

Test and Integration Environment for PCI

Coprocessor Cards

A Thesis

Presented to the

Faculty of the

Department of Electrical and Computer Engineering

University of Houston

In Partial Fulfillment of the

Requirements for the Degree

Master of Science in

Electrical Engineering

By

Mark De Ford

August 2001

ii

Test and Integration Environment for PCI

Coprocessor Cards

Mark De Ford

Approved:

Committee Members:

Chairman of the Committee
Martin Herbordt, Associate Professor,
Electrical and Computer Engineering

John Glover, Professor,
Electrical and Computer Engineering

Jaspal Subhlok, Associate Professor,
Computer Science

E. J. Charlson, Associate Dean,
Cullen College of Engineering

Fritz Claydon, Professor and Chair
Electrical and Computer Engineering

iii

Acknowledgements

Special thanks and gratitude to my advisor Dr. Martin Herbordt for his guidance and

friendship without which this thesis would not be possible. Thanks to Dr. Glover and Dr.

Subhlok for serving on my committee. I would also like to extend my heartfelt thanks to

my family, friends and coworkers for supporting my educational pursuits all these years.

iv

Test and Integration Environment for PCI

Coprocessor Cards

An Abstract of a Thesis

Presented to the Faculty of the

Department of Electrical and Computer Engineering

University of Houston

In Partial Fulfillment of the

Requirements for the Degree

Master of Science in

Electrical Engineering

By

Mark De Ford

August 2001

v

Abstract

Application specific coprocessor cards are omnipresent in today's high

performance computing environment. Computationally intensive applications such as

graphics, computer vision, and DNA string matching benefit from the extra computing

power supplied by coprocessor cards.

This thesis is one aspect of a larger project to implement a high performance

SIMD coprocessor card (SCC). Overviews of the SCC design, PC architecture and

Microsoft Windows NT are presented to familiarize the reader with the underlying

technology required to host coprocessor cards.

In order for the SCC to realize its full potential, the host environment must be

optimized to provide high throughput, low latency communications. The focus of this

thesis is to design a suitable host platform for the SCC and to investigate potential

performance hindrances. A suite of benchmarks was developed to test the host/ SCC

communication throughput. The testing methodology and an analysis of the results are

presented.

vi

Table of Contents

1 Introduction .. 1

1.1 Motivation... 1
1.2 Context: The SIMD Coprocessor Card... 2
1.3 Research Motivation ... 2
1.4 Related Works... 3
1.5 Design Criteria and System Specifications... 4
1.6 Overview of Results.. 5
1.7 Thesis Outline ... 6

2 Underlying Technology.. 7

2.1 PC Architecture... 7
2.2 Coprocessor Cards .. 11
2.3 Windows NT Architecture.. 13
2.4 Windows NT I/O Manager ... 17

2.4.1 Driver Structure .. 18

3 Software System Design .. 21

3.1 SCC PCI Driver .. 22
3.1.1 Design Criteria .. 22
3.1.2 Implementation ... 23
3.1.3 Validation Testing... 25

3.2 Array Interface Library ... 26
3.2.1 Library Interface Functions... 27

3.3 Benchmark Applications... 30

4 Results .. 31

4.1 Testing Methodology .. 31
4.2 Test Procedures... 35
4.3 Driver Test Results ... 37

4.3.1 Memory Mapped Driver ... 37
4.3.2 Direct I/O Driver... 41
4.3.3 Buffered I/O Driver... 45
4.3.4 Overall Driver Test Analysis .. 48
4.3.5 DMA Driver.. 49

4.4 Library Test Results.. 51
4.5 Bus Utilization Results ... 55

5 Conclusion.. 59

6 References .. 62

Appendix A: SIMD Coprocessor Card (SCC).. 64

A.1 SIMD Issues.. 65
A.1.1 Instruction Distribution Latency ... 65

vii

A.1.2 Instruction Issue .. 67
A.1.3 Tiling…... 68

A.2 SCC Theory .. 70
A.2.1 ACU Concept.. 70
A.2.2 Macroinstruction Expansion ... 71
A.2.3 ACU Control Directives ... 73
A.2.4 ACU Tiling ... 74
A.2.5 Basic Blocks.. 75
A.2.6 Software Model... 76

A.3 SCC Implementation... 77
A.3.1 Host Platform.. 77
A.3.2 Coprocessor Card Hardware ... 80

viii

List of Figures

Figure 1: Block Diagram of Typical PC Architecture .. 8
Figure 2: High Level Block Diagram of Windows NT Architecture 14
Figure 3: Windows NT I/O System Structure... 18
Figure 4: SCC Software Architecture ... 21
Figure 5: Hardware Test Setup ... 35
Figure 6: Memory Mapped Driver Write Throughput on Pentium 38
Figure 7: Memory Mapped Driver Write Throughput on Athlon 39
Figure 8: Memory Mapped Driver Read Throughput on Pentium 40
Figure 9: Memory Mapped Driver Read Throughput on Athlon 40
Figure 10: Direct I/O Driver Throughput for Pentium ... 42
Figure 11: Direct I/O Driver Throughput for Athlon.. 42
Figure 12: Direct I/O Driver Percent Time in Driver for Pentium 43
Figure 13: Direct I/O Driver Percent Time in Driver for Athlon 44
Figure 14: Buffered I/O Driver Throughput for Pentium ... 46
Figure 15: Buffered I/O Driver Throughput for Athlon ... 46
Figure 16: Buffered I/O Driver Time in Driver for Pentium.. 47
Figure 17: Buffered I/O Driver Percent Time in Driver for Athlon 48
Figure 18: C++ DLL Throughput for Pentium ... 51
Figure 19: C++ DLL Throughput for Athlon ... 52
Figure 20: C++ Static Linked Library Throughput for Pentium 52
Figure 21: C++ Static Linked Library Throughput for Athlon... 53
Figure 22: C Static Linked Library Throughput for Pentium... 53
Figure 23: C Static Linked Library Throughput for Athlon ... 54
Figure 24: C DLL Throughput for Pentium.. 54
Figure 25: C DLL Throughput for Athlon.. 55
Figure 26: PCI Bus Write Time .. 56
Figure 27: PCI Bus Read Time... 57
Figure 28: Block Diagram .. 71
Figure 29: SCC System Level Block Diagram... 77
Figure 30: SCC Card Block Diagram ... 80
Figure 31: SCC Block Diagram.. 81

ix

List of Tables

Table 1: Bus Speed Comparisons ... 12
Table 2: List of SCC Interface Functions ... 28
Table 3: List of Driver Interface Functions .. 29
Table 4: ACU Directives .. 74

1 Introduction

1.1 Motivation

Application specific coprocessor cards are become increasingly prevalent in

today's high performance computing environment. Computationally intensive

applications such as graphics, computer vision and DNA string matching are examples of

the beneficiaries of extra computing power supplied by coprocessor cards. By nature of

their design, coprocessor cards are heavily dependent on the hardware platforms that host

them. The implication is that the design of the host software system (operating system

and applications) and the CPU interconnect bus assert significant influence over the

performance of coprocessors.

Several standard buses such as ISA, EISA, SCSI and SBus are available on PCs

and workstations to allow additional hardware to be integrated into the system. However,

these buses have a relatively low throughput. Recently the computer industry has

adopted the Peripheral Component Interconnect (PCI) bus to alleviate the I/O bottleneck

between CPUs and system peripherals. This is increasingly important as new generations

of high performance peripherals become available.

Much work has been done on the development of coprocessor cards [8,9,11,12].

The unifying factors of these designs are that they solve domain specific problems and

that PCI was selected as the datapath. However, all of the studies have a common flaw:

they neglect to investigate the effects of host system software overhead on system

performance. In particular, these works focus on the designing the cards, but ignore the

practical issues involved with using them. Although their intent was to improve system

performance by optimizing the hardware to suit the application [8,9,11,12] or simply to

2

measure system bus performance [7,10], they failed to address one key issue: the overall

system including host, operating system and peripherals needs to be optimized, not just

the hardware in the coprocessor. These issues are addressed by this thesis.

1.2 Context: The SIMD Coprocessor Card

Herbordt et al. [1] have proposed a design for a SIMD Coprocessor Card (SCC).

The SIMD array is designed to provide high performance for computer vision

applications by providing a large number of processing elements (PE) and an operating

frequency greater than 1 GHz. As the designs mentioned above, it also uses PCI.

The main difference is that the SCC control is completely hardwired; there is no

general purpose CPU to control the array. This approach is necessary to maintain high

array utilization. This approach, however, does place additional control responsibilities

on the host: if the host cannot react immediately to array requests, then the array will idle.

It is therefore of the utmost importance to optimize the host software to minimize the host

response latency. The SCC design is presented in detail in Appendix A.

The research for this thesis has been done in the context of designing a host and

software support system for the SCC. Therefore, it is the intent of this thesis to provide a

method for quantifying OS overhead and to use this information to optimize the SCC

system.

1.3 Research Motivation

The main shortcoming of other research efforts is that they neglect to consider the

effects of the host design on their coprocessor board. Instead, their focus was on

3

designing high performance logic for the coprocessor. They all used the PCI bus to

interface to the system, presumably because of its potentially high peak throughput (132

MB/s) and its emergence as the de facto PC coprocessor interface standard. The issue

becomes designing a host hardware and software system that can fully use the PCI peak

bandwidth.

There are several reasons why both hardware and software design decisions can

severely affect PCI bus utilization, two of which are as follows. First, the PCI bus is

shared among multiple peripherals. It may be accepTable to block their access to the bus

for a short time, but not indefinitely. A potentially catastrophic example of this is when

the host operating system (OS) needs to swap memory to the hard drive, but the PCI is

occupied with a large data transfer. Second, most modern OS’s are multitasking (some

are also multiprocessing) which by its very nature implies processes cannot monopolize

the processor (CPU). Any data transfers to the PCI bus by an application or device driver

can (and will) be interrupted.

1.4 Related Work

The PCI Pamette system designed by Moll and Shand [10] is the work most

closely related to this thesis. This project provides excellent insight into PCI bus

performance, including measurements related to application implementation. The design

of the PCI Pamette board itself is not important to this thesis as most logic analyzers can

perform similar functions by using a PCI bus monitor module. What is important is their

testing methodology and results.

4

Their results show relatively high bus throughput measurements, but this is

somewhat misleading as they only partially take host configuration (and OS overhead)

into account. Their programmed I/O (PIO) benchmarking is straightforward and

accounts for OS overhead. However, their DMA performance test procedure only

measures bus bandwidth since the traffic was generated by custom hardware and targeted

the host memory. This method is accepTable for measuring the bus performance alone,

but has little bearing on overall system. This issue needs to be addressed if host

applications are going to realize benefits from using high performance coprocessor cards.

1.5 Design Criteria and System Specifications

The design criteria for the host system are as follow:

1) The host must communicate with the SCC using the PCI bus.

2) The host and SCC must not monopolize the PCI bus when communicating.

3) The main thread of the SIMD application must execute on the host CPU. Also, it

may not alter the normal operation of the host OS.

4) A programming environment must be provided so that the SCC can be easily used.

These design criteria are satisfied by the following design specifications:

1) The host platform is an Intel x86 based system with a PCI system bus.

2) The host uses the Microsoft Windows NT 4.0 (WinNT) operating system. All

applications and device drivers adhere to WIN32 standards.

3) The SCC PCI bus device driver conforms to standard WinNT 4.0 I/O Manager

requirements.

5

4) The SCC API library provides a consistent, hardware independent way for application

programmers to access the SCC.

1.6 Overview of Results

The main goal of this research is to investigate the effects of the host system

implementation on the SCC performance. This is accomplished by executing benchmark

applications on the host that perform various sized block data transfers to a simulated

SCC card (the SCC hardware is still under development). The benchmarks use different

combinations of WinNT drivers and interface libraries to see what impact different

implementations have on the system. This is quantified by measuring the read and write

transfer time from the application, driver and PCI bus perspectives. The results are

analyzed to identify possible I/O bottlenecks.

The results are surprising in several respects. First, the data throughput is

independent of the driver and library implementation. This is completely unexpected for

reasons that are discussed in Chapter 4. Second, the peak throughput is shown to be

independent of the host CPU frequency. This result is as expected, since the PCI bus is

the limiting factor. Finally, the measured peak data transfer rates are an order of

magnitude slower than the peak PCI throughput of 132 MB/s. In most cases, the write

throughput is approximately 20 MB/s and the read throughput is approximately 5 MB/s.

