinNT provides software 

timers, but they suffer from OS overhead when updating when they are read.  They are 

also have relatively low resolution; on the order of milliseconds.  The PC hardware 

provides timers that would be useful except that the WinNT VM system prevents them 

from being accessed directly by user applications.  Also, there is no way to know if or 

how these timers are allocated by WinNT. 
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The solution is to use the 64 bit performance timer supplied by the CPU.  This 

timer is reset when the CPU is reset and incremented on every instruction cycle.  

However, this method has some limitations.  Mainly, it uses the RDTSC instruction, 

which is native to Intel Pentium and above processors.  RDTSC is a privileged mode 

instruction so it must be invoked within the context of a driver.  This skews the accuracy 

of the measurement.  The skew has two components.  First, there is the code overhead of 

calling the driver and the driver handling the call.  This can be accounted for by counting 

instruction cycles expected from the assembly language listing and then subtracting them 

from the timer value.  This does not completely account for the call overhead since any 

part of the operation can be preempted.  This is the second component of the 

measurement skew and it is exact impact is indeterminate.  As long as WinNT is running, 

there is potential OS overhead associated with every operation.  The exact effects vary 

with workload, OS configuration, interrupt frequency, and hardware configuration. 

The WinNT workload directly affects the performance measurements.  WinNT 

requires certain processes be executing for the system to function (see Chapter 2).  For 

testing purposed, all nonessential user applications and system processes were 

terminated.  The goal was to provide a lightly loaded system to get the best performance 

possible though this is not a normal system configuration.  It is also important to restrict 

the workload to avoid loading the PCI bus with hard drive and system peripheral 

accesses.  These directly contend with the benchmark applications for use of the PCI bus 

and skew the test results. 
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4.2 Test Procedures 

The test environment is shown in Figure 5.  The system contains the PC under 

test, a PC to access the Cyclone i960 debug monitor and an HP1671E logic analyzer with 

a FuturePlus Systems FS2005 PCI probe. 
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Figure 5: Hardware Test Setup 

 

The Test PC is loaded with WinNT 4.0 and the benchmarks.  All extraneous 

processes and services are terminated, but as previously mentioned, some system 

processes are required for WinNT to operate.  The FS2005 probe is placed in any open 

PCI slot in the Test PC.  The cables from the HP1673E logic analyzer are connected to 

the FS2005 as demonstrated in the FS2005 User Manual.  The PCI bus monitor software 

is loaded into the logic analyzer by selecting the “CP256_1” configuration file on the 



36 

system disk, selecting “Load from flexible disk” followed by pressing the “Execute” 

button.  The trigger is configured as described in FuturePlus application note “Capturing 

PCI Bus Transactions.”  The i960 board should also be inserted into a PCI slot on the 

Test PC.  The serial line is connected from the RJ-11 jack on the i960 board to a COM 

port on the Monitor PC.  Note: plugging the i960 into the FS2005 expansion connector is 

not recommended.  The electrical characteristics of PCI are such that the impedance of 

the extra trace lengths on the FS2005 could corrupt the signals supplied to the i960 board. 

The main purpose of the Monitor PC is to provide a serial console for accessing 

the i960 debug monitor.  Its use is not required while running the benchmark tests, but it 

can be used at any time to verify the correctness of the data transfers.  Windows 

HyperTerm can be used to communicate with the debug monitor.  The communication 

parameters are 115 kbps, 8 data bits, 1 stop bit and no parity.  To start the communication 

session with the debugger, press the <Enter> key 8 times.  The debug monitor supports a 

variety of commands; however, the most useful commands are “dd” (display 

doubleword) and “mo” (modify memory contents).  These commands are described in 

detail in the Intel "MON960 Debug Monitor User’s Guide" (Document Number: 484290-

006). 

The Monitor PC can optionally have the WinNT kernel debugger (WinDBG) 

installed.  WinDBG is used mainly for driver development; not performance testing.  In 

fact, WinDBG was disabled during testing because of overhead it introduces into the 

system.  Enabling the debug features of WinNT slows it down immensely.  In addition, 

debugger communication occurs at 115 kbps over the serial port.  This greatly affects 

system performance. 
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The following sections present the results of the benchmark tests discussed in 

Section 4.1.  The driver test results are analyzed first, followed by the library overhead 

tests and finally the bus utilization test.  Tests were executed on a 133 MHz Intel Pentium 

processor with an Intel Triton II chipset (hereafter referred to as Pentium) and a 1.2 GHz 

AMD Athlon with a VIA KT133A chipset (hereafter referred to as Athlon).  This seems 

like an unfair comparison, but the disparate systems (CPU and chipset) were selected 

because there is roughly an order of magnitude difference in their processing capabilities.  

The goal is to expose possible benchmark CPU dependencies. 

 

4.3 Driver Test Results 

The following sections present the throughput results for the memory mapped, 

direct I/O and buffered I/O drivers.  The benchmark applications did not use the AIL 

functions; they call DeviceIoCtrl() directly.  This was done to remove library related 

performance issues.  The AIL impact on system performance is presented in Section 4.4. 

4.3.1 Memory Mapped Driver 

This section presents the results for the memory mapped driver.  The designation 

memory mapped driver is slightly misleading.  The driver is not actually involved in the 

data transfers.  The only service it provides is to map the i960 memory into the 

benchmark’s user memory space.  The memory mapping function must be implemented 

in this manner since kernel mode privileges are required to call the HAL mapping 

functions.  This driver was expected to have the best performance since the applications 

are writing directly to the i960 memory without the overhead of involving the I/O 

Manager. ????????????????????????? 
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The write throughput results for the Pentium and Athlon are shown in Figures 6 

and 7.  No results for the driver execution time are presented, as the driver is not involved 

in the data transfers. 
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Figure 6: Memory Mapped Driver Write Throughput on Pentium 



39 

0

5000000

10000000

15000000

20000000

25000000

30000000

1 10 100 1000 10000 100000 100000
0

1E+07

Block Size (bytes)

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Write

 
Figure 7: Memory Mapped Driver Write Throughput on Athlon????? 

It is easily gleaned from these figures that the write throughput is substantially 

lower than PCI theoretical peak throughput of 132 MB/s.  This is attributed mainly to 

operating system overhead, though the shared system bus contributes a small component. 

