Test and Integration Environment for PCI

Coprocessor Cards

A Thesis
Presented to the
Faculty of the
Department of Electrical and Computer Engineering

University of Houston

In Partial Fulfillment of the
Requirements for the Degree
Master of Science in

Electrical Engineering

By

Mark De Ford

August 2001

Test and Integration Environment for PCI

Coprocessor Cards

Mark De Ford

Approved:

Committee Members:

E. J. Charlson, Associate Dean,
Cullen College of Engineering

i

Chairman of the Committee
Martin Herbordt, Associate Professor,
Electrical and Computer Engineering

John Glover, Professor,
Electrical and Computer Engineering

Jaspal Subhlok, Associate Professor,
Computer Science

Fritz Claydon, Professor and Chair
Electrical and Computer Engineering

Acknowledgements

Special thanks and gratitude to my advisor Dr. Martin Herbordt for his guidance and
friendship without which this thesis would not be possible. Thanks to Dr. Glover and Dr.
Subhlok for serving on my committee. I would also like to extend my heartfelt thanks to

my family, friends and coworkers for supporting my educational pursuits all these years.

il

Test and Integration Environment for PCI

Coprocessor Cards

An Abstract of a Thesis
Presented to the Faculty of the
Department of Electrical and Computer Engineering

University of Houston

In Partial Fulfillment of the
Requirements for the Degree
Master of Science in

Electrical Engineering

By

Mark De Ford

August 2001

v

Abstract

Application specific coprocessor cards are omnipresent in today's high
performance computing environment. Computationally intensive applications such as
graphics, computer vision, and DNA string matching benefit from the extra computing
power supplied by coprocessor cards.

This thesis is one aspect of a larger project to implement a high performance
SIMD coprocessor card (SCC). Overviews of the SCC design, PC architecture and
Microsoft Windows NT are presented to familiarize the reader with the underlying
technology required to host coprocessor cards.

In order for the SCC to realize its full potential, the host environment must be
optimized to provide high throughput, low latency communications. The focus of this
thesis is to design a suitable host platform for the SCC and to investigate potential
performance hindrances. A suite of benchmarks was developed to test the host/ SCC
communication throughput. The testing methodology and an analysis of the results are

presented.

Table of Contents

1 IOETOAUCTION et eeeeaaaeseeeeeenennanan 1
Lol MIOTIVALION e e et 1
1.2 Context: The SIMD Coprocessor Card..........cccccueeerieeenieeeiiie e e 2
1.3 ReSEarCh MOtIVALION «ccoeeeeeeeeeeeeeeeeeeeeeeee e 2
1.4 RElAtEd WOTKS. .. oeeieieeeee e e et e e e e e e e e e reaeeeeeaeeaees 3
1.5 Design Criteria and System SpecifiCations...........c.ceccveeveeriiienieeciienie e 4
1.6 OVEIVIEW OF RESUILS. .. e e e e e e e e eeeeaaans 5
1.7 TRESIS OULHNE ..coooeiiiiiiiee 6

2 Underlying TeChNOLOZYuuviiiiieiiiiecie ettt e e e eeaee e eaee e 7
2.1 PO ATCRITECIUTIE .cceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et enenesenenenenenennn 7
2.2 CoOProCeSSOT CaATdS ...cuviieiuiieeiiiieeiiieeiieeestee et e e eeaeeesaeeeaaeestaeeesseessaeessneeensneenns 11
2.3 WINAOWS NT ATCRITECTUIE ...ceeeviiiiiieieeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeseeeeenennne 13
2.4 WiIndows NT I/O MaANQEETccccueeeiiieeiiieeiieeeieeeeeeeeeieeesieeesreeesraeesneeesseeens 17

241 DIIVET SIIUCLUTE .oeeveveeeeiieeseeeeeeeseseseneeesesesenenennsnnennnes 18

3 Software SyStem DESIZNcccviiiiiiiiiiieeciee ettt re e e ere e et e e e e eareeenrae e 21

3.1 SCC PCIDIIVET oo 22
R B B B 1T ey s WO 4 1S o - TSR 22
3.1.2 IMPIeMENTATION ..eovtiiiiiieiieeieeiie ettt ettt seae et e e aaeenbeeseaeeneeas 23
3.1.3 Validation TeStING.......ccveeruiieiiieeiieeecieeeeee et eeeeeteeeeaeeesveeeeseeessraeesnneeas 25

3.2 Array Interface LiDrary......occcoocieiiiiiieiiieiiecie et 26
3.2.1 Library Interface FUNCHONS.........ccccvviiiiiieiiiieeie et 27

3.3 Benchmark Applications..........cceeriiiiiieniieiiieeiieieeeee e 30

B RESUILS e e e e e e ————————aaeeraaa——— 31
4.1 Testing MethodolOgYcccuieiuiiiiiiiiieiiee e e 31
4.2 TSt PIOCEAUIES .o e e e e et e e e e e e e e e eeeeeaaaeeeaenaaes 35
4.3 DIIVET TSt RESUILS ..cooeeiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeeeeeeeeeenennnnne 37

4.3.1 Memory Mapped DITVETccevuiieiiiieiiie ettt 37
4.3.2 DITECE I/O DIIVET ..ccceeeiiiiiiiiieeeeeeeeeeeeeeeeeeeee ettt ee e eeeeeeaaees 41
4.3.3 BUTTETEA 1/O DIIVET .. oo e e e e e e e eaaeeeeaeenes 45
4.3.4 Overall Driver Test ANalySiScccueeruieriieiiieniieiieeie et 48
.35 DIMA DIIVET et eeeeeeeeeeeeemnenaenn 49

4.4 Library Test RESUIS.......ccccuieiiiiiieiieeiieie ettt s 51

4.5 Bus UtIHZation RESUILS . .coeeieeeeee ettt eeeeeeeeaeeenes 55

5 CONCIUSION et 59

0 RETETEIICES oot e aaeaeeaeenaan 62

Appendix A: SIMD Coprocessor Card (SCC)....ccuiervieiiieiiieiiieiieeie et 64
AT SIMD ISSUES ..ottt e e e e e e e e e e are e e e eans 65

A.1.1 Instruction Distribution LatencCyccceevuieriiiiniiiniiieieeieeeie e 65

Vi

AL 1.2 INSITUCTION ISSUE ...ttt nenanns 67

AT TIHNG. ettt ettt et e e ne e seenteeneenseennea 68
A2 SCC TREOTY ..viiuiieiiieiieeie ettt ettt ettt et e e e et esateesbeessbeebeesnbeenseessseenseesnsaens 70
A2 T ACU CONCEPL.ceiiuitiieeieiiiieeeeiete ettt e e ette e e et eeeesaaeeeeeataeeessnraeeeesnsseeeesnnnees 70
A.2.2 Macroinstruction EXPansionceecieeieeriieniiieniieeieesieeieesiee e seveeiee e ens 71
A.2.3 ACU CoNtrol DITECHIVES ...cccuviieiiiieeiiiieeiiieeiiee et ereeeieeeereeesreeesreeessseeeenns 73
A28 ACU TINE ettt sttt 74
A.2.5 BaSIiC BIOCKS.....ccuiiieiiieciiiecie ettt e e 75
A.2.6 SOftWare MOdEl.........cooiiiiiiiiieie e 76
A.3 SCC IMPIementation.......cc.eeecuieeriieeiiieeiieeeiteeesteeesreeesaeeeesreessaeessaeessneesseeenns 77
A.3.1 HOSt Platformoouiiiiiiiicee et 77
A.3.2 Coprocessor Card Hardware...........ccceecvieeiiiieiiiecieeceeeeee e 80

vii

List of

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:

Figures

Block Diagram of Typical PC Architecture.........cccveeeciieeeiiieeeieeeieeeieeeeeee 8
High Level Block Diagram of Windows NT Architecturec..ccccceveevuennene. 14
Windows NT I/O System StrUCtUIE......ccuveeeruieeeiieeiee et e 18
SCC Software ArChiteCtUIEcc.eevuirierieeierieriieeeeeteee e 21
Hardware Test SEtUDP ...cccvveeeiiieeiieeeeee ettt e e s 35
Memory Mapped Driver Write Throughput on Pentiumc.ccocevieniennne 38
Memory Mapped Driver Write Throughput on Athloncccoeevveeeiiinnnnn. 39
Memory Mapped Driver Read Throughput on Pentiumc.cccoceeveeieniennnne 40
Memory Mapped Driver Read Throughput on Athloncccoeveviiieciiiinnnnn. 40

Direct I/O Driver Throughput for Pentiumcccccocevieniniininniniiinieienee 42
Direct I/O Driver Throughput for Athlon...........ccoccvveeiiieiiiiee e, 42
Direct I/O Driver Percent Time in Driver for Pentiumcccoveeeeennn.... 43
Direct I/O Driver Percent Time in Driver for Athlonccceeecvvvvviiiiiininnnn, 44
Buffered I/O Driver Throughput for Pentiumccccoeevieviiiiienieeieeieeen. 46
Buffered I/O Driver Throughput for Athlonccccoeeiiieeiiiiiiiieeeee 46
Buffered I/0O Driver Time in Driver for Pentiume..............ccooovvveeievineeeeennnen... 47
Buffered I/0 Driver Percent Time in Driver for Athloncccccvvvvviiiiiinnnnn. 48
C++ DLL Throughput for Pentiumccceeeieniieiiieniieieeiecieeieee e 51

Figure 19: C++ DLL Throughput for Athlonccccvveeiiieeiiiieie e, 52
Figure 20: C++ Static Linked Library Throughput for Pentiumc..ccccooeniiniinnnen. 52
Figure 21: C++ Static Linked Library Throughput for Athlon...........ccceeevvieveiiencieennn.. 53
Figure 22: C Static Linked Library Throughput for Pentium..........cccccoceeviiviinininnnnnn. 53
Figure 23: C Static Linked Library Throughput for Athloncccccevviiieniiienieee. 54
Figure 24: C DLL Throughput for Pentium..............cccocieriieiiiiniieiieiieeiieee e 54
Figure 25: C DLL Throughput for AthIon...........cccieiiiieiiiieeeceeee e 55
Figure 26: PCI BUS WIIte TIMEeeouiieiieiiieiieeiieiie ettt ettt et saee e e 56
Figure 27: PCI Bus Read Timeccoeiiiiiiiieeiiiecee ettt 57
Figure 28: BIOCK DIagramccciiiiiiiiiiiiiiiiecie ettt ettt ettt 71
Figure 29: SCC System Level Block Diagram...........ccceeevieeeiiieniiieeiiecieeeeee e 77
Figure 30: SCC Card Block Diagramcccceevuieriieniieniieiieeitesie ettt 80
Figure 31: SCC Block DIagrami..........cccceccuieeiiiieiiieeciee et esiee e eiveeeaee e eeevee e s 81

viii

List of Tables

Table 1: Bus Speed COmMPATISONSc.veieceiieeiiieeiiieerieeerteeeiteeesireeessreeeseeeeseeessneesseeanns 12
Table 2: List of SCC Interface FUNCLIONSccciviiiiiiiiviiiiiiiieeeecceee e 28
Table 3: List of Driver Interface FUNCHONSccoooiviiiiiiiiiiiiiiiiiieeeeee e 29
Table 4: ACU DITECLIVESuvvvieieeieeieeeeieeeeeeeteeeeeeeite e e eeree e e eeeaeeeeeeaaeeeeeetaeeeeeeaneeeeennres 74

iX

1 Introduction

1.1 Motivation

Application specific coprocessor cards are become increasingly prevalent in
today's high performance computing environment. Computationally intensive
applications such as graphics, computer vision and DNA string matching are examples of
the beneficiaries of extra computing power supplied by coprocessor cards. By nature of
their design, coprocessor cards are heavily dependent on the hardware platforms that host
them. The implication is that the design of the host software system (operating system
and applications) and the CPU interconnect bus assert significant influence over the
performance of coprocessors.

Several standard buses such as ISA, EISA, SCSI and SBus are available on PCs
and workstations to allow additional hardware to be integrated into the system. However,
these buses have a relatively low throughput. Recently the computer industry has
adopted the Peripheral Component Interconnect (PCI) bus to alleviate the 1/O bottleneck
between CPUs and system peripherals. This is increasingly important as new generations
of high performance peripherals become available.

Much work has been done on the development of coprocessor cards [8,9,11,12].
The unifying factors of these designs are that they solve domain specific problems and
that PCI was selected as the datapath. However, all of the studies have a common flaw:
they neglect to investigate the effects of host system software overhead on system
performance. In particular, these works focus on the designing the cards, but ignore the
practical issues involved with using them. Although their intent was to improve system

performance by optimizing the hardware to suit the application [8,9,11,12] or simply to

measure system bus performance [7,10], they failed to address one key issue: the overall
system including host, operating system and peripherals needs to be optimized, not just

the hardware in the coprocessor. These issues are addressed by this thesis.

1.2 Context: The SIMD Coprocessor Card

Herbordt et al. [1] have proposed a design for a SIMD Coprocessor Card (SCC).
The SIMD array is designed to provide high performance for computer vision
applications by providing a large number of processing elements (PE) and an operating
frequency greater than 1 GHz. As the designs mentioned above, it also uses PCI.

The main difference is that the SCC control is completely hardwired; there is no
general purpose CPU to control the array. This approach is necessary to maintain high
array utilization. This approach, however, does place additional control responsibilities
on the host: if the host cannot react immediately to array requests, then the array will idle.
It is therefore of the utmost importance to optimize the host software to minimize the host
response latency. The SCC design is presented in detail in Appendix A.