The theoretical peak PCI throughput is based on the assumption that the PCI initiator can

monopolize the bus for the duration of the transfer and that the target memory is fast

enough to avoid inducing wait states. This environment is not representative of a

6

normally configured system; however, Moll and Shand [10] provide results for a usable

system that are still significantly better than the results presented in Chapter 4.

1.7 Thesis Outline

The next chapter provides an overview of PC hardware and Microsoft Windows

NT architecture to familiarize the reader with the underlying technology required to host

coprocessor cards. Chapter 3 presents the software system designed to host the SCC. It

also discusses issues encountered during the development process. Chapter 4 discusses

the system performance testing methodology and analyzes the results. We conclude with

a discussion and suggestions for future work.

7

2 Underlying Technology

There are two pervasive standards in the PC industry: Intel x86 processor

architecture and Microsoft Windows NT. Any device that is to find wide spread

acceptance must conform to these standards collectively known as the “WINTEL”

architecture. This chapter provides background material related to the WINTEL

architecture necessary to understand the research results presented later in this thesis.

2.1 PC Architecture

The PC architecture has evolved significantly since its inception in the early

1980’s when most of the system was controlled directly by the CPU. In these XT/AT

type systems performance was not a significant issue since memory access speeds were

considerably slower than device access times. However, over time, I/O bottlenecks

formed as CPU and memory access speeds increased. These issues began to be resolved

by the Intel Pentium series CPUs by distributing system control over a set of system

chips otherwise known as a motherboard chipset. This distributed control model freed

the CPU from stalling on I/O operations and lead to an increase in system performance.

The PC motherboard designs are heavily influence by the Intel x86 architecture.

The distributed CPU/chipset model is pervasive in the industry. This structure is depicted

in Figure 1.

8

CPU

System
Memory

North
Bridge

Expansion
Slots

South
Bridge

Graphics
Controller

PCI to IDE
Bridge

L2 Cache

Back Side Bus

AGP Bus

Memory Bus

Front Side Bus

System Bus (PCI Bus)

Hard
Drive

 ISA Bridge
 ATA33/66/100
 BIOS
 GPIO

CD
ROM

 Power Control
 BIOS
 Keyboard
 Mouse

Pre-
Pentium 2

Figure 1: Block Diagram of Typical PC Architecture

The salient feature of this Figure is the hub-like bus structure centered on the

North Bridge. The intent of this design is to relieve the CPU of its I/O responsibilities.

The CPU only has to contend with accessing memory and performing computations. Pre-

Pentium 2 CPUs used the Back Size Bus (BSB) as a high-speed, dedicated connection to

the L2 cache. The BSB was rendered obsolete by the Pentium 2, which integrated the L2

cache into the CPU chip. This innovation left the CPU with only the Front Side Bus

9

(FSB) to service. The FSB is a high-speed (currently 200-266 MHz) local bus that

connects the CPU to main memory, the graphics controller and the system peripheral bus.

It is important to note that the FSB operates orders of magnitude faster than the system

peripheral bus. The CPU offloads I/O operations to the North Bridge and continues

operation. Equally important is the fact that the main memory is on the FBS and not the

system bus. This allows the CPU to perform memory operations at high frequencies and

eliminates system bus contention.

Aside from the CPU, the North Bridge is the most vital component in the system.

Its purpose is to provide the interface to main memory, the graphics controller and the

system bus. The main idea is that the CPU is now relieved of most I/O processing

responsibilities.

In most recent motherboards, the graphics controller is integrated into the system

via the AGP bus. The Accelerated Graphics Port (AGP) is a standard proposed by Intel.

AGP relieves the graphics I/O bottleneck by adding a new dedicated, high-speed datapath

directly between the chipset (North Bridge) and the graphics controller. This removes

bandwidth intensive 3D and video traffic from the constraints of the system bus (PCI

bus). AGP allows the graphics controller to access system memory directly rather than

having to pre-fetch all data into local graphics memory. While the PCI bus supports a

maximum of 132 MB/second, AGP operates at 66 MHz and has a 533 MB/s peak

throughput. AGP performance is increased by transferring data on both edges of the 66

MHz clock and with efficient data transfer modes. AGP supports overlapped requests

and has extra address lines so a new request can be started while waiting for previous

access to complete (sideband addressing). The system level performance increase

10

realized by this design is due to reduced system bus congestion. AGP operates

concurrently with, and independent from, most transactions on PCI. Further, CPU

accesses to system memory can proceed concurrently with AGP memory reads by the

graphics controller.

Most of the discrete system peripheral control logic has been consolidated into the

“South Bridge”. This makes all the peripherals appear as a single device on PCI bus.

This is important since each PCI bus can only support eight devices without a bridge.

The final component is the system bus, which connects the various system

peripherals to the CPU via the North Bridge. The Peripheral Component Interface (PCI)

bus was introduced by Intel Corporation in July 1992. It was originally designed as a

local bus, but was later changed to a high-speed expansion bus. Since its inception, PCI

has become the computer industry de facto standard for system buses. This point is

supported the Microsoft/Intel PC 99 Guidelines [13] state that computer containing ISA

and EISA buses will not be certified; effectively “obsoleting” them. The PCI standard

specifies four options for address and data bus configurations (refer to Table 1) of which

the most commonly deployed is 32 bit address/32 bit data with an operating frequency of

33 MHz. This configuration has a maximum theoretical throughput of 132 MB/s.

Aside from throughput, PCI has several other advantages over old buses. First, it

is a synchronous bus with block transfer capabilities. This maximizes data transfer while

reducing transfer setup overhead. Second, PCI provides multiple bus master capabilities.

This allows peripherals to perform peer-to-peer communications without using the CPU

as an intermediary. Finally, PCI provides special bus cycles for dynamically configuring

devices. This allows devices to be configured before they have been assigned an address.

11

2.2 Coprocessor Cards

The PC architecture was specifically designed to be extensible by means of

connecting expansion cards to the system bus. These cards provide diverse functions

such as graphics controllers, modems, sound cards and network interfaces. However,

they all generically fall into the category of coprocessor cards, i.e., they all offload a

specific type of processing responsibility from the CPU.

The most interesting coprocessor cards (to this thesis) are custom boards designed

to perform dedicated tasks. These coprocessors only use the PC system as a host to

provide basic I/O processing. The main issue is that while coprocessor cards can be built

to process data with very high throughput, connector pin characteristics and interconnect

bus speeds restrict data transfer rates between the host and the coprocessor.

The AC impedance of connector pins significantly affects bus operating

frequency. The capacitive and inductive components limit signal rise and fall time. This

dictates the maximum operating frequency. The resistive component limits the pin drive

capabilities, which determines how far signals can propagate without affecting signal

integrity. This situation is exacerbated by the fact that the system bus traces have varying

impedances and lengths. This is a normal part of PCB layout, but the damaging result is

that signals propagate at different rates. Standard board layout techniques can be

employed to reduce signal propagation delay; however, they cannot eliminate signal

propagate mismatch. Thus, bus interface logic timing must be modified to accommodate

the slowest signal.

The system bus I/O bottleneck is a significant issue for coprocessors. Instruction

issue and data transfers are throttled by the system bus peak operating frequency and bus

12

utilization. One solution is to create a custom coprocessor bus; however, this necessitates

building a custom host or heavily modify an existing one. This situation can be avoided

by employing an industry standard system bus.

Bus Type Maximum Throughput Notes
EISA 33 MB/second in burst. Standards proposed for 66 and 133

MB/s bursts. Has a 32-bit data path.
SCSI-I 3 MB/second

Asynchronous
5 MB/second
Synchronous

Has an 8-bit data path.

Fast SCSI (SCSI-
II)

10 MB/second
Synchronous

Has an 8-bit data path.

Wide SCSI
(SCSI-II)

40 MB/second
Synchronous

Fast and Wide SCSI together.
Has a 32-bit data path.

PCI 132 MB/second
264 MB/second
264 MB/second
528 MB/second

33 MHz/ 32 bit data path
33 MHz/ 64 bit data path
66 MHz/ 32 bit data path
66 MHz/ 64 bit data path

VESA Local Bus 264 MB/second 66 MHz/ 32 bit data path
IEEE 1496 SBus 200 MB/second 25 MHz/ 64 bit data 25 MHz/ 64 bit

data

Table 1: Bus Speed Comparison

Most of buses listed in Table 1 are available in standard PCs and workstations

with the exception of ISA and EISA. These buses are being phased out in favor of PCI.

It is also interesting to note that the Microsoft/Intel PC 99 Guidelines discourage the

inclusion of ISA and EISA buses in new computers.

Despite these issues, coprocessor cards are the best method of implementing

application specific processors without designing custom host platforms: a standard host

means that a standard operating system to control it.

13

2.3 Windows NT Architecture

Microsoft Windows NT (Windows New Technology) 4.0 is a secure, 32-bit

operating system (OS) that uses a Graphical User Interface (GUI) for graphical,

interactive user control. WinNT is a preemptive, multi-tasking OS based on a hybrid

layered and microkernel architecture. At the time NT was designed, it was not certain

what direction operating systems would take in regard to kernel design, POSIX support,

OS/2 support, etc. Therefore, the NT architects designed it to be both flexible for adding

and removing components and porTable by isolating the OS from the hardware with the

Hardware Abstraction Layer (HAL). WinNT services, drivers, and HAL are

implemented in Dynamic Link Libraries (DLL) that are loaded at runtime. This allows

them to be changed without relinking the kernel. This modular design has proven useful

since WinNT has been ported to four platforms: Intel x86, DEC Alpha, PowerPC and

MIPS, although support for the PowerPC and MIPS have recently been dropped. A block

diagram of the WinNT OS architecture is shown in Figure 2.

14

 System
Processes

Server
Processes

Environment
Subsystems

User
Applications

Subsystem DLLs

Executive

Device
Drivers

Kernel

Hardware Abstraction Layer
(HAL)

Windowing
and graphics

User
Mode

Kernel
Mode

Figure 2: High Level Block Diagram of Windows NT Architecture

The WinNT environment is divided into two distinct parts based on memory and

instruction access privileges. Most processing is done in the user mode. In this mode,

the Virtual Memory (VM) system protects the processes’ memory and the CPU blocks

access to privileged mode instructions. This mode is considered secure since processes

cannot affect each other’s memory or access hardware directly. All user applications and

most WinNT processes run in this mode. Time critical and I/O related processes execute

in kernel mode. In this mode, the entire address space is accessible and the CPU permits

privileged instructions to execute. The best system performance is achieved in kernel

mode, but the lack of protection allows any kernel mode process to corrupt the OS

environment.

There are three groups of WinNT processes that operate in user mode. System

Processes are kernel support components that execute outside of kernel mode, but are

required for WinNT to operate. These processes include Window Logon, Session

15

Manager and Services Controller, which is used to manage server processes. The server

processes provide optional system level services that are not part of the core OS.

Examples of server processes are the print spooler, the Windows Event Logger and the

RPC service locator. The final set of OS related user mode processes is the environment

subsystems. User applications use the services provided by these subsystems to emulate

the WIN32, POSIX and OS/2 programming environments.

All server processes, environment subsystems, and user applications interact with

the kernel through the subsystem dynamic link library (DLL) called NTDLL.DLL.

NTDLL.DLL translates documented user system calls into the appropriate undocumented

WinNT kernel service call.

The WinNT design goal of portability is met in part by implementing the

Hardware Abstraction Layer or (HAL.DLL). Its purpose is to encapsulate all hardware

and CPU specific functions into a single DLL. The HAL provides hardware support for

accessing timers, the BIOS, and interrupt controls; translating bus addresses; and

anything else that is machine dependent. An interesting caveat is that there is no

mechanism to force kernel mode applications to use the HAL. However, applications

that circumvent the HAL risk losing portability.

The Executive Services and the Kernel comprise what is traditionally thought of

as the operating system “kernel”. The WinNT Kernel handles the lowest level OS

functions. It is responsible for thread scheduling, exception and interrupt handling, and

providing low level CPU-specific services to the Executive. It is loaded into non-paged

memory, and can never be preempted. The Executive is the upper layer of the Kernel. It

exports kernel services to user mode applications and contains five vital system services:

16

1. The Process Manager is responsible using Kernel services to create and destroy

processes and threads.

2. The Virtual Memory Manager (VM) is responsible for mapping processes’ virtual

memory into physical memory when they execute. It is also responsible for swapping

memory pages to disk when the system needs more memory.

3. The Cache Manager is responsible for caching recently used file data in memory.

Note: this service does not control the CPU cache.

4. The Security Monitor enforces system security policies as they pertain to system

resource access.

5. The I/O Manager provides device independent I/O processing. It provides the only

mechanism for user applications to interface to device drivers. The I/O Manager will

be discussed in more detail later in this chapter.