The read throughput results for the Pentium and Athlon are illustrated in Figures 8 

and 9.  These results are invalid????? for the purposes of this study because the data 

transfer times for all block sizes are identical.  The most plausible explanation for this is 

that both CPUs are reading from cache even thought the driver designates the i960 

memory as non-cacheable.  This poses a serious problem for the SCC which uses 

memory mapped control and status registers.  Writes and reads are required to return the 

current state of the i960 memory otherwise the host cannot make proper control 

decisions. 



40 

0

5000000000

10000000000

15000000000

20000000000

25000000000

30000000000

35000000000

1 10 100 1000 10000 100000 1E+06 1E+07

Block Size (bytes)

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Read

 
Figure 8: Memory Mapped Driver Read Throughput on Pentium 
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Figure 9: Memory Mapped Driver Read Throughput on Athlon 

The test results for this driver were at best disappointing.  As will be shown in the 

following sections, this driver does not have a performance advantage over the buffered 
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I/O or the direct I/O drivers.  This is completely counterintuitive since accessing memory 

directly is typically faster than involving a third party (the I/O Manager in this case) in 

every data transfer.  The best possible explanation for this is based on the WinNT 

scheduling priority scheme (see Solomon [4] page 187 or Dekker and Newcommer[6] 

page 10 for background information).  Device drivers always run at a higher priority than 

user applications; therefore, they are less likely to be preempted.  It is possible that 

performance of the benchmark could be improved by raising its thread priority.  

However, this violates the design principle of not monopolizing the CPU stated in the 

introduction and could destabilize the host operating system environment. 

4.3.2 Direct I/O Driver 

As described in Chapter 2, the direct I/O driver is a hybrid of the memory mapped 

and buffered I/O drivers.  Data input to the driver is copied into a kernel buffer before 

passing it to the driver.  The user supplied output buffer is directly mapped into kernel 

memory; eliminating the need to copy the receive data from a kernel buffer to the user 

buffer. 

The write performance for this driver is comparable that of the buffered I/O 

driver.  This is to be expected since they both buffer user input.  The disparity between 

the write and read throughputs is attributed to write merge logic either in the CPU or the 

North Bridge.  This was verified by modifying the driver to write 8 bit words instead of 

32 bit words; the write throughput was unchanged. 
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Figure 10: Direct I/O Driver Throughput for Pentium 
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Figure 11: Direct I/O Driver Throughput for Athlon 
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The read throughput for the direct I/O driver is slightly higher than for the 

buffered I/O driver.  The typical read throughput for both the Pentium and Athlon using 

the direct I/O driver was approximately 4.1 MB/s.  This same measurement using the 

buffered I/O driver was 3.4 MB/s for the Pentium and 4.0 MB/s on the Athlon.  The 

difference is attributed to the direct I/O driver eliminating the output buffer copy. 

The time spent in the driver vs. the time spent in the benchmark (see Figures 12 

and 13) affirms that the benchmark itself has little impact on the throughput.  Its only 

overhead is a call to DeviceIoCtrl(); the remaining part of the transfer is handled by the 

I/O Manager and the driver. 
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Figure 12: Direct I/O Driver Percent Time in Driver for Pentium 
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Figure 13: Direct I/O Driver Percent Time in Driver for Athlon 

The Pentium time-in-the-driver ranges from 40 µs (1 byte) to 61 ms (2MB) for 

writes and 49 µs to 498 ms for reads.  The Athlon time in the driver ranges from 2.7 µs to 

74 ms for writes and 4.4 µs to 511 ms for reads.  It is interesting that the Athlon is faster 

for the small transfers, but the CPUs have similar performance for the larger blocks.  This 

is quite unexpected since the Athlon is an order of magnitude faster than the Pentium. 

The implication is that software is the limiting factor for smaller transactions and 

hardware limits larger transactions.  This assertion is supported by the fact that the 

Athlon processes small transaction an order of magnitude faster than the Pentium, which 

corresponds to the difference in their CPU speeds.  As the transaction size increases, 

hardware becomes the limiting factor.  This explanation is based on the throughput 

performance plateau experienced by both CPUs where they exhibit the same peak 

throughput (see Figures 12 and 13).  However, the Athlon reaches this plateau when the 
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block size is greater than 1024 bytes while the Pentium does not reach it until 10 kbytes.  

Again, we have an order of magnitude difference.  The conclusion is that both CPUs are 

capable of outperforming some part of the PCI interface logic, presumably the North 

Bridge. 

4.3.3 Buffered I/O Driver 

As anticipated, the buffered I/O driver proved to be the slowest driver.  This is 

illustrated by Figures 14 and 15.  One interesting feature of these graphs is that the write 

throughput is the same for both CPUs and it is identical to the results for the direct I/O 

driver.  This is to be expected since both drivers copy the user input into a kernel buffer.  

In addition, the maximum write throughput is similar to the peak write throughput of the 

memory mapped driver.  This is significant since the memory mapped driver writes 

directly to the i960 while the buffered I/O driver has to copy the input buffer before 

writing to the target.  This further supports the assertion made in Section 4.3.2 that write 

merge logic is employed in the PCI interface logic. 
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Figure 14: Buffered I/O Driver Throughput for Pentium 
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Figure 15: Buffered I/O Driver Throughput for Athlon 
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The read throughput for the buffered I/O driver is slightly lower than for the direct 

I/O driver.  The typical read throughput for the buffered I/O driver was 3.4 MB/s for the 

Pentium and 4.0 MB/s for the Athlon.  The direct I/O driver was approximately 4.1 MB/s 

for both the Pentium and Athlon.  As discussed in Chapter 2, this inefficiency is 

attributed to the I/O Manager copying the received data from kernel memory into the user 

output buffer.  This subtle performance degradation is not exposed by the driver time 

measurements because the copy occurs in the I/O Manager which is outside the context 

of the driver.  The I/O Manager overhead is accounted for by the applications runtime. 

The driver time results in Figures 16 and 17 reaffirm that the benchmark has 

minimal effect on the throughput. ?????????? Most of the CPU time is spent in the driver 

performing data transfers.  This is consistent with the results for the direct I/O driver.  
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Figure 16: Buffered I/O Driver Time in Driver for Pentium 
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Figure 17: Buffered I/O Driver Percent Time in Driver for Athlon 

The buffered I/O driver was modified to perform 8 bit data transfers instead of 32 

bit transfers.  The write throughput was unchanged, further supporting the assertion that 

write merging logic is present in the PCI logic.  Read throughput dropped by a factor of 

four, as expected, indicating that the i960 is not prefetching read data. 