The research for this thesis has been done in the context of designing a host and
software support system for the SCC. Therefore, it is the intent of this thesis to provide a
method for quantifying OS overhead and to use this information to optimize the SCC

system.

1.3 Research Motivation

The main shortcoming of other research efforts is that they neglect to consider the

effects of the host design on their coprocessor board. Instead, their focus was on

designing high performance logic for the coprocessor. They all used the PCI bus to
interface to the system, presumably because of its potentially high peak throughput (132
MBY/s) and its emergence as the de facto PC coprocessor interface standard. The issue
becomes designing a host hardware and software system that can fully use the PCI peak
bandwidth.

There are several reasons why both hardware and software design decisions can
severely affect PCI bus utilization, two of which are as follows. First, the PCI bus is
shared among multiple peripherals. It may be accepTable to block their access to the bus
for a short time, but not indefinitely. A potentially catastrophic example of this is when
the host operating system (OS) needs to swap memory to the hard drive, but the PCI is
occupied with a large data transfer. Second, most modern OS’s are multitasking (some
are also multiprocessing) which by its very nature implies processes cannot monopolize
the processor (CPU). Any data transfers to the PCI bus by an application or device driver

can (and will) be interrupted.

1.4 Related Work

The PCI Pamette system designed by Moll and Shand [10] is the work most
closely related to this thesis. This project provides excellent insight into PCI bus
performance, including measurements related to application implementation. The design
of the PCI Pamette board itself is not important to this thesis as most logic analyzers can
perform similar functions by using a PCI bus monitor module. What is important is their

testing methodology and results.

Their results show relatively high bus throughput measurements, but this is
somewhat misleading as they only partially take host configuration (and OS overhead)
into account. Their programmed I/O (PIO) benchmarking is straightforward and
accounts for OS overhead. However, their DMA performance test procedure only
measures bus bandwidth since the traffic was generated by custom hardware and targeted
the host memory. This method is accepTable for measuring the bus performance alone,
but has little bearing on overall system. This issue needs to be addressed if host

applications are going to realize benefits from using high performance coprocessor cards.

1.5 Design Criteria and System Specifications

The design criteria for the host system are as follow:
1) The host must communicate with the SCC using the PCI bus.
2) The host and SCC must not monopolize the PCI bus when communicating.
3) The main thread of the SIMD application must execute on the host CPU. Also, it
may not alter the normal operation of the host OS.
4) A programming environment must be provided so that the SCC can be easily used.
These design criteria are satisfied by the following design specifications:
1) The host platform is an Intel x86 based system with a PCI system bus.
2) The host uses the Microsoft Windows NT 4.0 (WinNT) operating system. All
applications and device drivers adhere to WIN32 standards.
3) The SCC PCI bus device driver conforms to standard WinNT 4.0 I/O Manager

requirements.

4) The SCC API library provides a consistent, hardware independent way for application

programmers to access the SCC.

1.6 Overview of Results

The main goal of this research is to investigate the effects of the host system
implementation on the SCC performance. This is accomplished by executing benchmark
applications on the host that perform various sized block data transfers to a simulated
SCC card (the SCC hardware is still under development). The benchmarks use different
combinations of WinNT drivers and interface libraries to see what impact different
implementations have on the system. This is quantified by measuring the read and write
transfer time from the application, driver and PCI bus perspectives. The results are
analyzed to identify possible I/O bottlenecks.

The results are surprising in several respects. First, the data throughput is
independent of the driver and library implementation. This is completely unexpected for
reasons that are discussed in Chapter 4. Second, the peak throughput is shown to be
independent of the host CPU frequency. This result is as expected, since the PCI bus is
the limiting factor. Finally, the measured peak data transfer rates are an order of
magnitude slower than the peak PCI throughput of 132 MB/s. In most cases, the write
throughput is approximately 20 MB/s and the read throughput is approximately 5 MB/s.
The theoretical peak PCI throughput is based on the assumption that the PCI initiator can
monopolize the bus for the duration of the transfer and that the target memory is fast

enough to avoid inducing wait states. This environment is not representative of a

normally configured system; however, Moll and Shand [10] provide results for a usable

system that are still significantly better than the results presented in Chapter 4.

1.7 Thesis Outline

The next chapter provides an overview of PC hardware and Microsoft Windows
NT architecture to familiarize the reader with the underlying technology required to host
coprocessor cards. Chapter 3 presents the software system designed to host the SCC. It
also discusses issues encountered during the development process. Chapter 4 discusses
the system performance testing methodology and analyzes the results. We conclude with

a discussion and suggestions for future work.

2 Underlying Technology

There are two pervasive standards in the PC industry: Intel x86 processor
architecture and Microsoft Windows NT. Any device that is to find wide spread
acceptance must conform to these standards collectively known as the “WINTEL”
architecture. This chapter provides background material related to the WINTEL

architecture necessary to understand the research results presented later in this thesis.

2.1 PC Architecture

The PC architecture has evolved significantly since its inception in the early
1980’s when most of the system was controlled directly by the CPU. In these XT/AT
type systems performance was not a significant issue since memory access speeds were
considerably slower than device access times. However, over time, I/O bottlenecks
formed as CPU and memory access speeds increased. These issues began to be resolved
by the Intel Pentium series CPUs by distributing system control over a set of system
chips otherwise known as a motherboard chipset. This distributed control model freed
the CPU from stalling on I/O operations and lead to an increase in system performance.

The PC motherboard designs are heavily influence by the Intel x86 architecture.
The distributed CPU/chipset model is pervasive in the industry. This structure is depicted

in Figure 1.

| Pentium 2 i
i Back Side Bus i
CpPU
i Front Side Bus
AGP Bus
Graphics I I North I \ System
Controller Bridge Memory Bus Memory
l System Bus (PCI Bus)l l
PCI to IDE South Expansion
Bridge Bridge Slots

‘4 .

Hard CD ¢ ISA Bridge + Power Control
Drive ROM + ATA33/66/100 ¢ BIOS
¢+ BIOS ¢+ Keyboard

+ GPIO ¢+ Mouse

Figure 1: Block Diagram of Typical PC Architecture

The salient feature of this Figure is the hub-like bus structure centered on the
North Bridge. The intent of this design is to relieve the CPU of its I/O responsibilities.
The CPU only has to contend with accessing memory and performing computations. Pre-
Pentium 2 CPUs used the Back Size Bus (BSB) as a high-speed, dedicated connection to
the L2 cache. The BSB was rendered obsolete by the Pentium 2, which integrated the L2

cache into the CPU chip. This innovation left the CPU with only the Front Side Bus

(FSB) to service. The FSB is a high-speed (currently 200-266 MHz) local bus that
connects the CPU to main memory, the graphics controller and the system peripheral bus.
It is important to note that the FSB operates orders of magnitude faster than the system
peripheral bus. The CPU offloads I/O operations to the North Bridge and continues
operation. Equally important is the fact that the main memory is on the FBS and not the
system bus. This allows the CPU to perform memory operations at high frequencies and
eliminates system bus contention.

Aside from the CPU, the North Bridge is the most vital component in the system.
Its purpose is to provide the interface to main memory, the graphics controller and the
system bus. The main idea is that the CPU is now relieved of most I/O processing
responsibilities.

In most recent motherboards, the graphics controller is integrated into the system
via the AGP bus. The Accelerated Graphics Port (AGP) is a standard proposed by Intel.
AGP relieves the graphics 1/0 bottleneck by adding a new dedicated, high-speed datapath
directly between the chipset (North Bridge) and the graphics controller. This removes
bandwidth intensive 3D and video traffic from the constraints of the system bus (PCI
bus). AGP allows the graphics controller to access system memory directly rather than
having to pre-fetch all data into local graphics memory. While the PCI bus supports a
maximum of 132 MB/second, AGP operates at 66 MHz and has a 533 MB/s peak
throughput. AGP performance is increased by transferring data on both edges of the 66
MHz clock and with efficient data transfer modes. AGP supports overlapped requests
and has extra address lines so a new request can be started while waiting for previous

access to complete (sideband addressing). The system level performance increase

realized by this design is due to reduced system bus congestion. AGP operates
concurrently with, and independent from, most transactions on PCI. Further, CPU
accesses to system memory can proceed concurrently with AGP memory reads by the
graphics controller.

Most of the discrete system peripheral control logic has been consolidated into the
“South Bridge”. This makes all the peripherals appear as a single device on PCI bus.
This is important since each PCI bus can only support eight devices without a bridge.

The final component is the system bus, which connects the various system
peripherals to the CPU via the North Bridge. The Peripheral Component Interface (PCI)
bus was introduced by Intel Corporation in July 1992. It was originally designed as a
local bus, but was later changed to a high-speed expansion bus. Since its inception, PCI
has become the computer industry de facto standard for system buses. This point is
supported the Microsoft/Intel PC 99 Guidelines [13] state that computer containing ISA
and EISA buses will not be certified; effectively “obsoleting” them. The PCI standard
specifies four options for address and data bus configurations (refer to Table 1) of which
the most commonly deployed is 32 bit address/32 bit data with an operating frequency of
33 MHz. This configuration has a maximum theoretical throughput of 132 MB/s.

Aside from throughput, PCI has several other advantages over old buses. First, it
is a synchronous bus with block transfer capabilities. This maximizes data transfer while
reducing transfer setup overhead. Second, PCI provides multiple bus master capabilities.
This allows peripherals to perform peer-to-peer communications without using the CPU
as an intermediary. Finally, PCI provides special bus cycles for dynamically configuring

devices. This allows devices to be configured before they have been assigned an address.

10

2.2 Coprocessor Cards

The PC architecture was specifically designed to be extensible by means of
connecting expansion cards to the system bus. These cards provide diverse functions
such as graphics controllers, modems, sound cards and network interfaces. However,
they all generically fall into the category of coprocessor cards, i.e., they all offload a
specific type of processing responsibility from the CPU.

The most interesting coprocessor cards (to this thesis) are custom boards designed
to perform dedicated tasks. These coprocessors only use the PC system as a host to
provide basic I/O processing. The main issue is that while coprocessor cards can be built
to process data with very high throughput, connector pin characteristics and interconnect
bus speeds restrict data transfer rates between the host and the coprocessor.

The AC impedance of connector pins significantly affects bus operating
frequency. The capacitive and inductive components limit signal rise and fall time. This
dictates the maximum operating frequency. The resistive component limits the pin drive
capabilities, which determines how far signals can propagate without affecting signal
integrity. This situation is exacerbated by the fact that the system bus traces have varying
impedances and lengths. This is a normal part of PCB layout, but the damaging result is
that signals propagate at different rates. Standard board layout techniques can be
employed to reduce signal propagation delay; however, they cannot eliminate signal
propagate mismatch. Thus, bus interface logic timing must be modified to accommodate
the slowest signal.

The system bus I/O bottleneck is a significant issue for coprocessors. Instruction

issue and data transfers are throttled by the system bus peak operating frequency and bus

11

utilization. One solution is to create a custom coprocessor bus; however, this necessitates
building a custom host or heavily modify an existing one. This situation can be avoided

by employing an industry standard system bus.

Bus Type Maximum Throughput | Notes
EISA 33 MB/second in burst. | Standards proposed for 66 and 133
MB/s bursts. Has a 32-bit data path.
SCSI-I 3 MB/second Has an 8-bit data path.
Asynchronous
5 MB/second
Synchronous
Fast SCSI (SCSI- | 10 MB/second Has an 8-bit data path.
11) Synchronous
Wide SCSI 40 MB/second Fast and Wide SCSI together.
(SCSI-II) Synchronous Has a 32-bit data path.
PCI 132 MB/second 33 MHz/ 32 bit data path
264 MB/second 33 MHz/ 64 bit data path
264 MB/second 66 MHz/ 32 bit data path
528 MB/second 66 MHz/ 64 bit data path
VESA Local Bus | 264 MB/second 66 MHz/ 32 bit data path
IEEE 1496 SBus | 200 MB/second 25 MHz/ 64 bit data 25 MHz/ 64 bit
data

Table 1: Bus Speed Comparison

Most of buses listed in Table 1 are available in standard PCs and workstations
with the exception of ISA and EISA. These buses are being phased out in favor of PCI.
It is also interesting to note that the Microsoft/Intel PC 99 Guidelines discourage the
inclusion of ISA and EISA buses in new computers.

Despite these issues, coprocessor cards are the best method of implementing
application specific processors without designing custom host platforms: a standard host

means that a standard operating system to control it.

12

2.3 Windows NT Architecture

Microsoft Windows NT (Windows New Technology) 4.0 is a secure, 32-bit
operating system (OS) that uses a Graphical User Interface (GUI) for graphical,
interactive user control. WinNT is a preemptive, multi-tasking OS based on a hybrid
layered and microkernel architecture. At the time NT was designed, it was not certain
what direction operating systems would take in regard to kernel design, POSIX support,
OS/2 support, etc. Therefore, the NT architects designed it to be both flexible for adding
and removing components and porTable by isolating the OS from the hardware with the
Hardware Abstraction Layer (HAL). WinNT services, drivers, and HAL are
implemented in Dynamic Link Libraries (DLL) that are loaded at runtime. This allows
them to be changed without relinking the kernel. This modular design has proven useful
since WinNT has been ported to four platforms: Intel x86, DEC Alpha, PowerPC and
MIPS, although support for the PowerPC and MIPS have recently been dropped. A block

diagram of the WinNT OS architecture is shown in Figure 2.