From the beginning, WinNT was designed to be a fully protected OS. Security in

this sense is not specifically aimed at preventing unauthorized use of the system (though

the Security Monitor provides these services), but refers to preventing processes from

inadvertently interfering with each other. The interprocess security policies are enforced

in hardware by using the virtual memory and privileged instruction capabilities of the

supported CPUs.

The Virtual Memory (VM) system makes it impossible for a user mode

application to directly access a physical address. The intent of VM is to provide

processes with what appears to be unlimited memory. A positive side effect is that

applications are prevented from corrupting each other’s memory. Normally this is

17

desirable, but in the case of accessing memory mapped system hardware, this is a

significant issue. This is a basic reason why device drivers are required by WinNT.

Processors also enforce security by providing at least two modes of operation:

privileged mode and user mode. When in user mode, the CPU can only execute a subset

of the full CPU instruction set. Instructions that are excluded from user mode include

I/O, CPU mode switching, and special register access instructions. The CPU must be in

privileged mode to access these instructions or a protection fault is generated. This also

necessitates the use of device drivers.

2.4 Windows NT I/O Manager

The I/O Manager is the Executive component that provides user mode

applications access to hardware resources while still protecting system resources. The

upper level of the I/O Manager makes drivers appear as File Objects (similar to VMS and

UNIX). User applications use the standard WIN32 file access functions to interface to

the driver. The lower level of the I/O Manager packages I/O request information into

packets call I/O Request Packets (IRP) and delivers the IRP to the appropriate driver.

This same mechanism can be used by device drivers to communicate with each other to

create layered drivers. The basic flow of IRP processing is shown in Figure 3.

The I/O Manager has several features worth noting. First, it allows drivers to be

dynamically loaded and unloaded. This allows drivers to be managed without rebooting

the system. The I/O Manager is also multiprocessor safe. This feature permits a device

driver to function properly in multiprocessor systems. Finally--and most important to

developers--the I/O Manager supplies the common epilog and prolog required by all

18

drivers. It builds the IRPs, manages the IRP buffers, routes the IRPs, provides operation

watchdog timers, and performs clean up functions when the I/O operation is complete.

All this makes drivers more compact and easier to develop.

I/O Manger

I/O Subsystem API

Kernel Mode Device
Drivers

HAL I/O Access
Routines

Driver
Support

Routines
(Io, Ex, Ke,

Mm, Hal, etc.)

Environment
Subsystem DLL

User Applications

User
Mode

Kernel
Mode

Figure 3: Windows NT I/O System Structure

2.5 Driver Structure

The purpose of using IRP packets is to provide a generic method for the I/O

Manager to communicate with drivers without having specific knowledge of them. The

I/O Manager maintains a function dispatch Table for every executing driver. The type

and order of the dispatch Table entries are identical for all drivers.

19

Every driver is required to provide an entry point called DriverEntry(). This code

is responsible for initializing the driver environment, device hardware, and populating the

dispatch Table. There are five required dispatch Table entries (functions):

1) IRP_MJ_CREATE. This function is called when the driver is opened by an

application.

2) IRP_MJ_CLOSE. This function is called when the driver is closed.

3) IRP_MJ_READ. This function is called when an application calls the WIN32

ReadFile() function. This function is generally only used for file system drivers.

4) IRP_MJ_WRITE. This function is called when an application calls the WIN32

WriteFile() function. This function is generally only used for file system drivers.

5) The Driver Unload function is called by the I/O Manager when the driver is unloaded.

It must disable the device hardware and release all OS resources claimed by the driver.

An important optional function is IRP_MJ_DEVICE_CONTROL. It is used to

implement a custom interface to the driver. When a user application calls the WIN32

function DeviceIoControl(), the input buffer is sent directly to the driver and the driver

returns directly data in the output buffer. The I/O Manager does not interpret or

otherwise use the data.

The I/O Manager has two different methods for handling input and output buffers

passed to drivers: direct I/O and buffered I/O. In direct I/O, the I/O Manager passes a

Memory Descriptor List (MDL) containing the location of the input and output buffers in

the user memory space. The driver uses the MDL to map the buffers into the driver’s

address space so that they can be accessed directly by the driver. In buffered I/O, the I/O

Manager allocates I/O buffers from the kernel non-pages memory pool. The contents of

20

the user space input buffer are copied into the input buffer allocated by the I/O Manager.

The input buffer allocated by the I/O Manager is then forwarded to the driver. The driver

output buffer is processed similarly. The driver stores return data in the system allocated

output buffer, which is then copied into the user space buffer by the I/O Manager when

the I/O request is completed. It seems reasonable to assume that these interface methods

add significant overhead data transfer operations. This hypothesis is investigated in this

thesis.

When writing device drivers or dealing with the I/O Manager, developers need be

cautious while performing pointer operations. Solomon [4] reiterates a previously stated

point: “Windows NT doesn’t provide any protection for components running in kernel

mode.” Code executing in kernel mode has unlimited access to all kernel memory and

CPU instructions which gives it the power to corrupt the operating system.

21

3 Software System Design

3.1 Overview

A flexible, extensible software system is required to support the SCC hardware

design presented in Appendix A. In order to the SCC to be usable, several host system

issues must be addressed: first, how the host interfaces to the SCC and second, how user

applications use the SCC. These design criteria must be met within the WinNT and Intel

x86 architectures. Fortunately, WinNT provides the well-defined driver structure for

accessing the hardware, as well as an interface for applications to access driver services.

User Applications

PCI Bus

SCC API Library

SCC PCI Bus Driver
Target ACU

(Cyclone i960 board)

Layer 3

Layer 2

Layer 1

Windows NT HAL Layer 0

Figure 4: SCC Software Architecture

 The SCC support software structure follows a layered approach as illustrated in

Figure 4. This layered architecture assures that each level is isolated from changes in the

others. Each interface for layer 0 through layer 2 is dictated by Microsoft. Adhering to

these standards provides portability across the various hardware platforms that support

WinNT. The layer 0-1 interface is defined by HAL functions. These functions are only

accessible while the CPU is in privileged mode. The layer 1-2 interface is defined by the

WIN32 file access functions: CreateFile(), WriteFile(), ReadFile() and

22

DeviceIoControl(). No other functions are provided to access the driver from user mode.

Finally, the layer 2-3 interface is controlled by the SCC Array Interface Library (AIL).

Its purpose is to provide user applications with a consistent interface to the SCC services

without requiring specific knowledge of the SCC hardware. It also provides portability

by obscuring the specifics of driver calls.

3.2 SCC PCI Driver

The software system requires a Windows NT device driver to communicate with

the SCC ACU via the host PCI bus. This component is not optional, as memory mapping

and privileged mode instructions are required to interface with the SCC memory.

3.2.1 Design Criteria

The primary goal of the driver development was to optimize the code to increase

overall system performance. The optimization effort focused on the IOCLT dispatch

code since this is the only code that has a bearing on runtime performance. The speed of

the initialization and de-initialization code is irrelevant since their execution occurs when

the SCC is unusable. In the end, not much performance was gained from hand tuning the

driver. It is impractical to write the driver in any language other than C; recent C

compilers generate execuTable code almost as efficiently as that produced by a good

assembly language programmer. The CPU cache structure can alleviate some of the

inefficiencies as well.

The driver was developed to accommodate reentrancy and multiprocessor

operation. These capabilities were designed in to provide a path for future system

expansion. The only coding overhead incurred is ensuring all variables are allocated

23

from the stack and adding a spin lock to driver dispatch function to ensure exclusive

access.

3.2.2 Implementation

There are essentially four types of WinNT drivers, buffered I/O, direct I/O,

memory mapped, and DMA based. The SCC PCI Driver provides functionality to

support the first three modes in the same driver. This is possible by defining IOCTLs to

support the three modes in the same source file.

The SCC PCI Driver implements the essential WinNT driver functions: a driver

entry point, device I/O control dispatcher, and a driver unload routine. These are now

described.

 DriverEntry() is the driver entry point. It has four major responsibilities:

1) PCI bus enumeration. It probes the PCI bus for SCC cards and creates a device object

for each SCC card found.

2) Creating a symbolic link so that the driver can be accessed by WIN32 file functions.

3) Initializing SCC hardware for use and mapping its memory into kernel memory.

4) Initializing the driver function dispatch Table.

WIN32 DeviceIoControl() calls (which generate IRP_MJ_DEVICE_CONTROL

IRPs) are handled by the driver Dispatch() function. It supports nine device I/O control

functions (IOCTLs), but only four warrant discussion. The first pair invoke

IOCTL_SCC_MAP_USER_PHYSICAL_MEMORY (which calls MapMemory()) and

IOCTL_SCC_UNMAP_USER_PHYSICAL_MEMORY (which calls UnMapMemory()).

The MapMemory() function maps the SCC memory into the calling application’s

memory by using several HAL functions. The virtual address is return to the caller in the

24

pointer supplied by the call. An excellent example of this is provided in Dekker and

Newcomer [6] page 375. UnMapMemory() simply removes the mapping. The other pair

is IOCTL_SCC_LOAD_DATA_BLK and IOCTL_SCC_READ_DATA_BLK. These

IOCTLS perform the block transfers to and from the SCC memory. These are

noteworthy because they use the HAL functions

WRITE_REGISTER_BUFFER_ULONG() and

READ_REGISTER_BUFFER_ULONG() to effect the transfer. The code behind these

functions is not remarkable (simply assembly language loops), but the functions should

be used in order to ensure driver portability. The implementation of these functions may

vary across NT platforms, but the function prototypes are immuTable.

The driver unload function, DriverUnload(), must reverse the set-up performed by

the DriverEntry() routine. The cleanup process consists of five steps:

1. Delete the symbolic links. This deregisters the driver with the NT Object Manager.

The driver can no longer be reference by name.

2. Disable the SCC board interrupts and disconnect the driver ISR from the NT ISR list.

3. Unmap the SCC board memory from kernel address space.

4. Release the resources that were assigned by HalAssignSlotResources().

5. Release the device object.

The driver functions for creating/opening (IRP_MJ_CREATE), closing

(IRP_MJ_CLOSE), reading data (IRP_MJ_READ), and writing data (IRP_MJ_WRITE)

to a device are stubbed. They have no significant function in this driver, but they must be

implemented according to WinNT driver standards.

25

3.2.3 Validation Testing

The SCC driver functionality was verified in several ways. One is that all driver

development has an inherent “Go. No Go.” test referred to as the “Blue Screen of Death”.

Drivers execute unprotected in kernel mode. If they contain an error, the results are

typically devastating to WinNT. If the error is not too severe, the kernel catches it and

displays the “Blue Screen of Death”. If the error is server enough, the computer locks up

and the effects are completely indeterminate.

The SCC Driver functionality was more methodically tested using two test tools.

The basic functions were tested using Microsoft WinDBG. This debugger displays

messages embedded in checked build drivers if the debugger is active and the debug

feature of WinNT is enabled at boot time. Otherwise, message support is disabled. Test

messages are embedded in the major blocks of the SCC PCI driver. A test application

was written to exercise all of the SCC driver functions and the debug output was

monitored with WinDBG. This method proves basic driver functionality, but does not

verify memory transfer operations.

Since the SCC board is still under development, it is desirable to have a known

good target to verify memory operations. The Cyclone i960 development board provides

a suiTable environment for this task. The board provides an Intel i960 CPU with an

onboard debug monitor and a user interface via a serial port. The i960 also has a PCI

interface that provides access the board DRAM. The validation test consists of a test

application executing on the host that uses the driver to perform a write/readback/verify

test on the i960 memory. The i960 debug monitor is used to examine the i960 memory

for the proper test patterns.

26

3.3 Array Interface Library

3.3.1 AIL Design

The purpose of the Array Interface Library (AIL) is to provide programmers with

a consistent environment for accessing the SCC. This serves several purposes. First, the

programmer is not required to know the inner workings of the SCC hardware. The

application programming interface (API) allows data and/or programs to be sent/

retrieved from the array by making a function call. Second, applications are completely

insulated from changes to the hardware and/or device driver. A library port allows the

system to target alternate hardware platforms and/or host operating systems. The AIL

was designed to be fully reentrant and to support multiple SCC cards in the host platform.

There are four versions of the AIL available:

1. Static linked C library

2. Static linked C++ library

3. C WIN32 Dynamic Link Library (DLL)

4. C++ DLL

This provides programmers with as many implementation options as possible. In

addition, this provides a means to compare the system level performance of static

libraries vs. DLLs and C vs. C++.

The different versions of the AIL are derived from the static link C library source

stream. A stub was added to facilitate DLL use and a C++ wrapper class was developed

to support object oriented programming. For the remaining discussion, AIL will refer to

the static linked C version of the library.