4.3.4 Overall Driver Test Analysis 

At a high level, the driver tests share several common results.  First, there is no 

significant performance difference among the different driver implementations.  This was 

completely unexpected.  It was anticipated that the memory mapped driver would provide 

the best performance. 

Second, the maximum data throughput is significantly less than the peak PCI 

throughput.  This is to be expected since the peak PCI throughput measurement in based 

on using dedicated hardware with no OS overhead.  However, the degree of performance 
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degradation was severe even in comparison to the PCI Pamette [10].  In a system 

configured similarly to the Pentium, the PCI Pamette had a PIO write throughput of 65 

MB/s and a read throughput of 15 MB/s.  This is a stark contrast to the 25 MB/s write 

throughput and 4.5 MB/s read throughput derived from the SCC driver tests. 

Finally, it is interesting that the Pentium and Athlon have the same peak 

throughput despite the Athlon being ten times faster than the Pentium.  This result is 

expected to an extent because the PCI bus--not the CPU--will eventually limit the data 

transfer rate.  The unexpected result is that the CPUs consistently reached the same peak 

throughput at different block sizes independent of driver implementation.  This is because 

the CPUs outperformed the PCI interface logic. 

4.3.5 DMA Driver 

The results from the SCC driver tests indicate that programmed I/O has severe 

performance limitations.  The next logical step (which is beyond the scope of this thesis) 

is to develop a DMA based driver.  The DMA controller would relieve the host CPU 

from transferring data a word at a time as well be able to consolidate data transactions 

into PCI burst bus cycles.  The DMA controller and North Bridge designs would need to 

be examined to determine how to best use these capabilities.  The issue is then 

determining how to force the DMA to use PCI burst cycles from within a WinNT system. 

Theoretically, the DMA write throughput should be better than depending on 

write merging.  The DMA controller is given a definite address, block size and a starting 

time.   In contrast, write merging logic must buffer data, determine whether it can be 

merged, wait for a specified timeout period to ensure no more data is coming, and 
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perform the write transaction.  This overhead has a negative impact on the write 

throughput; however, it is significantly better than writing a word at a time. 

The read throughput has the most potential for improvement by using a DMA 

driver.  Most of the OS overhead experienced by the SCC drivers is eliminated since the 

CPU is longer be involved in the read transfer.  In addition, the DMA controller could use 

PCI burst read cycles to reduce PCI bus overhead. 

A few issues need to be explored before implementing a DMA driver. 

1) The amount of time a device can own the PCI bus must be restricted.  The system bus 

is shared resource and there are system critical components connected to it that must 

be serviced regularly. 

2) The DMA controller allows the host CPU to continue executing after starting the 

transaction.  This is only a performance gain if the CPU has work to perform. 

3) Finally, the SCC driver tests demonstrate a point where throughput plateaus.  This 

must have been caused by a hardware limitation in the PCI interface.  It is possible 

that the DMA controller would encounter this same issue. 

A possible alternative to using the host DMA controller to perform reads is to 

have the target support bus mastering.  In this design, the host programs a DMA 

controller in the target to effect the read transaction.  The target executes the data transfer 

and then signals an interrupt when the transfer is complete.  This design completely 

circumvents WinNT and North Bridge interfacing issues.  The test procedures and 

corresponding results from Moll and Shand [10] on the PCI Pamette seem to validate this 

design. 
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4.4 Library Test Results 

The purpose of the Array Interface Library tests was to determine if the driver 

interface library implementation affected system performance.  Static linked libraries and 

DLLs for both the C and C++ languages were tested using the buffered I/O driver to 

interface to the i960.  The AIL tests were executed on both the Pentium and the Athlon 

for completeness. 

Figures 18 though 25 illustrate the results from the AIL testing.  The results 

depicted match the results in Section 4.3.3 for the buffered I/O driver benchmark, which 

does not use a driver interface library.  This implies that there is no appreciable difference 

between library types, at least at the macro level, although there are known differences at 

the micro level. 
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Figure 18: C++ DLL Throughput for Pentium 
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Figure 19: C++ DLL Throughput for Athlon 
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Figure 20: C++ Static Linked Library Throughput for Pentium 
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Figure 21: C++ Static Linked Library Throughput for Athlon 
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Figure 22: C Static Linked Library Throughput for Pentium 
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Figure 23: C Static Linked Library Throughput for Athlon 
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Figure 24: C DLL Throughput for Pentium 
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Figure 25: C DLL Throughput for Athlon 

The AIL testing shows that driver interface library implementation has negligible 

impact on system performance.  This is a positive result since it allows programmers to 

select the programming language and library types best suited to the application without 

incurring system performance penalties. 

 

4.5 Bus Utilization Results 

The purpose of the bus utilization test was twofold: to measure the fraction of 

time the PCI bus was used for SCC transactions and to determine how long the various 

block transfers take.  Only the latter part of objective as met.  Once testing was 

underway, it was concluded that the PCI bus analyzer traces were too detailed to analyze 

manually.  The scope of the test was therefore limited to a single data set for each driver 

type with the block sizes ranging from 4 to 32 bytes.  The Pentium system was used. 
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The times required to perform read and write transactions are shown in Figures 26 

and 27.  The transfer times can be compared to the theoretical PCI transfer time which is 

calculated as (1+Block_Size)*30 nanoseconds.  This assumes a data word is transferred 

only every PCI clock cycle, which is unrealistic, but it does provide a baseline 

measurement.  The graphs indicate that the actual transfer time is substantially greater 

than the theoretical PCI transfer time. 

0
500

1000
1500
2000

2500
3000
3500

4000
4500

0 50 100 150

Block Size (bytes)

W
rit

e 
Ti

m
e 

(n
an

os
ec

on
ds

)

Memory Mapped
Direct I/O
Buffered I/O
Theoretical

 
Figure 26: PCI Bus Write Time 

The discrepancy between the actual and theoretical write performance illustrated 

in Figure 26 provoked a more detailed analysis of the logic analyzer traces.  The host PCI 

interface uses PCI burst write cycles for data transfers larger than one word; however, it 

was found that the burst size is limited to nine words.  It is presumed that this is done to 

avoid monopolizing the PCI bus. 

The write trace analysis revealed that the i960 is negatively affecting throughput.  