13

System Server Environment User
Processes Processes Subsystens Applications
Subsystem DLLs

. _ _ User

Mode

Executive Kemel

Mode
. Windowing
Device Kernel and graphics

Drivers
Hardware Abstraction Layer
(HAL)

Figure 2: High Level Block Diagram of Windows NT Architecture

The WinNT environment is divided into two distinct parts based on memory and
instruction access privileges. Most processing is done in the user mode. In this mode,
the Virtual Memory (VM) system protects the processes’ memory and the CPU blocks
access to privileged mode instructions. This mode is considered secure since processes
cannot affect each other’s memory or access hardware directly. All user applications and
most WinNT processes run in this mode. Time critical and I/O related processes execute
in kernel mode. In this mode, the entire address space is accessible and the CPU permits
privileged instructions to execute. The best system performance is achieved in kernel
mode, but the lack of protection allows any kernel mode process to corrupt the OS
environment.

There are three groups of WinNT processes that operate in user mode. System
Processes are kernel support components that execute outside of kernel mode, but are

required for WinNT to operate. These processes include Window Logon, Session

14

Manager and Services Controller, which is used to manage server processes. The server
processes provide optional system level services that are not part of the core OS.
Examples of server processes are the print spooler, the Windows Event Logger and the
RPC service locator. The final set of OS related user mode processes is the environment
subsystems. User applications use the services provided by these subsystems to emulate
the WIN32, POSIX and OS/2 programming environments.

All server processes, environment subsystems, and user applications interact with
the kernel through the subsystem dynamic link library (DLL) called NTDLL.DLL.
NTDLL.DLL translates documented user system calls into the appropriate undocumented
WinNT kernel service call.

The WinNT design goal of portability is met in part by implementing the
Hardware Abstraction Layer or (HAL.DLL). Its purpose is to encapsulate all hardware
and CPU specific functions into a single DLL. The HAL provides hardware support for
accessing timers, the BIOS, and interrupt controls; translating bus addresses; and
anything else that is machine dependent. An interesting caveat is that there is no
mechanism to force kernel mode applications to use the HAL. However, applications
that circumvent the HAL risk losing portability.

The Executive Services and the Kernel comprise what is traditionally thought of
as the operating system “kernel”. The WinNT Kernel handles the lowest level OS
functions. It is responsible for thread scheduling, exception and interrupt handling, and
providing low level CPU-specific services to the Executive. It is loaded into non-paged
memory, and can never be preempted. The Executive is the upper layer of the Kernel. It

exports kernel services to user mode applications and contains five vital system services:

15

1. The Process Manager is responsible using Kernel services to create and destroy
processes and threads.

2. The Virtual Memory Manager (VM) is responsible for mapping processes’ virtual
memory into physical memory when they execute. It is also responsible for swapping
memory pages to disk when the system needs more memory.

3. The Cache Manager is responsible for caching recently used file data in memory.
Note: this service does not control the CPU cache.

4. The Security Monitor enforces system security policies as they pertain to system
resource access.

5. The I/O Manager provides device independent I/O processing. It provides the only
mechanism for user applications to interface to device drivers. The I/O Manager will
be discussed in more detail later in this chapter.

From the beginning, WinNT was designed to be a fully protected OS. Security in
this sense is not specifically aimed at preventing unauthorized use of the system (though
the Security Monitor provides these services), but refers to preventing processes from
inadvertently interfering with each other. The interprocess security policies are enforced
in hardware by using the virtual memory and privileged instruction capabilities of the
supported CPUs.

The Virtual Memory (VM) system makes it impossible for a user mode
application to directly access a physical address. The intent of VM is to provide
processes with what appears to be unlimited memory. A positive side effect is that

applications are prevented from corrupting each other’s memory. Normally this is

16

desirable, but in the case of accessing memory mapped system hardware, this is a
significant issue. This is a basic reason why device drivers are required by WinNT.
Processors also enforce security by providing at least two modes of operation:
privileged mode and user mode. When in user mode, the CPU can only execute a subset
of the full CPU instruction set. Instructions that are excluded from user mode include
I/0, CPU mode switching, and special register access instructions. The CPU must be in
privileged mode to access these instructions or a protection fault is generated. This also

necessitates the use of device drivers.

2.4 Windows NT I/O Manager

The I/O Manager is the Executive component that provides user mode
applications access to hardware resources while still protecting system resources. The
upper level of the I/O Manager makes drivers appear as File Objects (similar to VMS and
UNIX). User applications use the standard WIN32 file access functions to interface to
the driver. The lower level of the I/O Manager packages I/O request information into
packets call I/O Request Packets (IRP) and delivers the IRP to the appropriate driver.
This same mechanism can be used by device drivers to communicate with each other to
create layered drivers. The basic flow of IRP processing is shown in Figure 3.

The I/O Manager has several features worth noting. First, it allows drivers to be
dynamically loaded and unloaded. This allows drivers to be managed without rebooting
the system. The I/O Manager is also multiprocessor safe. This feature permits a device
driver to function properly in multiprocessor systems. Finally--and most important to

developers--the I/O Manager supplies the common epilog and prolog required by all

17

drivers. It builds the IRPs, manages the IRP buffers, routes the IRPs, provides operation
watchdog timers, and performs clean up functions when the I/O operation is complete.

All this makes drivers more compact and easier to develop.

User Applications
User Environment
Mode Subsystem DLL
Kernel 1/0O Subsystem API
Mode
I/O Manger
Driver
Support ¢ ?
Routines Kernel Mode Device
(Io, Ex, Ke, Drivers
Mm, Hal, etc.) #
HAL 1/O Access
Routines

Figure 3: Windows NT I/O System Structure

2.5 Driver Structure

The purpose of using IRP packets is to provide a generic method for the 1/0
Manager to communicate with drivers without having specific knowledge of them. The
I/O Manager maintains a function dispatch Table for every executing driver. The type

and order of the dispatch Table entries are identical for all drivers.

18

Every driver is required to provide an entry point called DriverEntry(). This code
is responsible for initializing the driver environment, device hardware, and populating the
dispatch Table. There are five required dispatch Table entries (functions):

1) IRP_MJ CREATE. This function is called when the driver is opened by an
application.

2) IRP_MJ CLOSE. This function is called when the driver is closed.

3) IRP_MJ READ. This function is called when an application calls the WIN32
ReadFile() function. This function is generally only used for file system drivers.

4) IRP_MJ WRITE. This function is called when an application calls the WIN32
WriteFile() function. This function is generally only used for file system drivers.

5) The Driver Unload function is called by the I/O Manager when the driver is unloaded.
It must disable the device hardware and release all OS resources claimed by the driver.

An important optional function is IRP. MJ DEVICE CONTROL. It is used to
implement a custom interface to the driver. When a user application calls the WIN32
function DeviceloControl(), the input buffer is sent directly to the driver and the driver
returns directly data in the output buffer. The I/O Manager does not interpret or
otherwise use the data.

The I/O Manager has two different methods for handling input and output buffers
passed to drivers: direct I/O and buffered I/O. In direct I/O, the /O Manager passes a
Memory Descriptor List (MDL) containing the location of the input and output buffers in
the user memory space. The driver uses the MDL to map the buffers into the driver’s
address space so that they can be accessed directly by the driver. In buffered I/O, the I/O

Manager allocates 1/0O buffers from the kernel non-pages memory pool. The contents of

19

the user space input buffer are copied into the input buffer allocated by the I/O Manager.
The input buffer allocated by the I/O Manager is then forwarded to the driver. The driver
output buffer is processed similarly. The driver stores return data in the system allocated
output buffer, which is then copied into the user space buffer by the I/O Manager when
the I/O request is completed. It seems reasonable to assume that these interface methods
add significant overhead data transfer operations. This hypothesis is investigated in this
thesis.

When writing device drivers or dealing with the I/O Manager, developers need be
cautious while performing pointer operations. Solomon [4] reiterates a previously stated
point: “Windows NT doesn’t provide any protection for components running in kernel

2

mode.” Code executing in kernel mode has unlimited access to all kernel memory and

CPU instructions which gives it the power to corrupt the operating system.

20

3 Software System Design

3.1 Overview

A flexible, extensible software system is required to support the SCC hardware
design presented in Appendix A. In order to the SCC to be usable, several host system
issues must be addressed: first, how the host interfaces to the SCC and second, how user
applications use the SCC. These design criteria must be met within the WinNT and Intel
x86 architectures. Fortunately, WinNT provides the well-defined driver structure for

accessing the hardware, as well as an interface for applications to access driver services.

Layer 3 User Applications
Layer 2 SCC API Library
Layer 1 SCC PCI Bus Driver

Target ACU

PCI Bus .
Layer 0 Windows NT HAL H (Cyclone i960 board)

Figure 4: SCC Software Architecture

The SCC support software structure follows a layered approach as illustrated in
Figure 4. This layered architecture assures that each level is isolated from changes in the
others. Each interface for layer O through layer 2 is dictated by Microsoft. Adhering to
these standards provides portability across the various hardware platforms that support
WinNT. The layer 0-1 interface is defined by HAL functions. These functions are only
accessible while the CPU is in privileged mode. The layer 1-2 interface is defined by the

WIN32 file access functions: CreateFile(), WriteFile(), ReadFile() and

21

DeviceloControl(). No other functions are provided to access the driver from user mode.
Finally, the layer 2-3 interface is controlled by the SCC Array Interface Library (AIL).
Its purpose is to provide user applications with a consistent interface to the SCC services
without requiring specific knowledge of the SCC hardware. It also provides portability

by obscuring the specifics of driver calls.

3.2 SCC PCI Driver

The software system requires a Windows NT device driver to communicate with
the SCC ACU via the host PCI bus. This component is not optional, as memory mapping

and privileged mode instructions are required to interface with the SCC memory.
3.2.1 Design Criteria

The primary goal of the driver development was to optimize the code to increase
overall system performance. The optimization effort focused on the IOCLT dispatch
code since this is the only code that has a bearing on runtime performance. The speed of
the initialization and de-initialization code is irrelevant since their execution occurs when
the SCC is unusable. In the end, not much performance was gained from hand tuning the
driver. It is impractical to write the driver in any language other than C; recent C
compilers generate execuTable code almost as efficiently as that produced by a good
assembly language programmer. The CPU cache structure can alleviate some of the
inefficiencies as well.

The driver was developed to accommodate reentrancy and multiprocessor
operation. These capabilities were designed in to provide a path for future system

expansion. The only coding overhead incurred is ensuring all variables are allocated

22

from the stack and adding a spin lock to driver dispatch function to ensure exclusive

accCess.
3.2.2 Implementation

There are essentially four types of WinNT drivers, buffered 1/O, direct I/O,
memory mapped, and DMA based. The SCC PCI Driver provides functionality to
support the first three modes in the same driver. This is possible by defining IOCTLs to
support the three modes in the same source file.

The SCC PCI Driver implements the essential WinNT driver functions: a driver
entry point, device I/O control dispatcher, and a driver unload routine. These are now
described.

DriverEntry() is the driver entry point. It has four major responsibilities:
1) PCI bus enumeration. It probes the PCI bus for SCC cards and creates a device object
for each SCC card found.
2) Creating a symbolic link so that the driver can be accessed by WIN32 file functions.
3) Initializing SCC hardware for use and mapping its memory into kernel memory.
4) Initializing the driver function dispatch Table.

WIN32 DeviceloControl() calls (which generate IRP. MJ DEVICE CONTROL
IRPs) are handled by the driver Dispatch() function. It supports nine device 1/O control
functions (IOCTLs), but only four warrant discussion. The first pair invoke
IOCTL _SCC_MAP USER PHYSICAL MEMORY (which calls MapMemory()) and
IOCTL_SCC UNMAP USER PHYSICAL MEMORY (which calls UnMapMemory()).
The MapMemory() function maps the SCC memory into the calling application’s

memory by using several HAL functions. The virtual address is return to the caller in the

23

pointer supplied by the call. An excellent example of this is provided in Dekker and
Newcomer [6] page 375. UnMapMemory() simply removes the mapping. The other pair
is IOCTL _SCC LOAD DATA BLK and IOCTL SCC READ DATA BLK. These
IOCTLS perform the block transfers to and from the SCC memory. These are
noteworthy because they use the HAL functions
WRITE REGISTER BUFFER ULONG() and
READ REGISTER BUFFER ULONG() to effect the transfer. The code behind these
functions is not remarkable (simply assembly language loops), but the functions should
be used in order to ensure driver portability. The implementation of these functions may
vary across NT platforms, but the function prototypes are immuTable.

The driver unload function, DriverUnload(), must reverse the set-up performed by
the DriverEntry() routine. The cleanup process consists of five steps:
1. Delete the symbolic links. This deregisters the driver with the NT Object Manager.

The driver can no longer be reference by name.

2. Disable the SCC board interrupts and disconnect the driver ISR from the NT ISR list.
3. Unmap the SCC board memory from kernel address space.
4. Release the resources that were assigned by HalAssignSlotResources().
5. Release the device object.

The driver functions for creating/opening (IRP_MJ CREATE), closing
(IRP_MJ CLOSE), reading data (IRP_MJ READ), and writing data (IRP_MJ WRITE)
to a device are stubbed. They have no significant function in this driver, but they must be

implemented according to WinNT driver standards.

24

3.2.3 Validation Testing

The SCC driver functionality was verified in several ways. One is that all driver
development has an inherent “Go. No Go.” test referred to as the “Blue Screen of Death”.
Drivers execute unprotected in kernel mode. If they contain an error, the results are
typically devastating to WinNT. If the error is not too severe, the kernel catches it and
displays the “Blue Screen of Death”. If the error is server enough, the computer locks up
and the effects are completely indeterminate.