The AIL provides API functions to:

27

1. Read and writes blocks of data from/to SCC memory.

2. Read the SCC driver information.

3. Load basic program blocks into SCC memory and execute them.

4. Issue directives to the ACU.

5. Wait for and process feedback from the SCC array.

These functions segregate into two general categories: low level primitives to

interface to driver and perform basic data transfers, and higher level, SCC specific

interface functions. The following sections discuss the design concepts of the AIL

functions and are not intended to be an AIL tutorial.

3.3.2 Library Interface Functions

SccLibraryOpen() opens a connection to the specified SCC. It returns a handle

that uniquely identifies this connection and this handle used by the other library functions

to identify which SCC they are accessing. The complement function is

SccLibraryClose(). This function must be called when the connection to the SCC is no

longer needed.

The definition of the handle is arbitrary from the user viewpoint; it is simply a

way to identify with which SCC card to communicate. From the AIL implementation

standpoint, the handle is actually the WIN32 handle returned from the CreateFile() call

that opened the SCC driver. This is a good example of the complex implementation

details obscured from the application programmer by the AIL.

The AIL provides the SccWriteBlock() and SccReadBlock() functions to facilitate

transfer between user applications and the SCC. These are the only functions that user

applications should use for data exchange with the SCC, mainly because they obscure the

28

transport mechanism. Based on the experimental test results presented in Chapter 4, the

AIL uses the services of the direct I/O driver for data transfer. In this configuration, the

WinNT I/O Manager provides addition protection against programming errors.

In the ideal AIL implementation, all other AIL functions would use these low-

level data transfer primitives. This would minimize the impact of changing layer 1

drivers. However, the current AIL functions call the WIN32 driver interface functions

directly in an effort to improve performance. This optimization, however, is shown to be

unnecessary based on the library performance test results in Chapter 4.

The ACU interface functions are built on the low-level primitives and they

provide the programmer hardware-independent methods for controlling the SCC ACU.

They obscure details such as control and status register format and memory address. A

description of the functions is listed in Table 2.

Function Description
SccWaitOnCondition() This function polls the SCC status register until the

conditions specified by the bit mask are met. This is used
primarily to stall the main application thread until array
feedback is available.

SccReadFeedback() This function returns the current value of the SCC feedback
queue.

SccWriteImmediate() This function inserts an immediate value into the SCC input
queue.

SccReadStatusRegister() This function returns the current value of the SCC status
register.

SccWriteStatusRegister() This function writes a value to the SCC status register.

Table 2: List of SCC Interface Functions

A group of functions is provided to interface with the layer 1 driver (See Table 3).

These functions are provided primarily for testing purposes.

29

Function Description
SccGetDriverInfo() This function returns the copyright and version information from

the driver. It can be used as a simple test to verify driver
operation.

SccGetPciInfo() This function returns the PCI bus information detected by the
driver during bus enumeration.

SccGetCardCount() This function returns the number of SCC boards found on the PCI
bus during bus enumeration.

SccResetCard() This function forces the SCC board to reset.
SccGetStatus() This function returns the current status of the driver. This is

currently limited to indicating if another application has locked
the SCC board as a resource.

Table 3: List of Driver Interface Functions

The AIL provides two functions to gather system performance information and

are used here to gather test data during the system performance evaluation. The function

SccGetTimer() calls into the driver to return the value of the CPU 64 bit performance

counter. The instruction (RDTSC) used to read this timer is a privileged mode

instruction so it must be executed from within the driver. The function

SccGetElapsedTime() returns the time the previous driver call took to complete. This

was used here to determine the amount of time data transfers to the SCC took from the

perspective of the driver.

The AIL also contains a pair of functions to memory map the SCC memory

directly into user application memory. SccMapMemory() performs the map function and

SccUnmapMemory() frees memory when it is no longer needed. These functions are

provided primarily for use in the memory mapped layer 1 driver and should not be used

by user applications. The main problem is there is no protection for the kernel memory

30

when mapped to user memory space and an errant program could easily corrupt WinNT

operation.

The AIL software architecture provides a flexible, modular interface to the SCC.

Each layer provides an avenue for portability and protection from errant programming. It

would be simple to port the software system to a non-Intel WinNT environment;

essentially a recompile. For other operating systems, however, the driver (which is

inherently OS dependent) would have to be rewritten; however, its basic structure could

be applied to UNIX and LINUX.

3.4 Benchmark Applications

The AIL affords the application programmer a high degree of flexibility in how to

use the SCC. The question becomes, how much does all this flexibility cost? Part of the

SCC software system is a series of benchmark applications to measure the performance

of the driver and the AIL components. More specifically, they attempt to quantify the OS

overhead associated with each WinNT driver type discussed previously as well as the

library implementation overhead (static linked library vs. DLL). The goal is to determine

what effect drivers and/or libraries have on the overall system performance. The

benchmark applications specifics are discussed in the next chapter.

31

4 Results

This chapter discusses experimental results in this thesis. The primary goal here

is to investigate the effects of the host software implementation on the SCC performance.

This is accomplished by executing benchmark applications that perform various sized

block transfers targeting a simulated SCC. The Cyclone i960 development board is used

for testing since the SCC is still under development. The i960 board also has the added

advantages of providing an onboard debug monitor and a known good PCI interface.

The benchmarks used different combinations of WinNT drivers and interface

libraries to test the impact of various software implementations on the SCC system. Data

transfer times are measured from the application, driver and PCI bus perspectives in an

effort to identify possible I/O bottlenecks.

The rest of the chapter presents the testing methodology followed by the SCC

driver, the AIL library overhead, and finally the PCI bus utilization test results.

4.1 Testing Methodology

The research focuses on determining the effects of WinNT overhead on system

performance. There are two hypotheses under study. The first is that memory mapped

drivers have a significant performance advantage over both the buffered I/O and direct

I/O drivers. This seems intuitive, as the involvement of the I/O Manager in data transfer

operations must be slower than writing directly to the target memory. The second

hypothesis is that the statically linked implementation of the AIL provides better

performance than the C++ and DLL versions. The rationale is that the code from static

linked libraries is directly linked into the application; it is executed from the same code

32

segment as the rest of the application. On the other hand, WinNT DLLs are loaded into

kernel memory on demand and applications resolve the execution addresses at runtime.

C++ versions are tested primarily because of the long-standing debate as to its impact on

code efficiency.

A suite of benchmark applications was developed to test these hypotheses. The

benchmarks are standard WIN32 console applications written to test the PCI throughput

between the host CPU and the SCC. PCI bus throughput is considered the critical factor

in determining overall system performance since SCC array and host CPU operating

frequencies are significantly faster than the PCI bus. The benchmarks are designed to

write then read back data blocks from the i960 board (simulated SCC). The block sizes

range from 4 bytes to 2 MB with the block size doubled for each iteration. The

benchmark pseudo code is:

Main()
{
 for(block_size=4; block_size<=2MB; block_size*=2)
 {
 read timer for app start time;
 do driver transaction;
 get driver run time;
 read timer for app end time
 Tapp = Tend – Tstart;
 Write numbers to log file;
 }
}

Block transfer time is an important performance measure for all systems that use

coprocessor cards. The SCC is designed for vision and graphics applications. These

types of problems require large blocks of data in the form of images to be frequently

moved between the host and SCC. Code segments also have to be loaded from the host

to the SCC. Particularly for the SCC, small block transfers are also important. The user

33

applications on the host regularly send directives to the ACU and write to the control

register. User applications also read the SCC status and feedback registers to control

program flow. These operations are all time critical.

Three performance measurements are taken by the benchmarks. First, the block

transfer time is measured from the application viewpoint. This is the most important

parameter since it reflects the total runtime of the application. It includes OS overhead,

compiler and library inefficiencies, and system bus utilization (assuming a constant

workload). The second measurement is the time spent in the driver performing the data

transfer. The purpose of this measurement is to quantify how much OS overhead is

associated with the application and how efficiently the driver executes. In theory, the OS

overhead is the time in the driver subtracted from the value of the application timer. The

final measurement is the amount of time the transfer actually takes on the PCI bus. This

can be measured using a PCI bus analyzer; in the case of this investigation an HP 1671E

with a FuturePlus Systems FS2005 PCI probe. This is a difficult measurement to take,

but it shows the actual transfer time. This value subtracted from the application time and

the driver time represents the OS overhead for the respective operation. The application

and driver overhead measurements indicate where the system inefficiencies reside.

Collecting accurate timing information is challenging. WinNT provides software

timers, but they suffer from OS overhead when updating when they are read. They are

also have relatively low resolution; on the order of milliseconds. The PC hardware

provides timers that would be useful except that the WinNT VM system prevents them

from being accessed directly by user applications. Also, there is no way to know if or

how these timers are allocated by WinNT.

34

The solution is to use the 64 bit performance timer supplied by the CPU. This

timer is reset when the CPU is reset and incremented on every instruction cycle.

However, this method has some limitations. Mainly, it uses the RDTSC instruction,

which is native to Intel Pentium and above processors. RDTSC is a privileged mode

instruction so it must be invoked within the context of a driver. This skews the accuracy

of the measurement. The skew has two components. First, there is the code overhead of

calling the driver and the driver handling the call. This can be accounted for by counting

instruction cycles expected from the assembly language listing and then subtracting them

from the timer value. This does not completely account for the call overhead since any

part of the operation can be preempted. This is the second component of the

measurement skew and it is exact impact is indeterminate. As long as WinNT is running,

there is potential OS overhead associated with every operation. The exact effects vary

with workload, OS configuration, interrupt frequency, and hardware configuration.

The WinNT workload directly affects the performance measurements. WinNT

requires certain processes be executing for the system to function (see Chapter 2). For

testing purposed, all nonessential user applications and system processes were

terminated. The goal was to provide a lightly loaded system to get the best performance

possible though this is not a normal system configuration. It is also important to restrict

the workload to avoid loading the PCI bus with hard drive and system peripheral

accesses. These directly contend with the benchmark applications for use of the PCI bus

and skew the test results.

35

4.2 Test Procedures

The test environment is shown in Figure 5. The system contains the PC under

test, a PC to access the Cyclone i960 debug monitor and an HP1671E logic analyzer with

a FuturePlus Systems FS2005 PCI probe.

PCI Bus

I9
60

 C
ar

d

FS
20

05

Test PC

Monitor PC

HP1671E
Logic

Analyzer

COM1 COM2

Figure 5: Hardware Test Setup

The Test PC is loaded with WinNT 4.0 and the benchmarks. All extraneous

processes and services are terminated, but as previously mentioned, some system

processes are required for WinNT to operate. The FS2005 probe is placed in any open

PCI slot in the Test PC. The cables from the HP1673E logic analyzer are connected to

the FS2005 as demonstrated in the FS2005 User Manual. The PCI bus monitor software

is loaded into the logic analyzer by selecting the “CP256_1” configuration file on the

36

system disk, selecting “Load from flexible disk” followed by pressing the “Execute”

button. The trigger is configured as described in FuturePlus application note “Capturing

PCI Bus Transactions.” The i960 board should also be inserted into a PCI slot on the

Test PC. The serial line is connected from the RJ-11 jack on the i960 board to a COM

port on the Monitor PC. Note: plugging the i960 into the FS2005 expansion connector is

not recommended. The electrical characteristics of PCI are such that the impedance of

the extra trace lengths on the FS2005 could corrupt the signals supplied to the i960 board.

The main purpose of the Monitor PC is to provide a serial console for accessing

the i960 debug monitor. Its use is not required while running the benchmark tests, but it

can be used at any time to verify the correctness of the data transfers. Windows

HyperTerm can be used to communicate with the debug monitor. The communication

parameters are 115 kbps, 8 data bits, 1 stop bit and no parity. To start the communication

session with the debugger, press the <Enter> key 8 times. The debug monitor supports a

variety of commands; however, the most useful commands are “dd” (display

doubleword) and “mo” (modify memory contents). These commands are described in

detail in the Intel "MON960 Debug Monitor User’s Guide" (Document Number: 484290-

006).

The Monitor PC can optionally have the WinNT kernel debugger (WinDBG)

installed. WinDBG is used mainly for driver development; not performance testing. In

fact, WinDBG was disabled during testing because of overhead it introduces into the

system. Enabling the debug features of WinNT slows it down immensely. In addition,

debugger communication occurs at 115 kbps over the serial port. This greatly affects

system performance.