It forces the host to retry burst writes an average of three times before the transaction 

completes successfully.  This, combined with the host feature of using burst cycles for 
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writes of over one word, leads to a write time of approximately 720 nanoseconds for a 

two word write, as opposed to the 128 nanoseconds the write should take.  The effects of 

the retry overhead decrease as the burst length increases, but the host limits the burst to 

only nine cycles. 
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Figure 27: PCI Bus Read Time 

Investigation of the logic analyzer traces further exposed the read performance 

bottleneck illustrated in Figure 27.  First, it was confirmed that there is no read merging 

by the host; this was expected.  The host issues individual PCI read cycles for every word 

read by the host.  The trace also shows that, at least for small blocks, the reads are 

sequential on the bus; i.e., no other device interrupts the string of reads.  This gives the 

illusion of being a PCI burst read, but it is not.  In fact, a PCI burst read would be twice 

as fast as a string of individual reads because it only issues the address once during the 

address phase while the individual read generates an address cycle for every transaction.   

The i960 adds an additional component to the sub-optimal read performance.  It 

forces the host to retry reads an average of three times for every read transaction 
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attempted.  This makes the typical read time for a single word 816 nanoseconds or 

approximately 27 PCI bus clocks.  The i960 performance problem can probably be 

attributed to one of two sources.  First, the i960 DRAM access time may not be fast 

enough to respond in one clock cycle.  This can be alleviated by installing faster memory.  

Second, the i960 effectively dual ports its DRAM so it can be accessed from the PCI bus 

and the i960.  The i960 is executing the debug monitor from DRAM so it is possible that 

the i960 is contending with the PCI bus interface for DRAM access, thus forcing the PCI 

interface to generate a retry. 

 Only the host results have a direct bearing on the SCC design since the SCC will 

have a high performance PCI interface.  The idiosyncrasies introduced into the system by 

the i960 will not be present in the SCC.  However, these results further support the need 

for a DMA driven system as presented in Section 4.3.5. 

Unfortunately, this test did not provide the desired bus utilization metric; 

however, it did explain part of the performance degradation experienced by the 

benchmarks.  When the i960 was selected to be the SCC simulator, the assumption was 

that the i960 could accurately emulate the SCC.  This assumption was proven false.  

These test results also identify pitfalls to be avoided in the SCC hardware design.  
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5 Conclusion 

5.1 Discussion 

The results are admittedly different than anticipated.  The original hypothesis was 

that the memory mapped driver would have a significant performance advantage over the 

other two drivers.  As the driver testing showed, the memory mapped driver had no 

advantage over the buffered I/O driver.  This is completely counterintuitive and had these 

test not been run, the belief would still hold.  Since there is no performance penalty, the 

better design choice is to use the direct I/O driver, which allows the NT I/O Manager to 

protect the kernel memory from errant memory accesses.  It is important to note that the 

SCC memory is still mapped into kernel memory for all driver types.  The manner in 

which data is passed to the driver is independent of this mapping. 

At a macro level, the choice of library implementation was discovered to have no 

impact on system throughput.  This is contradictory to the second hypothesis that DLLs 

and C++ code add overhead to applications.  At the micro level, these programming 

methods generate a small amount of code overhead; however the test results proved this 

overhead to be negligible.  In the case of DLLs, the results make sense.  Their only 

overhead is loading them into memory.  Once loaded, they function more or less 

identically to statically linked libraries.  The same result vindicates the much maligned 

C++ language as well as since no measurable difference was detected between the C++ 

and C benchmark implementations. 

Finally, the most surprising result is that the PCI throughput from the application 

perspective is significantly less than the PCI theoretical 132 MB/s peak.  This is 

attributed to operating system overhead and the shared nature of the PCI system bus.  The 
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multitasking, preemptive nature of WinNT has the negative side effect that no application 

or device driver can be guaranteed exclusive access to the CPU or system bus.  The best 

case is that the driver has uninhibited access to the system bus and the performance 

degradation is due solely to the WinNT Scheduler occasionally executing.  This is only 

possible in a lightly loaded system.  In the worst case scenario –and the more realistic- 

WinNT drivers will be preempting each other in response to repeated interrupts, the VM 

Manager will be paging to the hard drive over the PCI bus, and high priority tasks will 

preempt the user application.  This latter scenario more closely models the environment 

in which the test results were collected. 

As it turns out, the hypotheses posed in Chapter 4 were proven false.  The 

implications of the test results are that the PCI bus throughput is seriously hampered in 

the proposed host environment and that the proposed software solutions are inadequate to 

solve the problem.  The issue seems to stem from the nature of WinNT itself.  It is a 

multitasking environment that must coordinate the use of all host system resources.  This 

flexibility comes at the cost of system performance.  

The main contribution of this thesis is a generic protocol for evaluating OS 

overhead on system performance.  The testing methodology is flexible enough to be 

applied to other OS’s and bus architectures.  The significance of this is that most related 

work focuses on optimizing the system from outside the host; no effort was placed on 

evaluating the host itself.  Their overall performance could be enhanced by applying the 

insights derived from this research. 

Another contribution of this research effort was to create a generic programming 

environment for accessing devices on the PCI bus.  Though the work was done in the 
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context of the SCC project, there are no constraints to keep it from being expanded to 

support additional devices.  The AIL allows SCC applications to be ported easily to new 

platforms and/or OS’s; only the device driver (which is inherently OS dependent) would 

need to be reworked. 

 

5.2 Future Work 

The ideas and results presented by this research pose several new questions that 

could serve as the basis for future investigation.  First, the test procedures/ methodologies 

presented are architecture independent.  A natural extension to this research is to test 

other candidate host platforms, interconnect buses, and OS’s.  This would quantitatively 

identify optimal coprocessor host platforms.  Second, an important piece of work 

paramount to using the proposed system is to augment the SCC compiler to use the PCI 

support developed here.  This compiler would have to generate optimized code streams 

for both the host CPU and the SCC array.  It would also have to schedule the loading of 

basic blocks and manage memory usage.  Finally, it would be interesting to develop a 

method of networking SCC hosts.  This would allow the SCC to be used to solve larger 

problems.  A potential starting point would be to use Parallel Virtual Machine (PVM) 

developed for creating a MIMD network from UNIX workstations or the Resource 

Manager concept proposed by Jean et al. [12]. 
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Appendix A: SIMD Coprocessor Card (SCC) 

The SIMD processing model is best suited for massively data parallel applications 

with relatively high compute to I/O instruction ratios.  Candidate applications include 

computer vision, graphics, and DNA genome string matching.  The power of this 

architecture can be seen when the number of processor elements (PE) is equivalent to the 

size of the data set. In this situation, component-wise operations on parallel variable 

elements can be done simultaneously. Even in the situation where the number of elements 

in the parallel variable is greater than the number of PE’s, the speedup, compared to a 

sequential algorithm, is immense. 