The SCC Driver functionality was more methodically tested using two test tools.
The basic functions were tested using Microsoft WinDBG. This debugger displays
messages embedded in checked build drivers if the debugger is active and the debug
feature of WinNT is enabled at boot time. Otherwise, message support is disabled. Test
messages are embedded in the major blocks of the SCC PCI driver. A test application
was written to exercise all of the SCC driver functions and the debug output was
monitored with WinDBG. This method proves basic driver functionality, but does not
verify memory transfer operations.

Since the SCC board is still under development, it is desirable to have a known
good target to verify memory operations. The Cyclone 1960 development board provides
a suiTable environment for this task. The board provides an Intel 19960 CPU with an
onboard debug monitor and a user interface via a serial port. The 1960 also has a PCI
interface that provides access the board DRAM. The validation test consists of a test
application executing on the host that uses the driver to perform a write/readback/verify
test on the 1960 memory. The 1960 debug monitor is used to examine the 19960 memory

for the proper test patterns.

25

3.3 Array Interface Library

3.3.1 AIL Design

The purpose of the Array Interface Library (AIL) is to provide programmers with
a consistent environment for accessing the SCC. This serves several purposes. First, the
programmer is not required to know the inner workings of the SCC hardware. The
application programming interface (API) allows data and/or programs to be sent/
retrieved from the array by making a function call. Second, applications are completely
insulated from changes to the hardware and/or device driver. A library port allows the
system to target alternate hardware platforms and/or host operating systems. The AIL
was designed to be fully reentrant and to support multiple SCC cards in the host platform.

There are four versions of the AIL available:

1. Static linked C library

2. Static linked C++ library

3. C WIN32 Dynamic Link Library (DLL)

4. C++DLL

This provides programmers with as many implementation options as possible. In
addition, this provides a means to compare the system level performance of static
libraries vs. DLLs and C vs. C++.

The different versions of the AIL are derived from the static link C library source
stream. A stub was added to facilitate DLL use and a C++ wrapper class was developed
to support object oriented programming. For the remaining discussion, AIL will refer to
the static linked C version of the library.

The AIL provides API functions to:

26

1. Read and writes blocks of data from/to SCC memory.
2. Read the SCC driver information.
3. Load basic program blocks into SCC memory and execute them.
4. Issue directives to the ACU.
5. Wait for and process feedback from the SCC array.
These functions segregate into two general categories: low level primitives to
interface to driver and perform basic data transfers, and higher level, SCC specific
interface functions. The following sections discuss the design concepts of the AIL

functions and are not intended to be an AIL tutorial.
3.3.2 Library Interface Functions

SccLibraryOpen() opens a connection to the specified SCC. It returns a handle
that uniquely identifies this connection and this handle used by the other library functions
to identify which SCC they are accessing. The complement function is
SccLibraryClose(). This function must be called when the connection to the SCC is no
longer needed.

The definition of the handle is arbitrary from the user viewpoint; it is simply a
way to identify with which SCC card to communicate. From the AIL implementation
standpoint, the handle is actually the WIN32 handle returned from the CreateFile() call
that opened the SCC driver. This is a good example of the complex implementation
details obscured from the application programmer by the AIL.

The AIL provides the SccWriteBlock() and SccReadBlock() functions to facilitate
transfer between user applications and the SCC. These are the only functions that user

applications should use for data exchange with the SCC, mainly because they obscure the

27

transport mechanism. Based on the experimental test results presented in Chapter 4, the
AIL uses the services of the direct I/O driver for data transfer. In this configuration, the
WinNT I/O Manager provides addition protection against programming errors.

In the ideal AIL implementation, all other AIL functions would use these low-
level data transfer primitives. This would minimize the impact of changing layer 1
drivers. However, the current AIL functions call the WIN32 driver interface functions
directly in an effort to improve performance. This optimization, however, is shown to be
unnecessary based on the library performance test results in Chapter 4.

The ACU interface functions are built on the low-level primitives and they
provide the programmer hardware-independent methods for controlling the SCC ACU.
They obscure details such as control and status register format and memory address. A

description of the functions is listed in Table 2.

Function Description

SccWaitOnCondition() This function polls the SCC status register until the
conditions specified by the bit mask are met. This is used
primarily to stall the main application thread until array
feedback is available.

SccReadFeedback() This function returns the current value of the SCC feedback
queue.

SccWriteImmediate() This function inserts an immediate value into the SCC input
queue.

SccReadStatusRegister() | This function returns the current value of the SCC status
register.

SccWriteStatusRegister() | This function writes a value to the SCC status register.

Table 2: List of SCC Interface Functions

A group of functions is provided to interface with the layer 1 driver (See Table 3).

These functions are provided primarily for testing purposes.

28

Function Description

SccGetDriverInfo() | This function returns the copyright and version information from
the driver. It can be used as a simple test to verify driver
operation.

SccGetPcilnfo() This function returns the PCI bus information detected by the
driver during bus enumeration.

SccGetCardCount() | This function returns the number of SCC boards found on the PCI
bus during bus enumeration.

SccResetCard() This function forces the SCC board to reset.

SccGetStatus() This function returns the current status of the driver. This is
currently limited to indicating if another application has locked
the SCC board as a resource.

Table 3: List of Driver Interface Functions

The AIL provides two functions to gather system performance information and
are used here to gather test data during the system performance evaluation. The function
SccGetTimer() calls into the driver to return the value of the CPU 64 bit performance
counter. The instruction (RDTSC) used to read this timer is a privileged mode
instruction so it must be executed from within the driver. The function
SccGetElapsedTime() returns the time the previous driver call took to complete. This
was used here to determine the amount of time data transfers to the SCC took from the
perspective of the driver.

The AIL also contains a pair of functions to memory map the SCC memory
directly into user application memory. SccMapMemory() performs the map function and
SccUnmapMemory() frees memory when it is no longer needed. These functions are
provided primarily for use in the memory mapped layer 1 driver and should not be used

by user applications. The main problem is there is no protection for the kernel memory

29

when mapped to user memory space and an errant program could easily corrupt WinNT
operation.

The AIL software architecture provides a flexible, modular interface to the SCC.
Each layer provides an avenue for portability and protection from errant programming. It
would be simple to port the software system to a non-Intel WinNT environment;
essentially a recompile. For other operating systems, however, the driver (which is
inherently OS dependent) would have to be rewritten; however, its basic structure could

be applied to UNIX and LINUX.

3.4 Benchmark Applications

The AIL affords the application programmer a high degree of flexibility in how to
use the SCC. The question becomes, how much does all this flexibility cost? Part of the
SCC software system is a series of benchmark applications to measure the performance
of the driver and the AIL components. More specifically, they attempt to quantify the OS
overhead associated with each WinNT driver type discussed previously as well as the
library implementation overhead (static linked library vs. DLL). The goal is to determine
what effect drivers and/or libraries have on the overall system performance. The

benchmark applications specifics are discussed in the next chapter.

30

4 Results

This chapter discusses experimental results in this thesis. The primary goal here
is to investigate the effects of the host software implementation on the SCC performance.
This is accomplished by executing benchmark applications that perform various sized
block transfers targeting a simulated SCC. The Cyclone 1960 development board is used
for testing since the SCC is still under development. The 1960 board also has the added
advantages of providing an onboard debug monitor and a known good PCI interface.

The benchmarks used different combinations of WinNT drivers and interface
libraries to test the impact of various software implementations on the SCC system. Data
transfer times are measured from the application, driver and PCI bus perspectives in an
effort to identify possible I/O bottlenecks.

The rest of the chapter presents the testing methodology followed by the SCC

driver, the AIL library overhead, and finally the PCI bus utilization test results.

4.1 Testing Methodology

The research focuses on determining the effects of WinNT overhead on system
performance. There are two hypotheses under study. The first is that memory mapped
drivers have a significant performance advantage over both the buffered I/O and direct
I/O drivers. This seems intuitive, as the involvement of the I/O Manager in data transfer
operations must be slower than writing directly to the target memory. The second
hypothesis is that the statically linked implementation of the AIL provides better
performance than the C++ and DLL versions. The rationale is that the code from static

linked libraries is directly linked into the application; it is executed from the same code

31

segment as the rest of the application. On the other hand, WinNT DLLs are loaded into
kernel memory on demand and applications resolve the execution addresses at runtime.
C++ versions are tested primarily because of the long-standing debate as to its impact on
code efficiency.

A suite of benchmark applications was developed to test these hypotheses. The
benchmarks are standard WIN32 console applications written to test the PCI throughput
between the host CPU and the SCC. PCI bus throughput is considered the critical factor
in determining overall system performance since SCC array and host CPU operating
frequencies are significantly faster than the PCI bus. The benchmarks are designed to
write then read back data blocks from the 1960 board (simulated SCC). The block sizes
range from 4 bytes to 2 MB with the block size doubled for each iteration. The

benchmark pseudo code is:

Main()
{
for(block size=4; block size<=2MB; block size*=2)
{
read timer for app start time;
do driver transaction;
get driver run time;
read timer for app end time
Tapp = Tend — Tstart;
Write numbers to log file;
}

Block transfer time is an important performance measure for all systems that use
coprocessor cards. The SCC is designed for vision and graphics applications. These
types of problems require large blocks of data in the form of images to be frequently
moved between the host and SCC. Code segments also have to be loaded from the host

to the SCC. Particularly for the SCC, small block transfers are also important. The user

32

applications on the host regularly send directives to the ACU and write to the control
register. User applications also read the SCC status and feedback registers to control
program flow. These operations are all time critical.

Three performance measurements are taken by the benchmarks. First, the block
transfer time is measured from the application viewpoint. This is the most important
parameter since it reflects the total runtime of the application. It includes OS overhead,
compiler and library inefficiencies, and system bus utilization (assuming a constant
workload). The second measurement is the time spent in the driver performing the data
transfer. The purpose of this measurement is to quantify how much OS overhead is
associated with the application and how efficiently the driver executes. In theory, the OS
overhead is the time in the driver subtracted from the value of the application timer. The
final measurement is the amount of time the transfer actually takes on the PCI bus. This
can be measured using a PCI bus analyzer; in the case of this investigation an HP 1671E
with a FuturePlus Systems FS2005 PCI probe. This is a difficult measurement to take,
but it shows the actual transfer time. This value subtracted from the application time and
the driver time represents the OS overhead for the respective operation. The application
and driver overhead measurements indicate where the system inefficiencies reside.

Collecting accurate timing information is challenging. WinNT provides software
timers, but they suffer from OS overhead when updating when they are read. They are
also have relatively low resolution; on the order of milliseconds. The PC hardware
provides timers that would be useful except that the WinNT VM system prevents them
from being accessed directly by user applications. Also, there is no way to know if or

how these timers are allocated by WinNT.

33

The solution is to use the 64 bit performance timer supplied by the CPU. This
timer is reset when the CPU is reset and incremented on every instruction cycle.
However, this method has some limitations. Mainly, it uses the RDTSC instruction,
which is native to Intel Pentium and above processors. RDTSC is a privileged mode
instruction so it must be invoked within the context of a driver. This skews the accuracy
of the measurement. The skew has two components. First, there is the code overhead of
calling the driver and the driver handling the call. This can be accounted for by counting
instruction cycles expected from the assembly language listing and then subtracting them
from the timer value. This does not completely account for the call overhead since any
part of the operation can be preempted. This is the second component of the
measurement skew and it is exact impact is indeterminate. As long as WinNT is running,
there is potential OS overhead associated with every operation. The exact effects vary
with workload, OS configuration, interrupt frequency, and hardware configuration.

The WinNT workload directly affects the performance measurements. WinNT
requires certain processes be executing for the system to function (see Chapter 2). For
testing purposed, all nonessential user applications and system processes were
terminated. The goal was to provide a lightly loaded system to get the best performance
possible though this is not a normal system configuration. It is also important to restrict
the workload to avoid loading the PCI bus with hard drive and system peripheral
accesses. These directly contend with the benchmark applications for use of the PCI bus

and skew the test results.

34

4.2 Test Procedures

The test environment is shown in Figure 5. The system contains the PC under
test, a PC to access the Cyclone 1960 debug monitor and an HP1671E logic analyzer with

a FuturePlus Systems FS2005 PCI probe.

Test PC

PCI Bus

HP1671E
Logic
Analyzer

FS2005
1960 Card

COM1 COM2

Monitor PC

Figure 5: Hardware Test Setup

The Test PC is loaded with WinNT 4.0 and the benchmarks. All extraneous
processes and services are terminated, but as previously mentioned, some system
processes are required for WinNT to operate. The FS2005 probe is placed in any open
PCI slot in the Test PC. The cables from the HP1673E logic analyzer are connected to
the FS2005 as demonstrated in the FS2005 User Manual. The PCI bus monitor software

is loaded into the logic analyzer by selecting the “CP256 1 configuration file on the

35

system disk, selecting “Load from flexible disk” followed by pressing the “Execute”
button. The trigger is configured as described in FuturePlus application note “Capturing
PCI Bus Transactions.” The 1960 board should also be inserted into a PCI slot on the
Test PC. The serial line is connected from the RJ-11 jack on the 1960 board to a COM
port on the Monitor PC. Note: plugging the 1960 into the FS2005 expansion connector is
not recommended. The electrical characteristics of PCI are such that the impedance of
the extra trace lengths on the FS2005 could corrupt the signals supplied to the 1960 board.