37

The following sections present the results of the benchmark tests discussed in

Section 4.1. The driver test results are analyzed first, followed by the library overhead

tests and finally the bus utilization test. Tests were executed on a 133 MHz Intel Pentium

processor with an Intel Triton II chipset (hereafter referred to as Pentium) and a 1.2 GHz

AMD Athlon with a VIA KT133A chipset (hereafter referred to as Athlon). This seems

like an unfair comparison, but the disparate systems (CPU and chipset) were selected

because there is roughly an order of magnitude difference in their processing capabilities.

The goal is to expose possible benchmark CPU dependencies.

4.3 Driver Test Results

The following sections present the throughput results for the memory mapped,

direct I/O and buffered I/O drivers. The benchmark applications did not use the AIL

functions; they call DeviceIoCtrl() directly. This was done to remove library related

performance issues. The AIL impact on system performance is presented in Section 4.4.

4.3.1 Memory Mapped Driver

This section presents the results for the memory mapped driver. The designation

memory mapped driver is slightly misleading. The driver is not actually involved in the

data transfers. The only service it provides is to map the i960 memory into the

benchmark’s user memory space. The memory mapping function must be implemented

in this manner since kernel mode privileges are required to call the HAL mapping

functions. This driver was expected to have the best performance since the applications

are writing directly to the i960 memory without the overhead of involving the I/O

Manager. ?????????????????????????

38

The write throughput results for the Pentium and Athlon are shown in Figures 6

and 7. No results for the driver execution time are presented, as the driver is not involved

in the data transfers.

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

1 10 100 1000 10000 100000 100000
0

1E+07

Block Size (bytes)

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Write

Figure 6: Memory Mapped Driver Write Throughput on Pentium

39

0

5000000

10000000

15000000

20000000

25000000

30000000

1 10 100 1000 10000 100000 100000
0

1E+07

Block Size (bytes)

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Write

Figure 7: Memory Mapped Driver Write Throughput on Athlon?????

It is easily gleaned from these figures that the write throughput is substantially

lower than PCI theoretical peak throughput of 132 MB/s. This is attributed mainly to

operating system overhead, though the shared system bus contributes a small component.

The read throughput results for the Pentium and Athlon are illustrated in Figures 8

and 9. These results are invalid????? for the purposes of this study because the data

transfer times for all block sizes are identical. The most plausible explanation for this is

that both CPUs are reading from cache even thought the driver designates the i960

memory as non-cacheable. This poses a serious problem for the SCC which uses

memory mapped control and status registers. Writes and reads are required to return the

current state of the i960 memory otherwise the host cannot make proper control

decisions.

40

0

5000000000

10000000000

15000000000

20000000000

25000000000

30000000000

35000000000

1 10 100 1000 10000 100000 1E+06 1E+07

Block Size (bytes)

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Read

Figure 8: Memory Mapped Driver Read Throughput on Pentium

0.00

100000000000.00

200000000000.00

300000000000.00

400000000000.00

500000000000.00

600000000000.00

1 10 100 1000 10000 10000
0

1E+06 1E+07

Block Size (bytes)

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Read

Figure 9: Memory Mapped Driver Read Throughput on Athlon

The test results for this driver were at best disappointing. As will be shown in the

following sections, this driver does not have a performance advantage over the buffered

41

I/O or the direct I/O drivers. This is completely counterintuitive since accessing memory

directly is typically faster than involving a third party (the I/O Manager in this case) in

every data transfer. The best possible explanation for this is based on the WinNT

scheduling priority scheme (see Solomon [4] page 187 or Dekker and Newcommer[6]

page 10 for background information). Device drivers always run at a higher priority than

user applications; therefore, they are less likely to be preempted. It is possible that

performance of the benchmark could be improved by raising its thread priority.

However, this violates the design principle of not monopolizing the CPU stated in the

introduction and could destabilize the host operating system environment.

4.3.2 Direct I/O Driver

As described in Chapter 2, the direct I/O driver is a hybrid of the memory mapped

and buffered I/O drivers. Data input to the driver is copied into a kernel buffer before

passing it to the driver. The user supplied output buffer is directly mapped into kernel

memory; eliminating the need to copy the receive data from a kernel buffer to the user

buffer.

The write performance for this driver is comparable that of the buffered I/O

driver. This is to be expected since they both buffer user input. The disparity between

the write and read throughputs is attributed to write merge logic either in the CPU or the

North Bridge. This was verified by modifying the driver to write 8 bit words instead of

32 bit words; the write throughput was unchanged.

42

0

5000000

10000000

15000000

20000000

25000000

30000000

1 10 100 1000 10000 100000 100000
0

1E+07

Block Size (bytes)

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Write
Read

Figure 10: Direct I/O Driver Throughput for Pentium

0

5000000

10000000

15000000

20000000

25000000

30000000

1 10 100 1000 10000 100000 100000
0

1E+07

Block Size (bytes)

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Write
Read

Figure 11: Direct I/O Driver Throughput for Athlon

43

The read throughput for the direct I/O driver is slightly higher than for the

buffered I/O driver. The typical read throughput for both the Pentium and Athlon using

the direct I/O driver was approximately 4.1 MB/s. This same measurement using the

buffered I/O driver was 3.4 MB/s for the Pentium and 4.0 MB/s on the Athlon. The

difference is attributed to the direct I/O driver eliminating the output buffer copy.

The time spent in the driver vs. the time spent in the benchmark (see Figures 12

and 13) affirms that the benchmark itself has little impact on the throughput. Its only

overhead is a call to DeviceIoCtrl(); the remaining part of the transfer is handled by the

I/O Manager and the driver.

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1000000 1E+07

Block Size (bytes)

Pe
rc

en
t T

im
e

in
 D

riv
er

Write
Read

Figure 12: Direct I/O Driver Percent Time in Driver for Pentium

44

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1000000 1E+07

Block Size (bytes)

Pe
rc

en
t T

im
e

in
 D

riv
er

Write
Read

Figure 13: Direct I/O Driver Percent Time in Driver for Athlon

The Pentium time-in-the-driver ranges from 40 µs (1 byte) to 61 ms (2MB) for

writes and 49 µs to 498 ms for reads. The Athlon time in the driver ranges from 2.7 µs to

74 ms for writes and 4.4 µs to 511 ms for reads. It is interesting that the Athlon is faster

for the small transfers, but the CPUs have similar performance for the larger blocks. This

is quite unexpected since the Athlon is an order of magnitude faster than the Pentium.

The implication is that software is the limiting factor for smaller transactions and

hardware limits larger transactions. This assertion is supported by the fact that the

Athlon processes small transaction an order of magnitude faster than the Pentium, which

corresponds to the difference in their CPU speeds. As the transaction size increases,

hardware becomes the limiting factor. This explanation is based on the throughput

performance plateau experienced by both CPUs where they exhibit the same peak

throughput (see Figures 12 and 13). However, the Athlon reaches this plateau when the

45

block size is greater than 1024 bytes while the Pentium does not reach it until 10 kbytes.

Again, we have an order of magnitude difference. The conclusion is that both CPUs are

capable of outperforming some part of the PCI interface logic, presumably the North

Bridge.

4.3.3 Buffered I/O Driver

As anticipated, the buffered I/O driver proved to be the slowest driver. This is

illustrated by Figures 14 and 15. One interesting feature of these graphs is that the write

throughput is the same for both CPUs and it is identical to the results for the direct I/O

driver. This is to be expected since both drivers copy the user input into a kernel buffer.

In addition, the maximum write throughput is similar to the peak write throughput of the

memory mapped driver. This is significant since the memory mapped driver writes

directly to the i960 while the buffered I/O driver has to copy the input buffer before

writing to the target. This further supports the assertion made in Section 4.3.2 that write

merge logic is employed in the PCI interface logic.

46

0

5000000

10000000

15000000

20000000

25000000

30000000

1 10 100 1000 10000 100000 100000
0

1E+07

Block Size (bytes)

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Write
Read

Figure 14: Buffered I/O Driver Throughput for Pentium

0

5000000

10000000

15000000

20000000

25000000

30000000

1 10 100 1000 10000 100000 100000
0

1E+07

Block Size (bytes)

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Write
Read

Figure 15: Buffered I/O Driver Throughput for Athlon

47

The read throughput for the buffered I/O driver is slightly lower than for the direct

I/O driver. The typical read throughput for the buffered I/O driver was 3.4 MB/s for the

Pentium and 4.0 MB/s for the Athlon. The direct I/O driver was approximately 4.1 MB/s

for both the Pentium and Athlon. As discussed in Chapter 2, this inefficiency is

attributed to the I/O Manager copying the received data from kernel memory into the user

output buffer. This subtle performance degradation is not exposed by the driver time

measurements because the copy occurs in the I/O Manager which is outside the context

of the driver. The I/O Manager overhead is accounted for by the applications runtime.

The driver time results in Figures 16 and 17 reaffirm that the benchmark has

minimal effect on the throughput. ?????????? Most of the CPU time is spent in the driver

performing data transfers. This is consistent with the results for the direct I/O driver.

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1000000 1E+07

Block Size (bytes)

Pe
rc

en
t T

im
e

in
 D

riv
er

Write
Read

Figure 16: Buffered I/O Driver Time in Driver for Pentium

48

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1000000 1E+07

Block Size (bytes)

Pe
rc

en
t T

im
e

in
 D

riv
er

Write
Read

Figure 17: Buffered I/O Driver Percent Time in Driver for Athlon

The buffered I/O driver was modified to perform 8 bit data transfers instead of 32

bit transfers. The write throughput was unchanged, further supporting the assertion that

write merging logic is present in the PCI logic. Read throughput dropped by a factor of

four, as expected, indicating that the i960 is not prefetching read data.

4.3.4 Overall Driver Test Analysis

At a high level, the driver tests share several common results. First, there is no

significant performance difference among the different driver implementations. This was

completely unexpected. It was anticipated that the memory mapped driver would provide

the best performance.

Second, the maximum data throughput is significantly less than the peak PCI

throughput. This is to be expected since the peak PCI throughput measurement in based

on using dedicated hardware with no OS overhead. However, the degree of performance

49

degradation was severe even in comparison to the PCI Pamette [10]. In a system

configured similarly to the Pentium, the PCI Pamette had a PIO write throughput of 65

MB/s and a read throughput of 15 MB/s. This is a stark contrast to the 25 MB/s write

throughput and 4.5 MB/s read throughput derived from the SCC driver tests.

Finally, it is interesting that the Pentium and Athlon have the same peak

throughput despite the Athlon being ten times faster than the Pentium. This result is

expected to an extent because the PCI bus--not the CPU--will eventually limit the data

transfer rate. The unexpected result is that the CPUs consistently reached the same peak

throughput at different block sizes independent of driver implementation. This is because

the CPUs outperformed the PCI interface logic.

4.3.5 DMA Driver

The results from the SCC driver tests indicate that programmed I/O has severe

performance limitations. The next logical step (which is beyond the scope of this thesis)

is to develop a DMA based driver. The DMA controller would relieve the host CPU

from transferring data a word at a time as well be able to consolidate data transactions

into PCI burst bus cycles. The DMA controller and North Bridge designs would need to

be examined to determine how to best use these capabilities. The issue is then

determining how to force the DMA to use PCI burst cycles from within a WinNT system.

Theoretically, the DMA write throughput should be better than depending on

write merging. The DMA controller is given a definite address, block size and a starting

time. In contrast, write merging logic must buffer data, determine whether it can be

merged, wait for a specified timeout period to ensure no more data is coming, and

50

perform the write transaction. This overhead has a negative impact on the write

throughput; however, it is significantly better than writing a word at a time.

The read throughput has the most potential for improvement by using a DMA

driver. Most of the OS overhead experienced by the SCC drivers is eliminated since the

CPU is longer be involved in the read transfer. In addition, the DMA controller could use

PCI burst read cycles to reduce PCI bus overhead.

A few issues need to be explored before implementing a DMA driver.

1) The amount of time a device can own the PCI bus must be restricted. The system bus

is shared resource and there are system critical components connected to it that must

be serviced regularly.

2) The DMA controller allows the host CPU to continue executing after starting the

transaction. This is only a performance gain if the CPU has work to perform.

3) Finally, the SCC driver tests demonstrate a point where throughput plateaus. This

must have been caused by a hardware limitation in the PCI interface. It is possible

that the DMA controller would encounter this same issue.

A possible alternative to using the host DMA controller to perform reads is to

have the target support bus mastering. In this design, the host programs a DMA

controller in the target to effect the read transaction. The target executes the data transfer

and then signals an interrupt when the transfer is complete. This design completely

circumvents WinNT and North Bridge interfacing issues. The test procedures and

corresponding results from Moll and Shand [10] on the PCI Pamette seem to validate this

design.

