
BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

SCALABLE MOLECULAR DYNAMICS SIMULATION

USING FPGAS AND MULTICORE PROCESSORS

by

MD. ASHFAQUZZAMAN KHAN

B. Eng., Tohoku University, 2004
M. Eng., Tohoku University, 2006

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2013

Approved by

First Reader

Martin C. Herbordt, PhD
Associate Professor of Electrical and Computer Engineering

Second Reader

Ayse K. Coskun, PhD
Assistant Professor of Electrical and Computer Engineering

Third Reader

Ajay Joshi, PhD
Assistant Professor of Electrical and Computer Engineering

Fourth Reader

Gerald Paul, PhD
Research Scientist of Physics

Acknowledgments

First of all, I would like to thank my advisor, Professor Martin Herbordt, for his

guidance throughout the entire course of my PhD. He not only taught me how to

look at the big picture, but also provided me with opportunities to take part in

preparation of research proposals and classroom teaching. His patience and

enthusiasm, together with his intellectual, moral, and financial support, played a

crucial role in the successful completion of my studies.

I would also like to thank the members of my PhD defense committee, Professor

Ayse Coskun, Professor Ajay Joshi, and Dr. Gerald Paul, for taking the time to

carefully review my dissertation. Their encouragement and insightful comments

greatly improved the quality of this dissertation. My thanks to Professor Alan

Pisano for kindly presiding over my final defense session, and also for his feedback.

I want to thank the staff of the ECE department for being so friendly and

helpful all the time. I also thank Professor Janusz Konrad for providing the LaTex

template for the dissertation through Boston University website. My thanks to all

my friends and colleagues in the department for making my days in Boston a

pleasant memory. Special thanks to Matt (Shihchin) Chiu for the numerous

technical and casual discussions we had, as well as for his help and suggestions.

My heartfelt thanks to my lovely wife Satia Ahmed, who did so well at one of

the toughest tasks in the world, being married to an international PhD student. She

and my little daughter Sora provided me with the perfect amount of inspiration,

emotional support, and much-needed break. Last but not least, I thank my parents

and all other family members for their constant support and love, without which the

Almighty would most certainly not bless me with this accomplishment.

I dedicate this dissertation to my mother. It is her inspiration during the early

days of my academic life that ultimately guided me to this point.

iii

SCALABLE MOLECULAR DYNAMICS SIMULATION

USING FPGAS AND MULTICORE PROCESSORS

(Order No.)

MD. ASHFAQUZZAMAN KHAN

Boston University, College of Engineering, 2013

Major Professor: Martin C. Herbordt, PhD, Associate Professor of
Electrical and Computer Engineering

ABSTRACT

While Molecular Dynamics Simulation (MD) uses a large fraction of the world’s High

Performance Compute cycles, the modeling of many physical phenomena remains far

out of reach. Improving the cost-effectiveness of MD has therefore received much

attention, especially in using accelerators or modifying the computation itself. While

both approaches have demonstrated great potential, scalability has emerged as a

critical common challenge. The goal of this research is to study this issue and develop

MD solutions that not only achieve substantial acceleration but also remain scalable.

In the first part of this research, we focus on Discrete Molecular Dynamics

Simulation (DMD), which achieves high performance by simplifying the underlying

computation by converting it into a Discrete Event Simulation (DES). In addition

to the inherent serial nature of DES, causality issues make DMD a notorious target

for parallelization. We propose a parallel version of DMD that, unlike any previous

work, uses task decomposition and efficient synchronization and achieves more than

8.5x speed-up for 3D physical systems on a 12 core processor, with potential for

further strong scaling.

iv

The second part of this research focuses on FPGA acceleration of

timestep-driven MD. We first enhance an existing FPGA kernel to take advantage

of the Block RAM architecture of FPGAs. This results in a 50% improvement in

speed-up, without sacrificing simulation quality. We then parallelize the design

targeting multiple on-board FPGA cores. We combine this with software pipelining

and careful load distribution at the application level to achieve a 3.37x speedup over

its CPU counterpart.

In the third part we create a framework that integrates the FPGA accelerator

into a prominent MD package called NAMD. This framework allows users to switch

between the actual accelerator and a simulated version, and provides a means to study

different characteristics, such as the communication pattern, of such an accelerated

system. Using this framework, we identify the drawbacks of the current FPGA kernel

and provide guidelines for future designs. In addition, the integrated design achieves

2.22x speed-up over a quad-core CPU, making it the first ever FPGA-accelerated

full-parallel MD package to achieve a positive end-to-end speed-up.

v

Contents

1 Introduction 1

1.1 The Problem . 1

1.2 Summary of Previous Work . 5

1.2.1 Hardware Acceleration of MD 5

1.2.2 Parallelization of DMD . 8

1.3 Summary of Contributions . 9

1.3.1 Efficient Parallelization of DMD 9

1.3.2 Integration Framework for FPGA-accelerated MD 10

1.4 Organization of the Dissertation . 12

2 Molecular Dynamics Simulation (MD) 14

2.1 Description of MD . 14

2.1.1 Periodic Boundary Condition (PBC) 16

2.1.2 Van der Waals (VdW) or Lennard-Jones (LJ) Force 17

2.1.3 Electrostatic or Coulomb Force 18

2.1.4 Other Forces . 22

2.1.5 Motion Update . 23

2.1.6 Cell-list vs. Neighbor-list . 24

2.1.7 Direct Computation vs. Table Interpolation 26

2.1.8 Parallelization of MD . 27

2.2 Hardware Acceleration of MD . 30

2.2.1 ASIC Acceleration . 30

vi

2.2.2 GPU Acceleration . 33

2.2.3 FPGA Acceleration . 37

2.3 Discrete Molecular Dynamics Simulation (DMD) 44

2.3.1 Overview of Discrete Event Simulation (DES) and DMD . . . 44

2.3.2 Event Queuing Policy: Rapaport vs. Lubachevsky 47

2.3.3 Software Priority Queues . 48

2.3.4 Paul’s Event Queue (PaulQ) 49

2.3.5 Prior Work on Parallelization of DMD 51

2.4 Chapter Summary . 53

3 Parallel DMD (PDMD) 54

3.1 Issues in Parallelizing DMD . 54

3.1.1 PDMD Hazards . 54

3.1.2 Possible Approaches to PDMD 57

3.2 Establishing a DMD Serial Baseline 58

3.2.1 Experimental Methods . 58

3.2.2 Simulation Models and Conventions 60

3.2.3 Selecting PaulQ Parameters 62

3.2.4 Selecting Cell Sizes . 63

3.2.5 Selecting Event Queuing Policy 64

3.2.6 Profiling the Serial Baseline Code 67

3.3 Parallelizing DMD through Event-based Decomposition 68

3.3.1 A Pipelined Event Processor 68

3.3.2 Conceptual Description of Software Implementation 70

3.3.3 Implementing PDMD through Event-based Decomposition . . 71

3.3.4 Efficient Restart . 79

3.4 Results . 80

vii

3.4.1 Scalability . 80

3.4.2 Available Concurrency . 84

3.4.3 Simple Model of Limitations on Scalability 87

3.4.4 Architectural Limitations on Scalability 89

3.5 Chapter Summary . 93

4 FPGA Kernel for Acceleration of MD 95

4.1 FPGA Architecture . 95

4.2 Target Platform and Simulation Benchmark 97

4.3 Description of the Kernel . 98

4.3.1 System-level Control Flow . 98

4.3.2 Board-level Integration . 100

4.3.3 Cell-list and Filtering . 101

4.3.4 Half-moon Mapping Scheme 102

4.3.5 Particle Exclusion . 103

4.4 Improving Performance using Block RAM (BRAM) Architecture . . . 105

4.4.1 Exploring Design Space of Table Interpolation 105

4.4.2 Studying Simulation Quality 107

4.5 Results . 110

4.6 Chapter Summary . 112

5 Intra-node Parallelization of FPGA-accelerated MD 113

5.1 Challenges and Opportunities . 113

5.1.1 Data Conversion and Communication 114

5.1.2 Partitioning . 116

5.2 Data Communication with Software Pipelining 117

5.2.1 Data Conversion . 117

5.2.2 Software Pipelining . 119

viii

5.3 Intra-node Partitioning . 121

5.3.1 Method 1 . 121

5.3.2 Method 2 . 124

5.4 Results . 125

5.5 Chapter Summary . 126

6 Full-parallel FPGA-accelerated MD 127

6.1 Description of the Target Software (NAMD) 127

6.2 Challenges in Integrating FPGA Kernel into NAMD 132

6.2.1 Scale and Complexity of the Software 132

6.2.2 Gathering Particle Data . 135

6.2.3 Overlapping Communication and Computation 136

6.3 Integration Methods . 137

6.3.1 Creating FPGA Compute Object 137

6.3.2 Managing Data Communication 139

6.3.3 Computing Energy and Handling Exclusion 141

6.4 Simulated FPGA Kernel and Other Features 142

6.5 Results . 146

6.5.1 Speed-up . 146

6.5.2 Re-evaluating Kernel Design 149

6.5.3 Suggestions for Future Designs 150

6.6 Chapter Summary . 152

7 Communication Requirements for FPGA-centric MD 153

7.1 Justification of FPGA-centric MD . 153

7.1.1 Communication Bottleneck in MD 153

7.1.2 FPGAs for Data Communication 155

7.2 Target Systems . 156

ix

7.2.1 FPGA-based Systems . 156

7.2.2 MD on FPGA-based Systems 157

7.3 MD Communication and Support Requirements 159

7.3.1 MD Communication Description 159

7.3.2 MD Communication Characterization 163

7.4 FPGA Cluster Communication Requirements 165

7.5 Chapter Summary . 170

8 Conclusions 171

8.1 Summary . 171

8.2 Observations . 173

8.3 Future Directions . 175

8.3.1 Hardware Implementation of Task-decomposed DMD 175

8.3.2 FPGAs for Data Communication of MD 175

8.3.3 FPGA-centric MD Engine . 175

8.3.4 Broader Application . 176

References 177

Curriculum Vitae 196

x

List of Tables

3.1 PaulQ parameters computed for various simulation sizes and queuing

policies . 63

3.2 Breakdown of event types for runs of 10M payload events using the

serial baseline code . 67

4.1 Gidel PROCStarIII memory performance [59] 98

4.2 Resource utilization and performance of various pipeline configurations

on the Stratix III EP3SE260 (bins/segment = 256) 112

4.3 Resource utilization and performance of various pipeline configurations

on the Stratix IV EP4SE530 (bins/segment = 256) 112

5.1 Speed-up using FPGAs over a single CPU core 126

6.1 Scale and complexity of NAMD in terms of file count and line count

of the source code (“src” folder of NAMD2.8 only) 132

6.2 Speed-up using FPGAs over a quad-core CPU 147

xi

List of Figures

1·1 Protein folding - the process by which a linear chain of amino acids

folds into a three dimensional functional protein [174] 3

2·1 MD timestep . 14

2·2 MD forces [3, 166] . 15

2·3 2D representation of particles crossing simulation boundary under PBC 17

2·4 Lennard-Jones (LJ) potential [37] . 18

2·5 Splitting of electrostatic or Coulomb force into range-limited and long-

range portions . 20

2·6 PME computation steps [63] . 21

2·7 2D illustration of cell-list for particle ’P’ in cell ’C’ 24

2·8 Neighbor-list sphere . 25

2·9 Interpolation using table lookup . 27

2·10 Block diagram of MDGRAPE-3 ASIC [166] 31

2·11 Block diagram of an Anton processing node [153] 32

2·12 Streaming Multiprocessor (SM) of NVIDIA Fermi architecture. Fermi

has 16 such SMs, a shared L2 cache and up to 6GB of DRAM [123] . 35

2·13 Gidel PROCStarIII system overview [59] 41

2·14 Schematic of the FPGA-kernel for range-limited non-bonded force

computation, developed at CAAD Lab[33] 42

xii

2·15 A collection of DMD potential models used in different studies (from

[27, 136, 169]). (a) Simple hard sphere characterized by infinite

repulsion at the sphere diameter. (b) Hard spheres with an attractive

potential square well, zero interaction after a given cut-off radius. (c)

A square well potential with multiple levels. (d) Single-infinite square

well used for covalent bonds, angular constraints, and base-stacking

interactions. (e) Dihedral constraint potential. (f) Hydrogen-bonding

auxiliary distance potential function. g) Discretized van der Waals

and solvation non-bonded interactions potential. h)

Lysine-arginine-phosphate interaction potential in DNA-histone

nucleosome complex. (i) Two-state bond used to create auxiliary

bonds between backbone beads if they are also linked by a covalent

bond. (j) Repulsive ramp with two steps for auxiliary interactions in

hydrogen bond and with multiple steps to model liquids with

negative thermal expansion coefficient. 45

2·16 DES/DMD block diagram. 46

2·17 DMD data structures including Paul’s two-level event queue (PaulQ) 50

3·1 Events AB and CD cause BC and cancel BE. Event FG causes TU

almost instantly and at long distance 55

3·2 Performance of Rap Vs. Lub, with and without PaulQ (PQ), for

square-well model of density 0.8 . 64

3·3 Performance of Rap Vs. Lub, with and without PaulQ (PQ), for simple

hard sphere model of density 0.8 . 65

3·4 DMD with a dedicated pipelined event processor. The event queue is

several orders of magnitude larger than the processing stages even for

modest simulations . 69

xiii

3·5 Parallel DMD implemented on software with an event FIFO 71

3·6 PDMD in the standard DES framework 72

3·7 Performance scaling of the various Codes (simulation size = 128K and

density = 0.8). For Code 2, performance with different locks is shown 81

3·8 Performance scaling of Code 3 for different simulation sizes (density =

0.8) . 82

3·9 Performance scaling of Code 3 for different densities on the 8-core Intel

machine (simulation size = 128K) . 83

3·10 Performance scaling of Code 3 for different densities on the 12-core

AMD machine (simulation size = 128K) 84

3·11 Events that are processed but not committed represent wasted effort

only. Restarted events represent, in addition to wasted effort, the need

for the payload effort to be serialized. Graphs are for Code 3 and 128K

particles . 86

3·12 Roofline model for task-decomposed PDMD 88

3·13 Event processing time as a function of number of threads (Code 3, size

128K) . 90

3·14 Rate of memory bus utilization and total number of L2 cache misses

as a function of number of threads (Code 3, size 128K) 91

3·15 Overlap of scaling result for an analytical model with PDMD scaling

result . 92

4·1 Block diagram of Adaptive Logic Module (ALM) of an Altera FPGA [4] 96

4·2 Control flow of the FPGA-accelerated MD [37] 99

4·3 System architecture of the FPGA-accelerated MD design [37] 101

xiv

4·4 2D illustration of two partitioning schemes that use Newton’s 3rd Law.

a) 1-4 plus home are examined with a full sphere b) Half-moon scheme

where 1-5 plus home are examined, but with a hemisphere [33] 103

4·5 Graph shows van der Waals interaction with cut-off check with

saturation force . 104

4·6 Relative RMS Force Error versus bin density for interpolation orders

0, 1, and 2 . 109

4·7 Energy for 20,000 timesteps for various designs. Except for 0-order,

plots are indistinguishable from the reference code 110

4·8 Energy for 100,000 timesteps for selected designs 111

5·1 Profiling of kernel-related runtime of a timestep in the

FPGA-accelerated MD . 115

5·2 Mapping particle data from cell-list data structure back to patch data

structure using two IDs . 118

5·3 Software pipelining to overlap communication and computation during

the kick-off of multiple FPGA kernels 120

5·4 Example of partitioning of cells using Method 1 in one dimension . . 123

6·1 Partitioning in NAMD [84] . 128

6·2 Startup sequence of NAMD . 129

6·3 Sequencer algorithm on a homepatch 130

6·4 Source code of “ComputeNonbondedStd.C” in NAMD2.8 133

6·5 A portion of source code of “ComputeNonbondedBase.h” in NAMD2.8 134

6·6 Two partitioning schemes for computing long-range portion of

electrostatic force using the PME method 143

6·7 Amount of SendGrid data (in ApoA1) per processor per PME-cycle

(independent of partitioning scheme) 144

xv

6·8 Amount of SendTrans data (in ApoA1) per processor per PME-cycle

for the two partitioning schemes . 145

6·9 Graphical illustration of CPU-only runtime for ApoA1 benchmark in

NAMD2.8 . 146

6·10 Graphical illustration FPGA-accelerated runtime for ApoA1

benchmark in NAMD2.8 . 147

6·11 Current overlap scenario . 148

6·12 A good overlap scenario . 150

7·1 Projected and measured data communication for range-limited forces 160

7·2 Projected and measured data communication for grid interpolation . 161

7·3 Projected and measured data communication for FFT/transpose . . . 162

7·4 Time per timestep for various simulation sizes and core counts

assuming perfect scaling. This is computation only and gives the time

budget for communication . 166

7·5 Bandwidth requirement for various systems for a 100K particle problem

size. Systems are ideal with all-to-all interconnect and no in-channel

particle filtering . 167

7·6 Bandwidth per channel requirement for various systems for a 100K

problem size. Some likely system information is integrated such as

number of hops per packet and in-channel particle filtering 168

7·7 Bandwidth per channel requirement for various systems for a problem

size of 1 million. Some likely system information is integrated such as

number of hops per packet and in-channel particle filtering 169

xvi

List of Abbreviations

1D One Dimensional
2D Two Dimensional
3D Three Dimensional
ALM Adaptive Logic Module
AMBER Assisted Model Building with Energy Refinement
AMD Advanced Micro Devices
ASIC Application Specific Integrated Circuit
BRAM Block Random Access Memory
CAAD Computer Architecture and Automated Design
CHARMM Chemistry at HARvard Molecular Mechanics
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
D-Cache Data Cache
DC Direct Computation
DDR Double Data Rate
DeDup Deduplication
DES Discrete Event Simulation
DMA Direct Memory Access
DMD Discrete Molecular Dynamics (Simulation)
DNA DeoxyriboNucleic Acid
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
EDA Electronic Design Automation
EPCC Edinburgh Parallel Computing Centre
FFT Fast Fourier Transformation
FHPCA FPGA High Performance Computing Alliance
FIFO First In First Out
FPGA Field-Programmable Gate Array
fs Femtosecond (10−15 second)
GB Giga (230 or 109) Bytes
Gbit Giga (230 or 109) Bit
Gbps Giga (230 or 109) Bit Per Second

xvii

GC Geometry Core
GFLOPS Giga (230 or 109) FLoating-point Operations

Per Second
GHz Giga (230 or 109) Hertz (cycles per second)
GPU Graphics Processing Unit
GRAPE GRAvity PipE
GROMACS GROningen MAchine for Chemical Simulation
HOOMD Highly Optimized Object-oriented Many-particle

Dynamics
HPC High-Performance Computing
HTIS High-Throughput Interaction System
I-Cache Instruction Cache
IBM International Business Machines
IEEE Institute of Electrical and Electronics Engineers
I/O Input Output
IP Intellectual Property
ISE (Xilinx) Integrated Synthesis Environment
K Kilo (210 or 103)
KB Kilo (210 or 103) Bytes
L1 Level One
L2 Level Two
L3 Level Three
LAMMPS Large-scale Atomic/Molecular Massively Parallel

Simulation
LJ Lennard-Jones
LSI Large Scale Integration
LUP Look-Up
LUT Look-Up Table
MB Mega (220 or 106) Bytes
MD Molecular Dynamics (Simulation)
MDGRAPE Molecular Dynamics GRAvity PipE
MHz Mega (220 or 106) Hertz (cycles per second)
MODEL MOlecular Dynamics processing ELement
ms Millisecond (10−3 second)
NAMD NAnoscale Molecular Dynamics
NCSA National Center for Supercomputing Applications
nm Nanometer (10−9 meter)
ns Nanosecond (10−9 second)
OpenGL Open Graphics Library

xviii

PARSEC The Princeton Application Repository for
Shared-Memory Computers

PaulQ Paul’s Event Queue
PBC Periodic Boundary Condition
PC Personal Computer
PCI Peripheral Component Interconnect
PCIe Peripheral Component Interconnect express
PDMD Parallel Discrete Molecular Dynamics (Simulation)
petaflops Peta (250 or 1015) FLoating-point Operations

Per Second
PME Particle Mesh Ewald
PPME Particle Particle Mesh Ewald
PPPM Particle-Particle Particle-Mesh
PQ Paul’s Event Queue
RAM Random Access Memory
rFFT Reverse Fast Fourier Transformation
RIKEN RIkagaku KENkyujo (Institute of Physical and

Chemical Research, Japan)
RMS Root-Mean-Square
SDRAM Synchronous Dynamic Random Access Memory
SIMD Single Instruction Multiple Data
SM Streaming Multiprocessor
SODIMM Small Outline Dual Inline Memory Module
SPME Smooth Particle Mesh Ewald
SRAM Static Random Access Memory
STMV Satellite Tobacco Mosaic Virus
TM Transmogrifier
UIUC University of Illinois at Urbana-Champaign
USC University of Southern California
VdW Van der Waals

xix

1

Chapter 1

Introduction

1.1 The Problem

Decades of sustained growth of the computer industry have fundamentally

revolutionized our way of approaching scientific problems. Computer simulations

have evolved as the third pillar of science, bridging the gap between the traditional

two, theory and experiment [135]. By combining the right computational model of a

physical system with appropriate software and hardware, it is now possible to study

the behavior of that system without actually performing physical experiments.