The main purpose of the Monitor PC is to provide a serial console for accessing
the 1960 debug monitor. Its use is not required while running the benchmark tests, but it
can be used at any time to verify the correctness of the data transfers. Windows
HyperTerm can be used to communicate with the debug monitor. The communication
parameters are 115 kbps, 8 data bits, 1 stop bit and no parity. To start the communication
session with the debugger, press the <Enter> key 8§ times. The debug monitor supports a
variety of commands; however, the most useful commands are “dd” (display
doubleword) and “mo” (modify memory contents). These commands are described in
detail in the Intel "MON960 Debug Monitor User’s Guide" (Document Number: 484290-
0006).

The Monitor PC can optionally have the WinNT kernel debugger (WinDBQG)
installed. WinDBG is used mainly for driver development; not performance testing. In
fact, WinDBG was disabled during testing because of overhead it introduces into the
system. Enabling the debug features of WinNT slows it down immensely. In addition,
debugger communication occurs at 115 kbps over the serial port. This greatly affects

system performance.

36

The following sections present the results of the benchmark tests discussed in
Section 4.1. The driver test results are analyzed first, followed by the library overhead
tests and finally the bus utilization test. Tests were executed on a 133 MHz Intel Pentium
processor with an Intel Triton II chipset (hereafter referred to as Pentium) and a 1.2 GHz
AMD Athlon with a VIA KT133A chipset (hereafter referred to as Athlon). This seems
like an unfair comparison, but the disparate systems (CPU and chipset) were selected
because there is roughly an order of magnitude difference in their processing capabilities.

The goal is to expose possible benchmark CPU dependencies.

4.3 Driver Test Results

The following sections present the throughput results for the memory mapped,
direct I/O and buffered I/O drivers. The benchmark applications did not use the AIL
functions; they call DeviceloCtrl() directly. This was done to remove library related

performance issues. The AIL impact on system performance is presented in Section 4.4.
4.3.1 Memory Mapped Driver

This section presents the results for the memory mapped driver. The designation
memory mapped driver is slightly misleading. The driver is not actually involved in the
data transfers. The only service it provides is to map the 1960 memory into the
benchmark’s user memory space. The memory mapping function must be implemented
in this manner since kernel mode privileges are required to call the HAL mapping
functions. This driver was expected to have the best performance since the applications

are writing directly to the 1960 memory without the overhead of involving the I/O

Manager. 2222222222222222222229999

37

The write throughput results for the Pentium and Athlon are shown in Figures 6

and 7. No results for the driver execution time are presented, as the driver is not involved

in the data transfers.

Throughput (bytes/second)

40000000

35000000 -

YL

*

L/

30000000

25000000

*®
* 00

20000000

15000000

10000000 -

5000000 +

0*40—.7—.—..\

1 10 100

1000 10000 100000 100000 1E+07
Block Size (bytes) 0

Figure 6: Memory Mapped Driver Write Throughput on Pentium

38

30000000

goedsgeccees
<
25000000 - " $

20000000 ’

Throughput (bytes/second)

15000000 -
$
10000000
®
5000000 -
®
[J
0 . T T T T T T
1 10 100 1000 10000 100000 100000 1E+07

Block Size (bytes) 0

It is easily gleaned from these figures that the write throughput is substantially
lower than PCI theoretical peak throughput of 132 MB/s. This is attributed mainly to
operating system overhead, though the shared system bus contributes a small component.

The read throughput results for the Pentium and Athlon are illustrated in Figures 8

transfer times for all block sizes are identical. The most plausible explanation for this is
that both CPUs are reading from cache even thought the driver designates the 1960
memory as non-cacheable. This poses a serious problem for the SCC which uses
memory mapped control and status registers. Writes and reads are required to return the
current state of the 1960 memory otherwise the host cannot make proper control

decisions.

39

35000000000

30000000000

25000000000 -

20000000000 -

15000000000 +

10000000000

Throughput (bytes/second)

5000000000 - R

*
01 eooooeeeoeeoeeeee?® |
1 10 100 1000 10000 100000 1E+06 1E+07
Block Size (bytes)

Figure 8: Memory Mapped Driver Read Throughput on Pentium

600000000000.00

500000000000.00 - $
400000000000.00 -

300000000000.00 + Read

200000000000.00

Throughput (bytes/second)

100000000000.00 -

¢
L

0.00 NN & 5.4 ‘
1 10 100 1000 10000 10000 1E+06 1E+07
Block Size (bytes) 0

Figure 9: Memory Mapped Driver Read Throughput on Athlon

The test results for this driver were at best disappointing. As will be shown in the

following sections, this driver does not have a performance advantage over the buffered

40

I/O or the direct I/O drivers. This is completely counterintuitive since accessing memory
directly is typically faster than involving a third party (the I/O Manager in this case) in
every data transfer. The best possible explanation for this is based on the WinNT
scheduling priority scheme (see Solomon [4] page 187 or Dekker and Newcommer[6]
page 10 for background information). Device drivers always run at a higher priority than
user applications; therefore, they are less likely to be preempted. It is possible that
performance of the benchmark could be improved by raising its thread priority.
However, this violates the design principle of not monopolizing the CPU stated in the

introduction and could destabilize the host operating system environment.
4.3.2 Direct I/O Driver

As described in Chapter 2, the direct I/O driver is a hybrid of the memory mapped
and buffered I/O drivers. Data input to the driver is copied into a kernel buffer before
passing it to the driver. The user supplied output buffer is directly mapped into kernel
memory; eliminating the need to copy the receive data from a kernel buffer to the user
buffer.

The write performance for this driver is comparable that of the buffered 1/0
driver. This is to be expected since they both buffer user input. The disparity between
the write and read throughputs is attributed to write merge logic either in the CPU or the
North Bridge. This was verified by modifying the driver to write 8 bit words instead of

32 bit words; the write throughput was unchanged.

41

Throughput (bytes/second)

Throughput (bytes/second)

30000000

25000000
20000000 -
0 §0ge0
*
15000000 - s ¢
K
¢
10000000 - °
. *
*
® o0
5000000 TTTILLL
L
0 *4-—‘—.—.—.—! 4 T T T T

1

30000000

10 100 1000

Block Size (bytes)

10000 100000 100000 1E+07
0

Figure 10: Direct I/O Driver Throughput for Pentium

25000000 -

20000000

‘c°‘fog;§
0

15000000

L

10000000 -

5000000

‘...llllllllllll

al
kl‘.

10000 100000 100000 1E+07
0

1000
Block Size (bytes)

10 100

Figure 11: Direct I/O Driver Throughput for Athlon

42

o Write
m Read

o Write
m Read

The read throughput for the direct I/O driver is slightly higher than for the
buffered I/O driver. The typical read throughput for both the Pentium and Athlon using
the direct I/O driver was approximately 4.1 MB/s. This same measurement using the
buffered I/O driver was 3.4 MB/s for the Pentium and 4.0 MB/s on the Athlon. The
difference is attributed to the direct I/O driver eliminating the output buffer copy.

The time spent in the driver vs. the time spent in the benchmark (see Figures 12
and 13) affirms that the benchmark itself has little impact on the throughput. Its only
overhead is a call to DeviceloCtrl(); the remaining part of the transfer is handled by the

I/O Manager and the driver.

100 B
90 [
80
70 +

60 B A4
. ;_‘ ‘—‘ $ 00 o Write

50

*
40 ¢
30
20 -
10

o T T T T T T
1 10 100 1000 10000 100000 1000000 1E+07

Block Size (bytes)

m Read

Percent Time in Driver
]

.l
m B)
==0000‘

Figure 12: Direct I/O Driver Percent Time in Driver for Pentium

43

100 3 N B EEEEEE
i L]

%0 ! AARETEL

80 + ¢

70 0

60 ‘

40 - [

30 | |l ‘
20 %eeo

10

o T T T T T
1 10 100 1000 10000 100000 1000000 1E+07

Block Size (bytes)

o Write
m Read

Percent Time in Driver
()]
o
Il
]
o

Figure 13: Direct I/O Driver Percent Time in Driver for Athlon

The Pentium time-in-the-driver ranges from 40 us (1 byte) to 61 ms (2MB) for
writes and 49 s to 498 ms for reads. The Athlon time in the driver ranges from 2.7 us to
74 ms for writes and 4.4 ps to 511 ms for reads. It is interesting that the Athlon is faster
for the small transfers, but the CPUs have similar performance for the larger blocks. This
is quite unexpected since the Athlon is an order of magnitude faster than the Pentium.

The implication is that software is the limiting factor for smaller transactions and
hardware limits larger transactions. This assertion is supported by the fact that the
Athlon processes small transaction an order of magnitude faster than the Pentium, which
corresponds to the difference in their CPU speeds. As the transaction size increases,
hardware becomes the limiting factor. This explanation is based on the throughput
performance plateau experienced by both CPUs where they exhibit the same peak

throughput (see Figures 12 and 13). However, the Athlon reaches this plateau when the

44

block size is greater than 1024 bytes while the Pentium does not reach it until 10 kbytes.
Again, we have an order of magnitude difference. The conclusion is that both CPUs are
capable of outperforming some part of the PCI interface logic, presumably the North
Bridge.

43.3 Buffered I/O Driver

As anticipated, the buffered I/O driver proved to be the slowest driver. This is
illustrated by Figures 14 and 15. One interesting feature of these graphs is that the write
throughput is the same for both CPUs and it is identical to the results for the direct I/O
driver. This is to be expected since both drivers copy the user input into a kernel buffer.
In addition, the maximum write throughput is similar to the peak write throughput of the
memory mapped driver. This is significant since the memory mapped driver writes
directly to the 1960 while the buffered 1/O driver has to copy the input buffer before
writing to the target. This further supports the assertion made in Section 4.3.2 that write

merge logic is employed in the PCI interface logic.

45

Throughput (bytes/second)

Throughput (bytes/second)

30000000

25000000
20000000
REAXE
of
15000000 - $3
.0
10000000 - °
5000000 - *e
[EEEEER
..’I...
p a————y L : : :
1 10 100 1000 10000 100000 100000 1E+07

Figure 14: Buffered I/O Driver Throughput for Pentium

Block Size (bytes) 0

30000000
L
25000000 - o A XX 3
¢
20000000 .
¢
‘ *
15000000
10000000 - ¢
$
5000000
guiEEEEEEEQEEESN
il
0 -7.\. T T T T T
1 10 100 1000 10000 100000 100000 1E+07

Block Size (bytes) 0

Figure 15: Buffered I/O Driver Throughput for Athlon

46

o Write
m Read

o Write
m Read

The read throughput for the buffered I/O driver is slightly lower than for the direct
I/O driver. The typical read throughput for the buffered I/O driver was 3.4 MB/s for the
Pentium and 4.0 MB/s for the Athlon. The direct I/O driver was approximately 4.1 MB/s
for both the Pentium and Athlon. As discussed in Chapter 2, this inefficiency is
attributed to the I/O Manager copying the received data from kernel memory into the user
output buffer. This subtle performance degradation is not exposed by the driver time
measurements because the copy occurs in the I/O Manager which is outside the context
of the driver. The I/O Manager overhead is accounted for by the applications runtime.

The driver time results in Figures 16 and 17 reaffirm that the benchmark has
minimal effect on the throughput. ?????77???? Most of the CPU time is spent in the driver

performing data transfers. This is consistent with the results for the direct I/O driver.

100

90 -

80 I—HMF
o [|
2 a1
a mn

60 -
[= *
© E $ $8008 o Write
2 @] i
=] m Read
)= 40 A $

L

9 [|
g 30 - - L
o i [} ¢ ‘ ‘

20 ‘TR A XX

10

o T T T T T T
1 10 100 1000 10000 100000 1000000 1E+0Q7

Block Size (bytes)

Figure 16: Buffered I/O Driver Time in Driver for Pentium

47

100 3 g NEEHE

a" S gmEmn
90 ¢ ®
T, et ttenss

80 - . M
2 70 *
S [|
T 60 8
'é 50 - E o Write
i] m Read
z 40 - [| ‘
S 30 0
T W, en?

20 - s %o

10

o T T T T T T

1 10 100 1000 10000 100000 1000000 1E+07

Block Size (bytes)

Figure 17: Buffered I/0 Driver Percent Time in Driver for Athlon

The buffered I/O driver was modified to perform 8 bit data transfers instead of 32
bit transfers. The write throughput was unchanged, further supporting the assertion that
write merging logic is present in the PCI logic. Read throughput dropped by a factor of
four, as expected, indicating that the 1960 is not prefetching read data.

4.3.4 Overall Driver Test Analysis

At a high level, the driver tests share several common results. First, there is no
significant performance difference among the different driver implementations. This was
completely unexpected. It was anticipated that the memory mapped driver would provide
the best performance.

Second, the maximum data throughput is significantly less than the peak PCI
throughput. This is to be expected since the peak PCI throughput measurement in based

on using dedicated hardware with no OS overhead. However, the degree of performance

48

degradation was severe even in comparison to the PCI Pamette [10]. In a system
configured similarly to the Pentium, the PCI Pamette had a PIO write throughput of 65
MB/s and a read throughput of 15 MB/s. This is a stark contrast to the 25 MB/s write
throughput and 4.5 MB/s read throughput derived from the SCC driver tests.

Finally, it is interesting that the Pentium and Athlon have the same peak
throughput despite the Athlon being ten times faster than the Pentium. This result is
expected to an extent because the PCI bus--not the CPU--will eventually limit the data
transfer rate. The unexpected result is that the CPUs consistently reached the same peak
throughput at different block sizes independent of driver implementation. This is because

the CPUs outperformed the PCI interface logic.