The SIMD architecture contains a single control unit with multiple PE’s.  The 

PE’s are slaves to the control unit and cannot fetch or interpret instructions. The PE’s are 

basically arithmetic logic units (ALU) capable of performing logic, arithmetic, and data 

transfer operations within their own memory space.  They all perform the same operation 

in lockstep under the direct control of the control unit.  Inter-PE communication is 

coordinated by the control unit as well.  The advantage of this type of architecture is in 

the ease of adding more memory and PE’s to the system. The disadvantage is the 

computing overhead of the control unit managing memory exchanges. 

This appendix discusses several issues associated with the SIMD architecture and 

poses potential solutions.  It then presents the design for the SIMD Coprocessor Card 

(SCC) based on work performed by Herbordt et al. [1]. 
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A.1 SIMD Issues 

SIMD PE’s can be built with operating frequencies in excess of 1 GHz [1].  The 

main problem is keeping them busy, i.e., the host must determine which instructions to 

issue and issue them faster than the array executes them.  The inherent mismatch between 

host and array execution frequencies makes it difficult to maintain high array utilization: 

either the instruction issue rate is very low or PE data locality is compromised.  The PE 

data locality issue is further compounded by the fact that the data working sets for most 

useful SIMD applications exceed the physical resources provided by the PE array.  The 

following issues must be understood and addressed in order to optimize the performance 

of SIMD systems: 

1) Instruction distribution latency.  The host must be able to issue instructions to the PE 

array at a sufficient rate to maintain high utilization.  Otherwise, performance 

advantages are lost because of array idle time. This issue also pertains to data 

transaction targeting array memory. 

2) Instruction issue latency. The host executes the main thread of the SIMD application.  

It controls program flow based on feedback from the array creating control hazards. 

3) Application working set mapping to physical PE’s or tiling.  Data and instruction 

locality are a key issue. 

A.1.1 Instruction Distribution Latency 

Assuming that the array data needs can be serviced by a standard cache/ main 

memory hierarchy, the next challenge faced by SIMD systems it to maintain high array 

utilization.  PE’s can have operational frequencies up to 1 GHz [1] so the array host 
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instruction issue frequency must be comparable or all performance improvements are 

negated. 

The first approach would be to have a standard PC host issuing instruction 

directly to the array using an industry standard bus.  The drawback to this approach is 

that the array would be idle most of the time since the bus bandwidth is significantly less 

than the PE execution frequency.  Table 1 lists the bandwidth for the most common PC 

buses. 

A significant improvement to the previous approach would be to have the host 

issue macro instructions that would be expanded in hardware to array micro instructions.  

This type of instruction expansion has been previously used and was shown to 

significantly reduce the bus bandwidth required for instruction issue.  This effectively 

decouples the array and host operating frequencies.  The problem with this solution is it 

still relies on the host issuing one instruction at a time which could leave the array idle if 

the macro instruction expansion ratio is low.  In an ideal system, the host would 

determine which instruction to issue before the array completes the previous operation.  

This scenario is unlikely given the asymmetric, multithreaded nature of SIMD 

applications in which the host must issue instructions based on feedback from the array.  

Assuming a 1 GHz array and 1:10 macro instruction expansion ratio, the host would have 

to issue instructions at a rate of 100 MHz.  None of the standard system buses in Table 1 

can support this bandwidth requirement.  Even a 1:50 expansion would require 20 MHz 

of system bus bandwidth which only PCI and VESA can easily accommodate.  These 

measurements neglect to account for OS and/or application overhead.  The instruction 

I/O bottleneck must be removed for the SIMD system to achieve optimal performance. 
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A.1.2 Instruction Issue 

Given sufficient data availability and instruction distribution rates, the next SIMD 

issue is for the host to determine which instructions to execute.  In the SIMD 

programming model, the host executes the main SIMD application thread so it must 

execute a certain amount of serial code to control program flow and to exchange data 

with the array.  The issue is the array will idle while the host is evaluating branch 

conditions or computing scalars, i.e., data and control hazards exist. 

Control hazards are created when the host must wait for runtime feedback from 

the array before issuing the next instruction.  The one solution is to stall the array until 

the branch condition is evaluated.  However, the exact stall time can be indeterminate if 

the host OS is multitasking and/or the array interconnect bus is multiplexed with other 

devices.  The problem could be ameliorated by adding an instruction pipelining and cache 

to the PE’s, but the control hazard is not completely removed.  If there is no change in 

program flow, program execution is improved.  However, if a branch is taken, the cache 

must be flushed and the instructions reloaded leaving the array idle.  Also, a negative side 

effect of adding the cache and pipeline is reduced PE count per IC.  

Scalar computations can lead to data hazards that manifest themselves in two 

distinct manners.  In the first case, the host stalls waiting for feedback from the array.  

This really is not a significant problem as long as the feedback is not required for the 

array to continue operation.  The second case is the array stalls waiting for data from the 

host.  This is a significant issue as the exact amount of time required for the host to issue 

the scalar is indeterminate.  The host compiler can help reduce the impact of this issue by 
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scheduling the scalar calculation as early as possible in the instruction stream; however, 

this is only possible if the calculation is independent of feedback from the array. 

One can attempt to apply standard compiler techniques to resolve these issues, but 

the success is limited by data dependencies between the host and array working sets.  

Assuming these issue can be resolved or at least minimized, SIMD designs must still 

contend with the issue of an application requiring more hardware resources than are 

physically available. 

A.1.3 Tiling 

The SIMD programming model abstracts the array hardware by providing Virtual 

PE’s (VPE).  The assumption is there is one VPE for each data element comprising the 

application data working set.  In reality, this is not recognizable in hardware because 

highly data parallel applications like graphics or vision would require several thousand 

physical PE’s.  Not to mention the fact that the number of PE’s needed to solve a problem 

is application specific.  The solution is to map the data set such that each physical PE 

operates on several slices of a parallel variable called tiles.  A major negative 

consequence of this approach is most data locality within the array data stream is lost.  