Molecular dynamics simulation (MD) is one such tool that models an actual system

at the atomic level and uses classical mechanics to study its behavior [3, 139]. MD

acts as a virtual experiment and provides a projection of the laboratory experiment

with greater details. It is one of the most widely used tools in computational science

and engineering. In biomedical science it has so far provided many important

insights in understanding the functionality of biological systems

[2, 25, 45, 54, 83, 85, 87, 116].

A recent example of such findings can be found in a study by Severin, et al.

[150] where the authors studied DNA methylation, a process where the hydrogen

atom at the 5-position of a cytosine base is replaced by a methyl group (CH3).

Methylation plays an important role in gene expression, which in turn dictates how

a living organism adapts to its habitat and life experience, e.g., dietary habits. The

pattern of methylation controls protein binding to target sites on DNA, often silencing

2

genes, which may pathologically lead to cancer. Until recently, scientists were aware

of only two indirect methods how methylation dictates gene expression. This work

found, using MD, that there might be a third way how methylation can regulate

gene expression more directly, through changing mechanical properties of DNA. Such

a finding can be crucial in understanding methylation-based epigenetics, including

understanding how our body adapts to our life style.

MD is an iterative process where simulation advances by timesteps. Each

timestep has two phases; force computation and motion update. Forces working on

each particle in the system are computed first, using classical mechanics, and then

the state of each particle is updated. One timestep typically corresponds to one or a

few femtoseconds (fs) of real time; MD runs thus require millions of timesteps to

simulate just a few nanoseconds (ns) of real time.

Among all computations in MD, evaluation of forces consumes the majority of

runtime. Although the exact computation depends on the physical system, the force

model and other simulation parameters, it generally involves computing the forces

due to various bonds (e.g., hydrogen bonds) and the non-bonded forces, namely the

van der Waals (VdW) and the electrostatic (or Coulomb force):

Ftotal = Fbond + Fangle + Fdihedral + Fhydrogen + FvanderWaals + Felectrostatic (1.1)

Since bonds only affect a few neighboring particles, evaluation of bonded forces

has computational complexity of O(N) where N is the total number of particles in

the system. The motion update phase of a timestep is also relatively straightforward

and only takes O(N) runtime. Computational complexity of the non-bonded forces,

on the other hand, is initially O(N2), because they require evaluating interactions

between all possible pairs of particles. Although several techniques exist to reduce

this complexity significantly, overall, MD remains compute intensive.

3

Figure 1·1: Protein folding - the process by which a linear chain of amino
acids folds into a three dimensional functional protein [174]

Fortunately MD lends itself well to parallelism through spatial decomposition of

the physical system. Widely used MD packages can take full advantage of this and as

a consequence, MD scales well on CPU-based systems [94]. Heroic runs of MD easily

involves hundreds of CPU cores and months of runtime [55, 87]. Yet the size and

timescale achieved by even the most heroic MD run still fall short, by many orders of

magnitude, compared to the size of the systems of interest and the biologically relevant

timescales of potential events. For example, it is estimated to take about 70 years

on a single high-end CPU core to simulate only a 100 ns of a million-atom biological

system, such as the Satellite Tobacco Mosaic Virus (STMV) [55]. In contrast, many

important biological phenomena, e.g., protein folding (see Figure 1·1), are believed

to occur in microsecond to millisecond range [49, 72]. Thus, faster execution of MD

is a crucial goal for the scientific community.

Acceleration of MD has therefore received much attention. One way to achieve

acceleration is to use specialized hardware, such as Field Programmable Gate Arrays

(FPGAs). A typical hardware-accelerated MD will offload some of the most time-

consuming computations, e.g., the evaluation of non-bonded forces between particle-

pairs, to the hardware to achieve speed-up over the CPU-only version. While an

order of magnitude speed-up seems to be achievable in this manner [33, 162], the

gain diminishes quickly if the accelerated system does not scale. For example, a 10x

speed-up over a single CPU core can be easily matched just by adding another high-

4

end multicore CPU. Scalability has, in fact, emerged as one of the greatest challenges

in realizing the full potential of hardware-accelerated MD [131].

Another way to achieve faster simulation is to use simpler computational model.

For MD, converting the computation into a Discrete Event Simulation (DES) promises

great speed-up, at some cost in simulation quality. In this method, called Discrete

MD (DMD), step-wise potential is used to approximate the continuous force fields

of a real system. Instead of updating every particle in every timestep, the state of

a particle is only updated when it crosses a point of discontinuity in its step-wise

potential. For the rest of the time, particles maintain constant velocity. Predictions

are made regarding when a particle will cross such a point of discontinuity and they

are recorded as events in a priority queue. Events are extracted from the priority

queue in temporal order and processed. New predictions are made and queued, while

old predictions are invalidated as needed. Thus, timestep-driven MD is converted into

event-driven DMD. The simpler force model and the ability to avoid frequent system-

wide update result in faster simulation. Studies have shown that this approach can

provide significant insight about biological processes with far less hardware resources

[46, 136, 156, 179]. The simplicity of the models can be substantially compensated for

by the capability of researchers to refine simulation models interactively [169, 170].

The issue here is, again, scalability. DES is inherently serial and its application in

MD has especially been proven to be a very difficult target of parallelization [41, 56,

103, 109, 158].

In this dissertation, we address the problem of scalability in both

discrete MD (DMD) and hardware-accelerated MD. In particular, we

investigate the issues in parallelizing DMD on multicore CPUs and the

challenges in achieving a full-parallel production-level FPGA-accelerated

MD package.

5

1.2 Summary of Previous Work

1.2.1 Hardware Acceleration of MD

MD is a central method in High Performance Computing (HPC) with applications

throughout engineering and natural science. Its impact in biology and medicine can

be seen PUBMED [137], which shows more than 3000 related publications in the year

2011 alone (returns 3355 hits for the query “molecular dynamics”[Title/Abstract]

AND (“2011/01/01”[PDAT] : “2011/12/31”[PDAT])). Computational complexity of

MD, along with its importance, made it a target of clusters and supercomputers

from the very beginning. The relatively longer lifetime of MD packages, due to the

stability of the underlying algorithms, also made the effort of porting MD to co-

processors or even to MD-specific hardware, worthwhile. This was further fueled by

the saturation of increase in raw CPU performance; first the saturation of instruction-

level parallelism in around the year 2000 [76], followed by the saturation of CPU

frequency due to the power density issue in around the year 2005 [164, 165].

ASICs (Application Specific Integrated Circuits): ASIC-based acceleration of

MD goes back to the 1990’s, when a group of researchers in Japan developed MD

Engine, a collection of custom developed processors that worked in parallel to simulate

a system [8, 168]. This was followed by the MDGRAPE-3, also known as the “Protein

Explorer”, a special-purpose petaflops computer system with a hardware accelerator

for MD [117, 141, 166, 167] developed in RIKEN, Japan in 2006. The most recent

work on ASIC implementation of MD was done by D. E. Shaw Research in New York,

where they developed Anton, a supercomputer specialized for bio-medical application

of MD [48, 153]. Each of these systems is reported to have achieved significant speed-

up over corresponding CPU-based systems. Among these, the 512-node version of

Anton has achieved millisecond range simulation, two orders of magnitude beyond

6

the previous state of the art [154]. While ASIC-based systems are, by definition,

expected to provide the optimal performance, in practice finite on-chip resources and

data communication issues often restrict the size of the problem that can be simulated

efficiently, thus limiting the advantages. In addition, the non-recurring cost of ASIC-

based systems still remains prohibitive for most users.

Cell Processor: Cell, primarily developed for gaming, combines a general purpose

Power PC processor with multiple SIMD vector coprocessors on a single die. It was

used to accelerate the non-bonded force computation kernel of MD [155]. Although

a speed-up of around 7x - 9x was reported, the baseline kernel itself was modified,

making a direct comparison difficult. Absolute runtime results indicate a few times

slowdown with respect to the corresponding production code.

FPGAs (Field-Programmable Gate Arrays): FPGAs have traditionally been

known for their programmability and low power consumption. In recent years, they

are equipped with dedicated multipliers and individually accessible Block RAMs

(BRAMs) of different granularity [5, 177]. There have been numerous studies on

how to implement different portions of MD on FPGAs, the earliest one dating back

to 2003 [12, 33, 36, 38, 65, 66, 67, 70, 71, 86, 91, 95, 100, 147, 148, 176]. While many

of these studies reported significant speedup for the individual pieces they worked

on, none of the widely used MD packages have an FPGA-accelerated version yet.

The most notable recent work on FPGA-accelerated MD was done at CAAD Lab

at Boston University, where a non-bonded force kernel was implemented on an Altera

Stratix-III FPGA [33]. The kernel ran 26x faster than the total serial runtime of the

corresponding production software code. While this work demonstrates that FPGAs

can be a viable option for acceleration of MD, absence of an integrated full-parallel

production version remains an issue. In fact, this design does not consider the scaling

7

issues of hardware-accelerated MD. For example, it requires signification amount of

additional data conversion and communication, which will very likely diminish the

advantages of acceleration eventually.

Most of the FPGA work on MD is done by hardware engineers without sufficient

consideration of production MD packages, which tend to be heavily optimized for

performance. Often these are bottom-up approaches where a portion of the

computation is accelerated and then integrated into (typically simplified) software,

and only for proof-of-concept. This, along with the lack of generalized FPGA

platforms, is one of the main reasons why FPGAs are not yet the primary choice of

acceleration of MD, despite promising performance and a great advantage in energy

efficiency. Integration of FPGA kernels into production MD packages is, therefore,

one of the most important steps towards realizing the full potential of

FPGA-accelerated MD.

GPUs (Graphics Processing Units): Although GPUs were initially developed

for fast rendering of computer graphics, the tremendous computational power of

modern GPUs, together with their abundance and low cost, mostly due to the

worldwide gaming market, has made them a viable candidate for scientific

computing [123, 124, 126]. The introduction of high-level programming languages

for GPUs, such as CUDA and OpenGL, has allowed rapid development of molecular

dynamics applications using GPUs. Almost all publicly available MD packages now

have GPU-accelerated versions [125]. While some of them have achieved significant

speed-ups in some restricted conditions, most struggled to achieve reasonable

speed-up for complex and practical cases [62, 162]. Scaling to multiple GPU nodes

has become a particularly tough issue [131]. The most notable work on GPU

acceleration of MD was done by the NAMD group at the University of Illinois

[131, 162] where a 6x-7x speed-up was achieved over CPUs. Scaling to multiple

8

GPU nodes was identified to be a critical issue, limiting the speed-up to as low as

3.4x for a 60 CPU/GPU cluster. It is worth noting that this work only implemented

a non-bonded force computation kernel on the GPUs, leaving the amount of data

communication unchanged. Since reasonable speed-up was achieved in computation,

communication became a bottleneck in scaling to multiple nodes. FPGA-based

accelerators, in this regard, can play an important role, since FPGAs have the

potential to provide direct data communication among accelerators. FPGAs are

routinely used in network routers, making them a natural fit for this purpose [28].

1.2.2 Parallelization of DMD

DMD, an instance of DES, has been successfully used to study bio-medical systems,

making it an emerging alternative to traditional timestep-driven MD [27, 46, 136, 169,

170, 179, 180]. In addition to the inherent serial nature of DES, causality concerns

make DMD an especially difficult target of parallelization [56, 102, 103, 109]. Most

previous work on parallelization of DMD used spatial decomposition, the same way

a timestep-driven MD is parallelized, and often studied only two dimensional (2D)

systems (e.g. disks) [103, 109, 113, 158]. Such approaches resulted in modest speed-up

using a huge amount of resources and are likely to be impractical for three dimensional

(3D) systems. Moreover, much of this work was done a decade ago. Since then, event

processing speed has increased dramatically, through advances in both processors and

algorithms, especially when contrasted with interprocessor communication latency.

This means that parallelizing DMD through spatial decomposition is likely to be

even less efficient now. These are the reasons why, in fact, all previously reported

work in bio-medical work that used DMD, used a serial version of it. They can end

up taking month-long runtimes, although requiring far less hardware resources than

timestep-driven MD. We are aware of no existing production parallel DMD (PDMD)

codes that predates the publication of our work [78, 90].

9

1.3 Summary of Contributions

The contributions of this dissertation can be categorized into, 1) parallelization of

DMD on shared memory multicore processors and 2) integration of FPGA kernel

into production MD package. In the the first category, we propose a new

parallelization method for DMD that achieves close to 6x and 9x speed-up on an

8-core and a 12-core processor respectively, with potential for further strong scaling.

In the second category, we first improve the performance of an existing FPGA

kernel by 50%, just by exploiting of the Block RAM architecture of the FPGAs. We

then parallelize the design to utilize multiple on-board FPGAs and integrate it into

a full-parallel production MD code. The integrated design achieves 2.22x speed-up

over the highly optimized production code and provides a framework for studying

design issues of FPGA-accelerated MD, such as the data communication pattern.

Using this framework, we identify the drawbacks of the current FPGA kernel and

provide guidelines for future designs. We also study the plausibility of using

FPGA-centric clusters for MD, in particular by determining the communication

requirements of such a cluster.

1.3.1 Efficient Parallelization of DMD

Studying Issues in Parallelizing DMD: Although parallelization of DES is a

well-studied field, there has been no systematic description of the issues that needs

to be dealt with while parallelizing DMD. In this work, we define various hazards,

similar to those found in hardware pipeline design, that may occur in parallel DMD;

and describe how to deal with them efficiently. The specific hazards we define are

causality hazard, coherence hazard and a combination of these two.

Parallelizing DMD through Event-based Decomposition: We propose a

method that, unlike any previous work, uses event-based decomposition or task

10

decomposition to parallelize DMD. Our method is micro-architecture inspired where

multiple simultaneous threads work on different events from the head of the event

queue in parallel, but only one thread commits at one time. In other words, we

process the events in parallel, but maintain in-order commitment. Using the shared

memory architecture of multicore CPUs, in combination with efficient

synchronization and a recently proposed data structure, we limit the serial

commitment time such that it does not become a bottleneck. Our method achieves

close to 6x and 9x speed-up on an 8-core processor and a 12-core processor

respectively, with potential for further strong scaling. In achieving these results, we

study various implementations of the proposed task-decomposed DMD, with

particular focus on synchronization methods. We find that having one helper and

multiple worker threads, and separate distributed locks for each worker thread

results in the most efficient implementation, as the number of threads increases.

Analyzing Architectural Limitations: Although our method achieves significant

speed-up, a perfect linear speed-up is not achieved. We study the issues that limit

the speed-up and find that, individual event processing time increases as the number

of threads goes up, inhibiting a perfect speed-up. A major portion of this runtime

overhead is due to the requirement of fine-grained locks among threads, while the

remaining is mostly due to architectural limitations, such as increased bus utilization.

1.3.2 Integration Framework for FPGA-accelerated MD

Enhancing Performance using Block RAM (BRAM) Architecture: In MD,

table interpolation method is ofter used to compute inter-particle forces, replacing

some expensive computations (e.g. square root computation) with simple table

look-ups. Accuracy of table interpolation method depends on the granularity or size

of the table and the order of interpolation. CPU implementations typically use

11

smaller table such that it fits easily in L1 cache. They compensate this by using

relatively higher order of interpolation. In our study, we find that we can reverse

this for an FPGA implementation. We can use fine-grained, hence larger, table, and

lower order of interpolation, without sacrificing the quality of the simulation. This

is possible because of the relative abundance of Block RAMs (distributed

configurable memory) in recent FPGAs. This saves us significant amount of logic

cells, which would otherwise be used to implement higher order of interpolation.

This saving can be used in doing more force computation in parallel, ultimately

resulting in a 50% improvement in performance.

Parallelizing FPGA-accelerated MD for Multi-FPGA Board: Recent FPGA

boards are often equipped with more than one FPGAs, making it essential to make the

accelerated design work on multiple on-board FPGAs. We study the issues in doing

so, namely data conversion, partitioning, and software pipelining. We specifically

study two methods of partitioning, and analyze the shortcomings of the current kernel

design. The quad-FPGA version of the FPGA-accelerated MD achieves a speed-up

of 3.37x over a single CPU core.

Integrating FPGA Kernel into a Full-parallel Production MD Package:

We integrate the existing FPGA kernel into a prominent full-parallel production

MD package, called NAMD [130]. This integrated version allows switching between

the actual FPGA kernel and a simulated version of it, and provides a framework for

studying various design issues of an FPGA-acclerated MD. Using this framework,

we identify the limiting factors of the current kernel and provide guidelines for

future designs. We also instrument the code to study various characteristics, e.g.

communication pattern, of possible future designs. In addition to providing these

features, the integrated quad-FPGA design achieves 2.22x speed-up over the

12

quad-core CPU (8.39x over a single CPU core), making it the first ever

FPGA-accelerated full-parallel MD package to achieve a positive end-to-end

speed-up.

Determining Communication Requirements for FPGA-centric MD: Using

the integrated framework, we study the plausibility of using FPGA-centric clusters for

MD. We derive time budget for data communication in such a system and quantify the

data communication characteristics in two ways: analytically and by instrumenting

the framework. We apply this information to clusters of various sizes and node

complexity and conclude that a cluster with 256 FPGAs distributed in 64 nodes is

appropriately provisioned, even for modest simulations, with a bidirectional 3D torus

where each link consists of 1-2 of an FPGA’s serial ports.

1.4 Organization of the Dissertation

This chapter of the dissertation introduces the problem we address in this work,

reviews related previous work in brief, and lists our key contributions.

Chapter 2 provides computational description of MD, including advanced

algorithms and techniques for improving performance. It provides a detailed review

of previous work on hardware acceleration of MD. In course of doing so, it also

introduces the most widely used MD packages. This is followed by an introduction

of DMD and a discussion on previous work on parallelization of DMD.

Chapter 3 describes our work on parallelization of DMD. We first discuss the

issues in parallelizing DMD and possible approaches towards it. We then establish

our baseline serial code and describe simulation models and conventions. Then we

present our method and implementation issues: three possible scheduling mechanisms,

and other software refinements. Finally, we present the scalability results, followed

by various analytical models fleshed out with system-level measurements.