4.3.5 DMA Driver

The results from the SCC driver tests indicate that programmed I/O has severe
performance limitations. The next logical step (which is beyond the scope of this thesis)
is to develop a DMA based driver. The DMA controller would relieve the host CPU
from transferring data a word at a time as well be able to consolidate data transactions
into PCI burst bus cycles. The DMA controller and North Bridge designs would need to
be examined to determine how to best use these capabilities. The issue is then
determining how to force the DMA to use PCI burst cycles from within a WinNT system.

Theoretically, the DMA write throughput should be better than depending on
write merging. The DMA controller is given a definite address, block size and a starting
time. In contrast, write merging logic must buffer data, determine whether it can be

merged, wait for a specified timeout period to ensure no more data is coming, and

49

perform the write transaction. This overhead has a negative impact on the write

throughput; however, it is significantly better than writing a word at a time.

The read throughput has the most potential for improvement by using a DMA
driver. Most of the OS overhead experienced by the SCC drivers is eliminated since the
CPU is longer be involved in the read transfer. In addition, the DMA controller could use
PCI burst read cycles to reduce PCI bus overhead.

A few issues need to be explored before implementing a DMA driver.

1) The amount of time a device can own the PCI bus must be restricted. The system bus
is shared resource and there are system critical components connected to it that must
be serviced regularly.

2) The DMA controller allows the host CPU to continue executing after starting the
transaction. This is only a performance gain if the CPU has work to perform.

3) Finally, the SCC driver tests demonstrate a point where throughput plateaus. This
must have been caused by a hardware limitation in the PCI interface. It is possible
that the DMA controller would encounter this same issue.

A possible alternative to using the host DMA controller to perform reads is to
have the target support bus mastering. In this design, the host programs a DMA
controller in the target to effect the read transaction. The target executes the data transfer
and then signals an interrupt when the transfer is complete. This design completely
circumvents WinNT and North Bridge interfacing issues. The test procedures and
corresponding results from Moll and Shand [10] on the PCI Pamette seem to validate this

design.

50

4.4 Library Test Results

The purpose of the Array Interface Library tests was to determine if the driver
interface library implementation affected system performance. Static linked libraries and
DLLs for both the C and C++ languages were tested using the buffered I/O driver to
interface to the 1960. The AIL tests were executed on both the Pentium and the Athlon
for completeness.

Figures 18 though 25 illustrate the results from the AIL testing. The results
depicted match the results in Section 4.3.3 for the buffered I/O driver benchmark, which
does not use a driver interface library. This implies that there is no appreciable difference
between library types, at least at the macro level, although there are known differences at

the micro level.

30000000
— 25000000 -
©
c
o)
8 20000000
- g XX
S i . Write
2 15000000 - , ¢
= m Read
2 ¢
& 10000000 - o .
2 <
c
~ 5000000 - s
* m B EEEEN
LanBeRgRlE
0O+ smuunnl ‘ ‘ : :
1 10 100 1000 10000 100000 100000 1E+07

Block Size (bytes) 0

Figure 18: C++ DLL Throughput for Pentium

51

Throughput (bytes/second)

Throughput (bytes/second)

30000000

25000000

20000000

15000000 -

10000000 -

5000000 +

1000 10000 100000 100000 1E+07
Block Size (bytes) 0

Figure 19: C++ DLL Throughput for Athlon

30000000

25000000 -

20000000 -

15000000

setey
i,
g

10000000

*

5000000 -

.l
0——.+I44ﬁ—. ‘

1

*

L K]
M EPLLLELERE RN

1000 10000 100000 100000 1E+07
Block Size (bytes) 0

o Write
m Read

o Write
m Read

Figure 20: C++ Static Linked Library Throughput for Pentium

52

Throughput (bytes/second)

Thoughput (bytes/second)

30000000

25000000

20000000 -

15000000 -

10000000 -

5000000 -

Figure 21: C++ Static Linked Library Throughput for Athlon

25000000

20000000 -

15000000 -

10000000 -

5000000

0 1

Figure 22: C Static Linked Library Throughput for Pentium

SR FERR
g o
g o
‘ ¢
s
¢
¢
:...llllllllllll
..\. T T T T T
1 10 100 1000 10000 100000 100000 1E+07

Block Size (bytes) 0

“‘§.
;0
*

*
*

<

1

I s mmmnl

10

o
]

100

1000 10000 100000 100000 1E+Q7
Block Size (bytes) 0

53

o Write
m Read

o Write
m Read

Throughput (bytes/second)

Throughput (bytes/second)

30000000

25000000

20000000 -

15000000 -

10000000 -

5000000 -

Figure 23: C Static Linked Library Throughput for Athlon

25000000

20000000 -

15000000 -

10000000 -

5000000

°
§|Ooo
i *
¢ 4
PR
®o
.:.l..lllllll
0
0*4.—‘—.—.—.—1! T T T T

.J‘;.440_
¢ * PR IR 4
¢
*
'
¢
:...l||lllllllll
I..'
1 10 100 1000 10000 100000 100000 1E+07

Block Size (bytes) 0

1 10 100

1000 10000 100000 100000 1E+Q7
Block Size (bytes) 0

Figure 24: C DLL Throughput for Pentium

54

o Write
m Read

o Write
m Read

30000000

— 25000000 M

= °

c *

S N

$ 20000000 "

[72]

S ¢ Writ
rite

2 15000000 - ¢

- m Read

=

g)

5 10000000 -

[e]

= $

5000000 - .

u] [| E g EEEEEERE EE N
gu”
0 .7.\ . .\ T T T T
1 10 100 1000 10000 100000 100000 1E+07

Block Size (bytes)

0

Figure 25: C DLL Throughput for Athlon

The AIL testing shows that driver interface library implementation has negligible
impact on system performance. This is a positive result since it allows programmers to
select the programming language and library types best suited to the application without

incurring system performance penalties.

4.5 Bus Utilization Results

The purpose of the bus utilization test was twofold: to measure the fraction of
time the PCI bus was used for SCC transactions and to determine how long the various
block transfers take. Only the latter part of objective as met. Once testing was
underway, it was concluded that the PCI bus analyzer traces were too detailed to analyze

manually. The scope of the test was therefore limited to a single data set for each driver

type with the block sizes ranging from 4 to 32 bytes. The Pentium system was used.

55

The times required to perform read and write transactions are shown in Figures 26
and 27. The transfer times can be compared to the theoretical PCI transfer time which is
calculated as (1+Block Size)*30 nanoseconds. This assumes a data word is transferred
only every PCI clock cycle, which is unrealistic, but it does provide a baseline
measurement. The graphs indicate that the actual transfer time is substantially greater

than the theoretical PCI transfer time.

4500
4000 -
3500
3000 A ¢ Memory Mapped
2500 - m Direct /0
2000 u Buffered /O
1500 A Theoretical
1000 - N
A
500 —=
0+ ‘ |
0 50 100 150
Block Size (bytes)

He

L

Write Time (nanoseconds)

Figure 26: PCI Bus Write Time

The discrepancy between the actual and theoretical write performance illustrated
in Figure 26 provoked a more detailed analysis of the logic analyzer traces. The host PCI
interface uses PCI burst write cycles for data transfers larger than one word; however, it
was found that the burst size is limited to nine words. It is presumed that this is done to
avoid monopolizing the PCI bus.

The write trace analysis revealed that the 1960 is negatively affecting throughput.
It forces the host to retry burst writes an average of three times before the transaction

completes successfully. This, combined with the host feature of using burst cycles for

56

writes of over one word, leads to a write time of approximately 720 nanoseconds for a
two word write, as opposed to the 128 nanoseconds the write should take. The effects of
the retry overhead decrease as the burst length increases, but the host limits the burst to

only nine cycles.

30000 y

20000 o Direct I/l
m Buffered I/O
Theoretical

Read Time Time (nanoseconds)

O 77"7 A4 T T
0 50 100 150

Block Size (bytes)

Figure 27: PCI Bus Read Time

Investigation of the logic analyzer traces further exposed the read performance
bottleneck illustrated in Figure 27. First, it was confirmed that there is no read merging
by the host; this was expected. The host issues individual PCI read cycles for every word
read by the host. The trace also shows that, at least for small blocks, the reads are
sequential on the bus; i.e., no other device interrupts the string of reads. This gives the
illusion of being a PCI burst read, but it is not. In fact, a PCI burst read would be twice
as fast as a string of individual reads because it only issues the address once during the
address phase while the individual read generates an address cycle for every transaction.

The 1960 adds an additional component to the sub-optimal read performance. It

forces the host to retry reads an average of three times for every read transaction

57

attempted. This makes the typical read time for a single word 816 nanoseconds or
approximately 27 PCI bus clocks. The 1960 performance problem can probably be
attributed to one of two sources. First, the 19960 DRAM access time may not be fast
enough to respond in one clock cycle. This can be alleviated by installing faster memory.
Second, the 1960 effectively dual ports its DRAM so it can be accessed from the PCI bus
and the 1960. The 1960 is executing the debug monitor from DRAM so it is possible that
the 1960 is contending with the PCI bus interface for DRAM access, thus forcing the PCI
interface to generate a retry.

Only the host results have a direct bearing on the SCC design since the SCC will
have a high performance PCI interface. The idiosyncrasies introduced into the system by
the 1960 will not be present in the SCC. However, these results further support the need
for a DMA driven system as presented in Section 4.3.5.

Unfortunately, this test did not provide the desired bus utilization metric;
however, it did explain part of the performance degradation experienced by the
benchmarks. When the 1960 was selected to be the SCC simulator, the assumption was
that the 1960 could accurately emulate the SCC. This assumption was proven false.

These test results also identify pitfalls to be avoided in the SCC hardware design.

58

5 Conclusion

5.1 Discussion

The results are admittedly different than anticipated. The original hypothesis was
that the memory mapped driver would have a significant performance advantage over the
other two drivers. As the driver testing showed, the memory mapped driver had no
advantage over the buffered I/O driver. This is completely counterintuitive and had these
test not been run, the belief would still hold. Since there is no performance penalty, the
better design choice is to use the direct I/O driver, which allows the NT I/O Manager to
protect the kernel memory from errant memory accesses. It is important to note that the
SCC memory is still mapped into kernel memory for all driver types. The manner in
which data is passed to the driver is independent of this mapping.

At a macro level, the choice of library implementation was discovered to have no
impact on system throughput. This is contradictory to the second hypothesis that DLLs
and C++ code add overhead to applications. At the micro level, these programming
methods generate a small amount of code overhead; however the test results proved this
overhead to be negligible. In the case of DLLs, the results make sense. Their only
overhead is loading them into memory. Once loaded, they function more or less
identically to statically linked libraries. The same result vindicates the much maligned
C++ language as well as since no measurable difference was detected between the C++
and C benchmark implementations.

Finally, the most surprising result is that the PCI throughput from the application
perspective is significantly less than the PCI theoretical 132 MB/s peak. This is

attributed to operating system overhead and the shared nature of the PCI system bus. The

59

multitasking, preemptive nature of WinNT has the negative side effect that no application
or device driver can be guaranteed exclusive access to the CPU or system bus. The best
case is that the driver has uninhibited access to the system bus and the performance
degradation is due solely to the WinNT Scheduler occasionally executing. This is only
possible in a lightly loaded system. In the worst case scenario —and the more realistic-
WinNT drivers will be preempting each other in response to repeated interrupts, the VM
Manager will be paging to the hard drive over the PCI bus, and high priority tasks will
preempt the user application. This latter scenario more closely models the environment
in which the test results were collected.

As it turns out, the hypotheses posed in Chapter 4 were proven false. The
implications of the test results are that the PCI bus throughput is seriously hampered in
the proposed host environment and that the proposed software solutions are inadequate to
solve the problem. The issue seems to stem from the nature of WinNT itself. It is a
multitasking environment that must coordinate the use of all host system resources. This
flexibility comes at the cost of system performance.

The main contribution of this thesis is a generic protocol for evaluating OS
overhead on system performance. The testing methodology is flexible enough to be
applied to other OS’s and bus architectures. The significance of this is that most related
work focuses on optimizing the system from outside the host; no effort was placed on
evaluating the host itself. Their overall performance could be enhanced by applying the
insights derived from this research.

Another contribution of this research effort was to create a generic programming

environment for accessing devices on the PCI bus. Though the work was done in the

60

context of the SCC project, there are no constraints to keep it from being expanded to
support additional devices. The AIL allows SCC applications to be ported easily to new
platforms and/or OS’s; only the device driver (which is inherently OS dependent) would

need to be reworked.

5.2 Future Work

The ideas and results presented by this research pose several new questions that
could serve as the basis for future investigation. First, the test procedures/ methodologies
presented are architecture independent. A natural extension to this research is to test
other candidate host platforms, interconnect buses, and OS’s. This would quantitatively
identify optimal coprocessor host platforms. Second, an important piece of work
paramount to using the proposed system is to augment the SCC compiler to use the PCI
support developed here. This compiler would have to generate optimized code streams
for both the host CPU and the SCC array. It would also have to schedule the loading of
basic blocks and manage memory usage. Finally, it would be interesting to develop a
method of networking SCC hosts. This would allow the SCC to be used to solve larger
problems. A potential starting point would be to use Parallel Virtual Machine (PVM)
developed for creating a MIMD network from UNIX workstations or the Resource

Manager concept proposed by Jean et al. [12].

61

6 References

[1] Herbordt, M.C.; Cravy, J.; Honghai Zhang; Lin, C.; Hong Rao

Control for High-Speed PE Arrays

In Proceedings of IEEE International Conference on Application-Specific Systems,
Architectures, and Processors, 2000. Pages 247-257.