51

4.4 Library Test Results

The purpose of the Array Interface Library tests was to determine if the driver

interface library implementation affected system performance. Static linked libraries and

DLLs for both the C and C++ languages were tested using the buffered I/O driver to

interface to the i960. The AIL tests were executed on both the Pentium and the Athlon

for completeness.

Figures 18 though 25 illustrate the results from the AIL testing. The results

depicted match the results in Section 4.3.3 for the buffered I/O driver benchmark, which

does not use a driver interface library. This implies that there is no appreciable difference

between library types, at least at the macro level, although there are known differences at

the micro level.

0

5000000

10000000

15000000

20000000

25000000

30000000

1 10 100 1000 10000 100000 100000
0

1E+07

Block Size (bytes)

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Write
Read

Figure 18: C++ DLL Throughput for Pentium

52

0

5000000

10000000

15000000

20000000

25000000

30000000

1 10 100 1000 10000 100000 100000
0

1E+07

Block Size (bytes)

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Write
Read

Figure 19: C++ DLL Throughput for Athlon

0

5000000

10000000

15000000

20000000

25000000

30000000

1 10 100 1000 10000 100000 100000
0

1E+07

Block Size (bytes)

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Write
Read

Figure 20: C++ Static Linked Library Throughput for Pentium

53

0

5000000

10000000

15000000

20000000

25000000

30000000

1 10 100 1000 10000 100000 100000
0

1E+07

Block Size (bytes)

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Write
Read

Figure 21: C++ Static Linked Library Throughput for Athlon

0

5000000

10000000

15000000

20000000

25000000

1 10 100 1000 10000 100000 100000
0

1E+07

Block Size (bytes)

Th
ou

gh
pu

t (
by

te
s/

se
co

nd
)

Write
Read

Figure 22: C Static Linked Library Throughput for Pentium

54

0

5000000

10000000

15000000

20000000

25000000

30000000

1 10 100 1000 10000 100000 100000
0

1E+07

Block Size (bytes)

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Write
Read

Figure 23: C Static Linked Library Throughput for Athlon

0

5000000

10000000

15000000

20000000

25000000

1 10 100 1000 10000 100000 100000
0

1E+07

Block Size (bytes)

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Write
Read

Figure 24: C DLL Throughput for Pentium

55

0

5000000

10000000

15000000

20000000

25000000

30000000

1 10 100 1000 10000 100000 100000
0

1E+07

Block Size (bytes)

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

on
d)

Write
Read

Figure 25: C DLL Throughput for Athlon

The AIL testing shows that driver interface library implementation has negligible

impact on system performance. This is a positive result since it allows programmers to

select the programming language and library types best suited to the application without

incurring system performance penalties.

4.5 Bus Utilization Results

The purpose of the bus utilization test was twofold: to measure the fraction of

time the PCI bus was used for SCC transactions and to determine how long the various

block transfers take. Only the latter part of objective as met. Once testing was

underway, it was concluded that the PCI bus analyzer traces were too detailed to analyze

manually. The scope of the test was therefore limited to a single data set for each driver

type with the block sizes ranging from 4 to 32 bytes. The Pentium system was used.

56

The times required to perform read and write transactions are shown in Figures 26

and 27. The transfer times can be compared to the theoretical PCI transfer time which is

calculated as (1+Block_Size)*30 nanoseconds. This assumes a data word is transferred

only every PCI clock cycle, which is unrealistic, but it does provide a baseline

measurement. The graphs indicate that the actual transfer time is substantially greater

than the theoretical PCI transfer time.

0
500

1000
1500
2000

2500
3000
3500

4000
4500

0 50 100 150

Block Size (bytes)

W
rit

e
Ti

m
e

(n
an

os
ec

on
ds

)

Memory Mapped
Direct I/O
Buffered I/O
Theoretical

Figure 26: PCI Bus Write Time

The discrepancy between the actual and theoretical write performance illustrated

in Figure 26 provoked a more detailed analysis of the logic analyzer traces. The host PCI

interface uses PCI burst write cycles for data transfers larger than one word; however, it

was found that the burst size is limited to nine words. It is presumed that this is done to

avoid monopolizing the PCI bus.

The write trace analysis revealed that the i960 is negatively affecting throughput.

It forces the host to retry burst writes an average of three times before the transaction

completes successfully. This, combined with the host feature of using burst cycles for

57

writes of over one word, leads to a write time of approximately 720 nanoseconds for a

two word write, as opposed to the 128 nanoseconds the write should take. The effects of

the retry overhead decrease as the burst length increases, but the host limits the burst to

only nine cycles.

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150

Block Size (bytes)

R
ea

d
Ti

m
e

Ti
m

e
(n

an
os

ec
on

ds
)

Direct I/I
Buffered I/O
Theoretical

Figure 27: PCI Bus Read Time

Investigation of the logic analyzer traces further exposed the read performance

bottleneck illustrated in Figure 27. First, it was confirmed that there is no read merging

by the host; this was expected. The host issues individual PCI read cycles for every word

read by the host. The trace also shows that, at least for small blocks, the reads are

sequential on the bus; i.e., no other device interrupts the string of reads. This gives the

illusion of being a PCI burst read, but it is not. In fact, a PCI burst read would be twice

as fast as a string of individual reads because it only issues the address once during the

address phase while the individual read generates an address cycle for every transaction.

The i960 adds an additional component to the sub-optimal read performance. It

forces the host to retry reads an average of three times for every read transaction

58

attempted. This makes the typical read time for a single word 816 nanoseconds or

approximately 27 PCI bus clocks. The i960 performance problem can probably be

attributed to one of two sources. First, the i960 DRAM access time may not be fast

enough to respond in one clock cycle. This can be alleviated by installing faster memory.

Second, the i960 effectively dual ports its DRAM so it can be accessed from the PCI bus

and the i960. The i960 is executing the debug monitor from DRAM so it is possible that

the i960 is contending with the PCI bus interface for DRAM access, thus forcing the PCI

interface to generate a retry.

 Only the host results have a direct bearing on the SCC design since the SCC will

have a high performance PCI interface. The idiosyncrasies introduced into the system by

the i960 will not be present in the SCC. However, these results further support the need

for a DMA driven system as presented in Section 4.3.5.

Unfortunately, this test did not provide the desired bus utilization metric;

however, it did explain part of the performance degradation experienced by the

benchmarks. When the i960 was selected to be the SCC simulator, the assumption was

that the i960 could accurately emulate the SCC. This assumption was proven false.

These test results also identify pitfalls to be avoided in the SCC hardware design.

59

5 Conclusion

5.1 Discussion

The results are admittedly different than anticipated. The original hypothesis was

that the memory mapped driver would have a significant performance advantage over the

other two drivers. As the driver testing showed, the memory mapped driver had no

advantage over the buffered I/O driver. This is completely counterintuitive and had these

test not been run, the belief would still hold. Since there is no performance penalty, the

better design choice is to use the direct I/O driver, which allows the NT I/O Manager to

protect the kernel memory from errant memory accesses. It is important to note that the

SCC memory is still mapped into kernel memory for all driver types. The manner in

which data is passed to the driver is independent of this mapping.

At a macro level, the choice of library implementation was discovered to have no

impact on system throughput. This is contradictory to the second hypothesis that DLLs

and C++ code add overhead to applications. At the micro level, these programming

methods generate a small amount of code overhead; however the test results proved this

overhead to be negligible. In the case of DLLs, the results make sense. Their only

overhead is loading them into memory. Once loaded, they function more or less

identically to statically linked libraries. The same result vindicates the much maligned

C++ language as well as since no measurable difference was detected between the C++

and C benchmark implementations.

Finally, the most surprising result is that the PCI throughput from the application

perspective is significantly less than the PCI theoretical 132 MB/s peak. This is

attributed to operating system overhead and the shared nature of the PCI system bus. The

60

multitasking, preemptive nature of WinNT has the negative side effect that no application

or device driver can be guaranteed exclusive access to the CPU or system bus. The best

case is that the driver has uninhibited access to the system bus and the performance

degradation is due solely to the WinNT Scheduler occasionally executing. This is only

possible in a lightly loaded system. In the worst case scenario –and the more realistic-

WinNT drivers will be preempting each other in response to repeated interrupts, the VM

Manager will be paging to the hard drive over the PCI bus, and high priority tasks will

preempt the user application. This latter scenario more closely models the environment

in which the test results were collected.

As it turns out, the hypotheses posed in Chapter 4 were proven false. The

implications of the test results are that the PCI bus throughput is seriously hampered in

the proposed host environment and that the proposed software solutions are inadequate to

solve the problem. The issue seems to stem from the nature of WinNT itself. It is a

multitasking environment that must coordinate the use of all host system resources. This

flexibility comes at the cost of system performance.

The main contribution of this thesis is a generic protocol for evaluating OS

overhead on system performance. The testing methodology is flexible enough to be

applied to other OS’s and bus architectures. The significance of this is that most related

work focuses on optimizing the system from outside the host; no effort was placed on

evaluating the host itself. Their overall performance could be enhanced by applying the

insights derived from this research.

Another contribution of this research effort was to create a generic programming

environment for accessing devices on the PCI bus. Though the work was done in the

61

context of the SCC project, there are no constraints to keep it from being expanded to

support additional devices. The AIL allows SCC applications to be ported easily to new

platforms and/or OS’s; only the device driver (which is inherently OS dependent) would

need to be reworked.

5.2 Future Work

The ideas and results presented by this research pose several new questions that

could serve as the basis for future investigation. First, the test procedures/ methodologies

presented are architecture independent. A natural extension to this research is to test

other candidate host platforms, interconnect buses, and OS’s. This would quantitatively

identify optimal coprocessor host platforms. Second, an important piece of work

paramount to using the proposed system is to augment the SCC compiler to use the PCI

support developed here. This compiler would have to generate optimized code streams

for both the host CPU and the SCC array. It would also have to schedule the loading of

basic blocks and manage memory usage. Finally, it would be interesting to develop a

method of networking SCC hosts. This would allow the SCC to be used to solve larger

problems. A potential starting point would be to use Parallel Virtual Machine (PVM)

developed for creating a MIMD network from UNIX workstations or the Resource

Manager concept proposed by Jean et al. [12].

62

6 References

[1] Herbordt, M.C.; Cravy, J.; Honghai Zhang; Lin, C.; Hong Rao
Control for High-Speed PE Arrays
In Proceedings of IEEE International Conference on Application-Specific Systems,
Architectures, and Processors, 2000. Pages 247-257.

[2] Peter G. Viscarola and W. Anthony Mason
Windows NT Device Driver Development
Copyright 1999 Open Systems Resources, Incorporated
Published by Macmillan Technical Publishing

[3] Tom Shanley and Don Anderson
PCI System Architecture, Third Edition
Copyright 1995 Mindshare, Incorporated
Published by Addison-Wesley

[4] David A. Solomon
Inside Windows NT, Second Edition
Copyright 1998
Published by Microsoft Press

[5] Hans-Peter Messmer
The Indispensable PC Hardware Book, Third Edition
Copyright 1997
Published by Addison-Wesley

[6] Edward N. Dekker and Joseph M. Newcommer
Developing Windows NT Device Drivers, A Programmer’s Handbook
Copyright 1999
Published by Addison-Wesley

[7] Mink, A.; Salamon, W.; Hollingsworth, J.K.; Arunachalam, R.
Performance Measurement Using Low Perturbation and High Precision Hardware Assists
In Proceedings of the19th IEEE Real-Time Systems Symposium, 1998. Pages 379-388.

[8] Houzet, D.; Fatni, A.
Image Processing PCI-based Shared Memory Architecture Design
In Proceedings of 1997 Fourth IEEE International Workshop on Computer Architecture
for Machine Perception, 1997 (CAMP 97). Pages 244-252.

[9] Cloutier, J.; Cosatto, E.; Pigeon, S.; Boyer, F.; Simard, P.
VIP: an FPGA-based processor for image processing and neural networks
In Proc. MicroNeuro, pages 330-336, 1996.

[10] Moll, L.; Shand, M.

63

Systems Performance Measurement on PCI Pamette
In Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines. Pages
125-133, Napa, CA, April 1997.

[11] Harbaum, T.; Meier, D.; Prinke, M.; Zitterbart, M.
Design of a Flexible Coprocessor Unit
IEEE Communications Magazine, 35(1). Pages 80-86, January 1997.

[13] Jean, J.; Tomko, K.; Yavagal, V.; Shah, J.; Cook, R.
Dynamic Reconfiguration to Support Concurrent Applications
In IEEE Transactions on Computers, Vol. 48, No. 6. Pages 591-602.