13

Chapter 4 describes our work on enhancing the baseline FPGA kernel. We first

introduce FPGAs in general and then our target hardware system. This is followed by

a brief description of the FPGA kernel. We then present the results of our exploration

with the design space of table interpolation method and how we can take advantage of

Block RAM architecture of the FPGAs. We conclude the chapter with performance

improvement results.

In Chapter 5, we first describe the issues in intra-node partitioning. We then

present data conversion, software pipelining issues and two partitioning methods. We

conclude by presenting speed-up results and contrasting them with their theoretical

limits.

In Chapter 6, we discuss the challenges in achieving a full-parallel production-

level FPGA-accelerated MD package. We describe the target software and present

our integration methods. We describe the features of the integrated framework and

also present speed-up results. We analyze the performance of the current FPGA

kernel and provide guidelines for future designs.

In Chapter 7, we study the plausibility of using FPGA-centric clusters for MD.

We review MD on a single FPGA-based node and use the estimated performance of

an optimized implementation to determine the time budget for the communication.

We then quantify the data communication characteristics and use this information to

determine the communication requirements for such a cluster.

Finally, Chapter 8 summarizes the dissertation and provides possible future

directions of this work.

14

Chapter 2

Molecular Dynamics Simulation (MD)

This chapter provides necessary computational background for this work, and a

survey of related previous work. We first introduce various computations in

molecular dynamics simulation (MD) and some of the important optimization

techniques. Then we review previous work on hardware acceleration of MD. This is

followed by a description of discrete MD (DMD) and a discussion on previous efforts

to parallelize it.

2.1 Description of MD

MD is an iterative process that models dynamics of molecular particles by applying

simple laws of classical mechanics [3, 139]. Simulation advances by timesteps where

each timestep is comprised of two phases; force computation and motion update.

Figure 2·1 shows a simple MD timestep where forces working on each particle is

computed first and then the state of each particle is updated accordingly. The upper

Figure 2·1: MD timestep

15

Figure 2·2: MD forces [3, 166]

bound of ∆t, the interval between two consecutive timesteps, is determined by the

vibration of particles and in a typical simulation, one timestep corresponds to one

or a few femtoseconds (fs) of real time. This means millions of timesteps need to be

simulated to study a reasonable timescale of the target system, resulting in the long

runtime of MD. The user provides the initial state (position, velocity etc.), the force

model and other properties of the system and some simulation parameters (simulation

type, output frequency etc.) and then MD simulates the dynamics of the system.

At the time of this writing, there are many MD packages (e.g. AMBER [30],

Desmond [20], GROMACS [79], LAMMPS [97], NAMD [130] etc.) that are publicly

available and widely used. They support various types of force fields (e.g. AMBER

[134], CHARMM [104] etc.) and simulation types. But regardless to the specific

package or force field model, force computation in MD generally involves computing

force contribution of van der Waals, electrostatic (Coulomb) and various bonded

terms, as shown in Figure 2·2 and Equation 2.1.

Ftotal = Fbond + Fangle + Fdihedral + Fhydrogen + FvanderWaals + Felectrostatic (2.1)

16

Van der Waals and electrostatic forces are classified as non-bonded forces and

the rest are classified as bonded forces. As we will see later in Section 2.1.2 and

Section 2.1.3, non-bonded forces can be further divided into two types. Range-

limited non-bonded force that comprises of van der Waals force and short-range

portion of electrostatic force and long-range non-bonded force that comprises of

the long-range portion of electrostatic force.

Since bonded forces only affect a few neighboring atoms, they can all be

computed in O(N) time, where N is the simulation size, which is the total number

of particles in the system. Non-bonded terms originally have complexity of O(N2),

but several algorithms and techniques exist to reduce their complexity. Some of

these algorithms and techniques will be described in later subsections. In practice,

the complexity of van der Waals force computation is reduced to O(N) and, that of

electrostatic force computation is reduced to Nlog(N). Motion update and other

simulation management tasks take O(N) runtime. In a typical MD run on a single

CPU core, most of the time is spent computing non-bonded forces. For parallel runs

of MD, inter-node data communication becomes a dominant factor as the number of

processors increases.

2.1.1 Periodic Boundary Condition (PBC)

Boundary conditions play an important role in MD simulation since they define the

surroundings of the simulation system. The number of particles in a typical MD

simulation is far smaller than that of a bulk system. A bulk system has particles

in the order of 1023, whereas even the largest MD simulation size contains only a

few million particles [55]. A common practice in MD is to use periodic boundary

condition (PBC) [105, 139]. Instead of having a hard wall at the boundary, this

condition assumes that the same simulation box is replicated at the boundaries in

every dimension. A particle in the system not only interacts with the particles within

17

Figure 2·3: 2D representation of particles crossing simulation boundary under
PBC

the defined simulation box, but also with the particles in the replicated images. As

a particle moves in the original system, all of its replicated images also move in a

consistent manner. When one particle leaves the original simulation box, another

particle, its replicated image, enters the original simulation box. Figure 2·3 shows

a simplified 2D representation of such boundary crossings. Since all the images are

merely replications of the original particle, keeping the data of the original particle

only is sufficient to run the simulation. Thus, PBC allows an MD simulation to be

performed using a relatively small number of particles in such a way that the particles

experience forces as if they were in a bulk solution.

2.1.2 Van der Waals (VdW) or Lennard-Jones (LJ) Force

Van der Waals (VdW) force is the attraction (or repulsion) force that works between

a pair of atoms that are not bonded [139]. It is approximated by the Lenard-Jones

(LJ) potential as shown in Figure 2·4. Equation 2.2 gives LJ force acting on particle

i.

−→
F i(LJ) =

∑
i 6=j

εab
σ2
ab

{
12

(
σab
|rji|

)14

− 6

(
σab
|rji|

)8
}
−→rji (2.2)

Here, εab and σab are parameters related to particle types and rji is the distance

between particle i and particle j.

18

Figure 2·4: Lennard-Jones (LJ) potential [37]

A complete evaluation of VdW or LJ force requires evaluation of interactions

between all particle-pairs in the system. The computational complexity is, therefore,

O(N2), where N is the number of particles in the system. A common way to reduce

this complexity is applying a cut-off. LJ force vanishes quickly with the distance of a

particle-pair and is usually ignored when two particles are separated beyond some cut-

off distance. A typical cut-off distance in MD of biological systems lies between 8-16

Angstroms. To ensure a smooth transition at cut-off, an additional switching function

is often used too. Using a cut-off distance alone does not reduce the complexity of LJ

force computation, because all particle pairs must still be checked to see if they are

within the cut-off distance. The complexity is reduced to O(N) by using techniques

like cell-list method or neighbor-list method, which will be described in Section 2.1.6.

2.1.3 Electrostatic or Coulomb Force

The electrostatic or Coulomb force works between two charged particles and is given

by Equation 2.3 [139].
−→
F i(CL) = qi

∑
i 6=j

(
qj
|rji|3

)
−→rji (2.3)

19

Here qi and qj are the particle charges and rji is the distance between particle i and

j.

The evaluation of Equation 2.3 is computationally expensive (O(N2)), because it

requires evaluation of all possible pairs in the system. Several efficient algorithms

have been developed to account for this force without actually interacting with all

pairs [19, 44, 52, 129, 159]. Some of these will be introduced here with particular

focus on PME (Particle Mesh Ewald) method, since this is the one widely used in

MD.

Ewald Summation: Ewald Summation (or Ewald Sums) is an algorithm used to

compute electrostatic forces in a system with periodic boundary conditions [3]. It

was originally developed in 1921 to evaluate the electrostatic energy of ionic crystals

[53]. Compared to direct calculation, it reduces the computational complexity from

O(N2) to O(N3/2).

For an N-particle periodic system, the Coulomb contribution to potential energy

can be expressed using the Equation 2.4.

Ei =
1

2

‘∑
n

N∑
(i,j)=1

qiqj
|rji + nL|

(2.4)

Here the prime on the summation means that the sum is over all periodic images and

over all particles except i = j if n = 0, meaning a particle does not interact with itself

but interacts with all of its periodic images; L is the dimension of the unit cell.

The idea of Ewald Sums is to add and subtract a carefully selected Gaussian

charge distribution to the system such that the subtracted Gaussian distribution

cancels out the point charges of the system. This does not change the electrostatic

potential of the system, but conveniently divides it into two major portions, as shown

in Figure 2·5. A range-limited portion that can be computed using a cut-off in real

20

Figure 2·5: Splitting of electrostatic or Coulomb force into range-limited and
long-range portions

space with complexity O(N), and a long-range portion that can be computed using a

cut-off in reciprocal or Fourier space with complexity O(N3/2). In addition to these

two, an inexpensive correction term is also required. While the exact derivation of

the equation can be found in literature (e.g. [139]), here we provide the final form of

Coulomb potential energy in Ewald Sums in Equation 2.5.

Ei = E(r) + E(k) + E(s) (2.5)

Here, E(r), E(k), E(s) are the real, reciprocal and self-correction terms respectively

and they are given by Equation 2.6, Equation 2.7 and Equation 2.8, . The Ewald

parameter α needs to be chosen appropriately to achieve O(N3/2) complexity for the

reciprocal term.

E(r) =
1

2

‘∑
n

N∑
(i,j)=1

qiqj
erfc(α|rji + nL|)
|rji + nL|

(2.6)

E(k) =
1

2L3

∑
k 6=(0,0,0)

4π

k2
e−

k2

4α2 |ρ(
−→
k)|

2
, ρ(
−→
k) =

N∑
j=1

qje
−i
−→
k ·−→rj (2.7)

E(s) = − α√
π

∑
i

qi
2 (2.8)

Particle Mesh Ewald (PME) Method: PME is an efficient technique that has

21

Figure 2·6: PME computation steps [63]

been widely used to evaluate the standard Ewald Sums due to its computational

efficiency [44, 129]. It approximates the reciprocal or long-range portion of the

Ewald Sums by a discrete convolution on an interpolation grid, using discrete 3D

Fast Fourier Transformation (FFT), reducing the computational complexity from

O(N3/2) to O(Nlog(N)). Careful evaluation of the interpolation scheme and mesh

size is required to achieve high simulation accuracy and speed. The basic procedure

of PME is illustrated in Figure 2·6 and consists of three steps as follows [63].

1. Assign charge of particles to mesh points

2. Compute force with FFT and reverse FFT (rFFT)

3. Interpolate forces back to particles

The complexity of the first and third steps is O(N) while that of the second step

is O(Nlog(N)) which dominates the overall computation. It is worth mentioning

that sometimes, to save computation time, the long-range portion of PME is only

computed every few timesteps, e.g. every 4 timesteps. An improved scheme of PME,

called Smooth PME (SPME) was reported in [52].

22

Multigrid Method: First introduced in the 1970’s by Brandt [23], the multigrid

method was originally used to solve partial differential equations and now has become

an efficient technique to evaluate the electrostatic force [159]. For a system containing

N particles, the computational cost of multigrid method is O(N), whereas the direct

calculation, the Ewald Sums, and PME are of order O(N2), O(N3/2) and O(Nlog(N))

respectively. The general steps of the multigrid method are described as follows.

1. Interpolate and assign particles charge on a grid

2. Apply multigrid method to solve Poissons equation on the grid

3. Interpolate forces and energy from the grid domain back to particle space

Compared with the standard Ewald Sums method and its variants such as PME

and SPME, the multigrid method not only reduces the cost of force computations

but also offers several advantages. These include no PBC requirement, ease of

parallelization, and no FFT. Therefore, the large communication overhead

associated with the 3D FFT computation can be avoided.

Although the multigrid method helps reduce the computational complexity of

force evaluation, to achieve a high-quality in energy conservation, it consumes more

time compared to Fourier-based schemes such as Ewald Sums or PME. For a given

accuracy, it was reported that the multigrid method was 1.85 times as expensive as

PME method on a single processor although it could become competitive with, and

eventually faster than, the PME method for a parallel system [143] . Most of the

highly tuned MD software packages employ PME method or its variants to compute

electrostatic forces.

2.1.4 Other Forces

In addition to the non-bonded forces, bonded interactions (e.g. bond, angle, dihedral

in Figure 2·2) must also be computed every timestep. They have O(N) complexity

23

and take relatively small portion of the total timestep. Bonded pairs are generally

excluded from non-bonded force computation, but if for any reason, e.g. to avoid a

branch instruction in an inner loop, non-bonded force computation includes bonded

pairs, then those forces need to be subtracted accordingly.

2.1.5 Motion Update

Motion update in MD takes O(N) runtime. Although there are various ways to

update the motion of the system (e.g. predictor-corrector method etc.), most MD

packages use a variant of leapfrog style method [139]. In their simplest forms, these

methods yield coordinates that are accurate to third order in ∆t, the interval between

two consecutive timesteps. The formula can be derived from Taylor expansion of the

coordinate variable x(t).

x(t+ h) = x(t) + hẋ(t) + (h2/2)ẍ(t) +O(h3) (2.9)

Here t is the current time and h = ∆t between timesteps. ẋ(t) is the velocity

component and ẍ(t) is the acceleration. O(h3) represents the higher order terms of

∆t. We can re-write Equation 2.9 as

x(t+ h) = x(t) + h[ẋ(t) + (h/2)ẍ(t)] +O(h3) (2.10)

The term multiplying h is actually just ẋ(t+ h/2). So Equation 2.10 now becomes

x(t+ h) = x(t) + hẋ(t+ h/2) (2.11)

Velocity can be obtained by subtracting from ẋ(t+h/2) the corresponding expression

for ẋ(t− h/2).

ẋ(t+ h/2) = ẋ(t− h/2) + hẍ(t) (2.12)

The fact that coordinates and velocities are evaluated at different times is not a

24

real problem and can be avoided by employing these methods in a two-step form. For

example, by applying Equation 2.13, followed by Equation 2.14.

ẋ(t+ h/2) = ẋ(t) + (h/2)ẍ(t)

x(t+ h) = x(t) + hẋ(t+ h/2) (2.13)

ẋ(t+ h) = ẋ(t+ h/2) + (h/2)ẍ(t+ h) (2.14)

2.1.6 Cell-list vs. Neighbor-list

Every particle needs to interact with some of its neighboring particles to evaluate

range-limited non-bonded forces. This requires a method of traversing through the

neighboring particles of each particle. A naive approach will iterate through all

particles in the system to find the neighbors of each particle. This will result in an

inefficient implementation of O(N2) complexity. Here we present two efficient

methods to accomplish this.

Cell-list: In cell-list method [80, 139, 144], a simulation box is first partitioned

into several cells, generally cubic in shape. Each dimension is typically chosen to

be slightly larger than the interaction cut-off distance. This means, for a 3D (2D)

system, traversing through the particles of the home cell and 26 (8) adjacent cells will

Figure 2·7: 2D illustration of cell-list for particle ’P’ in cell ’C’

25

Figure 2·8: Neighbor-list sphere

suffice. If Newton’s third law is used, then only half of the neighboring cells need to

be checked. If cell dimension is less than the cut-off distance, then more number of

cells will have to be checked.

The cost of constructing cell list scales linearly with the number of particles.

Scanning each particle in the system and assigning it to a corresponding cell, once

before evaluating the forces, is sufficient. The additional effort in constructing the

cell list pays well, because the complexity of the force evaluation now becomes O(N).

Neighbor-list: Although cell-list reduces the complexity of range-limited force

computation, it still results in checking many more particles than necessary. For a

particle we only need to check its surrounding volume of (4/3) × 3.14 × R3
c , where

Rc is the cut-off radius. But in the cell-list method we end up checking a volume of

27 × R3
c , which is roughly 6 times larger than needed. This can be improved using

neighbor-list method [139, 172]. In this method, a list of possible neighboring

particles is maintained for each particle and only this list is checked for force

evaluation. A particle is included in the neighbor-list of another particle if the

distance between them is less than Rc + Rm, where Rm is a small margin. Rm is

chosen such that, the neighbor-list also contains the particles which are not yet

within the cut-off range but might enter the cut-off range before the list is updated

26

next. In every timestep, the validity of each pair in a neighbor-list is checked before

it is actually used in force evaluation. Neighbor-list is usually updated periodically

in a fixed time interval or when displacements of particles exceed a pre-determined

value.

A neighbor-list can be constructed for all particles in O(N) time using cell-list.

As long as the neighbor-list is not updated too frequently, which is generally easy to

ensure, this method reduces the range-limited force evaluation time significantly. The

savings in runtime comes at the cost of extra storage required to save the neighbor-list

of each particle. For most high-end CPUs, this is not a major issue.

As shown in Figure 2·8, for particle i, all particles within its neighbor-list

distance, except the particle itself, are included in its neighbor-list and only particles

residing between cut-off and neighbor-list distance are overhead. Although reducing

the frequency of neighbor-list updates (by increasing the margin) could reduce the

computational expense of constructing neighbor-lists, this would result in lower

efficiency since more particles than actually needed will be added into the list.

2.1.7 Direct Computation vs. Table Interpolation

The most time consuming part of an MD simulation is typically the evaluation of

range-limited non-bonded forces. That is why, a great deal of optimization takes

place here. One of the major optimizations is the use of table look-up, instead of

computing forces directly. This allows avoiding expensive direct computations like

square root computation or erfc function evaluation. This method not only saves

the amount of computation time, but is also robust in incorporating small changes,

e.g. applying switching function in VdW etc.

Typically, square of inter-particle distance (r2) is used as an index of table look-up.

The possible range of r2 is divided into several segments and each segment is further

divided into bins (intervals) as shown in Figure 2·9. For an M order interpolation,

27

Figure 2·9: Interpolation using table lookup

each bin needs M + 1 coefficients and each segment needs N × (M + 1) coefficients,

where N is the number of bins in the segment.

F (x) = a0 + a1x+ a2x
2 + a3x

3 (2.15)

Accuracy increases with both the number of bins per segment and the interpolation

order. Generally the rapidly changing regions are assigned relatively higher number

of bins, and relatively stable regions are assigned fewer bins. Equation 2.15 shows a

third order interpolation.

2.1.8 Parallelization of MD

Parallelization of MD requires careful consideration of a couple of things. First, how

to distribute the responsibility of updating particle data among the processors.

Next, how to distribute the computation of various forces among the processors

such that the amount of data communication among processors is minimal. While

the former may seem simple, meaning spatially decomposing the particles among

processors seems sufficient, its interaction with the latter complicates the scenario.

Further, different types of force computation requires different patterns of data

communication. Range-limited non-bonded force computation requires data from

28

many neighboring particles, while bonded force computation requires data of only a

few neighboring particles. On the other hand, 3D FFT-based computation of

long-range portion of electrostatic forces requires all-to-all communication.

Parallelization of MD is well-studied and most widely used MD packages achieve

good scaling on CPU-based systems. A detailed discussion on this topic can be

found in [20, 21, 83].

Here we first provide a brief discussion on parallelization of MD for range-limited

force computation. This can be achieved in at least four different ways. These are

Replicated Data (RD) method, Atom Decomposition (AD) method, Force

Decomposition (FD) method, and Spatial Decomposition (SD) method. These basic

methods can be used in combination to have more efficient hybrid methods, which

are often the choices of production codes [20, 130].

The RD method was used in the earlier days where only a few processors were

used. In this method, all data are replicated on each processor. While this allows

computation of any force on any processor, the results need to be communicated to

all processors. The amount of computation increases drastically with the number of

processors, making it impractical for large number of processors.

The AD method is a simple alternative of RD where the array containing particle

(atom) data is partitioned among the processors. Since this method does not consider

the spatial location of the particles, it may incur large amount of data communication,

limiting its practical applicability.

The FD method is a technique where pairwise force computation matrix is

distributed among the processors in a block-wise fashion. For an N × N force

matrix and P processors, the communication to computation ratio becomes
√
P .