[2] Peter G. Viscarola and W. Anthony Mason
Windows NT Device Driver Development

Copyright 1999 Open Systems Resources, Incorporated
Published by Macmillan Technical Publishing

[3] Tom Shanley and Don Anderson

PCI System Architecture, Third Edition
Copyright 1995 Mindshare, Incorporated
Published by Addison-Wesley

[4] David A. Solomon

Inside Windows NT, Second Edition
Copyright 1998

Published by Microsoft Press

[5] Hans-Peter Messmer

The Indispensable PC Hardware Book, Third Edition
Copyright 1997

Published by Addison-Wesley

[6] Edward N. Dekker and Joseph M. Newcommer

Developing Windows NT Device Drivers, A Programmer’s Handbook
Copyright 1999

Published by Addison-Wesley

[7] Mink, A.; Salamon, W.; Hollingsworth, J.K.; Arunachalam, R.
Performance Measurement Using Low Perturbation and High Precision Hardware Assists
In Proceedings of the19th IEEE Real-Time Systems Symposium, 1998. Pages 379-388.

[8] Houzet, D.; Fatni, A.

Image Processing PCI-based Shared Memory Architecture Design

In Proceedings of 1997 Fourth IEEE International Workshop on Computer Architecture
for Machine Perception, 1997 (CAMP 97). Pages 244-252.

[9] Cloutier, J.; Cosatto, E.; Pigeon, S.; Boyer, F.; Simard, P.
VIP: an FPGA-based processor for image processing and neural networks

In Proc. MicroNeuro, pages 330-336, 1996.

[10] Moll, L.; Shand, M.

62

Systems Performance Measurement on PCI Pamette
In Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines. Pages
125-133, Napa, CA, April 1997.

[11] Harbaum, T.; Meier, D.; Prinke, M.; Zitterbart, M.
Design of a Flexible Coprocessor Unit
IEEE Communications Magazine, 35(1). Pages 80-86, January 1997.

[13] Jean, J.; Tomko, K.; Yavagal, V.; Shah, J.; Cook, R.
Dynamic Reconfiguration to Support Concurrent Applications
In IEEE Transactions on Computers, Vol. 48, No. 6. Pages 591-602.

[13] PC 99 System Design Guide, A Technical Reference for Designing PCs and
Peripherals for the Microsoft® Windows® Family of Operating Systems
Copyright 1998-1999 Intel Corporation and Microsoft Corporation
http://www.microsoft.com/hwdev/pc99.htm

[14] Herbordt, M.C.; Cravy, J.; Honghai Zhang; Lin, C.; Hong Rao

An array control unit for high performance SIMD arrays

In Proceedings of the Fifth IEEE International Workshop on Computer Architectures for
Machine Perception, 2000. Pages 293-301.

63

Appendix A: SIMD Coprocessor Card (SCC)

The SIMD processing model is best suited for massively data parallel applications
with relatively high compute to I/O instruction ratios. Candidate applications include
computer vision, graphics, and DNA genome string matching. The power of this
architecture can be seen when the number of processor elements (PE) is equivalent to the
size of the data set. In this situation, component-wise operations on parallel variable
elements can be done simultaneously. Even in the situation where the number of elements
in the parallel variable is greater than the number of PE’s, the speedup, compared to a
sequential algorithm, is immense.

The SIMD architecture contains a single control unit with multiple PE’s. The
PE’s are slaves to the control unit and cannot fetch or interpret instructions. The PE’s are
basically arithmetic logic units (ALU) capable of performing logic, arithmetic, and data
transfer operations within their own memory space. They all perform the same operation
in lockstep under the direct control of the control unit. Inter-PE communication is
coordinated by the control unit as well. The advantage of this type of architecture is in
the ease of adding more memory and PE’s to the system. The disadvantage is the
computing overhead of the control unit managing memory exchanges.

This appendix discusses several issues associated with the SIMD architecture and
poses potential solutions. It then presents the design for the SIMD Coprocessor Card

(SCC) based on work performed by Herbordt et al. [1].

A.1 SIMD Issues

SIMD PE’s can be built with operating frequencies in excess of 1 GHz [1]. The
main problem is keeping them busy, i.e., the host must determine which instructions to
issue and issue them faster than the array executes them. The inherent mismatch between
host and array execution frequencies makes it difficult to maintain high array utilization:
either the instruction issue rate is very low or PE data locality is compromised. The PE
data locality issue is further compounded by the fact that the data working sets for most
useful SIMD applications exceed the physical resources provided by the PE array. The
following issues must be understood and addressed in order to optimize the performance
of SIMD systems:

1) Instruction distribution latency. The host must be able to issue instructions to the PE
array at a sufficient rate to maintain high utilization. Otherwise, performance
advantages are lost because of array idle time. This issue also pertains to data
transaction targeting array memory.

2) Instruction issue latency. The host executes the main thread of the SIMD application.
It controls program flow based on feedback from the array creating control hazards.

3) Application working set mapping to physical PE’s or tiling. Data and instruction
locality are a key issue.

A.1.1 Instruction Distribution Latency

Assuming that the array data needs can be serviced by a standard cache/ main
memory hierarchy, the next challenge faced by SIMD systems it to maintain high array

utilization. PE’s can have operational frequencies up to 1 GHz [1] so the array host

65

instruction issue frequency must be comparable or all performance improvements are
negated.

The first approach would be to have a standard PC host issuing instruction
directly to the array using an industry standard bus. The drawback to this approach is
that the array would be idle most of the time since the bus bandwidth is significantly less
than the PE execution frequency. Table 1 lists the bandwidth for the most common PC
buses.

A significant improvement to the previous approach would be to have the host
issue macro instructions that would be expanded in hardware to array micro instructions.
This type of instruction expansion has been previously used and was shown to
significantly reduce the bus bandwidth required for instruction issue. This effectively
decouples the array and host operating frequencies. The problem with this solution is it
still relies on the host issuing one instruction at a time which could leave the array idle if
the macro instruction expansion ratio is low. In an ideal system, the host would
determine which instruction to issue before the array completes the previous operation.
This scenario is unlikely given the asymmetric, multithreaded nature of SIMD
applications in which the host must issue instructions based on feedback from the array.
Assuming a 1 GHz array and 1:10 macro instruction expansion ratio, the host would have
to issue instructions at a rate of 100 MHz. None of the standard system buses in Table 1
can support this bandwidth requirement. Even a 1:50 expansion would require 20 MHz
of system bus bandwidth which only PCI and VESA can easily accommodate. These
measurements neglect to account for OS and/or application overhead. The instruction

I/O bottleneck must be removed for the SIMD system to achieve optimal performance.

66

A.1.2 Instruction Issue

Given sufficient data availability and instruction distribution rates, the next SIMD
issue is for the host to determine which instructions to execute. In the SIMD
programming model, the host executes the main SIMD application thread so it must
execute a certain amount of serial code to control program flow and to exchange data
with the array. The issue is the array will idle while the host is evaluating branch
conditions or computing scalars, i.e., data and control hazards exist.

Control hazards are created when the host must wait for runtime feedback from
the array before issuing the next instruction. The one solution is to stall the array until
the branch condition is evaluated. However, the exact stall time can be indeterminate if
the host OS is multitasking and/or the array interconnect bus is multiplexed with other
devices. The problem could be ameliorated by adding an instruction pipelining and cache
to the PE’s, but the control hazard is not completely removed. If there is no change in
program flow, program execution is improved. However, if a branch is taken, the cache
must be flushed and the instructions reloaded leaving the array idle. Also, a negative side
effect of adding the cache and pipeline is reduced PE count per IC.

Scalar computations can lead to data hazards that manifest themselves in two
distinct manners. In the first case, the host stalls waiting for feedback from the array.
This really is not a significant problem as long as the feedback is not required for the
array to continue operation. The second case is the array stalls waiting for data from the
host. This is a significant issue as the exact amount of time required for the host to issue

the scalar is indeterminate. The host compiler can help reduce the impact of this issue by

67

scheduling the scalar calculation as early as possible in the instruction stream; however,
this is only possible if the calculation is independent of feedback from the array.

One can attempt to apply standard compiler techniques to resolve these issues, but
the success is limited by data dependencies between the host and array working sets.
Assuming these issue can be resolved or at least minimized, SIMD designs must still
contend with the issue of an application requiring more hardware resources than are

physically available.
A.1.3 Tiling

The SIMD programming model abstracts the array hardware by providing Virtual
PE’s (VPE). The assumption is there is one VPE for each data element comprising the
application data working set. In reality, this is not recognizable in hardware because
highly data parallel applications like graphics or vision would require several thousand
physical PE’s. Not to mention the fact that the number of PE’s needed to solve a problem
is application specific. The solution is to map the data set such that each physical PE
operates on several slices of a parallel variable called tiles. A major negative
consequence of this approach is most data locality within the array data stream is lost.
The extent of the performance penalty is determined by which tiling method is employed.
The following examples illustrate this point. The following examples assume the array
control unit performs macro instruction expansion.

The first method (Tiling Method #1) executes all instructions on all tiles before
proceeding to the next instruction. The process represented in for loop notation is:

FORALL macro instructions

FORALL tiles
DO microcode expansion

68

The strength of this method is its simplicity. The host issues instructions to the
array and the array control sequencer does a Table lookup to expand the macro
instructions into sequences of array instructions. The array controller also controls tile
selection for VPE emulation. The major drawback to this method is that it destroys data
locality. When the inner FORALL loop completes, further PE cache accesses are misses.
This negates the performance enhancements provided by using cache and significantly
degrades system performance since all data accesses hit external memory.

The second tiling method (Tiling Method #2) is to execute all instructions on the
same tile before moving to the next tile. The process depicted using for loops is:

FORALL tiles

FORALL macro instructions
DO microcode expansion

This method improves system performance since data locality is preserved, but it
has two major flaws:

1) Tiling must be controlled by host. This significantly degrades system performance.
The array must stall after completing an instruction stream until the host swaps the
tiles and restarts instruction issue.

2) The most significant problem is: This method does not work! Mainly because it
ignores inter-PE dependencies and reduction hazards. The problem becomes more
visible in fine grain parallel applications.

These issues, while significant, are not insurmounTable. SIMD has been
successfully employed in numerous high performance applications. The key issue is that

they may not be performing to their fullest potential.

69

A.2 SCC Theory

In an attempt to solve the SIMD architectural issues, Herbordt et al. [1] have
proposed a SIMD design based on an Array Control Unit (ACU) inserted between the
host and the PE array (see Figure 28) that address the previously mentioned SIMD issues.
This design is hereafter referred to as the SIMD Coprocessor Card or SCC. In the SCC
design, the host is relieved of array control responsibilities other than running the main
thread of SIMD application. The design also allows code segments called Basic Blocks

(BB) to be preloaded into the array for execution.
A.2.1 ACU Concept

The purpose of the ACU is to handle macro instruction expansion, data tiling and
PE control. The ACU effectively decouples the host operating frequency from that of the
PE array by allowing the host to issue fewer instructions and by transparently swapping
tiles. The ACU functionalities are completely implemented in hardware which allows it
to operate at the same speed as the PE array. However, the host interface speed is fixed
by the interconnect bus bandwidth. Alternate techniques must be applied to speed up this

interface. A basic block diagram of the SCC is depicted in Figure 28.

70

Array Control

Interconnect Unit
Bs [P (ACY) <—>
Interface PEArray

Host CPU

(PC Platform) <—>

Array Memory H

Figure 28: Block Diagram

The first interesting feature of this design is that there is no operating system
running on the ACU; its functionality is completely hardwired. The significance of this
is that there is no OS overhead to affect array performance and that the ACU operates at
the same frequency as the array. Instead, the ACU operation is controlled by special
array instructions -directives- issued by the host as part of the instruction stream. The
directives are interpreted and executed within the confines of the ACU, i.e., they are not
issued to the array. The ACU design incorporates directives to configure the ACU,
control program execution and to transfer data to the array. A side effect of this design is
that ACU directives may be freely interspersed with PE macro instructions. This allows
the ACU (and thus the PE array program) to be reconfigured on the fly and program
execution to be modified without using interrupts.

A.2.2 Macroinstruction Expansion
There are several issues related to instruction issue that must be overcome to

achieve optimal array performance. The ACU employs macro instruction expansion to

71

improve host to ACU communications bandwidth by reducing the number of instructions
issued. The macro instruction to micro instruction expansion ratio is important. The
more micro instructions derived from each macro instruction, the better the system
performance. This mechanism also has the added benefit of reducing the penalty
associated with control hazards. For example:

I nt Pl ane (2,2) A B; Paral l el variables. Assunme a 2x2

/1
/'l PE array
/1

U NT tenp; Tenp storage for result

I f(B. ANY()) /'l Check for any nonzero elenent in
A =17 + B; /'l parallel variable B

El se
A=B-17,

This simple code segment translates into the following compiler tuple segment:

(ANY, t enp, B) /'l Host tells array to check for
/'l nonzero elenents in B

(CWP, t enp, 0) /'l Host waits for feedback value from
/'l array

(JZ, tupleb) /| Host nust decide which instruction
/1l to issue next.

(+ A 7,B) /'l The array is stalled for as |ong as

(J, tupl e7) /1 it takes to make the deci sion.

Tuple6: (-,A B, 7)

Tupl e7:

Assume that array B has nonzero elements so the A = 7 + B instruction is

executed. The macro instruction sequence issued by the host would be:

LD RO, B # Instructs PE's to | oad el enents of B

GOR RO # d obal OR reduction

STO tenp, RO

NOP # The array stalls at this point as the

NOP # host determ nes which instruction to
1ssue next

LD RO, B

LD R1, #7

ADD R2, RO, R1 # Perform addition

STO A R2 # Store result

Finally, the micro instructions actually issued by the ACU to the PE array:

72

RO_O <- B # Get the |lower byte of B

RO 1 <- B # Get the upper byte of B

Rl <- RO_O OR

RO_1

Rl <- CW (R1, 0) # Check for nonzero data. Reduction
operation.

tenp 0 <- RL O # Store | ower byte of result

tenp_1 <- R1_1 # Store upper byte of result

NOP # The array stalls at this point as the

NOP # host determ nes which instruction to
issue next.