The extent of the performance penalty is determined by which tiling method is employed.  

The following examples illustrate this point.  The following examples assume the array 

control unit performs macro instruction expansion. 

The first method (Tiling Method #1) executes all instructions on all tiles before 

proceeding to the next instruction.  The process represented in for loop notation is: 

FORALL macro instructions 
 FORALL tiles 

DO microcode expansion 
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The strength of this method is its simplicity.  The host issues instructions to the 

array and the array control sequencer does a Table lookup to expand the macro 

instructions into sequences of array instructions.  The array controller also controls tile 

selection for VPE emulation.  The major drawback to this method is that it destroys data 

locality.  When the inner FORALL loop completes, further PE cache accesses are misses.  

This negates the performance enhancements provided by using cache and significantly 

degrades system performance since all data accesses hit external memory. 

The second tiling method (Tiling Method #2) is to execute all instructions on the 

same tile before moving to the next tile.  The process depicted using for loops is: 

FORALL tiles 
FORALL macro instructions 

DO microcode expansion 
 

This method improves system performance since data locality is preserved, but it 

has two major flaws: 

1) Tiling must be controlled by host.  This significantly degrades system performance.  

The array must stall after completing an instruction stream until the host swaps the 

tiles and restarts instruction issue. 

2) The most significant problem is: This method does not work!  Mainly because it 

ignores inter-PE dependencies and reduction hazards.  The problem becomes more 

visible in fine grain parallel applications. 

These issues, while significant, are not insurmounTable.  SIMD has been 

successfully employed in numerous high performance applications.  The key issue is that 

they may not be performing to their fullest potential. 
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A.2 SCC Theory 

In an attempt to solve the SIMD architectural issues, Herbordt et al. [1] have 

proposed a SIMD design based on an Array Control Unit (ACU) inserted between the 

host and the PE array (see Figure 28) that address the previously mentioned SIMD issues.  

This design is hereafter referred to as the SIMD Coprocessor Card or SCC.  In the SCC 

design, the host is relieved of array control responsibilities other than running the main 

thread of SIMD application.  The design also allows code segments called Basic Blocks 

(BB) to be preloaded into the array for execution. 

A.2.1 ACU Concept 

The purpose of the ACU is to handle macro instruction expansion, data tiling and 

PE control.  The ACU effectively decouples the host operating frequency from that of the 

PE array by allowing the host to issue fewer instructions and by transparently swapping 

tiles.  The ACU functionalities are completely implemented in hardware which allows it 

to operate at the same speed as the PE array.  However, the host interface speed is fixed 

by the interconnect bus bandwidth.  Alternate techniques must be applied to speed up this 

interface.  A basic block diagram of the SCC is depicted in Figure 28. 
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Figure 28: Block Diagram 

 

The first interesting feature of this design is that there is no operating system 

running on the ACU; its functionality is completely hardwired.  The significance of this 

is that there is no OS overhead to affect array performance and that the ACU operates at 

the same frequency as the array.  Instead, the ACU operation is controlled by special 

array instructions -directives- issued by the host as part of the instruction stream. The 

directives are interpreted and executed within the confines of the ACU, i.e., they are not 

issued to the array.  The ACU design incorporates directives to configure the ACU, 

control program execution and to transfer data to the array.  A side effect of this design is 

that ACU directives may be freely interspersed with PE macro instructions.  This allows 

the ACU (and thus the PE array program) to be reconfigured on the fly and program 

execution to be modified without using interrupts. 

A.2.2 Macroinstruction Expansion 

There are several issues related to instruction issue that must be overcome to 

achieve optimal array performance.  The ACU employs macro instruction expansion to 
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improve host to ACU communications bandwidth by reducing the number of instructions 

issued.  The macro instruction to micro instruction expansion ratio is important.  The 

more micro instructions derived from each macro instruction, the better the system 

performance.  This mechanism also has the added benefit of reducing the penalty 

associated with control hazards.  For example: 

IntPlane (2,2) A,B; // Parallel variables.  Assume a 2x2 
// PE array 

UINT temp; // Temp storage for result 
  
If( B.ANY()) // Check for any nonzero element in  
     A = 7 + B; // parallel variable B 
Else   
     A = B – 7;  

 
This simple code segment translates into the following compiler tuple segment: 

(ANY,temp,B) // Host tells array to check for 
// nonzero elements in B 

(CMP,temp,0) // Host waits for feedback value from 
// array 

(JZ, tuple6) // Host must decide which instruction  
// to issue next.   

(+,A,7,B) // The array is stalled for as long as 
(J,tuple7) // it takes to make the decision. 
Tuple6: (-,A,B,7)  
Tuple7:  

 
Assume that array B has nonzero elements so the A = 7 + B instruction is 

executed.  The macro instruction sequence issued by the host would be: 

LD R0,B # Instructs PE’s to load elements of B 
GOR R0 # Global OR reduction 
STO temp,R0   
  
NOP # The array stalls at this point as the 
NOP # host determines which instruction to 

# issue next 
LD R0,B  
LD R1,#7  
ADD R2,R0,R1 # Perform addition 
STO A,R2 # Store result 

 
Finally, the micro instructions actually issued by the ACU to the PE array: 
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R0_0 <- B # Get the lower byte of B 
R0_1 <- B # Get the upper byte of B 
R1 <- R0_0 OR 
R0_1 

 

R1 <- CMP (R1, 0) # Check for nonzero data. Reduction  
# operation. 

temp_0 <- R1_0 # Store lower byte of result 
temp_1 <- R1_1 # Store upper byte of result 
  
NOP # The array stalls at this point as the 
NOP # host determines which instruction to 

# issue next. 
  
R0_0 <- B # Get the lower byte of B 
R0_1 <- B # Get the upper byte of B 
R1_0 <- 7 # Get the lower byte of immediate data 
R1_1 <- 0 # Get the upper byte of immediate data 
ACC <- R0_0 + 
R1_0 

 

R2_0 <- ACC  
ACC <- R0_1 + 
R1_1 

 

R2_1 <- ACC  
A_0 <- R2_0 # Store lower byte of result 
A_1 <- R2_1 # Store upper byte of result 
 

If the host had to issue micro instructions, it would have to execute 16 instruction 

cycles not including the delay to evaluate the branch condition.  In contrast, if the host 

issues macro instructions, it would only execute seven instruction cycles not including 

branch.  Assuming a fixed instruction cycle time, it is intuitive that the host macro 

instruction performance is twice that of the micro instruction method.  This was contrived 

example, but assuming a bus speed of 66 MHz, 15.2 nanoseconds were saved by not 

transferring the 11 extra instructions.  This example did not account for OS overhead on 

the host.  While difficult to quantify, host OS overhead can have a significant negative 

effect on the array. 