While this method performs better than the two previously described methods,

load-imbalance may arise if the spatial locality of particles is not taken into

29

consideration.

In the SD method, the simulation space is divided into some sections and these

sections are distributed among processors. Each processor is responsible for

computing the forces of the particles in its assigned sections and also for updating

those particle data. While the simulation space can be directly partitioned into P

sections, P being the number of processors, a more common practice is to divide it

into some fixed sized boxes, typically with a dimension larger than the cut-off

distance, and distribute those boxes among processors.

Although SD method leads to a constant communication to computation ratio,

in practice load-imbalance may arise if the number of boxes are not evenly

distributed among processors. Production-level MD packages therefore often

employs a combination of SD and FD methods to yield better performance scaling

[20, 130]. A first level of partitioning is achieved using spatial decomposition - by

assigning partitioned boxes to processors. This is followed by a second level of

parallelization, where force computations (e.g., interactions of particles in two

neighboring boxes) are further divided among the processors. There are many

different ways that such a hybrid method can be implemented, leading to some

number of variant methods [21, 83]. For example, force between two particles can be

computed on a processor that owns at least one of the particles, or it can be

computed on a processor that owns none of the particles. Overall performance of

these methods depends on the target of simulation as well as the architecture of the

simulation platform.

Now we briefly discuss parallelization of other force computations in MD. Bonded

force computation typically scales well in SD method, since it only involves a few

neighboring particles. Computing 3D FFT-based long-range portion of electrostatic

force, on the other hand, requires all-to-all communication. It should be noted that,

30

for many practical simulations (e.g., less than 100K particles), it is not the net amount

of computation but the fact that data are already distributed among processors,

that motivates parallelization of 3D FFT. Parallelization of 3D FFT is primarily

based on slab-decomposition or pencil-decomposition. The former decomposes the

computation in one dimension only, allowing lower level of parallelism but less amount

of data communication. The latter decomposes the computation in two dimensions,

therefore allowing higher level of parallelism but more amount of data communication.

2.2 Hardware Acceleration of MD

2.2.1 ASIC Acceleration

ASIC acceleration of MD goes back to the 1990’s, when a group of researchers in

Japan developed MD Engine, a collection of custom developed processors that

worked in parallel to simulate a system [8, 168]. Each processor (called MODEL:

MOlecular Dynamics processing ELement) had an embedded pipeline to calculate

the non-bonded interactions. Forces and virials were calculated with sufficient

accuracy for practical MD simulations and a speed-up of about 50x was achieved

compared to an UltraSPARC-I processor Sun Ultra-2 (200 MHz), for an MD

simulation of a Ras p21 protein molecule immersed in a water sphere (13,258

particles). Below we discuss two other works on ASIC-acceleration of MD, that are

more recent.

MD-GRAPE: The MDGRAPE-3 system, also known as “Protein Explorer”, is a

special-purpose petaflops computer system with hardware accelerator for classical

molecular dynamics simulation [117, 141, 166, 167]. It was developed in RIKEN

(RIkagaku KENkyujo: Institute of Physical and Chemical Research), Japan in 2006,

in collaboration with SGI Japan and Intel Japan. Its architecture is similar to its

predecessors, the GRAPE (GRAvity PipE) system, which was originally developed

31

Figure 2·10: Block diagram of MDGRAPE-3 ASIC [166]

to solve gravitational N-body simulation and then extended to accelerate classical

molecular dynamics simulations [50, 57, 81, 92, 118, 119, 120, 163].

MDGRAPE-3 system consists of 201 units of 24 MDGRAPE-3 chips, 64 parallel

servers of Intel Xeon 5000-series processors (codename Dempsey), and 37 parallel

servers having Intel Xeon 3.2 GHz processors with 2MB L2 caches. Each MDGRAPE-

3 board consists of 12 MDGRAPE-3 chips, each of which has 20 force pipelines

that are responsible for non-bonded force evaluation of MD only. The rest of the

computation is left for the host computers. Each chip can fit up to 32,768 particles and

deliver 165 GFlops @ 250MHz (230 GFlops @ 350MHz). One of the key innovations

in the MDGRAPE-3 chip, as shown in Figure 2·10, is the capability of broadcasting

particle data to the force pipelines, which reduces memory bandwidth requirement

significantly.

At the time of development, the 130 nm generation MDGRAPE-3 chip was

reported to be the fastest LSI for molecular dynamics simulation and the entire

32

Figure 2·11: Block diagram of an Anton processing node [153]

system had a power consumption of 200 kilowatts per hour (19 Watt @ 350 MHz

per chip).

Anton: Anton, developed at D. E. Shaw Research in New York in 2008, is a special-

purpose supercomputer designed for molecular dynamics simulation of biomolecular

systems [48, 153]. The 512-node version of it has reportedly achieved millisecond

range simulation, two orders of magnitude beyond the previous state of the art [154].

As shown in Figure 2·11, each node of Anton includes an ASIC with two major

computational subsystems, the high-throughput interaction subsystem (HTIS) that

33

computes range-limited pairwise interactions using thirty two 26-stage pipelines, and

the flexible subsystem that takes care of the remaining computations. The flexible

subsystem contains eight custom-designed geometry cores (GCs) for numerical

computations, four Tensilica LX processors to control the overall data flow, and four

data transfer engines. The Anton ASIC also has a pair of DDR2-800 DRAM

controllers and a host interface that communicates with external host computer for

input, output, and general control of the system. Anton nodes are connected in a

toroidal topology and neighboring node-pairs support 50.6 Gbits/sec data

communication in each direction, giving a total of 300 Gbits/sec of bandwidth per

node. Anton ASICs are implemented in 90 nm technology and clocked at 485 MHz,

with the exception of the force pipelines in HTIS, which are clocked at 970 MHz.

Some of the key innovations in Anton include a neutral territory partitioning

method for range-limited non-bonded force computation, reordering communication

data on-the-fly, and counted remote writing to reduce synchronization overhead.

Anton employs a fixed-point arithmetic throughout the system which makes the

computation deterministic, parallel-invariant and reversible. Anton’s low-latency

communication allows very fast end-to-end inter-node software communication (in

hundreds of nanoseconds), which proves to be very useful for 3D FFT-based

long-range electrostatic force computation [22, 47, 178].

2.2.2 GPU Acceleration

The tremendous computational power of recent day Graphics Processing Units

(GPUs), together with their abundance, primarily due to the huge worldwide

gaming market, has made them a viable option for scientific computing

[123, 124, 126]. The introduction of high-level programming languages for GPUs,

e.g. CUDA, OpenGL, has allowed rapid development of molecular dynamics

applications using GPUs. Almost all publicly available MD packages now have their

34

GPU-accelerated versions [125]. While some of them have achieved significant

speed-ups in some restricted conditions, most struggled to achieve reasonable

speed-up for complex and practical cases [62, 162]. Scaling to multiple GPU nodes

has become a particularly tough issue [131]. Below we discuss the GPU-accelerated

versions of some of the prominent MD packages, in no particular order. It should be

noted here that, although most work report the speed-up achieved using GPUs,

speed-up is a relative term and not always a fair way to evaluate such a work. For

example, a highly optimized CPU-only version is likely to have less speed-up using

GPUs than the packages that are not so optimized. It should also be noted that the

exact speed-ups depend on the specific benchmark, simulation settings and

hardware in use. Therefore, comparing various packages is not a straightforward

task.

NAMD (NAnoscale Molecular Dynamics): NAMD is developed and maintained by

the Theoretical and Computational Biophysics Group of UIUC [83, 121, 130]. It is a

simulation package that is known for scaling well on various platforms [94, 112]. It has

a GPU accelerated version that achieves 6x - 7x speed-up on quad-core CPU/GPU

combination, for large and complex benchmarks [131, 162]. Unlike the GPU versions

of other packages, it scales reasonably well and has achieved up to 5.5x speed-up on

a 60 CPU/GPU core cluster. It maintains original structure of the CPU-only version

of NAMD and only accelerates the range-limited non-bonded force computation on

GPUs. While this helps achieving better scalability, the acceleration is limited by

Amdahl’s law. In addition, Newton’s third law is not applied and a lot of GPU

threads are wasted because their respective particle pairs do not pass cut-off check.

GROMACS (GROningen MAchine for Chemical Simulations): GROMACS was

originally developed in the University of Groningen, Netherlands, and is now extended

35

Figure 2·12: Streaming Multiprocessor (SM) of NVIDIA Fermi architecture.
Fermi has 16 such SMs, a shared L2 cache and up to 6GB of DRAM [123]

and maintained in multiple places, including the University of Uppsala, University of

Stockholm and the Max Planck Institute for Polymer Research [17, 79, 101, 171]. It is

particularly optimized to achieve high utilization rate for every CPU core. Therefore,

it does not scale as well as some of the other packages, although it may achieve the

same performance using fewer nodes. At the time of this writing, GROMACS has

a GPU-accelerated version that works with a single GPU [62]. Parallel runs do not

work yet and getting actual speed-up using multiple nodes seems to be challenging.

Using GTX280, 20x speed-up has been reported for small protein systems in implicit

solvent using all-to-all kernels, where as for other setups involving cut-offs and PME,

the acceleration is reported to be about 5x times relative to a 3 GHz CPU core.

36

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator): This

package is distributed by Sandia National Laboratories, a US Department of Energy

laboratory [97, 133]. Its GPU package and USER-CUDA package provide GPU

support for neighbor-list build, particle-particle-particle mesh (PPPM) and

range-limited non-bonded potential computation [26]. A modest speed-up of 4.47x

is reported for simple atomic Lennard-Jones models, while for more complex model

(e.g. Rhodopsin Benchmark) the speed-up is reported to range from 1.75x to 2.7x

on 1-8 nodes on Yona, a 15 node cluster at Oak Ridge National Lab where each

node has two six-core AMD Opteron 2435 processors running at 2.6 GHz and two

Tesla C2050 GPUs [96].

AMBER (Assisted Model Building with Energy Refinement): AMBER MD package

is distributed by the University of California, San Francisco [29, 30] and reports 2x

to 3x speed-up over CPU version for complex benchmarks, e.g. DHFR [6, 7].

AceMD: AceMD is a high performance bio-molecular dynamics package specially

optimized to run on NVIDIA GPUs and supported commercially by Acellera Ltd

[1, 74, 75]. It achieves significant speed-up for reasonably complex systems, although

scaling is limited to 3 GPUs at this point. It reports achieving performance equivalent

to 256 CPU-core-NAMD using 3 CPUs and 3 GPUs, for DHFR benchmark. For a

larger benchmark (ApoA1 with 92,224 atoms), the speed-up is close to 4x that of the

GPU-accelerated NAMD.

HOOMD-Blue (Highly Optimized Object-oriented Many-particle Dynamics –

Blue Edition): The HOOMD-blue development effort is led by the Glotzer group at

the University of Michigan and it is probably the only MD package where all

computational steps run on GPU [9]. It runs on single GPU and reports nearly 32x

speed-up over LAMMPS CPU version for simple benchmarks. This work only

37

handles simple Lennard-Jones particles and may not be appropriate for bio-medical

applications.

2.2.3 FPGA Acceleration

Early Work: The earliest reported work on FPGA-accelerated MD goes back to

2003, where the velocity and position calculations of the Velocity Verlet algorithm

were mapped to an FPGA [176]. The calculations were done with IEEE 754 32-

bit floating point arithmetic. Performance was presented for two types of FPGA

platforms. The implementation on an Altera Stratix achieved 5.69 GFLOPS while

the implementation on a Xilinx Virtex-II Pro achieved 4.47 GFLOPS.

In 2004, N. Azizi, et al. at Prof. Paul Chow’s group at the University of Toronto

implemented a preliminary MD system on Transmogrifier 3 (TM3) system [12, 95].

TM3 contained four Virtex-E 2000E devices that were connected to each other via

98-bit bi-directional buses. Each FPGA was connected to a dedicated 256 K x 64

bit external SRAM. The all-to-all LJ force calculation and Velocity Verlet algorithm

were implemented on the FPGAs. Numerical computation was carried out by

fixed-point arithmetic with various scaling factors and precisions. The LJ force was

computed with table interpolation and the system was able to accommodate up to

8,192-particles. The system was validated with an academic C-based software MD

simulation, MD3DLJ [14, 111], and on the order of 1% RMS error was reported for

both force and energy evaluations. The details of error analysis about numerical

precision and scaling factors, however, were not reported. Nor was the support of

multiple particle types. The performance was reported to be 0.29x that of the

original software code running on a PC with a 2.4 GHz Pentium 4, due to limited

memory bandwidth and low clock speed of 26 MHz of the design. A 20x speed-up

was projected if the implementation were scaled to more advanced FPGA devices

with improved memory.

38

In 2008, a high performance FPGA-based MD system was designed and

implemented in CAAD Lab at Boston University [63, 66, 67, 68, 69, 70]. The LJ

and Coulomb forces were implemented on an Annapolis Microsystems

WildstarII-Pro board, which had two Xilinx Virtex-II Pro XC2VP70-5 FPGAs

[10, 11]. The design supported up to 32 atom types and 11,200 atoms and obtained

5.5x speedup over a single CPU (2.8 GHz Xeon) for a simulation of 8,000-particle

system, using the MD package Protomol [110]. Up to 256K particles could be

supported using off-chip/on-board memory [63]. One of the key achievements of this

work was obtaining simulation accuracy comparable to that of the software-only

version using a novel arithmetic mode, semi-floating point, and table lookup

interpolation using the third-order orthogonal polynomial. Simulation accuracy was

measured in terms of energy fluctuation and both software-only version and

accelerated version had a value close to 0.014 [69].

USC: A few papers were presented by R. Scrofano et al. in Prof. Viktor Prasanna’s

group at the University of Southern California (USC) during 2004-2008 [146, 147, 148,

149]. In [148], an implementation of direct computation with double-precision floating

point arithmetic was carried out to compute LJ force and potential. The design

was synthesized using Synplicity Synplify Pro 7.2 and then placed-and-routed using

Xilinx ISE 5.2 targeting the Xilinx Virtex-II Pro XC2VP125-7. Based on the placing-

and-routing result, a throughput of 3.9 GFLOPS was reported using the two force

pipelines that could fit on-chip. They compared their work to the CPU throughput

for the same kernel and found it to be faster by a few times.

In [146], a similar force pipeline with single-precision floating point arithmetic

was implemented on the SRC 6e MAPstation. The SRC 6e MAPstation has two 2.8

GHz Intel Xeon processors; a MAP processor, which has two Xilinx Virtex-II FPGAs

available for custom designs; and a high-performance interface connecting them. The

39

force pipeline was implemented on one of the FPGAs and was responsible for LJ and

Coulomb force evaluations. Neighbor-list was computed in host and was sent to the

FPGA along with position data. A 2x speed-up was reported over a custom-written

MD software.

A modification was made in 2006 to improve the accuracy of Coulomb force

calculation [149]. Smooth Particle Mesh Ewald (SPME) method was implemented

to replace the previous cut-off and shifted-force approximation for electrostatic force

evaluation. Only the real space part of SPME was accelerated in hardware while the

reciprocal space part was still executed in software on the host. Direct evaluations

of non-bonded short-range forces were performed with single-precision floating point

arithmetic, except erfc(x) and e−x
2

which were approximated by table

interpolation. Two test cases of 52K and 33K particles were reported and 2.7x -

2.9x speedup was achieved over the custom-written software code.

Maxwell: Maxwell is an FPGA-based computing cluster developed by the FHPCA

(FPGA High Performance Computing Alliance) project at EPCC (Edinburgh Parallel

Computing Centre) at the University of Edinburgh [15]. The architecture of Maxwell

comprises 32 blades housed in an IBM Blade Center. Each blade comprises one

Xeon processor and 2 Virtex-4 FX-100 FPGAs. The FPGAs are connected by a

fast communication subsystem which enables the total of 64 FPGAs to be connected

together in an 8 x 8 toroidal mesh. Each FPGA also has four 256 MB DDR2 SDRAMs

connected to them. The FPGAs are connected with the host via a PCI bus.

In 2011, an FPGA-accelerated version of LAMMPS was reported to be

implemented on Maxwell [86, 133]. Only range-limited non-bonded forces (including

potential and virial) were computed on the FPGAs with 4 identical pipelines per

FPGA. A speed-up of up to 14x was reported for the kernel (excluding data

communication) on two or more nodes of the Maxwell machine, although the

40

end-to-end performance was worse than the software-only version.

This work essentially implemented the inner-loop of a neighbor-list-based force

computation as the FPGA kernel. Every time a particle and its neighbor-list would be

sent to the FPGAs from the host and then corresponding forces would be computed

on the FPGAs. This incurred tremendous amount of data communication which

ultimately resulted in the slowdown of the FPGA-accelerated version. They simulated

a Rhodopsin protein in solvated lipid bilayer with LJ forces and PPPM method. The

32K system was replicated to simulate larger systems. This work, however, to the

best of our knowledge, is the first to integrate an FPGA MD kernel into a full-parallel

MD package. An 8-node performance figure was presented and the kernel (excluding

data communication) retained its speed-up (end-to-end performance was still worse

than the software-only version).

Boston University CAAD Lab: Several papers were published from CAAD

(Computer Architecture and Automated Design) Lab at Boston University around

2010, describing a highly efficient FPGA kernel for range-limited force computation

of MD [32, 33, 34, 35, 36]. The kernel was integrated into NAMD-lite [73], a serial

MD package developed at UIUC to provide a simpler way to examine and validate

new features before integrating them into NAMD [130]. The FPGA kernel itself was

implemented on an Altera Stratix-III SE260 FPGA of Gidel ProcStar-III board

[59, 60, 61]. As shown in Figure 2·13, the board consists of four such FPGAs, and is

capable of running at system speed of up to 300 MHz. The FPGAs communicate

with the host CPU via a PCIe bus interface. Each FPGA is individually equipped

with a 256 MB on-board DDR II SDRAM (bank A) and 2x2GB DDR II memory

(bank B and bank C) via SODIMM sockets.

The runtime of the kernel was 26x faster over the end-to-end runtime of NAMD,

for ApoA1, a benchmark consisting of 92,224 atoms [37]. Electrostatic force was

41

Figure 2·13: Gidel PROCStarIII system overview [59]

computed every cycle using the PME method and both LJ and range-limited portion

of electrostatic force were computed on the FPGAs. Particle data, along with cell-list

data and particle type data are sent to the FPGA every timestep, while force data

is received from the FPGA and then integrated on the host. A direct end-to-end

comparison with the software-only version was not done, since the software itself was

not optimized for performance. Below, we discuss some of the key contributions of

this work.

Multiple pipelines worked in parallel to compute forces of particles of a certain

cell (home cell) as shown in Figure 2·14. Newton’s 3rd law was used to avoid

duplicate computations. Fixed precision was used in distance computation, while

single-precision floating point was used for force computation. Force accumulation

was done in fixed point, requiring conversion between fixed and floating point before

42

Figure 2·14: Schematic of the FPGA-kernel for range-limited non-bonded
force computation, developed at CAAD Lab[33]

and after accumulation. Altera Floating-point Compiler was used to generate the

floating-point force computation logic.

One of the key contributions of this work is a detailed study of filtering methods to

improve the efficiency of cell-list method (recall discussion from Section 2.1.6 that, in

cell-list method, many particle-pairs do not pass cut-off check). A number of filtering

methods were compared and a reduced filtering method was used that required little

amount of logic (especially DSP or multiplier blocks), yet was able to filter unwanted

43

particle-pairs efficiently, resulting in improved efficiency of the force pipelines.