[13] PC 99 System Design Guide, A Technical Reference for Designing PCs and
Peripherals for the Microsoft® Windows® Family of Operating Systems
Copyright 1998-1999 Intel Corporation and Microsoft Corporation
http://www.microsoft.com/hwdev/pc99.htm

[14] Herbordt, M.C.; Cravy, J.; Honghai Zhang; Lin, C.; Hong Rao
An array control unit for high performance SIMD arrays
In Proceedings of the Fifth IEEE International Workshop on Computer Architectures for
Machine Perception, 2000. Pages 293-301.

Appendix A: SIMD Coprocessor Card (SCC)

The SIMD processing model is best suited for massively data parallel applications

with relatively high compute to I/O instruction ratios. Candidate applications include

computer vision, graphics, and DNA genome string matching. The power of this

architecture can be seen when the number of processor elements (PE) is equivalent to the

size of the data set. In this situation, component-wise operations on parallel variable

elements can be done simultaneously. Even in the situation where the number of elements

in the parallel variable is greater than the number of PE’s, the speedup, compared to a

sequential algorithm, is immense.

The SIMD architecture contains a single control unit with multiple PE’s. The

PE’s are slaves to the control unit and cannot fetch or interpret instructions. The PE’s are

basically arithmetic logic units (ALU) capable of performing logic, arithmetic, and data

transfer operations within their own memory space. They all perform the same operation

in lockstep under the direct control of the control unit. Inter-PE communication is

coordinated by the control unit as well. The advantage of this type of architecture is in

the ease of adding more memory and PE’s to the system. The disadvantage is the

computing overhead of the control unit managing memory exchanges.

This appendix discusses several issues associated with the SIMD architecture and

poses potential solutions. It then presents the design for the SIMD Coprocessor Card

(SCC) based on work performed by Herbordt et al. [1].

65

A.1 SIMD Issues

SIMD PE’s can be built with operating frequencies in excess of 1 GHz [1]. The

main problem is keeping them busy, i.e., the host must determine which instructions to

issue and issue them faster than the array executes them. The inherent mismatch between

host and array execution frequencies makes it difficult to maintain high array utilization:

either the instruction issue rate is very low or PE data locality is compromised. The PE

data locality issue is further compounded by the fact that the data working sets for most

useful SIMD applications exceed the physical resources provided by the PE array. The

following issues must be understood and addressed in order to optimize the performance

of SIMD systems:

1) Instruction distribution latency. The host must be able to issue instructions to the PE

array at a sufficient rate to maintain high utilization. Otherwise, performance

advantages are lost because of array idle time. This issue also pertains to data

transaction targeting array memory.

2) Instruction issue latency. The host executes the main thread of the SIMD application.

It controls program flow based on feedback from the array creating control hazards.

3) Application working set mapping to physical PE’s or tiling. Data and instruction

locality are a key issue.

A.1.1 Instruction Distribution Latency

Assuming that the array data needs can be serviced by a standard cache/ main

memory hierarchy, the next challenge faced by SIMD systems it to maintain high array

utilization. PE’s can have operational frequencies up to 1 GHz [1] so the array host

66

instruction issue frequency must be comparable or all performance improvements are

negated.

The first approach would be to have a standard PC host issuing instruction

directly to the array using an industry standard bus. The drawback to this approach is

that the array would be idle most of the time since the bus bandwidth is significantly less

than the PE execution frequency. Table 1 lists the bandwidth for the most common PC

buses.

A significant improvement to the previous approach would be to have the host

issue macro instructions that would be expanded in hardware to array micro instructions.

This type of instruction expansion has been previously used and was shown to

significantly reduce the bus bandwidth required for instruction issue. This effectively

decouples the array and host operating frequencies. The problem with this solution is it

still relies on the host issuing one instruction at a time which could leave the array idle if

the macro instruction expansion ratio is low. In an ideal system, the host would

determine which instruction to issue before the array completes the previous operation.

This scenario is unlikely given the asymmetric, multithreaded nature of SIMD

applications in which the host must issue instructions based on feedback from the array.

Assuming a 1 GHz array and 1:10 macro instruction expansion ratio, the host would have

to issue instructions at a rate of 100 MHz. None of the standard system buses in Table 1

can support this bandwidth requirement. Even a 1:50 expansion would require 20 MHz

of system bus bandwidth which only PCI and VESA can easily accommodate. These

measurements neglect to account for OS and/or application overhead. The instruction

I/O bottleneck must be removed for the SIMD system to achieve optimal performance.

67

A.1.2 Instruction Issue

Given sufficient data availability and instruction distribution rates, the next SIMD

issue is for the host to determine which instructions to execute. In the SIMD

programming model, the host executes the main SIMD application thread so it must

execute a certain amount of serial code to control program flow and to exchange data

with the array. The issue is the array will idle while the host is evaluating branch

conditions or computing scalars, i.e., data and control hazards exist.

Control hazards are created when the host must wait for runtime feedback from

the array before issuing the next instruction. The one solution is to stall the array until

the branch condition is evaluated. However, the exact stall time can be indeterminate if

the host OS is multitasking and/or the array interconnect bus is multiplexed with other

devices. The problem could be ameliorated by adding an instruction pipelining and cache

to the PE’s, but the control hazard is not completely removed. If there is no change in

program flow, program execution is improved. However, if a branch is taken, the cache

must be flushed and the instructions reloaded leaving the array idle. Also, a negative side

effect of adding the cache and pipeline is reduced PE count per IC.

Scalar computations can lead to data hazards that manifest themselves in two

distinct manners. In the first case, the host stalls waiting for feedback from the array.

This really is not a significant problem as long as the feedback is not required for the

array to continue operation. The second case is the array stalls waiting for data from the

host. This is a significant issue as the exact amount of time required for the host to issue

the scalar is indeterminate. The host compiler can help reduce the impact of this issue by

68

scheduling the scalar calculation as early as possible in the instruction stream; however,

this is only possible if the calculation is independent of feedback from the array.

One can attempt to apply standard compiler techniques to resolve these issues, but

the success is limited by data dependencies between the host and array working sets.

Assuming these issue can be resolved or at least minimized, SIMD designs must still

contend with the issue of an application requiring more hardware resources than are

physically available.

A.1.3 Tiling

The SIMD programming model abstracts the array hardware by providing Virtual

PE’s (VPE). The assumption is there is one VPE for each data element comprising the

application data working set. In reality, this is not recognizable in hardware because

highly data parallel applications like graphics or vision would require several thousand

physical PE’s. Not to mention the fact that the number of PE’s needed to solve a problem

is application specific. The solution is to map the data set such that each physical PE

operates on several slices of a parallel variable called tiles. A major negative

consequence of this approach is most data locality within the array data stream is lost.

The extent of the performance penalty is determined by which tiling method is employed.

The following examples illustrate this point. The following examples assume the array

control unit performs macro instruction expansion.

The first method (Tiling Method #1) executes all instructions on all tiles before

proceeding to the next instruction. The process represented in for loop notation is:

FORALL macro instructions
 FORALL tiles

DO microcode expansion

69

The strength of this method is its simplicity. The host issues instructions to the

array and the array control sequencer does a Table lookup to expand the macro

instructions into sequences of array instructions. The array controller also controls tile

selection for VPE emulation. The major drawback to this method is that it destroys data

locality. When the inner FORALL loop completes, further PE cache accesses are misses.

This negates the performance enhancements provided by using cache and significantly

degrades system performance since all data accesses hit external memory.

The second tiling method (Tiling Method #2) is to execute all instructions on the

same tile before moving to the next tile. The process depicted using for loops is:

FORALL tiles
FORALL macro instructions

DO microcode expansion

This method improves system performance since data locality is preserved, but it

has two major flaws:

1) Tiling must be controlled by host. This significantly degrades system performance.

The array must stall after completing an instruction stream until the host swaps the

tiles and restarts instruction issue.

2) The most significant problem is: This method does not work! Mainly because it

ignores inter-PE dependencies and reduction hazards. The problem becomes more

visible in fine grain parallel applications.

These issues, while significant, are not insurmounTable. SIMD has been

successfully employed in numerous high performance applications. The key issue is that

they may not be performing to their fullest potential.

70

A.2 SCC Theory

In an attempt to solve the SIMD architectural issues, Herbordt et al. [1] have

proposed a SIMD design based on an Array Control Unit (ACU) inserted between the

host and the PE array (see Figure 28) that address the previously mentioned SIMD issues.

This design is hereafter referred to as the SIMD Coprocessor Card or SCC. In the SCC

design, the host is relieved of array control responsibilities other than running the main

thread of SIMD application. The design also allows code segments called Basic Blocks

(BB) to be preloaded into the array for execution.

A.2.1 ACU Concept

The purpose of the ACU is to handle macro instruction expansion, data tiling and

PE control. The ACU effectively decouples the host operating frequency from that of the

PE array by allowing the host to issue fewer instructions and by transparently swapping

tiles. The ACU functionalities are completely implemented in hardware which allows it

to operate at the same speed as the PE array. However, the host interface speed is fixed

by the interconnect bus bandwidth. Alternate techniques must be applied to speed up this

interface. A basic block diagram of the SCC is depicted in Figure 28.

71

Host CPU

(PC Platform)

Interconnect

Bus
Interface

Array Control
Unit

(ACU)

PE Array

Array Memory

Figure 28: Block Diagram

The first interesting feature of this design is that there is no operating system

running on the ACU; its functionality is completely hardwired. The significance of this

is that there is no OS overhead to affect array performance and that the ACU operates at

the same frequency as the array. Instead, the ACU operation is controlled by special

array instructions -directives- issued by the host as part of the instruction stream. The

directives are interpreted and executed within the confines of the ACU, i.e., they are not

issued to the array. The ACU design incorporates directives to configure the ACU,

control program execution and to transfer data to the array. A side effect of this design is

that ACU directives may be freely interspersed with PE macro instructions. This allows

the ACU (and thus the PE array program) to be reconfigured on the fly and program

execution to be modified without using interrupts.

A.2.2 Macroinstruction Expansion

There are several issues related to instruction issue that must be overcome to

achieve optimal array performance. The ACU employs macro instruction expansion to

72

improve host to ACU communications bandwidth by reducing the number of instructions

issued. The macro instruction to micro instruction expansion ratio is important. The

more micro instructions derived from each macro instruction, the better the system

performance. This mechanism also has the added benefit of reducing the penalty

associated with control hazards. For example:

IntPlane (2,2) A,B; // Parallel variables. Assume a 2x2
// PE array

UINT temp; // Temp storage for result

If(B.ANY()) // Check for any nonzero element in
 A = 7 + B; // parallel variable B
Else
 A = B – 7;

This simple code segment translates into the following compiler tuple segment:

(ANY,temp,B) // Host tells array to check for
// nonzero elements in B

(CMP,temp,0) // Host waits for feedback value from
// array

(JZ, tuple6) // Host must decide which instruction
// to issue next.

(+,A,7,B) // The array is stalled for as long as
(J,tuple7) // it takes to make the decision.
Tuple6: (-,A,B,7)
Tuple7:

Assume that array B has nonzero elements so the A = 7 + B instruction is

executed. The macro instruction sequence issued by the host would be:

LD R0,B # Instructs PE’s to load elements of B
GOR R0 # Global OR reduction
STO temp,R0

NOP # The array stalls at this point as the
NOP # host determines which instruction to

issue next
LD R0,B
LD R1,#7
ADD R2,R0,R1 # Perform addition
STO A,R2 # Store result

Finally, the micro instructions actually issued by the ACU to the PE array:

73

R0_0 <- B # Get the lower byte of B
R0_1 <- B # Get the upper byte of B
R1 <- R0_0 OR
R0_1

R1 <- CMP (R1, 0) # Check for nonzero data. Reduction
operation.

temp_0 <- R1_0 # Store lower byte of result
temp_1 <- R1_1 # Store upper byte of result

NOP # The array stalls at this point as the
NOP # host determines which instruction to

issue next.

R0_0 <- B # Get the lower byte of B
R0_1 <- B # Get the upper byte of B
R1_0 <- 7 # Get the lower byte of immediate data
R1_1 <- 0 # Get the upper byte of immediate data
ACC <- R0_0 +
R1_0

R2_0 <- ACC
ACC <- R0_1 +
R1_1

R2_1 <- ACC
A_0 <- R2_0 # Store lower byte of result
A_1 <- R2_1 # Store upper byte of result

If the host had to issue micro instructions, it would have to execute 16 instruction

cycles not including the delay to evaluate the branch condition. In contrast, if the host

issues macro instructions, it would only execute seven instruction cycles not including

branch. Assuming a fixed instruction cycle time, it is intuitive that the host macro

instruction performance is twice that of the micro instruction method. This was contrived

example, but assuming a bus speed of 66 MHz, 15.2 nanoseconds were saved by not

transferring the 11 extra instructions. This example did not account for OS overhead on

the host. While difficult to quantify, host OS overhead can have a significant negative

effect on the array.