A.2.3 ACU Control Directives 

In order to maintain high-speed operation, all of the ACU functionalities are 

implemented in hardware.  The implication of this is there is no operating system to 
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control the array operation so the ACU must assume these responsibilities.  Five special 

instructions (or directives) have been defined to control the operation of the ACU.  The 

directives can be issued individually by the host or interspersed with the code stream.    

Table 4 describes the supported ACU directives. 

 

Directive Operand 1 Operand 2 Description 
CONFIGURE Number of 

tiles 
Tile size in 
bytes 

Instructs the ACU to configure the 
data access registers. 

BASICBLOCK Start 
address 

N/A Instructs the ACU to load Operand1 
into the PC and start execution at that 
address. 

IMMEDIATE Data value N/A Instructs the ACU to fetch an 
immediate data value from the 
INFIFO. 

FEEDBACK N/A N/A The array is instructed to perform a 
reduction operation.  The result is 
copied into the OUTFIFO. 

SINGLESTEP Array 
instruction 

N/A This directive is intended to system 
debugging.  It instructs the MFU to 
fetch a single instruction from the 
INFIFO and execute it. 

Table 4: ACU Directives 

A.2.4 ACU Tiling 

The ACU transparently controls tile swapping based on Tiling Method #3 which 

presented in the next section.  The concept is not so different from the code relocation 

register concept employed by x86 based systems.  The ACU uses three registers to keep 

track of tiles.  The first two registers are the Tile Count Register (TCR) and the Tile Size 

Register (TSR).  The TCR defines how many tiles are contained in a parallel variable 

while the TSR defines the number of elements in each tile.  The third register is the Start 

Address Register (TSAR).  It is initialized at runtime to the start address of the parallel 

variable to be operated on.  At the completion of each instruction sequence, the TSR is 
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added to the TSAR to compute the start address of the next tile.  This operation is 

repeated TCR times until the instruction sequence has been applied to all tiles. 

A.2.5 Basic Blocks 

The SCC incorporates another system level performance enhancing feature.  It 

applies the compiler concept of Basic Blocks [1] to further reduce the host/array 

bandwidth requirements.  In this context, the term Basic Block refers to a sequence of  PE 

instructions that can be executed within a tile before execution on a new tile must be 

initiated.  The tile swapping is generally the result of an inter-PE communication or 

feedback operations. 

The concept is to preload sequences of macro instructions (Basic Blocks) into 

array memory before they are required.  This instruction caching approach allows BB’s to 

be loaded while the interconnect bus would be otherwise idle and assures the array has a 

steady source of instructions accessible from high-speed memory.  The host only has to 

issue Execute ACU directives at runtime to instruct the ACU where to begin execution.  

The preloading BB approach has several benefits: 

1) The host can schedule the loading of BB’s so the array will not stall waiting for 

instructions. 

2) The host only has to run a single instruction cycle (send the Execute ACU directive) 

to execute a BB.  This significantly reduces the runtime bus bandwidth requirements. 

3) An offshoot of benefit 2 is that the BB’s are easily re-executed as long as the host has 

not swapped the BB out of array memory. 



76 

4) Finally, the control hazard penalty is reduced.  All of the BB’s associated with a 

branch can be preloaded.  The host only has to issue the appropriate execute ACU 

directive at run time after the branch condition is evaluated. 

The BB concept gives rise to a third tiling method that addresses the issues 

present in Section A.1.3.  In this tiling method (Tiling Method #3), all instructions are 

executed on a tile before it is swapped.  This is similar to Tiling Method #2 in that data 

locality is preserved.  The difference is the instruction sequence is broken into BB’s by 

the compiler, i.e., instructions are executed on a tile until a communication or feedback 

operation is required.  This is depicted as follows: 

FORALL basic blocks 
FORALL tiles 

FORALL macro instructions 
DO microcode expansion 

 
This addresses the issue of communication/ reduction hazards.  It also has the 

same performance advantage as Tiling Method #1 where all instructions are executed on 

a tile before it is swapped.  Tiling Method #3 has receives an added performance boost by 

not involving the host in tile swapping; this is done transparently by the ACU. 

A.2.6 Software Model 

The interesting point about the BB software model is that it works for both SIMD 

and MIMD systems.  It has been previously shown to work for SIMD, but the fact that it 

works for MIMD is less obvious.  In an MIMD implementation, The SCC architecture is 

modified to provide one PE per ACU; effectively creating a network of MIMD 

processors.  The rest changes are limited to the compiler.  It is the compiler’s 

responsibility to schedule loading and execution of BB’s based on data dependencies.  
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BB’s are by definition independent of each other so they can be preloaded into different 

ACU/PE pairs and executed on demand as long as there are no data dependencies. 

 

A.3 SCC Implementation 

The coprocessor card as presented by Herbordt et al. [1] consists of an FPGA 

baseboard connect to a host via the PCI bus.  The host platform is a standard PC.  In 

order for the SCC design to be viable, it must have a host system to provide I/O 

capabilities and a software system to allow it to interface to the host.  A system level 

block diagram of the SCC system design is shown in Figure 29. 
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Figure 29: SCC System Level Block Diagram 

 

A.3.1 Host Platform 

Industry trends dictate that the SCC host be an Intel x86 based PC with a PCI 

expansion bus running the Microsoft NT operating system.  This host platform was 

selected so that the SCC can be easily integrated into standard PCs.  However, the SCC 

can be utilized in any host that uses the PCI bus assuming the proper software support is 
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available.  The PC host also provides the functionalities required for SCC control and I/O 

operations eliminating the need for costly custom hardware. 