Another contribution is a novel mapping scheme for load-balancing of the force

computation pipelines. A “half-moon” scheme is proposed where a particle only

computes forces for the particles on its right hand side. This method provided better

load-balance at the cost of modest increase in data communication. In this method,

each home cell is required to check 18 of its 27 neighboring cells in 3D (including

itself) for range-limited non-bonded force computation.

Another contribution of this work is the use of Block RAM (BRAM) architecture of

FPGAs to allow lower order table interpolation, saving resources for implementation

of more force computation pipelines. This will be described later in Chapter 4, as

this is a contribution of this dissertation work too.

Others: In 2005, Prof. Paul Chow’s group at the University of Toronto made an

effort to accelerate the reciprocal part of the SPME method on a Xilinx XC2V2000

FPGA [100]. The computation was performed with fixed-point arithmetic with

various precisions to improve numerical accuracy. Due to the limited logic resources

and slow speed grade, the performance was sacrificed by some design choices, such

as the sequential executions of the reciprocal force calculation for x, y, and z

directions; and slow radix-2 FFT implementation. The performance was projected

to be a factor of 3x to 14x over the software implementation running in an Intel 2.4

GHz Pentium 4 processor.

In 2006, a simplified version of NAMD was accelerated on the SRC-6 MAPstation

platform at NCSA, UIUC [91]. The modified NAMD code eliminated all bonded force

computations. Only non-bonded range-limited forces were evaluated in hardware by

table interpolation with single-precision floating point arithmetic. Several design

choices were analyzed and implemented. It is reported that a 1.3x speedup can be

achieved against the software by using both FPGAs on a single SRC-6 MAPstation

44

and 3x speedup can be obtained with a series-E MAPstation for a simulation of 92K

particles.

In 2009, a design was proposed by a group from Dalian University of Technology,

China, that used cell-list and filtering method to compute LJ force on the FPGA using

table interpolation [71]. The primary target system consisted of a PC with a 2.66

GHz Pentium 4 CPU and Xilinx Virtex-II-Pro XC2VP70-5 FPGA. The software was

Protomol, running on Windows XP. Although the paper reported about 11x to 12x

speed-up for short runs of small simulations, it is not clear how precise the accuracy

of the accelerated simulation was.

There were some work on FPGA implementation of the multigrid method for

electrostatic force computation too [38, 39, 64, 65]. While 5x to 7x speed-up was

reported in [64, 65], the rest did not have any implementation result.

2.3 Discrete Molecular Dynamics Simulation (DMD)

Discrete, or Discontinuous, Molecular Dynamics Simulation (DMD) uses simplified

models; for example atoms are modeled as hard spheres, covalent bonds as infinite

barriers, and van der Waals forces as a series of one or more square wells. This

discretization enables simulation to be advanced by event, rather than timestep.

Events occur when two particles cross a discontinuity in inter-particle potential.

The result is simulations that are typically faster than timestep-driven molecular

dynamics [46, 128, 136, 156, 179]. The simplicity of the models can be substantially

compensated for by the capability of researchers to refine simulation models

interactively [169, 170].

2.3.1 Overview of Discrete Event Simulation (DES) and DMD

MD is the iterative application of Newton’s laws to ensembles of particles. It is

transformed into DMD by simplifying the force models: all interactions are folded

45

Figure 2·15: A collection of DMD potential models used in different studies
(from [27, 136, 169]). (a) Simple hard sphere characterized by infinite repulsion
at the sphere diameter. (b) Hard spheres with an attractive potential square
well, zero interaction after a given cut-off radius. (c) A square well potential
with multiple levels. (d) Single-infinite square well used for covalent bonds,
angular constraints, and base-stacking interactions. (e) Dihedral constraint
potential. (f) Hydrogen-bonding auxiliary distance potential function. g)
Discretized van der Waals and solvation non-bonded interactions potential.
h) Lysine-arginine-phosphate interaction potential in DNA-histone nucleosome
complex. (i) Two-state bond used to create auxiliary bonds between backbone
beads if they are also linked by a covalent bond. (j) Repulsive ramp with two
steps for auxiliary interactions in hydrogen bond and with multiple steps to
model liquids with negative thermal expansion coefficient.

into spherically symmetric step-wise potential models. Figure 2·15 shows a selection

of the potentials described in the literature (see, e.g [27, 136, 169]). It is through

this simplification of forces that the computation mode shifts from timestep-driven

to event-driven.

Overview of DMD can be found in many standard MD references (e.g. Rapaport’s

book [139]) and DMD surveys [27, 136, 169]. A DMD system follows the standard

DES configuration (Figure 2·16) and consists of the

• System State, which contains the particle characteristics: velocity, position,

46

Figure 2·16: DES/DMD block diagram.

time of last update, and type;

• Event Predictor (& Remover), which transforms the particle characteristics

into events, e.g. pairwise interactions;

• Event Executor, which turns the events back into particle characteristics; and

• Event (Priority) Queue, which holds events waiting to be processed, ordered

by time-stamp.

Simulation proceeds as follows. After initialization, the event with the highest

priority (involving, say, particles a and b) is popped off the queue and executed.

Then, all other previously predicted events involving a and b, if any, are removed

from the queue, since they are no longer valid. Finally, new events involving a and b

are predicted and inserted into the queue. Then the next event, the current highest-

priority event, is dequeued and processed. This loop continues until a user-defined

end condition of the simulation is reached.

47

To bound the complexity of event prediction, the simulated space is subdivided

into cells, similar to MD, as shown in Figure 2·7. Since both the number of particles

per cell and the number of cells in a neighborhood (typically 27 in 3D) are fixed, the

number of predictions per event is also bounded and independent of the total number

of particles. One complication of using cells in DMD is that, since there is no system-

wide clock advance (e.g. timestep in MD) during which cell lists can be updated,

bookkeeping must be facilitated by treating cell crossings as events and processing

them explicitly. Cell size is usually determined such that two particles have to be

in the same or adjacent cells to interact with each other (cell dimension > particle

interaction cut-off distance). Thus for any home cell, we ensure that checking only

the 26 neighboring cells (in 3D) is always sufficient. Particles in other cells must enter

these neighboring cells prior to interacting with home cell particles; such events are

handled separately as cell-crossing events. It should be noted that, cell-dimension

can be chosen to be smaller too, which will require slightly different bookkeeping.

2.3.2 Event Queuing Policy: Rapaport vs. Lubachevsky

One design issue that has received much attention is how many of the newly predicted

events to insert into the event queue [93, 160]. The first algorithm by Rapaport [138]

inserts all predicted events. The other, Lubachevsky’s method [102], keeps only a

single event, the earliest one, per particle. The reduced queue size, however, comes at

a cost: whenever the sole event involving a particle is invalidated, the events for that

particle must be re-predicted. This is done by converting the invalidated event into

an advancement event of that particle; when the advancement event is processed,

new predictions are made. There is thus a trade-off between the processing required

to update the larger queue and that required for re-prediction.

48

2.3.3 Software Priority Queues

The basic operations for the priority queue are as follows: dequeue the event with

the highest priority (smallest time stamp), insert newly predicted events, and delete

events in the queue that have been invalidated. A fourth operation can also be

necessary: advancing, or otherwise maintaining, the queue to enable the efficient

execution of the other three operations.

The data structures typically are

• An array of particle records, indexed by particle ID;

• An array to save information about which particle belongs to which cell;

• An event pool;

• An event priority queue; and

• A series of linked lists, at least one per particle, with the elements of each list

consisting of all the events in the queue associated with that particular particle

[139].

Implementation of priority queues for DMD is discussed by Paul [128]; they have

for the most part been based on various types of binary trees, and all share the

property that determining the event in the queue with the smallest value requires

O(logN) time [108]. Using these structures, the basic operations are performed as

follows.

Dequeue: The tree is often organized so that for any node the left-hand descendants

are events scheduled to occur before the event at the current node, while the right-

hand descendants are scheduled to occur after it. The event with highest priority

is then the left-most leaf node. This dequeue operation is therefore either O(1) or

O(logN) depending on bookkeeping. If the implementation is a binary search tree,

49

the worst case asymptotic bound is O(logN), as long as the tree does not degenerate

into a list.

Insert: Since the tree is ordered by time, insertion is O(logN) (again, in the worst

case and as long as the tree does not degenerate into a list).

Delete: For Rapaport-style queuing, when an event involving particles a and b is

processed, all other events in the queue involving a and b must be invalidated and

their records must be removed. This is done by traversing the particles’ linked lists

and removing events both from those lists and the priority queue. Deleting an event

from the tree is O(logN) (again, in worst case and as long as the tree does not

degenerate into a list). A particular event generally invalidates O(1) events,

independent of simulation size, since cell subdivision method limits the maximum

number of predicted events per particle.

Advance/Maintain: Binary trees are commonly adjusted to maintain their shape.

This is to prevent their possible degeneration into a list and so a degradation of

performance from O(logN) to O(N). With DMD, however, it has been shown

empirically by Rapaport [138] and verified by us elsewhere, that event insertions are

nearly randomly (and uniformly) distributed with respect to the events already in

the queue. The tree shape is therefore maintained without rebalancing, although

the average access depth can be slightly higher than the minimum.

2.3.4 Paul’s Event Queue (PaulQ)

Much work has been done in optimizing the DMD event queue (see survey in [128])

with the design converging to what we call PaulQ. The event queue is based on work

by G. Paul [128], which leads to a reduction in asymptotic complexity of priority queue

operations from O(logN) to O(1), and a substantial benefit in realized performance.

The observation is that most of the O(logN) complexity of the priority queue

operations is derived from the continual accesses of events that are predicted to occur

50

Figure 2·17: DMD data structures including Paul’s two-level event queue
(PaulQ)

far in the future. The idea is to partition the priority queue into two structures. This

is shown in Figure 2·17, along with most of the other major data structures. A small

number of events at the head of the queue, say 30, are stored in a fully ordered binary

tree as before, while the rest of the events are stored in an ordered list of unordered

lists. Also retained are the particle memory and the per-particle linked lists of events

that are used for invalidations.

To facilitate further explanation, let Tlast be the time of the last event removed

from the queue and T be the time of the event to be added to the queue. Each of

the unordered lists contains exactly those events predicted to occur within its own

interval of Ti...Ti+ ∆t, where ∆t is fixed for all lists. That is, the ith list contains the

events predicted to occur between (T −Tlast) = i×∆t and (T −Tlast) = (i+ 1)×∆t.

The interval ∆t is chosen so that the tree never contains more than a small number

of events.

Using these structures, the basic operations are performed as follows.

51

Dequeue: While the tree is not empty, operation is as before. If the tree is empty,

a new ordered binary tree is created from the list at the head of the ordered list of

unordered lists.

Insert: For (T −Tlast) < ∆t, the event is inserted into the tree as before. Otherwise,

the event is appended to the ith list, where i = b(T − Tlast)/∆tc.

Delete: If the event is in binary tree, it is removed as before. If it is in the unordered

list, it is simply removed from that list. It should be noted that, particle and event

data are stored such that finding an event to delete takes O(1) time.

Advance/Maintain: The ordered list of unordered lists is constructed as a circular

array. Steady state is maintained by continuously draining the next list in the ordered

list of lists whenever a tree is depleted.

For the number of lists to be finite there must exist a constant Tmax such that for

all T, (T − Tlast) < Tmax. In the rare case where this relation is violated, the event is

put in a separate overflow list , which is drained after all the lists have been drained

once. Performance of this data structure (PaulQ) depends on tuning ∆t. The smaller

∆t, the smaller the tree at the head of the queue, but the more frequent the draining

and the larger the number of lists.

2.3.5 Prior Work on Parallelization of DMD

What makes parallelization of DMD, or any DES, difficult, is the very inherent

requirement of DES that all events must be processed in order. There are two ways

to achieve parallelization without violating this requirement.

• The conservative approach, where an event is only processed when it is safe

to do so, that is, when no causality violation will occur.

• The optimistic approach, where events are allowed to be processed without

checking for safety first, but any error is later fixed by some sort of rollback

52

mechanism.

Previous DMD work were based on spatial decomposition of the simulation space,

just like in regular timestep-driven MD; and used one of the two approaches mentioned

above. An example of conservative approach, and also a discussion on difficulties in

parallelizing DES in general, can be found in [56]. While this approach can be useful

in cases where there is a safe window for executing events, e.g. in network simulation

where a packet arrival time may have a lower bound, it is problematic in DMD,

because event propagation time is not known here. Examples of optimistic approaches

can be found in [103, 107, 113], where events are executed optimistically, and any error

is recovered using a rollback to the last known correct state. While workable in one or

two dimensions, spatial decomposition requires too much data communication (e.g. to

handle events that are occurring at the boundary of partitions) for three-dimensional

systems. For cubic decomposition, each thread has to exchange information with a

large number of neighbors (26) for potential conflicts. Or, if decomposition is done

by slices, then it must handle a drastic increase in the ratio of surface area to volume

and so in the number of interactions per thread-pair. The best reported result was

only about
√
P scaling, where P is the number of processors working in parallel (less

than 10x speed-up using 128 processors) [113].

Since the reporting of these works, event processing speed has increased

dramatically, through advances in both processors and algorithms, especially when

contrasted with inter-processor communication latency. This means that

parallelizing DMD through spatial decomposition is likely to be even less efficient

now. We believe this to be one of the main reasons why, prior to our work, all

bio-medical work that used DMD, used a serial version of it.

53

2.4 Chapter Summary

In this chapter we provided necessary background on computations in MD and DMD,

and reviewed related previous work. We note that there has not been any successful

attempt to integrate an FPGA accelerator into a production-level MD package. We

also note that prior work on parallelization of DMD had limited success only. We are

not aware of any production-level parallel DMD application in use for 3D systems, at

least for bio-medical studies, that predates our work.

54

Chapter 3

Parallel DMD (PDMD)

In this chapter we describe our work on parallelizing DMD. We begin with a discussion

on the issues in parallelizing DMD. We then establish our baseline DMD serial code.

This includes a description of the simulation models and experimental methods, as

well as a discussion on selecting various parameters. Next we present our method of

parallelization using event-based decomposition and three possible implementations of

it, including synchronization techniques and other optimizations. Finally we provide

scaling results and analyze them from both application and architectural point of

view.

3.1 Issues in Parallelizing DMD

3.1.1 PDMD Hazards

Parallelizing DMD essentially means processing more events from the queue that just

the highest priority one. This presents certain difficulties. Given three events Eex,

Epre, and Ecan where:

• Eex is the event at the head of the queue being processed at time t,

• Epre is an event predicted due to Eex, and

• Ecan is an event cancelled due to Eex.

Then

55

Figure 3·1: Events AB and CD cause BC and cancel BE. Event FG causes
TU almost instantly and at long distance

• Epre can be inserted at any position in the event queue, including the head,

• Ecan can be at any position in the event queue, including the head, and

• another event E caused by Eex (perhaps indirectly through a cascade of

intermediate events) can occur at time t + ε after Eex where ε is arbitrarily

small and at a distance δ from Eex in the simulation space where δ is

arbitrarily large.

Examples of these occurrences are shown in Figure 3·1. In the lower part, events

EA,B and EC,D occur at times t0 and t0+ε. Previously predicted event EB,E gets

cancelled, even though it is currently at the head of the queue. Newly predicted

event EB,C will happen almost immediately and so it gets inserted at the head of the

queue. The upper part of Figure 3·1 shows how causality can propagate over a long

distance δ. After EF,G, a cascade of events causes ET,U to happen almost instantly

and on the other side of the simulation space. Although long-distance events such

as in Figure 3·1 may appear to be rare, they are actually fundamental to polymer

56

simulations. The polymer forms a chain with rigid links. A force applied to one end

– say, by an atomic force microscope that is unraveling a protein – creates exactly

such a scenario.

These conditions introduce hazards into the concurrent processing of events. In

each of the following cases, let E1 and E2 be the events in the processing queue with

the lowest and next lowest time-stamps, respectively.

Causality Hazards occur when the processing of events out of order causes an event

to occur incorrectly. For example, let event E1 be such that its execution causes E2

to be cancelled, either directly, or through a cascade of new events inserted into the

event queue with time-stamps between those of E1 and E2. Then the sequence E1,

E2 presents a causality hazard and should not be processed concurrently.

Coherence Hazards occur when predictions are made with stale state information.

For example, let E1 and E2 be processed concurrently. Then even if there is no

causality hazard, there may still be a coherence hazard. For example, a particle

taking part in E2 may be predicted to collide with a particle taking part in E1,

but only in the now stale system state prior to update due to the execution of E1.

Coherence hazards can exist only among events in the neighboring cells.

Combined Causality and Coherence Hazards occur as follows. Let a new event

Enew caused by E1 be inserted into the queue ahead of E2 and not invalidate E2, but

still result in a coherence hazard. That is, Enew could change the state used in E2’s

prediction phase, or vice versa.

Efficient detection and resolution of these hazards is a key to creating scalable

parallel DMD codes.

57

3.1.2 Possible Approaches to PDMD

Parallelization of DMD can be achieved in at least three different ways.

Spatial Decomposition: The simulation space is partitioned into some number of

sectors and one or more of these sectors are assigned to each thread. Events can be

processed conservatively, letting no causality hazard occur ever; or optimistically,

allowing some sort of rollback when causality hazard occurs. In any case, this

approach becomes complex for 3D simulations. For cubic decomposition, each

thread must exchange information with a large number of neighbors (26) for

potential conflicts. Or, if partitioning is done by slices, then it must handle a drastic

increase in the ratio of surface area to volume and so in the number of interactions

per thread-pair. Spatial decomposition is likely to become ever more challenging as

the latency ratio of inter-processor communication to event processing continues to

increase.

Functional Decomposition: For any event, there is work that can be performed

in parallel. In particular, there are likely to be predictions needed with respect to

a number of nearby particles. The advantage of functional decomposition within

events is that hazards are not an issue. The disadvantage is that the predictions

can be executed in a few hundred nanoseconds and requiring extremely fine-grained

invocation and synchronization of threads.

Event-based Decomposition or Task Decomposition: Some number of threads

process events in parallel, dequeuing new events as the old ones are processed. This is

the method we propose in this work. The advantage is that concurrency can be tuned

to limit synchronization overhead (described in Section 3.3.3). The disadvantage is

that some serialization cannot be avoided.

While previous PDMD work has been based on spatial decomposition

58

[56, 103, 107, 113], we are not aware of any such systems currently in use for 3D

simulations, at least for bio-medical studies. We are not aware of any system based

on functional decomposition. We believe our system to be the first to use

event-based decomposition.

3.2 Establishing a DMD Serial Baseline

The primary purpose of this section is to describe the parameter selection of the serial

baseline code and then present a profile of that code. In the process we update results

of long-standing issues of cell size and queue insertion policy, as well as describe the

interaction of the latter with the latest queue data structure. We also describe our

simulation models, performance metric and hardware platforms.

3.2.1 Experimental Methods

The baseline code is by Rapaport and is described in Chapter 14 of [139]. This code is

highly efficient being written in C in a “FORTRAN-like” style and including standard

optimizations (such as those described in [31]). All modifications were also written in

C and compiled using gcc (v4.2.4) with O3 optimization. We augmented the baseline

code to support:

• The Lubachevsky insertion policy (in addition to Rapaport’s),

• Paul’s data structure, and

• Spherically symmetric potentials (square-well potential).

The event insertion policy and data structure modifications were validated against

the original code and square-well potential was incorporated into the validated

version. The new potential was verified through checks of internal consistency and

of conservation of physical invariants.

59

Performance was measured on two platforms, an 8-core Intel machine and a 12-

core AMD machine. The 8-core machine was used for all initial measurements, e.g.

profiling of the serial code, comparing event-queuing scheme etc., and other analysis.

The 12-core machine was only used to measure scalability. Below are the detailed

configuration of the machines.