RO_O <- B # Get the |l ower byte of B

RO 1 <- B # Get the upper byte of B

RLO<- 7 # Get the lower byte of imedi ate data

Rl11<-0 # Get the upper byte of imedi ate data

ACC <- RO_O +

R1L O

R2 0 <- ACC

ACC <- RO_1 +

RL 1

R2 1 <- ACC

AO0<- RO # Store | ower byte of result

Al< R1 # Store upper byte of result

If the host had to issue micro instructions, it would have to execute 16 instruction
cycles not including the delay to evaluate the branch condition. In contrast, if the host
issues macro instructions, it would only execute seven instruction cycles not including
branch. Assuming a fixed instruction cycle time, it is intuitive that the host macro
instruction performance is twice that of the micro instruction method. This was contrived
example, but assuming a bus speed of 66 MHz, 15.2 nanoseconds were saved by not
transferring the 11 extra instructions. This example did not account for OS overhead on
the host. While difficult to quantify, host OS overhead can have a significant negative
effect on the array.

A.2.3 ACU Control Directives
In order to maintain high-speed operation, all of the ACU functionalities are

implemented in hardware. The implication of this is there is no operating system to

73

control the array operation so the ACU must assume these responsibilities. Five special
instructions (or directives) have been defined to control the operation of the ACU. The
directives can be issued individually by the host or interspersed with the code stream.

Table 4 describes the supported ACU directives.

Directive Operand 1 | Operand 2 Description

CONFIGURE Number of | Tile size in Instructs the ACU to configure the

tiles bytes data access registers.

BASICBLOCK | Start N/A Instructs the ACU to load Operandl

address into the PC and start execution at that
address.

IMMEDIATE Data value | N/A Instructs the ACU to fetch an
immediate data value from the
INFIFO.

FEEDBACK N/A N/A The array is instructed to perform a
reduction operation. The result is
copied into the OUTFIFO.

SINGLESTEP | Array N/A This directive is intended to system

instruction debugging. It instructs the MFU to
fetch a single instruction from the
INFIFO and execute it.

Table 4: ACU Directives

A24 ACU Tiling

The ACU transparently controls tile swapping based on Tiling Method #3 which
presented in the next section. The concept is not so different from the code relocation
register concept employed by x86 based systems. The ACU uses three registers to keep
track of tiles. The first two registers are the Tile Count Register (TCR) and the Tile Size
Register (TSR). The TCR defines how many tiles are contained in a parallel variable
while the TSR defines the number of elements in each tile. The third register is the Start
Address Register (TSAR). It is initialized at runtime to the start address of the parallel

variable to be operated on. At the completion of each instruction sequence, the TSR is

74

added to the TSAR to compute the start address of the next tile. This operation is

repeated TCR times until the instruction sequence has been applied to all tiles.
A2.5 Basic Blocks

The SCC incorporates another system level performance enhancing feature. It
applies the compiler concept of Basic Blocks [1] to further reduce the host/array
bandwidth requirements. In this context, the term Basic Block refers to a sequence of PE
instructions that can be executed within a tile before execution on a new tile must be
initiated. The tile swapping is generally the result of an inter-PE communication or
feedback operations.

The concept is to preload sequences of macro instructions (Basic Blocks) into
array memory before they are required. This instruction caching approach allows BB’s to
be loaded while the interconnect bus would be otherwise idle and assures the array has a
steady source of instructions accessible from high-speed memory. The host only has to
issue Execute ACU directives at runtime to instruct the ACU where to begin execution.
The preloading BB approach has several benefits:

1) The host can schedule the loading of BB’s so the array will not stall waiting for
instructions.

2) The host only has to run a single instruction cycle (send the Execute ACU directive)
to execute a BB. This significantly reduces the runtime bus bandwidth requirements.

3) An offshoot of benefit 2 is that the BB’s are easily re-executed as long as the host has

not swapped the BB out of array memory.

75

4) Finally, the control hazard penalty is reduced. All of the BB’s associated with a
branch can be preloaded. The host only has to issue the appropriate execute ACU
directive at run time after the branch condition is evaluated.

The BB concept gives rise to a third tiling method that addresses the issues
present in Section A.1.3. In this tiling method (Tiling Method #3), all instructions are
executed on a tile before it is swapped. This is similar to Tiling Method #2 in that data
locality is preserved. The difference is the instruction sequence is broken into BB’s by
the compiler, i.e., instructions are executed on a tile until a communication or feedback
operation is required. This is depicted as follows:

FORALL basic blocks

FORALL tiles

FORALL macro instructions
DO microcode expansion

This addresses the issue of communication/ reduction hazards. It also has the

same performance advantage as Tiling Method #1 where all instructions are executed on

a tile before it is swapped. Tiling Method #3 has receives an added performance boost by

not involving the host in tile swapping; this is done transparently by the ACU.
A.2.6 Software Model

The interesting point about the BB software model is that it works for both SIMD
and MIMD systems. It has been previously shown to work for SIMD, but the fact that it
works for MIMD is less obvious. In an MIMD implementation, The SCC architecture is
modified to provide one PE per ACU; effectively creating a network of MIMD
processors. The rest changes are limited to the compiler. It is the compiler’s

responsibility to schedule loading and execution of BB’s based on data dependencies.

76

BB’s are by definition independent of each other so they can be preloaded into different

ACU/PE pairs and executed on demand as long as there are no data dependencies.

A.3 SCC Implementation

The coprocessor card as presented by Herbordt et al. [1] consists of an FPGA
baseboard connect to a host via the PCI bus. The host platform is a standard PC. In
order for the SCC design to be viable, it must have a host system to provide I/O
capabilities and a software system to allow it to interface to the host. A system level

block diagram of the SCC system design is shown in Figure 29.

Standard PC Platform
With Window NT
PCI Expansion Bus
T
2 3 z
=~ @)
-— O
O =)
& £ Q
S R
=

Figure 29: SCC System Level Block Diagram

A.3.1 Host Platform

Industry trends dictate that the SCC host be an Intel x86 based PC with a PCI
expansion bus running the Microsoft NT operating system. This host platform was
selected so that the SCC can be easily integrated into standard PCs. However, the SCC

can be utilized in any host that uses the PCI bus assuming the proper software support is

71

available. The PC host also provides the functionalities required for SCC control and I/O
operations eliminating the need for costly custom hardware.

PCI was selected for its high bandwidth, ubiquitous presence in desktop PCs and
most importantly, its acceptance as an open standard. PCI allows for system expansion
since it can support eight cards without a bridge. This means multiple SCC cards can be
installed in a single system to solve larger problems. The PCI burst mode data transfers
can be used to move large data blocks with minimal system overhead. However, this is
dependent on the North Bridge PCI implementation and not necessarily directly under
software control.

The SCC memory, control registers and data queues appear as memory mapped
registers on the PCI bus. Details of these registers are discussed in following sections.
What is important to note is that the SCC memory and registers can be accessed as easily
as any other PCI memory device. Memory mapped I/O will also reduce the system
overhead required for user applications to access the SCC.

WinNT 4.0 was selected for its ubiquitous presence in the PC/ workstation arena.
This high performance, multiprocessor enabled OS provides a sTable, extensible
environment for hosting the SCC. Another positive effect of using a WINTEL host, is
the plethora of development tools available. Compilers, debuggers and CASE tools are
readily available; eliminating the need to develop tools suites for the SCC target.

The SCC design is implemented as a coprocessor card. The main reason for this
is to avoid reinventing the I/O support systems provided by PC’s. The PC’s also provide
an operating system environment for loading, executing and debugging user applications.

SIMD systems are tuned for handling computation intensive applications. Their

78

performance gains are realized while executing computationally intense algorithms; not
performing I/O operations. The PC CPU will also be used to calculate scalars and
evaluate branch conditions. It executes the main thread of the SIMD application. This
frees the SIMD array from having to provide a dedicated processor for evaluating scalars.

A high-speed datapath is required between the host and the ACU. This is critical
to achieving optimal array performance. It is equally important to observe industry
standards. Therefore, the logic choice for the host/ array bus is PCI. PCI provides the
highest bandwidth available on commercially available systems.

The coprocessor card concept itself has been proven successful by several
research initiatives. For example:

e Houzet and Fatni [8] implemented the GFLOPS system for image processing.

e Cloutier et al. [9] implemented VIP: Virtual Image Processor.

e Harbaum et al. [11] implemented a reconfigurable computing card call FHiPPs based
on the Intel 19960 and FPGAs.

The driving factors cited in all cases were flexibility and low cost.

The coprocessor design lends itself to the possibility of easily expanding the SCC
processing capabilities. It is possible to install multiple SCC cards in the same host. The
number of SCC cards installed is limited by the number of PCI slots available in the host.
Only the user application would have to be modified to take advantage of the additional
SCC boards. It would also be possible to network SCC hosts together using standard
LAN or WAN networking. This would require additional control software on the hosts,
but this is not a significant issue as Harbaum et al. [11] has implemented a similar

concept called the Hardware Manager in the FHiPPs project. It would also be possible to

79

port the Parallel Virtual Machine (PVM) code from UNIX to WinNT to support
networked SCC host.
A.3.2 Coprocessor Card Hardware

The hardware block diagram for the SCC card is shown in Figure 30. The SCC
design is based on the Nallatech Ballynuey FPGA development board. The Nallatech
board contains three Xilinx Virtex 1000 FPGAs which are programmed to implement the
SCC system blocks depicted in Figure 31. The FPGA based implementation provides a
high degree of flexibility for exploring different architectural concepts using the same

hardware.

Xilinx SRAMBank 0
Virtex (1 MB)
P par <—>
w
= #1 & SRAMBank 1
g = (1 MB)
= £
g o g DIV Expansion Module
=) Virtex =
&~ #2 —> =

Figure 30: SCC Card Block Diagram

Ultimately, the FPGAs will be replaced with ASICs. This would allow the PE
operating frequency to be increased along with the number of PE’s per IC. This change
would have no impact on the host or support software, as they are effectively isolated

from the SCC hardware by the PCI bus.

80

The logic design for the SCC board FPGAs is shown in Figure 31. It consists of

three main components: the PCI interface, the ACU and the PE array.

5 [€— OupurFo [¢
£l
5 Input FIFO []
8 PE Array Execution
= Controller
= ——
. |
:-2) PE Instruction >
2 FIFO o
~ <
Z 1 :
z :
= Macro Macro Macr? =
3 Instruction | Instruction Instruction &0
& Fetch Unit FIFO Expander z
S b 3
RN g
= || £ |« 4) .
~ 5 + + + 4
2 SRAM DRAM
g Arbiter Arbiter
D
Macro PE Data
Instruction DRAM
SRAM

Figure 31: SCC Block Diagram

The first logic block is the PCI bus interface. The main purpose of this block is to
provide the host access to the SCC high-speed macro instruction memory, data memory
(DRAM) and the ACU I/O queues. The PCI interface contains a memory controller that

interacts with the macro instruction and DRAM memory access arbiters to allow the host

81

to access SCC memory. The arbiters effectively dual port the memories. This

mechanism allows the host access to the SCC memory while the array is active.

The second block is the Array Control Unit (ACU). Its sole purpose is to keep the
PE array running at as high a speed as possible which equates to issuing PE instructions
at a high frequency. The ACU attempts to achieve this goal by implementing the
concepts presented in Section A.2.1.

The most important functionality of the ACU is to issue instructions to the array.
The Macro Instruction Fetch Unit (MFU) fetches macro instructions from the Macro
Instruction SRAM based on its Program Counter (PC). The MFU analyzes the
instruction and takes one of the following actions:

1) If the macro instruction is invalid, it is discarded.

2) Ifitis a simple macro instruction, it is inserted into the Macro Instruction FIFO.

3) If the macro instruction requires an operand, the MFU first inserts the macro
instruction into the Macro Instruction FIFO then copies the operand from the INFIFO
to the Macro Instruction FIFO. This way the instruction and operand travel through
the system together.

4) Finally, if the macro instruction is determined to be an ACU directive, the MFU
executes it. This process is described in the following sections.

The ACU implements macro instruction expansion to reduce instruction latency
and issue frequency. The expansion takes place in the Macro Instruction Expansion Unit
(MEU). Typically the ACU issues decoded instruction directly to the PE array.
However, since the SCC does not have an operating system, it recognizes five

instructions as internal directives. These directives are inserted into the PE array

82

instruction stream by the host to control the initialization and operation of the ACU. In
the absence of an operating system, the ACU must also control tile swapping. The ACU
implements Tiling Method #3, i.e., all of the instructions are executed on a tile until a
feedback or communication instruction is encountered. The CONFIGURE directive is
used to configure the number and size of the tiles.

The final block is the PE array itself. The actual implementation of the PE array
is unimportant in the context of this research, as it is implementation specific. It is more
important to note that the ACU interface is generic enough to support a variety of array
configurations, as long as the array design conforms to the PE instruction specification
and is able to interface to the PE Data DRAM arbiter to load/store data. In the current
SCC design, the PE array will be implemented in an FPGA. This method allows various

PE array designs to be explored using proven host, PCI interface and ACU hardfware.

83