PCI was selected for its high bandwidth, ubiquitous presence in desktop PCs and 

most importantly, its acceptance as an open standard.  PCI allows for system expansion 

since it can support eight cards without a bridge.  This means multiple SCC cards can be 

installed in a single system to solve larger problems.  The PCI burst mode data transfers 

can be used to move large data blocks with minimal system overhead.  However, this is 

dependent on the North Bridge PCI implementation and not necessarily directly under 

software control. 

The SCC memory, control registers and data queues appear as memory mapped 

registers on the PCI bus.  Details of these registers are discussed in following sections.  

What is important to note is that the SCC memory and registers can be accessed as easily 

as any other PCI memory device.  Memory mapped I/O will also reduce the system 

overhead required for user applications to access the SCC. 

WinNT 4.0 was selected for its ubiquitous presence in the PC/ workstation arena.  

This high performance, multiprocessor enabled OS provides a sTable, extensible 

environment for hosting the SCC.  Another positive effect of using a WINTEL host, is 

the plethora of development tools available.  Compilers, debuggers and CASE tools are 

readily available; eliminating the need to develop tools suites for the SCC target. 

The SCC design is implemented as a coprocessor card.  The main reason for this 

is to avoid reinventing the I/O support systems provided by PC’s.  The PC’s also provide 

an operating system environment for loading, executing and debugging user applications.  

SIMD systems are tuned for handling computation intensive applications.  Their 
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performance gains are realized while executing computationally intense algorithms; not 

performing I/O operations.  The PC CPU will also be used to calculate scalars and 

evaluate branch conditions.  It executes the main thread of the SIMD application.  This 

frees the SIMD array from having to provide a dedicated processor for evaluating scalars. 

A high-speed datapath is required between the host and the ACU.  This is critical 

to achieving optimal array performance.  It is equally important to observe industry 

standards.  Therefore, the logic choice for the host/ array bus is PCI.  PCI provides the 

highest bandwidth available on commercially available systems. 

The coprocessor card concept itself has been proven successful by several 

research initiatives.  For example: 

• Houzet and Fatni [8] implemented the GFLOPS system for image processing. 

• Cloutier et al. [9] implemented VIP: Virtual Image Processor. 

• Harbaum et al. [11] implemented a reconfigurable computing card call FHiPPs based 

on the Intel i960 and FPGAs. 

The driving factors cited in all cases were flexibility and low cost. 

The coprocessor design lends itself to the possibility of easily expanding the SCC 

processing capabilities.  It is possible to install multiple SCC cards in the same host.  The 

number of SCC cards installed is limited by the number of PCI slots available in the host.  

Only the user application would have to be modified to take advantage of the additional 

SCC boards.  It would also be possible to network SCC hosts together using standard 

LAN or WAN networking.  This would require additional control software on the hosts, 

but this is not a significant issue as Harbaum et al. [11] has implemented a similar 

concept called the Hardware Manager in the FHiPPs project.  It would also be possible to 
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port the Parallel Virtual Machine (PVM) code from UNIX to WinNT to support 

networked SCC host. 

A.3.2 Coprocessor Card Hardware 

The hardware block diagram for the SCC card is shown in Figure 30.  The SCC 

design is based on the Nallatech Ballynuey FPGA development board.  The Nallatech 

board contains three Xilinx Virtex 1000 FPGAs which are programmed to implement the 

SCC system blocks depicted in Figure 31.  The FPGA based implementation provides a 

high degree of flexibility for exploring different architectural concepts using the same 

hardware. 
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Figure 30: SCC Card Block Diagram 

 

Ultimately, the FPGAs will be replaced with ASICs.  This would allow the PE 

operating frequency to be increased along with the number of PE’s per IC.  This change 

would have no impact on the host or support software, as they are effectively isolated 

from the SCC hardware by the PCI bus. 
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The logic design for the SCC board FPGAs is shown in Figure 31.  It consists of 

three main components: the PCI interface, the ACU and the PE array. 
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Figure 31: SCC Block Diagram 

 

The first logic block is the PCI bus interface.  The main purpose of this block is to 

provide the host access to the SCC high-speed macro instruction memory, data memory 

(DRAM) and the ACU I/O queues.  The PCI interface contains a memory controller that 

interacts with the macro instruction and DRAM memory access arbiters to allow the host 
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to access SCC memory.  The arbiters effectively dual port the memories.  This 

mechanism allows the host access to the SCC memory while the array is active. 

The second block is the Array Control Unit (ACU).  Its sole purpose is to keep the 

PE array running at as high a speed as possible which equates to issuing PE instructions 

at a high frequency.  The ACU attempts to achieve this goal by implementing the 

concepts presented in Section A.2.1. 

The most important functionality of the ACU is to issue instructions to the array.  

The Macro Instruction Fetch Unit (MFU) fetches macro instructions from the Macro 

Instruction SRAM based on its Program Counter (PC).  The MFU analyzes the 

instruction and takes one of the following actions: 

1) If the macro instruction is invalid, it is discarded. 

2) If it is a simple macro instruction, it is inserted into the Macro Instruction FIFO. 

3) If the macro instruction requires an operand, the MFU first inserts the macro 

instruction into the Macro Instruction FIFO then copies the operand from the INFIFO 

to the Macro Instruction FIFO.  This way the instruction and operand travel through 

the system together. 

4) Finally, if the macro instruction is determined to be an ACU directive, the MFU 

executes it.  This process is described in the following sections. 

The ACU implements macro instruction expansion to reduce instruction latency 

and issue frequency.  The expansion takes place in the Macro Instruction Expansion Unit 

(MEU).  Typically the ACU issues decoded instruction directly to the PE array.  

However, since the SCC does not have an operating system, it recognizes five 

instructions as internal directives.  These directives are inserted into the PE array 
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instruction stream by the host to control the initialization and operation of the ACU.  In 

the absence of an operating system, the ACU must also control tile swapping.  The ACU 

implements Tiling Method #3, i.e., all of the instructions are executed on a tile until a 

feedback or communication instruction is encountered.  The CONFIGURE directive is 

used to configure the number and size of the tiles. 

The final block is the PE array itself.  The actual implementation of the PE array 

is unimportant in the context of this research, as it is implementation specific.  It is more 

important to note that the ACU interface is generic enough to support a variety of array 

configurations, as long as the array design conforms to the PE instruction specification 

and is able to interface to the PE Data DRAM arbiter to load/store data.  In the current 

SCC design, the PE array will be implemented in an FPGA.  This method allows various 

PE array designs to be explored using proven host, PCI interface and ACU hardfware. 