• 8-core Intel machine: A 64-bit, 2-processor, 8-core Dell Precision T-7400

Workstation with 4GB of RAM. Each processor is a quad-core Intel Xeon

CPU E5420 (Harpertown) @2.50GHz. This was built with a 45nm process,

has a Penryn microarchitecture, 32KB L1 I-Cache, 32KB L1 D-Cache, and

two 6MB L2 caches, each shared by two cores. The operating system was

Ubuntu Linux (version 8.04).

• 12-core AMD machine: A 64-bit, 2-processor, 12-core AMD Magny-Cours

Server with 16 GB of RAM. Each processor is a 6-core AMD Opteron CPU

6172 (Istanbul) @2.10GHz. This was build with a 45 nm process, has a

Bulldozer architecture, 64KB L1 I-Cache, 64 KB L1 D-Cache, 512KB L2

Cache, 6 MB of L3 cache shared by the 6 cores. The operating system was

GNU/Linux (version 2.6).

DMD simulations are generally evaluated in terms of events computed per unit

time. For clarity, we count only Payload events. These are pairwise events that

involve two particles crossing discontinuities in potentials, including repulsive collision

between two hard spheres (as shown in Figure 2·15). Overhead events are needed

only to ensure correct simulation and maintain data. There are two such event types.

• Cell-crossing: When a particle crosses the boundary of a cell. This is present

in all models.

60

• Advancement: This is required only if we implement Lubachevsky-style event

queuing [102] where only the earliest event for each particle is queued. If that

earliest event Ea,b for a particle a is a pairwise payload event, but the other

participant b is involved in another event Eb,c before Ea,b takes place, then the

event Ea,b is turned into an advancement event Ea for a. During the processing

of Ea, the position of a is updated and new events are predicted.

In all experiments we simulated 10 million payload events, but in general,

performance is independent of simulation time beyond a brief initialization phase.

Following standard procedures (see, e.g., [139]), the particles were initially

distributed uniformly in a 3D grid. The simulation box size was determined from

the density and the number of particles. Particles were assigned velocities in

random directions, but with a fixed magnitude depending on the temperature.

Velocities were adjusted to make the center of mass stationary. Particles were then

assigned to cells and events were predicted and scheduled for each particle. Runtime

was measured after all initializations were done, and when actual event processing

had begun.

3.2.2 Simulation Models and Conventions

Various models exist to accommodate molecular systems of differing complexity,

flexibility, and desired resolution of the system of interest. They all have in

common, however, the use of spherically symmetric step potentials, some of which

are shown in Figure 2·15. Somewhat surprisingly, DMD simulator throughput (in

events/second) is affected only marginally by model complexity. For example, the

difference in throughput between simulations using a simple square-well, shown in

Figure 2·15b, and complex square-wells, shown in Figure 2·15c and Figure 2·15g, is

negligible (see Section 3.4.1). The reason is that the added model complexity is

61

processed using a switch/case statement to identify the correct discontinuity, which

requires only a few instructions. A similar observation is made for per-particle

differences in step functions, including particle radius. As a result, the simulation

throughput also does not materially change as a function of number of particle

types in the simulation, or whether some particles are covalently bonded or not.

Some factors that do affect throughput are the number of particles, the radius of the

furthest discontinuity from the particle center, and the simulation density.

As a consequence, for this study, instead of parallelizing any particular model in

use, we chose, without loss of generality, a generic simulation framework that

encompasses the properties that have an effect on event throughput. Note that

adding complexity, such as processing reactions rather than simple discontinuities in

potentials, necessarily adds to the work needed per event and so improves the

scalability of most parallelizations. In that sense the performance improvements

reported here are lower bounds.

We use MD units in our study. The simulations are of identically sized hard

spheres of unit diameter and unit mass. Simple square-well in the square-well model,

the main target of this work, is of radius 2.5 unit, unless stated otherwise. Simulated

time is also presented in MD unit time. Conversion from MD units to real units is

immediate and a description with specific examples can be found in [139]. Systems

have periodic boundary with wrap-around effects considered as necessary.

Variations in density and temperature are tested. For density, a liquid-like density

of 0.8 is used by default, but there is little effect on performance until the density

falls below 0.4 (see Section 3.4.1). Temperature variation has virtually no effect on

relative performance (see Section 3.4.1). Cell lists are used to bound the complexity

of event prediction, with cell size fixed at slightly larger than the square-well radius.

The selection of cell size is described in Section 3.2.4. In the experiments we report

62

results for three different simulation sizes: 2K, 16K and 128K particles. There is little

relative change in performance beyond 128K particles. The chosen parameters are

typical for liquid simulation [139] and are sufficiently general to represent most of the

biomolecular DMD simulations reported in the literature.

3.2.3 Selecting PaulQ Parameters

Two parameters, the number of linear lists (n) and the scaling factor (s = 1/∆t)

must be chosen to specify the implementation of PaulQ [128]. The method described

in Paul’s paper to determine these parameters ends up requiring large amount of

memory, due to having too many lists (example: list size of 35x106 for 70K particles).

For our simulations, we determined in a slightly different way that is much simpler

and requires less memory. It should be noted that, as also mentioned in Paul’s paper,

the performance of PaulQ is only marginally sensitive to the choice of s. For example,

a choice of s which results in a doubling of the number of events in the binary tree

results in only one additional level in the tree.

Step 1. Fix the # of lists, n, based on the simulation size (number of particles).

For Rapaport policy: n = Simulation size × 64

For Lubachevsky policy: n = Simulation size

Thus, n is always set to be the same as the size of the event pool, which is the

maximum possible number of predicted events at any given time. In parallel

implementations, since events are deleted in a lazy manner, sometimes we may need

to have more events in event pool than the maximum possible number of predicted

events. However, such case was not observed in the simulations we performed.

Step 2. Tmax (the maximum difference between the time associated with a newly

predicted event and the current time) is determined using cell-crossing events only.

Step 3. The scaling factor s is determined using the following equation: n = s×Tmax.

Step 4. A few other neighboring values are tried for scaling factor and the best value

63

Table 3.1: PaulQ parameters computed for various simulation sizes and
queuing policies

Simulation size 2K 16K 128K

Number Scaling Number Scaling Number Scaling

of Lists Factor of Lists Factor of Lists Factor

Rappaport 131072 1195 1048576 63 8388608 72

Lubachevsky 2048 2304 16384 13696 131072 41984

is chosen.

Values of the parameters determined this way is presented in Table 3.1. Figure 3·2

shows how implementing the PaulQ improved performance for the square-well model

simulation, the main target of this work. For reference, we also present the result for

a simple hard sphere model in Figure 3·3. As shown in these figures, the speed-up

due to PaulQ was more significant for Rapaport style, since it originally had a larger

tree size and more frequent access to the tree. Lubachevsky style already had smaller

sized tree and less frequent updates, hence the improvement was less too. The average

tree size was about 60 for the Lubachevsky policy and about 200 for the Rapaport

policy for the square-well model.

We also examined reducing the number of lists with the more aggressive use of

the “overflow list” (see Section 2.3.4 in Chapter 2). We found, however, that unlike

hardware implementation of this algorithm [77], this optimization has little benefit

here.

3.2.4 Selecting Cell Sizes

Selecting the cell size involves determining the optimal trade-off between the number

of predictions per event (more with a larger cell size) and the fraction of overhead

cell-crossing events (decreases with larger cell size). Setting the cell size to slightly

larger than the cut-off radius ensures that all relevant events can be found in the

64

2K 16K 128K
0

5000

10000

15000

20000

25000

30000
Rap w/o PQ
Rap w PQ
Lub w/o PQ
Lub w PQ

Number of Particles

of

 P
ay

lo
ad

 E
ve

nt
s

/ S
ec

Figure 3·2: Performance of Rap Vs. Lub, with and without PaulQ (PQ), for
square-well model of density 0.8

27 neighboring cells. For higher density systems, such as we assume here for liquid

simulations, this is the cell size we use. The resulting proportion of cell-crossings to

payload events is about 1:5 for the hard-sphere model, and significantly lower for the

square-well model.

For low density systems, especially when they are simulating only hard spheres

with no square-well potential, a substantially larger cell size is naturally optimal. We

found, however, that, for such systems, a density somewhat lower than 1 particle per

cell is preferred; and the cell size should be selected such that 3-6 particles fit in the

27-cell neighborhood.

3.2.5 Selecting Event Queuing Policy

There has been much discussion about the relative benefits of the two best-known

queuing policies, those originated by Rapaport [138] and Lubachevsky [102],

65

2K 16K 128K
0

50000

100000

150000

200000

250000

300000
Rap w/o PQ
Rap w PQ
Lub w/o PQ
Lub w PQ

Number of Particles

of

 P
ay

lo
ad

 E
ve

nt
s

/ S
ec

Figure 3·3: Performance of Rap Vs. Lub, with and without PaulQ (PQ), for
simple hard sphere model of density 0.8

respectively, and reviewed here in Section 2.3.4 and Section 3.2.3. We find that the

discussion is far from over and likely to continue as new algorithms, simulation

models, and computer architectures are explored.

The Rapaport method queues all predicted events and also maintains a linked list

of events for each particle to facilitate event invalidation. Since it saves all predicted

events, cell-crossing events can be implemented efficiently. Unlike the Lubachevsky

method, it does not require advancement events.

One advantage of the Lubachevsky method is that it has fewer events to queue,

although with a small tree accessed with logarithmic complexity, the number of

operations saved may not be large. There is some advantage, however, with respect

to memory hierarchy performance in having a smaller working set size. Another

advantage of the Lubachevsky method is that it avoids the linked lists in the

Rapaport method.

66

There also exists a hybrid approach that saves all predicted events but queues

only the earliest one [109]. This reduces the tree size, but still requires linked lists.

The PaulQ data structure, however, diminishes the advantage of this method, and

the linked list operations dominates. We therefore consider further only the Rapaport

and Lubachevsky methods.

• Use of the PaulQ data structure favors Rapaport because the tree operation

is no longer the most time consuming part. But Rapaport style queuing still

requires linked lists to track all events of each particle. Figure 3·3 and Figure 3·2

show the improvement in both methods when the PaulQ is used.

• Simulation density matters. In low density simulations, particles travel farther

between payload events, causing a higher proportion of cell-crossing events.

This favors Rapaport because, in the Lubachevsky method, regardless of event

type, all neighboring cells must be checked to predict new events. But in the

Rapaport method, for cell-crossing events, only one-third of the neighboring

cells need to be checked. That is, only the newly entered cell-neighborhood

need to be checked.

• Models requiring a large number of predictions per particle, such as square-wells,

favor Lubachevsky because it keeps only the earliest. Models requiring small

numbers of predictions, such as simple hard-sphere, favor Rapaport because it

does not have advancement events.

From our experiments, we have found that the Lubachevsky method performs

better as the system becomes denser and larger, the Rapaport method for the

converse. Since we are here more concerned with the former, we assume the

Lubachevsky method for the remainder of this study.

67

3.2.6 Profiling the Serial Baseline Code

Here we provide a profiling of our final baseline code which uses PaulQ data structure

and Lubachevsky-style event queuing method. Table 3.2 shows event statistics and

serial runtimes. In all cases, the force model was the square-well and density was

0.8. Scaling results in Section 3.4 for the 8-core Intel machine are normalized to these

serial runtimes (scaling results for the 12-core AMD machine are normalized to its

respective serial runtimes).

In profiling the runtime of the serial baseline execution, we found the following

breakdown.

• event execution, including state update, takes 1%;

• event commitment, including queuing operations, takes 3%; and

• event prediction takes 97%.

Table 3.2: Breakdown of event types for runs of 10M payload events using
the serial baseline code

Number of Runtime Cell-crossings Advancements Payload Events (%)

Particles (second) (%) (%)

2K 411 1.3 36.0

Repulsive collision: 13.9

Well entry: 17.6

Well exit: 15.6

Well bounce: 15.6

16K 414 1.3 36.2

Repulsive collision: 12.0

Well entry: 20.0

Well exit: 15.0

Well bounce: 15.5

128K 623 1.8 36.9

Repulsive collision: 6.1

Well entry: 28.3

Well exit: 13.9

Well bounce: 13.1

68

3.3 Parallelizing DMD through Event-based Decomposition

The main idea in our design is to process DMD in a single pipeline (as shown in

Figure 3·4). That is, while a large number of events can be processed simultaneously,

at most one event at a time is committed. As long the serial commitment time of an

event is reasonably low, significant speed-up should be achievable. This expectation

is motivated by the availability of shared memory in modern multicore processors

and by the fact that a priority queue operation now only takes O(1) runtime when

PaulQ is used. Therefore, maintaining a centralized priority queue for events should

not become a major bottleneck anymore.

Viewed another way, this design is of a microarchitecture that processes events

rather than instructions: the logic is analogous to that used in modern high-end CPUs

for speculative instruction execution. In this section we first describe how hazards

and commitment are handled in a pipelined design (see [114] for details). Then we

describe how this design translates conceptually into a multithreaded software version,

and how we actually implement it. We end this section by describing some deeper

software issues and how they can be addressed.

3.3.1 A Pipelined Event Processor

Commitment in a pipelined design (as shown in Figure 3·4) consists of the following

steps: (i) updating the system state, (ii) processing all causal event cancellations,

(iii) new event insertions, and (iv) advancing the event priority queue. As in a CPU,

dependences—this time among events rather than instructions—combined with

overlapped executions cause hazards. And as in a CPU, these hazards are

compounded by speculation.

Causality Hazards: The problem is that a new event can be inserted anywhere in

the pipeline, including the processing stages. But this cannot be allowed because then

69

Figure 3·4: DMD with a dedicated pipelined event processor. The event
queue is several orders of magnitude larger than the processing stages even for
modest simulations

it will have skipped some of its required computation. Insertion at the beginning of the

processing stages, however, results in out-of-order execution which leads to causality

hazards. A solution is to insert the event at the beginning of the processing stages,

but to pause the rest of the pipeline until the event finds the correct slot. This results

in little performance loss for simulations of more than a few hundred particles.

Coherence Hazards: After an event E completes its execution, it begins prediction.

The problem is that there will be several events ahead of E, however, none of which

has yet committed, but which will change the state of the system when they do. This

has the potential to make E’s predictions incorrect because they may be made with

respect to stale data (coherence hazard). One solution begins with the observation

that E is predicting events only in its 27-cell neighborhood. It checks the positions

of the events ahead of it in the predictor stages, an operation we call a neighborhood

check, or hood-check for short. If the neighborhood is clear, i.e., it is hood-safe, then

E proceeds, otherwise it waits. This check results in substantially more performance

loss than that due to causality hazards, but it is still not large for large sized (e.g.

323 or more particles) simulation.

70

Combined Causality and Coherence Hazards: The problem is that an event E

can be inserted ahead of events that have already begun prediction assuming they were

hood-safe. The solution is as follows. As before, E must be inserted at the beginning

of the processing stages. The added complication is that events in the predictor stages

with time-stamps greater than E must restart their predictions. Since the probability

of such insertions is small, however, this causes little additional overhead.

3.3.2 Conceptual Description of Software Implementation

The conceptual implementation of our method on software is shown in Figure 3·5.

• A FIFO is appended to the head of the event queue and contains the events

that are currently being processed. This is analogous to the following

processing components in Figure 3·4: the Event Executor, the Event

Predictor, and Commit. While this FIFO is not necessary algorithmically, it is

useful in visualizing how hazards and synchronization are handled.

• Each event in the FIFO is processed by an individual thread.

• The FIFO is ordered by time-stamp to facilitate handling of hazards, but

processing is not otherwise constrained.

• Events are committed serially and in order. This allows the handling of all

causality hazards.

• Events can be added to FIFO in two ways. They can be dequeued from the

event queue and appended to the back of the FIFO. Or they can be inserted

directly from the predictor.

• All coherence hazards are handled by checking whether any of the preceding

events in the FIFO are in the same neighborhood. Since such hazards occur

71

Figure 3·5: Parallel DMD implemented on software with an event FIFO

rarely (see Section 3.4.2), the hood-check is not done before a thread takes an

event for processing, rather it is done right before committing. A small history

of committed event is maintained for this purpose.

Event handling now contains the following tasks where commitment is explicitly

separated from other processing tasks.

• Event Execution and Prediction: Calculate state updates, predict new events,

and save these as temporary data.

• Synchronization: Wait until the event’s turn to commit.

• Handling potential coherence hazards: Perform hood-checks; restart the event

or update processing results as necessary.

• Committing and, potentially, discarding, the processing result.

3.3.3 Implementing PDMD through Event-based Decomposition

After translating these ideas into the standard DES framework (e.g. Figure 2·16), we

obtain the design in Figure 3·6. There are several implementation issues which must

be handled carefully if any speed-up is to be obtained: serial commitment, including

72

Figure 3·6: PDMD in the standard DES framework

updates of all of the data structures; locks on shared data structures, including the

potential waiting time for threads to obtain new data; and contention in accessing a

shared computing resource, e.g. shared memory.

PDMD through event-based decomposition can be implemented in various ways,

depending on the synchronization scheme. Here we present three implementations

where two implementations (the first and the third) proved to be more efficient than

the other. For all implementations, number of available events at any time is assumed

to be larger than the number of threads.

Implementation of Code 1: In Code 1 synchronization is done using a variable,

EventToCommit, which holds the ID of the highest priority event, i.e., of the event

at the head of the queue. Initially, Thread 0 is assigned the highest priority event

and EventToCommit is set to the ID of that event. Since all threads will poll

EventToCommit to check their turn, no other synchronization is necessary. A

73

thread updates the shared data structures and particle states only when it has

processed the highest priority event. Thus only one thread commits at a time

(updates shared data structures and particle states). A committing thread also

dequeues the next highest priority event available from the event queue, before it

updates the value of EventToCommit. This guarantees that the highest priority

event is always assigned to a thread.

Once an event is assigned to a thread, the event will not be deleted and its turn

to commit will eventually arrive. In the case where it has to be deleted, it is only

marked as canceled; and at commit time it is discarded. This ensures that no thread

ends up in an infinite loop. Hazards (and conversion to advancement events for

the Lubachevsky method) are checked before committing the result of an event. If

hazards (or conversions to advancement events) exist, then the event is reprocessed

as necessary.

As a thread commits an event it notifies all other threads. This information is used

by each thread to handle hazards and conversions. Every thread maintains a fixed-

sized data structure (a list) for this information. If too many threads commit ahead of

a particular thread causing an overflow in the list, then that thread simply reprocesses

its event at commit time. Below is the pseudo-code for this implementation.

Main Thread{

Initialize all data structures, including the event queue;

EndCondition = False;

EventToCommit = The very first event to be processed and committed;

Invoke Worker Threads and assign them each the highest priority event available;

//Only one thread will be assigned the ’EventToCommit’ event

//Main Thread will also continue as a Worker Thread

Wait until all threads are done;

74

}

Worker Thread{

While (Not EndCondition){

Process assigned event;

Wait until ((EventToCommit = assigned event) or (EndCondition));

//Only one thread will reach beyond this point at a time,

//except when EndCondition is true

If (EndCondition) return;

If (Event has been cancelled){

Discard event;

Assign itself the next highest priority event that is available;

EventToCommit = Next event to be processed and committed;

}

Else if (No ConversionToAdvancement and No hazard){

Commit result;

Assign itself the next highest priority event available;

Update EndCondition;

EventToCommit = Next event to be processed and committed;

}

Else {

Update result or re-process the event as necessary;

Commit result;

Assign itself the next highest priority event available;

Update EndCondition;

EventToCommit = Next event to be processed and committed;

}

75

}

}

Implementation of Code 2: Code 1 has a simple synchronization method but

requires threads to wait for their turn to commit. Due to load-imbalances (different

types of events require different amount of processing time), unpredictable cache

behavior, and time to update the common data structures, threads spend much time

waiting. In Code 2, threads do not wait; rather, after processing their assigned events,

they only mark the event as processed. They then acquire a centralized global lock

and try to commit all available events that are already processed. Then, as before,

they assign themselves the highest priority event that is not assigned yet, release the

lock, and start processing the new event.