A.2.3 ACU Control Directives

In order to maintain high-speed operation, all of the ACU functionalities are

implemented in hardware. The implication of this is there is no operating system to

74

control the array operation so the ACU must assume these responsibilities. Five special

instructions (or directives) have been defined to control the operation of the ACU. The

directives can be issued individually by the host or interspersed with the code stream.

Table 4 describes the supported ACU directives.

Directive Operand 1 Operand 2 Description
CONFIGURE Number of

tiles
Tile size in
bytes

Instructs the ACU to configure the
data access registers.

BASICBLOCK Start
address

N/A Instructs the ACU to load Operand1
into the PC and start execution at that
address.

IMMEDIATE Data value N/A Instructs the ACU to fetch an
immediate data value from the
INFIFO.

FEEDBACK N/A N/A The array is instructed to perform a
reduction operation. The result is
copied into the OUTFIFO.

SINGLESTEP Array
instruction

N/A This directive is intended to system
debugging. It instructs the MFU to
fetch a single instruction from the
INFIFO and execute it.

Table 4: ACU Directives

A.2.4 ACU Tiling

The ACU transparently controls tile swapping based on Tiling Method #3 which

presented in the next section. The concept is not so different from the code relocation

register concept employed by x86 based systems. The ACU uses three registers to keep

track of tiles. The first two registers are the Tile Count Register (TCR) and the Tile Size

Register (TSR). The TCR defines how many tiles are contained in a parallel variable

while the TSR defines the number of elements in each tile. The third register is the Start

Address Register (TSAR). It is initialized at runtime to the start address of the parallel

variable to be operated on. At the completion of each instruction sequence, the TSR is

75

added to the TSAR to compute the start address of the next tile. This operation is

repeated TCR times until the instruction sequence has been applied to all tiles.

A.2.5 Basic Blocks

The SCC incorporates another system level performance enhancing feature. It

applies the compiler concept of Basic Blocks [1] to further reduce the host/array

bandwidth requirements. In this context, the term Basic Block refers to a sequence of PE

instructions that can be executed within a tile before execution on a new tile must be

initiated. The tile swapping is generally the result of an inter-PE communication or

feedback operations.

The concept is to preload sequences of macro instructions (Basic Blocks) into

array memory before they are required. This instruction caching approach allows BB’s to

be loaded while the interconnect bus would be otherwise idle and assures the array has a

steady source of instructions accessible from high-speed memory. The host only has to

issue Execute ACU directives at runtime to instruct the ACU where to begin execution.

The preloading BB approach has several benefits:

1) The host can schedule the loading of BB’s so the array will not stall waiting for

instructions.

2) The host only has to run a single instruction cycle (send the Execute ACU directive)

to execute a BB. This significantly reduces the runtime bus bandwidth requirements.

3) An offshoot of benefit 2 is that the BB’s are easily re-executed as long as the host has

not swapped the BB out of array memory.

76

4) Finally, the control hazard penalty is reduced. All of the BB’s associated with a

branch can be preloaded. The host only has to issue the appropriate execute ACU

directive at run time after the branch condition is evaluated.

The BB concept gives rise to a third tiling method that addresses the issues

present in Section A.1.3. In this tiling method (Tiling Method #3), all instructions are

executed on a tile before it is swapped. This is similar to Tiling Method #2 in that data

locality is preserved. The difference is the instruction sequence is broken into BB’s by

the compiler, i.e., instructions are executed on a tile until a communication or feedback

operation is required. This is depicted as follows:

FORALL basic blocks
FORALL tiles

FORALL macro instructions
DO microcode expansion

This addresses the issue of communication/ reduction hazards. It also has the

same performance advantage as Tiling Method #1 where all instructions are executed on

a tile before it is swapped. Tiling Method #3 has receives an added performance boost by

not involving the host in tile swapping; this is done transparently by the ACU.

A.2.6 Software Model

The interesting point about the BB software model is that it works for both SIMD

and MIMD systems. It has been previously shown to work for SIMD, but the fact that it

works for MIMD is less obvious. In an MIMD implementation, The SCC architecture is

modified to provide one PE per ACU; effectively creating a network of MIMD

processors. The rest changes are limited to the compiler. It is the compiler’s

responsibility to schedule loading and execution of BB’s based on data dependencies.

77

BB’s are by definition independent of each other so they can be preloaded into different

ACU/PE pairs and executed on demand as long as there are no data dependencies.

A.3 SCC Implementation

The coprocessor card as presented by Herbordt et al. [1] consists of an FPGA

baseboard connect to a host via the PCI bus. The host platform is a standard PC. In

order for the SCC design to be viable, it must have a host system to provide I/O

capabilities and a software system to allow it to interface to the host. A system level

block diagram of the SCC system design is shown in Figure 29.

 Standard PC Platform
With Window NT

PCI Expansion Bus

SC
C

 C
ar

d

PC
I B

us

M
on

ito
r

C
ar

d

Figure 29: SCC System Level Block Diagram

A.3.1 Host Platform

Industry trends dictate that the SCC host be an Intel x86 based PC with a PCI

expansion bus running the Microsoft NT operating system. This host platform was

selected so that the SCC can be easily integrated into standard PCs. However, the SCC

can be utilized in any host that uses the PCI bus assuming the proper software support is

78

available. The PC host also provides the functionalities required for SCC control and I/O

operations eliminating the need for costly custom hardware.

PCI was selected for its high bandwidth, ubiquitous presence in desktop PCs and

most importantly, its acceptance as an open standard. PCI allows for system expansion

since it can support eight cards without a bridge. This means multiple SCC cards can be

installed in a single system to solve larger problems. The PCI burst mode data transfers

can be used to move large data blocks with minimal system overhead. However, this is

dependent on the North Bridge PCI implementation and not necessarily directly under

software control.

The SCC memory, control registers and data queues appear as memory mapped

registers on the PCI bus. Details of these registers are discussed in following sections.

What is important to note is that the SCC memory and registers can be accessed as easily

as any other PCI memory device. Memory mapped I/O will also reduce the system

overhead required for user applications to access the SCC.

WinNT 4.0 was selected for its ubiquitous presence in the PC/ workstation arena.

This high performance, multiprocessor enabled OS provides a sTable, extensible

environment for hosting the SCC. Another positive effect of using a WINTEL host, is

the plethora of development tools available. Compilers, debuggers and CASE tools are

readily available; eliminating the need to develop tools suites for the SCC target.

The SCC design is implemented as a coprocessor card. The main reason for this

is to avoid reinventing the I/O support systems provided by PC’s. The PC’s also provide

an operating system environment for loading, executing and debugging user applications.

SIMD systems are tuned for handling computation intensive applications. Their

79

performance gains are realized while executing computationally intense algorithms; not

performing I/O operations. The PC CPU will also be used to calculate scalars and

evaluate branch conditions. It executes the main thread of the SIMD application. This

frees the SIMD array from having to provide a dedicated processor for evaluating scalars.

A high-speed datapath is required between the host and the ACU. This is critical

to achieving optimal array performance. It is equally important to observe industry

standards. Therefore, the logic choice for the host/ array bus is PCI. PCI provides the

highest bandwidth available on commercially available systems.

The coprocessor card concept itself has been proven successful by several

research initiatives. For example:

• Houzet and Fatni [8] implemented the GFLOPS system for image processing.

• Cloutier et al. [9] implemented VIP: Virtual Image Processor.

• Harbaum et al. [11] implemented a reconfigurable computing card call FHiPPs based

on the Intel i960 and FPGAs.

The driving factors cited in all cases were flexibility and low cost.

The coprocessor design lends itself to the possibility of easily expanding the SCC

processing capabilities. It is possible to install multiple SCC cards in the same host. The

number of SCC cards installed is limited by the number of PCI slots available in the host.

Only the user application would have to be modified to take advantage of the additional

SCC boards. It would also be possible to network SCC hosts together using standard

LAN or WAN networking. This would require additional control software on the hosts,

but this is not a significant issue as Harbaum et al. [11] has implemented a similar

concept called the Hardware Manager in the FHiPPs project. It would also be possible to

80

port the Parallel Virtual Machine (PVM) code from UNIX to WinNT to support

networked SCC host.

A.3.2 Coprocessor Card Hardware

The hardware block diagram for the SCC card is shown in Figure 30. The SCC

design is based on the Nallatech Ballynuey FPGA development board. The Nallatech

board contains three Xilinx Virtex 1000 FPGAs which are programmed to implement the

SCC system blocks depicted in Figure 31. The FPGA based implementation provides a

high degree of flexibility for exploring different architectural concepts using the same

hardware.

PC
I B

us
 C

on
ne

ct
or

SRAM Bank 0
(1 MB)

SRAM Bank 1
(1 MB)

DIME Expansion Module
Sockets

Xilinx
Virtex
FPGA

#1

Xilinx
Virtex
FPGA

#2

In
te

rn
al

 S
ys

te
m

 B
us

Figure 30: SCC Card Block Diagram

Ultimately, the FPGAs will be replaced with ASICs. This would allow the PE

operating frequency to be increased along with the number of PE’s per IC. This change

would have no impact on the host or support software, as they are effectively isolated

from the SCC hardware by the PCI bus.

81

The logic design for the SCC board FPGAs is shown in Figure 31. It consists of

three main components: the PCI interface, the ACU and the PE array.

PC

I I
nt

er
fa

ce
/ H

os
t B

us
 In

te
rf

ac
e

FI
FO

 C
on

tr
ol

le
r

M
em

or
y

C
on

tr
ol

le
r

Output FIFO

Input FIFO

Macro
Instruction

SRAM

SRAM
Arbiter

DRAM
Arbiter

Macro
Instruction
Fetch Unit

Macro
Instruction

FIFO

Macro
Instruction
Expander

PE Instruction
FIFO

PE Array Execution
Controller

Pr
oc

es
si

ng
 E

le
m

en
t A

rr
ay

PE Data
DRAM

Figure 31: SCC Block Diagram

The first logic block is the PCI bus interface. The main purpose of this block is to

provide the host access to the SCC high-speed macro instruction memory, data memory

(DRAM) and the ACU I/O queues. The PCI interface contains a memory controller that

interacts with the macro instruction and DRAM memory access arbiters to allow the host

82

to access SCC memory. The arbiters effectively dual port the memories. This

mechanism allows the host access to the SCC memory while the array is active.

The second block is the Array Control Unit (ACU). Its sole purpose is to keep the

PE array running at as high a speed as possible which equates to issuing PE instructions

at a high frequency. The ACU attempts to achieve this goal by implementing the

concepts presented in Section A.2.1.

The most important functionality of the ACU is to issue instructions to the array.

The Macro Instruction Fetch Unit (MFU) fetches macro instructions from the Macro

Instruction SRAM based on its Program Counter (PC). The MFU analyzes the

instruction and takes one of the following actions:

1) If the macro instruction is invalid, it is discarded.

2) If it is a simple macro instruction, it is inserted into the Macro Instruction FIFO.

3) If the macro instruction requires an operand, the MFU first inserts the macro

instruction into the Macro Instruction FIFO then copies the operand from the INFIFO

to the Macro Instruction FIFO. This way the instruction and operand travel through

the system together.

4) Finally, if the macro instruction is determined to be an ACU directive, the MFU

executes it. This process is described in the following sections.

The ACU implements macro instruction expansion to reduce instruction latency

and issue frequency. The expansion takes place in the Macro Instruction Expansion Unit

(MEU). Typically the ACU issues decoded instruction directly to the PE array.

However, since the SCC does not have an operating system, it recognizes five

instructions as internal directives. These directives are inserted into the PE array

83

instruction stream by the host to control the initialization and operation of the ACU. In

the absence of an operating system, the ACU must also control tile swapping. The ACU

implements Tiling Method #3, i.e., all of the instructions are executed on a tile until a

feedback or communication instruction is encountered. The CONFIGURE directive is

used to configure the number and size of the tiles.

The final block is the PE array itself. The actual implementation of the PE array

is unimportant in the context of this research, as it is implementation specific. It is more

important to note that the ACU interface is generic enough to support a variety of array

configurations, as long as the array design conforms to the PE instruction specification

and is able to interface to the PE Data DRAM arbiter to load/store data. In the current

SCC design, the PE array will be implemented in an FPGA. This method allows various

PE array designs to be explored using proven host, PCI interface and ACU hardfware.