A centralized fixed-sized list of committed events is maintained. When an event

is assigned to a thread, the current number of committed events is recorded. This

number is used during commitment to determine hazards and conversions. As before,

if too many events have been committed before a processed event can be committed,

making it impossible to determine the hazards and conversions, then that event is

simply restarted. Below is the pseudo-code for this implementation.

Main Thread{

Initialize all data structures, including the event queue;

EndCondition = False;

Invoke Worker Threads and assign them each the highest priority event available;

//Main Thread will also continue as a Worker Thread

Wait until all threads are done;

}

Worker Thread{

76

While (Not EndCondition){

Process the assigned event and mark it as processed;

Acquire Lock;

//Only one thread will reach beyond this point at a time

If (EndCondition) Release Lock and return;

While (The highest priority event is marked as processed){

If (Event has been cancelled){

Discard event;

}

Else if (No ConversionToAdvancement and No hazard){

Commit result;

Update EndCondition;

}

Else {

Mark the event as not-processed;

It will be assigned to some thread again;

}

}

Assign itself the next highest priority event that is available;

Release Lock;

}

}

Implementation of Code 3: Code 2 allows threads to continue immediately after

they have finished processing their assigned event, but it requires continually acquiring

a centralized lock. Since the processing time of an event is short (typically 3 - 60

microseconds), this requirement results in a substantial loss of performance. We

77

have found that instead of allowing all threads to commit and get new work, better

performance can be achieved by assigning a Helper Thread for this purpose. This

mechanism, however, requires synchronization between each helper-worker thread

pair. But now, instead of using one centralized lock, we use separate locks for each

helper-worker thread pair.

The implementation of the locks is done using flags and by allowing threads to

spin on the values of their respective flags (somewhat similar to a ticket-lock). Two

flags, threadGotWork and threadFinishedWork, are used for each helper-worker pair.

The Helper Thread raises the flag threadGotWork for each thread once it has assigned

an event to that thread. Meanwhile, each Worker Thread spins on its threadGotWork

flag until it is raised. Once it is raised, the Worker Thread reads the event data and

resets the flag. When the Worker Thread finishes processing the event, it raises its

threadFinishedWork flag and again waits for its threadGotWork flag to be raised.

The Helper Thread checks the threadFinishedWork flags of all the threads. Once

it is raised by any Worker Thread, the Helper Thread resets that flag, tries to commit

the event, and assigns a new event to that thread. At this point, the Helper Thread

raises that thread’s threadGotWork flag and processing continues.

We declare these flags such that they reside in different cache blocks so that each

thread can spin on their values independently without any false sharing. A

centralized fixed-sized data structure of committed events is maintained; its

processing is analogous to that in the previous codes. Below is the pseudo-code for

this implementation.

Main Thread{

Initialize all data structures, including the event queue;

EndCondition = False;

For (i = 0; i < threadCount; i++){

78

threadGotWork[i] = 0;

threadFinishedWork[i] = 1;

threadEventID[i] = -1;

}

Invoke Worker Threads and assign them each the highest priority event available;

//Main Thread will continue as the Helper Thread with threadNum = 0

Wait until all threads are done;

}

Worker Thread (threadNum){

While (True){

While (threadGotWork[threadNum] = 0){} // wait for flag

If (threadGotWork[threadNum] = -1) return;

eventID = threadEventID[threadNum]; // get event

threadGotWork[threadNum] = 0; // reset flag

If (eventID != -1) Process Event;

threadFinishedWork[threadNum] = 1; // raise flag

}

}

Helper Thread (threadNum){

WorkerCount = Number of worker threads;

While (WorkerCount != 0){

For (i = 1; i < threadCount; i++){ // exclude helper thread

If (threadFinishedWork[i] = 1){ // check flag

threadFinishedWork[i] = 0; // reset flag

If (threadEventID[i] != -1){ // mark this event as processed

79

If (EndCondition){

threadGotWork[i] = -1; // signal end

WorkerCount = WorkerCount -1;

}

else{

threadEventID[i] = next highest priority event available;

//threadEventID[i] = -1 if none available

threadGotWork[i] = 1;

}

}

}

}//end of for loop

Commit highest priority events that are processed;

Handle hazards, conversions, and restarts;

Update EndCondition;

} //end of while loop

}

3.3.4 Efficient Restart

Restarting an event every time there is a coherence hazard (alone or combined with

a causality hazard) is inefficient. We optimize this by updating only the necessary

portion of the prediction.

• In case a payload event has taken place in the neighborhood before the current

event, it suffices to update the prediction for only those particles (one or both)

that took part in that event and are in the same neighborhood.

• In case a cell-crossing event has taken place in the neighborhood before the

80

current event, if that new particle entered the neighborhood, then updating

the prediction only for that particle suffices. If that new particle left the

neighborhood, then (for our implementation) the event must be restarted.

This is because, depending on the time of commitment of that cell-crossing

event, it is possible that the current event may have used the incorrect cell-list

(linked list of particles in the same cell) values.

• In case an advancement event has taken place in the neighborhood before the

current event, theoretically, updating prediction result for that particle is not

needed. This is because nothing about that particle has changed. But, to ensure

compatibility with the serial output, we update the prediction for that particle.

If hardware had infinite precision, this would not be necessary.

3.4 Results

This section is organized as follows. We begin by presenting the basic scalability

results of the three implementations presented in Section 3.3.3, together with a

qualitative analysis. In the following subsections we present more detailed analyses:

determining the parallelism inherent in PDMD with event-based decomposition;

basic modeling of the inherent architectural limitations; and a quantitative analysis

of the most promising implementation, together with an experimentally validated

analytical model that accounts for the details of the target architecture.

3.4.1 Scalability

The experimental setup and the baseline code are described in Section 3.2. The

parallel versions have been created according to the description in Section 3.3. As

described in Section 3.2.2, the energy model is of uniform hard spheres of radius 1

with simple square wells of radius 2.5. As discussed there, this model generalizes,

81

Figure 3·7: Performance scaling of the various Codes (simulation size = 128K
and density = 0.8). For Code 2, performance with different locks is shown

with respect to relative performance, most models described in the literature.

All parallel versions were verified to have complete agreement with their respective

serial versions. This consistency includes complete matches of all particle histories.

The method used was as follows. All events were saved in order with participant

information and time of occurrence. This was done for both serial and parallel versions

which were checked to be exactly the same, including overhead events. Other physical

parameters, e.g., energy, were also checked to have the same values. The codes are

running and have been tested in both Windows and Linux environments (except some

versions that were used to test system-specific implementation of locks).

The primary scaling results are shown in Figure 3·7, Figure 3·8, Figure 3·9, and

Figure 3·10. As shown in Figure 3·7, the best speed-up is achieved by Code 3 with

5.9x for a 128K particle simulation using one helper and seven worker threads (on

the 8-core Intel machine). Figure 3·10 shows scaling results for the 12-core AMD

82

Figure 3·8: Performance scaling of Code 3 for different simulation sizes
(density = 0.8)

machine where the best speed-up is 9.1x with one helper and 11 worker threads. From

Figure 3·7 we can see that Code 2 is clearly not viable, Code 1 performs better for

a smaller number of threads, and Code 3 performs better as the number of threads

increases. This is because Code 3 uses a helper thread: initially the overhead is

apparent, but it rapidly overtakes the other methods.

Figure 3·8 shows the scaling of Code 3 with respect to simulation size: not

surprisingly, better scaling is achieved for larger simulations, and the benefit of

parallelization diminishes somewhat with small sizes (2K). This is mostly because of

an increase in coherence hazards (see Section 3.4.2). Since Code 3 appears to be the

preferred method, we discuss its performance in detail in the next subsections.

Code 1 has two inefficiencies that result in threads waiting additional time to

commit. One is uneven load-balance. Payload events spend more time in event-

prediction than do in cell-crossing events or advancement events. This is because a

83

Figure 3·9: Performance scaling of Code 3 for different densities on the 8-core
Intel machine (simulation size = 128K)

payload event predicts events for two particles, whereas the other types predict for

only one particle. The other is increased cache misses and the random occurrence of

those misses. Thus the order of start-of-processing does not guarantee the order of

end-of-processing.

For Code 2, we note that the performance collapses suddenly with four or more

threads. This is because of the bottleneck at the centralized lock and the small

processing time per event. We performed extensive tuning of the lock, starting

initially with the standard Linux function Mutex. We found that this Mutex has an

undesirable system call and so replaced the function with various hand-tuned

alternatives: Test&Set, Test&Test&Set, and Test&Test&Set WithFixedDelay (see,

e.g., Culler et al., [41]). As shown in Figure 3·7, none of these did significantly

better than the original.

Figure 3·9 and Figure 3·10 show how relative performance varies with particle

84

Figure 3·10: Performance scaling of Code 3 for different densities on the
12-core AMD machine (simulation size = 128K)

density. There is apparently little variation for densities higher than 0.4. The effect

of density on scaling is that it changes the amount of work per event: As density

increases, more particles must be checked for potential events, meaning more work to

do in parallel.

A number of other parameters were tested but found not to affect relative

performance:

• Various combinations of temperatures and particle densities with a temperature

range from 0.4 to 1.6 and particle density from 0.1 to 0.8.

• Model complexity with number of steps in the square well ranging from 1 to 15.

3.4.2 Available Concurrency

In this subsection we measure the available concurrency in PDMD (with

event-based decomposition) for the simulation models described. Event-based

85

decomposition enables all events to be executed concurrently as long as they are

independent. Since this independence is hard to determine a priori—as the system

state is changing continuously and unpredictably—all events but that at the head of

the queue are essentially processed speculatively and so may result in work being

wasted. There are two possible reasons for this: (i) The event may need to be

invalidated due to a causality hazard (and possibly be converted into an

advancement event), and (ii) the event prediction may need to be recomputed due

to a coherence hazard.

Effect of Causality Hazards: Recall that causality hazards occur, causing the

cancellation of a speculatively processed event E, when a particle P involved in E has

been involved with a preceding event. In the Lubachevsky method this only happens

if an event Enew involving P is inserted ahead of E after E has begun processing. We

have examined the queue positions into which new events are inserted and have found

that the positions are nearly uniformly randomly distributed. Moreover, the number

of events in the queue is in the same order (more than half) of the number of particles

being simulated. We find, therefore, that for likely numbers of threads T and particles

N , the probability that an event will be part of a causality hazard Pcausality ' T/N .

This makes the loss of concurrency due to causality hazards negligible. A consequence

is that few events are inserted into or deleted from the binary tree part of the PaulQ.

Therefore, no additional FIFO-like data structure is needed. Instead, the binary tree

is used directly to retrieve the highest priority events.

Effect of Coherence Hazards: Recall that coherence hazards occur when the

predictions made during the processing of an event E may have been made using

stale data. This occurs when an event preceding E is committed after E has begun

processing and has occurred within the 27-cell neighborhood of E. We have examined

86

Figure 3·11: Events that are processed but not committed represent wasted
effort only. Restarted events represent, in addition to wasted effort, the need
for the payload effort to be serialized. Graphs are for Code 3 and 128K particles

the spatial distribution of committed events and found that their locations are nearly

uniformly and randomly distributed. The probability that there will be a coherence

hazard is therefore related to the number of threads T , the particle density ρ, and

the ratio of the volume of the cell neighborhood to the overall simulation space.

We use here 64 cells rather than 27 cells for cell neighborhood, because an event

can involve particles two neighboring cells. Given a square-well radius of dsq (cell

dimension slightly larger than dsq) and a number of particles N , then the probability

of a coherence hazard is approximately Pcoherence ' 1 − (1 − ρ × 64 × d3sq/N)T−1.

Plugging in typical values of ρ = 0.8, T = 8, dsq = 2.5, and N = 128K, we obtain

Pcoherence = 0.042. This value of Pcoherence, however, serves only as an upper bound

on the number of restarts due to coherence hazard: most can be avoided by using the

methods for efficient restart described in Section 3.3.4.

We now relate the theory to the actual implementation and effect on execution

87

time. Figure 3·11 shows the measured fraction of the events that are processed but

not committed and the events that need to restart. The latter events are a subset of

the former because every restarted event has been processed before it is restarted.

Restarts are mostly due to coherence hazards, but a small fraction are also caused by

causality hazard. The fraction that is processed but not committed includes both the

events that were restarted and the events that were processed but canceled later due

to a causality hazard.

Note that updating the prediction results and detecting the need to restart is

handled by helper thread during commitment. If an event needs to be restarted, it

is immediately processed and committed by the helper thread. This means that the

restart latency is often hidden and worker threads can continue processing new events

in parallel. These complex effects account for the non-linear behavior in Figure 3·11.

The most important conclusion from this subsection is that lack of available

concurrency is likely to affect performance by only a fraction of a percent, and is not

likely to affect scalability as much as architectural limitations (see Section 3.4.4).

3.4.3 Simple Model of Limitations on Scalability

In this subsection we present a simple analytical model for the limit on scalability.

The two constraints are (i) serial commitment, and the associated synchronization

overhead, and (ii) serialized memory access due to the shared bus. Each

event-processing task has four components:

Icpu = CPU portion of independent code (independent: can be done in parallel),

Imem = Memory portion of independent code,

Scpu = CPU portion of synchronization code (synchronization: cannot be done in

parallel), and

Smem = Memory portion of synchronization code.

Assuming that the application is not memory bound and that computation and

88

Figure 3·12: Roofline model for task-decomposed PDMD

memory access can be overlapped, processing time of an event by a single processor

= Icpu + Scpu.

Constraint 1 – synchronization. For multiple processors P handling separate events,

the Icpu can be processed in parallel while the Scpu must processed serially.

Synchronization can be hidden as long as

P ∗ Scpu ≤ Icpu + Scpu;

that is, PSyncLimit = (Icpu + Scpu)/Scpu.

Constraint 2 – shared memory. Similarly, the memory components can be hidden

until the memory system approaches saturation:

P ∗ (Imem + Smem) ≤ Icpu + Scpu;

that is, PShMemLimit = (Icpu + Scpu)/(Imem + Smem).

If neither of the constraints is in effect, then the application scales linearly. Otherwise

maximum scaling is PSyncLimit or PShMemLimit, depending on which is stronger.

From measurement, we find that Scpu takes a little less than 5% of the total

89

time of event processing with a single processor. We note that the bottleneck due

to Imem + Smem can be represented by the increase in utilization rate of the shared

bus. This was measured to be approximately 4% per thread. It should also be

noted that bus utilization rate does not necessarily increase linearly with number

of threads and a practical saturation point is well below 100%. Here we use 70%

to be the saturation point of bus utilization. Therefore, for our target platform,

when Constraint 1 dominates, the maximum linear scaling PSyncLimit = 20; when

Constraint 2 dominates, the maximum linear scaling PShMemLimit = 17. These limits

are represented using the roofline model in Figure 3·12 [175].

3.4.4 Architectural Limitations on Scalability

To account for the difference between the achieved speed-up and a perfect scaling, we

analyze in more detail the interaction between the application and the architecture of

the target hardware. As shown in Figure 3·13, the processing time per payload event

itself increases by about 25% as the number of threads is increased to 8. This increase

in event processing time is the reason why a perfect scaling is not achieved. Of this

increase, roughly 40% is due to synchronization overhead, including synchronization

timing mismatch, while the rest 60% is due to the increase in cache misses and bus

utilization.

Figure 3·14 shows total cache misses and rate of bus utilization for the entire

simulation period for the different numbers of threads. The data were collected with

VTune (vtune linux 9.1) [106, 140] using separate simulations of size 128K. We

observe that the count of total cache misses increases slightly with the number of

threads. This indicates that there is neither significant data reuse by a single thread

nor data sharing among threads; these would cause substantial increases and

decreases in cache misses, respectively. More likely is that the modest increase is

related to synchronization: more threads means more misses on explicitly shared

90

Serial ParT2 ParT3 ParT4 ParT5 ParT6 ParT7 ParT8
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Sync
Compute

Pa
yl

oa
d

Ev
en

t P
ro

ce
ss

in
g

Ti
m

e
(N

or
m

al
ize

d)

Figure 3·13: Event processing time as a function of number of threads (Code
3, size 128K)

data.

We observe also that bus utilization increases roughly linearly with the number of

threads with exceptions between 1 and 2 and between 7 and 8. The first exception is

because of the shift between serial and parallel code with the latter having helper and

worker threads. The second exception is most likely due to system effects as no CPU

cores remain free. We note that the increase in bus utilization increases memory

latency through queuing and other delays. We have tested the memory hierarchy

and found that, for random accesses (non-DMA), the performance saturates at 60%

utilization rate of the bus.

These results match those of Section 3.4.2: that threads are almost always working

on events in different neighborhoods and thus different data sets. And since every

prediction requires accessing data of a new particle, there is little reuse or sharing of

91

Figure 3·14: Rate of memory bus utilization and total number of L2 cache
misses as a function of number of threads (Code 3, size 128K)

cached data.

To confirm our analysis on architectural limitation we use the following

procedure. First, we project PDMD performance based on the fact that the

addition of each thread increases individual event processing time. Second, we

validate the projection against the observed scaling result. Third, we present a

hypothesis that the majority of the increase is due to architectural limitation. And

finally, we validate the hypothesis by using a microbenchmark that has data access

pattern similar to those of the application.

The addition of each thread increases individual event processing time.

Therefore, speed-up is limited by that increase rate. For example, if using 7

processors causes 30% increase in processing time, then speed-up = (Original

Processing Time)/(New Processing Time/7) = 100/(130/7) = 7/(1 + 0.3) = 5.38.

For PDMD, the addition of each thread causes roughly a 5% increase in event

92

Figure 3·15: Overlap of scaling result for an analytical model with PDMD
scaling result

processing time. Of this, about 2% is due to synchronization timing mismatch,

confirmed from measurement in Figure 3·13, and the rest is due to the increased

time in memory access. The latter portion is a hypothesis based on the increase in

cache misses and bus utilization.

Based on the above discussion, the equation of projected speed up for

implementation 3 is,

Speed-up = # of worker threads / (1 + increase rate × # of worker threads).

For example, for 8 processors (7 worker threads), the projected speed-up = 7/(1 +

0.05 × 7) = 7 / 1.35 = 5.18; the observed speed-up is 5.36. For 7 processors (6 worker

threads), projected speed-up = 6/(1 + 0.05 × 6) = 6 / 1.30 = 4.61 and observed

speed-up is 4.82. Thus the projection conforms well with the observed results, as

shown in Figure 3·15.

To confirm our analysis on architectural limitation, we designed a microbenchmark

93

that has a data access pattern similar to our DMD application: Data of similar size

is accessed in nearly random fashion. Figure 3·15 shows how the scalability result

of that program overlaps with our DMD application, confirming the fact that the

increase in data access time is a major obstacle to good scaling of PDMD. Therefore

with a 5% increase in event processing time per thread, the projected runtime, with

more than two threads T = (serial runtime × (1 + 0.05 × (# of threads -1))) / (#

of threads - 1).

We validate our hypothesis that a 3% increase in event processing time per

additional thread is caused by architectural limitation, i.e., the increase in cache

miss count and bus utilization. We created a program that has a single loop and

accesses different portions of a large data set randomly in each iteration. We kept

the data size the same as our DMD application. If our hypothesis was correct, the

scaling pattern of this program would resemble the scaling pattern of DMD. In fact,

as shown in Figure 3·15, the scaling result of the random access program almost

perfectly overlaps with the DMD result. DMD scales slightly better, since its data

access is not entirely random. We conclude that we have accounted for the

architectural limitations that limit the scalability of PDMD with event-based

decomposition.

3.5 Chapter Summary

In this chapter we systematically defined the issues in parallelizing DMD, and

presented our method of parallelization, where events are processed in parallel but

committed in serial. We provided three possible implementations, including

synchronization and other optimization techniques. Our task-decomposed method is

micro-architecture inspired and motivated by the availability of fast shared memory

in modern CPUs and by a recent advancement in DMD data structure (PaulQ),

94

which allowed us to achieve very low serialization overhead. Our final

implementation achieved over 5.5x (8.5x) speed-up on an 8 (12) core CPU, with

potential for further strong scaling. Our analysis shows that lack of concurrency in

the application and contention for shared resources in the hardware are the major

factors that prevent perfect scaling.

95

Chapter 4

FPGA Kernel for Acceleration of MD

The kernel we use in this study was introduced in Section 2.2.3. Here we provide a

system-level overview, followed by a board-level description of the design. Then we

discuss some of the key features of the design that will be important in a full-parallel

integration. Finally, we describe how we improved the performance of the kernel by

exploring the design space of the table interpolation method and utilizing the Block

RAM (BRAM) architecture of the FPGAs. We begin with a description of FPGAs

in general, followed by a description of the specific target platform.

4.1 FPGA Architecture

FPGAs have traditionally been known for their programmability and energy

efficiency. In recent years, they have been equipped with dedicated multipliers and

individually accessible BRAMs of different granularity [5, 177]. EDA tools support

efficient floating point compilation [98]. All these have made FPGAs candidates for

accelerating scientific applications such as MD.

Configurable Logic: Configurable logic blocks of FPGAs have evolved from simple

4-input Look-up table (LUT) and register combination to combinations of multiple

4-6 input LUTs, registers, adders and shift-registers. They provide bit-level control,

fine-grained parallelism, deep pipelining, and data broadcast facilities. An example

of such a module is shown in Figure 4·1.

96

Figure 4·1: Block diagram of Adaptive Logic Module (ALM) of an Altera
FPGA [4]

Configurable Memory Interface: Unlike CPUs or GPUs, FPGAs provide on-chip

memory, called Block RAM (BRAM), that can be configured for various different

granularity. A typical high-end FPGA has thousands of 32-bit BRAM ports for an

aggregate bandwidth in the terabytes per second. FPGA boards also come with on-

board DRAMs with 16 GB - 64 GB being common. Together, they give designers

tremendous control over data storage and transfer, which is a key issue in many

applications.

DSP Blocks and Vendor IPs: High-end FPGAs come with dedicated multiplier

blocks and other vendor IP, e.g., shift-registers and FFT blocks. These make

development of scientific applications easier and more efficient.

Floaring-point Compiler: FPGAs have typically been stronger in fixed point

arithmetic. But most scientific computations require floating point operation.

97

Altera provides a floating point compiler that generates efficient FPGA code for

floating point operation from C code [98].

Data Transceiver: High-end FPGAs are equipped with very fast transceivers for

data communication [5, 177]. These are essential in the FPGAs’ core market:

communication switching. This resource is only beginning to be tapped for scientific

computing and promises to distinguish FPGA-based systems from their

alternatives.

4.2 Target Platform and Simulation Benchmark

The target platform for the FPGA kernel of this work is a Gidel PROCStar III board

[59, 60, 61]. It is a PCI-based system with 8-lane PCI Express (PCIe x 8) host

interface. The block diagram of the system is shown in Figure 2·13.

The system consists of four FPGA units, Altera Stratix III SE260 FPGAs, and

is capable of running at system speeds of up to 300 MHz. The FPGAs communicate

with a host via a PCIe bus interface. Each processing unit contains the following

components:

• Altera Stratix III SE260 FPGAs

• 256 MB on-board DDR II SDRAM (bank A)

• 2 x 2 GB DDR II memory (bank B and bank C) via SODIMM sockets

• 2 PROCStar III Daughterboard connections

The system is able to deliver high-performance FPGA solution with massive

capability and throughput memory. Its memory performance is summarized in

Table 4.1.

98

Table 4.1: Gidel PROCStarIII memory performance [59]

Bank A Bank B Bank C

(On-board) (SODIMM) (SODIMM)

Capability 256 MB x 4 2 GB x 4 2 GB x 4

Performance (DDR) 667 MHz 667 MHz 360 MHz

Throughput 16 GB/s 16 GB/s 8.5 GB/s

Throughout this dissertation, we use the ApoA1 benchmark of NAMD [130] to

evaluate our work on FPGA-accelerated MD. This benchmark has 92,224 particles

of 47 types, and uses PBC with an original simulation box of 108Å × 108Å × 78Å.

It uses a cut-off radius of 12Å for range-limited force computation, and a switching

function is applied to smooth the force when the inter-particle distance is between

10Å and 12Å. The Coulomb force is evaluated using the PME method. We compute

the long-range portion of PME every tiemstep.

4.3 Description of the Kernel

4.3.1 System-level Control Flow

The kernel is implemented on a Stratix-III FPGA on the Gidel ProcStar-III which

is integrated into a host PC through a high-speed PCIe bus. Figure 4·2 shows the

control flow of the FPGA-accelerated MD, where range-limited non-bonded force

computation is off-loaded to the FPGA kernel. The left hand side shows the steps

executed on the software and the right hand side shows the steps executed on the

FPGA.

Before invoking the FPGA kernel, the software first initializes it by clearing on-

board memory and on-chip caches; and by setting up necessary simulation parameters,

e.g. numeric precision, number of cells etc. Particle data are prepared and sent to

the on-board memory banks via PCIe bus using DMA. Such preparation includes any

99

Figure 4·2: Control flow of the FPGA-accelerated MD [37]

conversion of particle position data from double-precision to single-precision floating

point, as well as packing them together according to their cell-list ID. Cell-list data

also needs to be created if it is not already available. Cell-list data is sent in a simple

form of a single-item list where each item corresponds to the number of particles in

that cell. In the current implementation of the design, particle type and cell-list data

is stored in Bank C, where as position and charge data are saved in Bank B. Results

of the force computation are stored in Bank A. This allows seamless access to on-

board data during force computation, as well as independent DMA between the host

and the FPGA board.

After DMA operations are completed, the host issues a “start” signal to the

100

FPGA to indicate that data are all updated now and it is okay to begin force

computation. Once “start” signal is received by the FPGA, the controller on the

user design initializes the force pipelines, loads data from the off-chip memory to

on-chip caches and begins force computation.

After forces of all particles are computed, a “done” signal is sent back to the host,

which then reads the force data using DMA. These forces are then, after possibly

being converting to double-precision floating point, added to other forces, e.g. bonded

terms, that were computed on the host. Evaluation of other forces on the host can

be overlapped with the computation on the FPGA kernel.

4.3.2 Board-level Integration

The system-level diagram of the FPGA-accelerated MD design is shown in Figure 4·3.

The host runs the MD software and communicates with the accelerator board through

PCIe bus. The accelerator board consists of a high-end FPGA, memory blocks, and

a bus interface. Besides configurable logic, the FPGA has dedicated components

such as independently accessible multiport memories (e.g., 1000 x 1KB) and a similar

number of multipliers.

FPGA itself is divided into two main components, user design and vendor logic.

Vendor logic is dedicated to system (non-application) functions such as memory

controllers and occupies about 10%-15% of the FPGA’s logic in the implementation.

User design contains the computational engine of the MD accelerator, including

control logic, filter banks, and force pipelines. In additional to the central

computational logic, it also includes BRAMs to store particle data and forces, and

simulation parameters.

On the accelerator board, three memory blocks, including one 256MB on-board

memory (bank A) and two 2GB DDR2 SODIMMs (bank B and C), are used for

data storage (coordinates, charges, types and forces). Coordinates and charges are

101

Figure 4·3: System architecture of the FPGA-accelerated MD design [37]

grouped together and stored in bank B and particle types are stored in bank C. Bank

A is used to collect computed forces for each particle. Coordinates, charges and forces

are 32-bit single precision floating point numbers. Particle types are represented in

reduced precision integers and the required precision depends on how many particles

are supported in simulations. One limitation of bank C is that it only runs at half

frequency (167 MHz) of bank A and B (333 MHz). Therefore, compact-sized data

(e.g., particle types) are stored in Bank C, to prevent their access from becoming

a critical path. PCIe interface is responsible of the management of communication

between the host and accelerator.

4.3.3 Cell-list and Filtering

Cell-list and Neighbor-list methods were described in Section 2.1.6 as ways to reduce

the complexity of the range-limited non-bonded force computation. Cell-list method is

simple but only about 15% of the checked particle-pairs fall within the cut-off distance.

This inefficiency is improved in neighbor-list method at the cost of additional memory.

While neighbor-list method is proved to be efficient on CPUs, the requirement of

102

additional memory makes it prohibitive for FPGA implementation. If neighbor-lists

are computed on the host, it will require a large amount of data communication

between the host and the FPGA. Even if they are computed on the FPGA, they will

require too much storage. That is why, in this work cell-list method is chosen, but

low-cost filtering is used to improve its efficiency. A number of low-precision filters are

used in parallel to filter out the particle-pairs that are certainly not within the cut-off

distance. Only the remaining particle-pairs are sent to the force pipeline for final

evaluation and force computation. This method can also be seen as a neighbor-list

method where instead of saving and re-using the lists, they are computed on-the-fly

every timestep.

While this method is efficient on the FPGA, it requires creation of cell-lists on

the host every timestep.

4.3.4 Half-moon Mapping Scheme

The efficiency of the FPGA kernel is directly related to the efficiency of the force

computation pipelines. In the kernel we use, multiple pipelines work in parallel to

compute forces. At one time, each pipeline is responsible for computing forces of a

certain particle, called the reference particle, in the current reference cell, called the

home cell. Since the registers for all the reference particles are set in batch, and their

results are also written back to memory in batch, it is important to make sure that

each of these particles have similar number of interacting particles. Otherwise, some

of the force pipelines will waste time waiting for others to finish. This preference

becomes critical when there are a large number of force pipelines and a much larger

number of filter pipelines.

Standard methods of mapping scheme give rise to a load-balance issue here. In

order to use Newton’s third law, so that a force between a particle-pair is only

computed once, only a “half-shell” of the surrounding cells is examined. Figure 4·4a

103

Figure 4·4: 2D illustration of two partitioning schemes that use Newton’s 3rd
Law. a) 1-4 plus home are examined with a full sphere b) Half-moon scheme
where 1-5 plus home are examined, but with a hemisphere [33]

shows a 2D example, where cells 1-4 and home cell is examined. As illustrated,

particle B has a much smaller number of particles to interact than does particle A.

This imbalance of load is addressed in the design by introducing a novel mapping

scheme, called “half-moon” scheme, where only particles at the right side of a reference

particles are considered for force computation. Although this increases the number

of cells to check, it ensures a better load-balance for the force pipelines. Figure 4·4b

shows an example in 2D, where cells 1-5 and home cell are examined in the new

scheme.

4.3.5 Particle Exclusion

While combining various forces before computing acceleration is a straightforward

process of linear summation, careful consideration is required for bonded pairs when

using hardware accelerators. As described in Section 2.1.4, covalently bonded pairs

need to be excluded from non-bonded force computation. One way to ensure this

is to check whether two particles are bonded before evaluating their non-bonded

forces. This is expensive because it requires on-the-fly check for bonds. Another

104

Figure 4·5: Graph shows van der Waals interaction with cut-off check with
saturation force

way is to use separate neighbor-lists for bonded and non-bonded neighbors. Both of

these methods are problematic for hardware acceleration: one requires implementing a

branch instruction while the other forces the use of neighbor-lists, which is impractical

for hardware implementation.

A way that is often preferred for accelerators is to compute non-bonded forces

for all particle-pairs within the cut-off distance, but later subtract those for bonded

pairs in a separate stage. This method avoids both on-the-fly bond checking and

neighbor-lists. There is a different problem here though. The r14 term of the LJ force

(Equation 2.2) can be very large for bonded particles because they tend to be much

closer than non-bonded pairs. Adding and subtracting such large scale values can

overwhelm real but small force values. Therefore, care needs to be taken so that the

actual force values are not saturated.

This kernel applies a short cut-off to the non-bonded force calculations based on

the fact that two particles that are not bonded generally cannot be too close to each

other. Therefore, two particles within a certain short distance are likely to be bonded.

The short cut-off distance can be calculated by solving the inequality Fshort < range,

where range is the dynamic range with a reasonable force value. The left term of

105

the inequality is dominated by the 14 term of Equation 2.2. Multiple short cut-off

values are required as this depends on the particle type. A simple graph is shown in

Figure 4·5 to demonstrate this concept.

If the exclusion cut-off is chosen conservatively, two particles will be bonded as long

as their intra-distance is smaller than the exclusion distance. For bonded particle-

pairs whose intra-distance is larger than the exclusion cut-off, the non-bonded force

is subtracted in the host. Since the exclusion distance check in FPGA is performed

in integer arithmetic while it is done in double-precision floating point in the host,

an inconsistency may occur when the distance between two particles is very close

to the exclusion cut-off. In order to minimize the impact of this inconsistency, a

saturation force is applied if the intra-distance between two particles is smaller than

the exclusion cut-off, as shown by the saturation line in Figure 4·5.

4.4 Improving Performance using Block RAM (BRAM)

Architecture

4.4.1 Exploring Design Space of Table Interpolation

Table interpolation method was introduced in Section 2.1.7 as an alternative to direct

computation of forces. This method is often used to compute the pairwise range-

limited non-bonded forces, as shown in Equation 4.1.

Fshort
ji

rji
= Aabr

−14
ji +Babr

−8
ji +QQab(r

−3
ji +

g′a(r)

r
) (4.1)

Here, the first two terms compute the van der Waals force and the third the Coulomb

force. Aab, Bab, and QQab are distance (r) independent coefficients that depend

on atom types of a and b, and the g term is a correction for integration with the

long-range force. While computing these terms directly is certainly a viable option,

it often becomes computationally expensive. For example, evaluating the Coulomb

106

term requires computing r, which in turn requires square-root computation of r2. It

also requires evaluating expensive functions like erfc. Computing otherwise simple

van der Waals force can be complicated too, if switching function is used.

To avoid these direct computations, Equation 4.1 is rewritten as

Fshort
ji (|rji|2(a, b))

rji
= AabR14(|rji|2) +BabR8(|rji|2) +QQabR3(|rji|2) (4.2)

where R14, R8, and R3 are looked-up from tables indexed with |rji|2 (rather than |rji|

to avoid the square-root operation).

As mentioned in Section 2.1.7, accuracy of computation increases both with the

number of bins (intervals) per segment and with the order of interpolation. While

increasing bins per segment requires more memory for storing parameters, increasing

order of interpolation requires more logic for implementation of actual computation.

Thus it may be possible to trade one with another, storage vs. logic, as long as the

quality of computation is acceptable.

We first provide a survey of table interpolation methods used in some of the widely

used MD software packages.

• NAMD (CPU) – Ref: [130] and Source code of NAMD2.7

Order = 2 bins/segment = 64 Index: r2

Segments: 12 – segment size increases exponentially, starting from 0.0625

• NAMD (GPU) – Ref: [162] and Source code of NAMD2.7

Order = 0 bins/segment = 64 Index: 1/
√
r2

Segments: 12 – segment size increases exponentially, starting from 0.0625

• CHARMM – Ref: [24]

Order = 2 bins/segment = 10-25 Index: r2

Segments: Uniform segment size of 1Å2 is used which results in relatively more

107

precise values near cut-off

• ANTON – Ref: [99]

Force Table Order = Says 3 but that may be for energy only. Value for force

may be smaller.

of bins = 256 Index: r2

Segments: Segments are of different widths, but values not available, nor

whether the number of bins is the total or per segment.

• GROMACS – Ref: [79] and GROMACS Manual 4.5.3, page 148

Order = 2 bins = 500 (2000) per nm for single (double) precision

Segments: 1 Index: r2

Comment: Allows user-defined tables.

Clearly there are a wide variety of parameter settings. These have been chosen

with regard to cache size (CPU), routing and chip area (Anton), and the availability

of special features (GPU texture memory). These parameters also have an effect on

simulation quality, which will be discussed later.

What we focus on here is the fact that there is no need to blindly follow the

parameter settings of the reference software code. Rather, we can choose parameters

that suit the resources available on the accelerator. In particular, FPGAs are

equipped with BRAMs, which may let us to use more bins per segment allowing

lower order of interpolation. This will save logic resources, which can then be used

to implement more force computation pipelines. Depending on the availability of

such complementary resources, this approach may improve overall performance.

4.4.2 Studying Simulation Quality

Since MD is chaotic, simulation quality must be validated. This is especially true

when we chose parameters that are different from those in the reference software.

108

Here, we study the quality of simulation for different parameter settings of the table

interpolation method. Quality measures can be classified as follows (see, e.g., [51,

122, 153]).

• Arithmetic error here is the deviation from the ideal (direct) computation

done at high precision (e.g. double-precision floating point). A frequently used

measure is the relative RMS force error, which is defined as follows [152]:

∆F =

√√√√(∑i

∑
α∈x,y,z[Fi,α − F ∗i,α]2∑
i

∑
α∈x,y,z[F

∗
i,α]2

)
(4.3)

• Physical invariants should remain so in simulation. Energy can be monitored

through fluctuation (e.g., in the relative RMS value) and drift. This work used

following expression (suggested by Shan et al. [152]):

∆E =
1

Nt

Nt∑
i=1

|E0 − Ei
E0

| (4.4)

where E0 is the initial value, Ni is the total number of time steps in time t,

and Ei is the total energy at step i. Acceptable numerical accuracy is achieved

when ∆E ≤ 0.003.

We use these metrics to validate the quality of FPGA-accelerated simulation.

Results are presented for the ApoA1 benchmark described in Section 4.2. NAMD-

Lite, the reference software, was modified to support the quality measurements [73].

To determine the force error, NAMD-lite was modified to support the various

functions. The simulation was first run for 1000 timesteps using direct computation.

Then in the next timestep, both direct computation and table interpolation were

used to find the relative RMS force error for table interpolation. Only the

range-limited non-bonded forces (switched VdW and range-limited portion of PME)

were considered. All computations were done in double-precision floating point and

109

Figure 4·6: Relative RMS Force Error versus bin density for interpolation
orders 0, 1, and 2

Equation 4.3 was used to compute the relative RMS. Results are shown in

Figure 4·6. We note that 1st and 2nd order interpolation have two orders of

magnitude less error than 0th order. We also note that with 256 bins per segment

(and 12 segments) 1st and 2nd order are virtually identical.

Preliminary results with respect to energy fluctuation and drift are shown in

Figure 4·7. A number of design alternatives were examined, including the original

code and all combinations of the following parameters: bin density (64 and 256 per

segment), interpolation order (0th, 1st, and 2nd), and single and double-precision

floating point. We note that all of the 0th order simulations are unacceptable, but

that the others are all indistinguishable (in both energy fluctuation and drift) from

the serial reference code running direct computation in double-precision floating

point.

110

Figure 4·7: Energy for 20,000 timesteps for various designs. Except for
0-order, plots are indistinguishable from the reference code

Energy plot for longer runs of 100,000 timesteps is provided in Figure 4·8, which

shows good energy conservation in the FPGA-accelerated versions. Only a small

divergence of 0.02% was observed compared to the software-only version. ∆E value,

using Equation 4.4, for all accelerated versions were found to be much smaller than

0.003. For example, after 70,000 timesteps, the value of ∆E were all less than 1.5E-

07.

4.5 Results

Performance is directly related to resources consumed, as shown in Table 4.2. All

of these designs have been implemented and run on the Gidel board. Time shown

here is the runtime of the kernel in a timestep. We note that the number of pipelines

increases from 4 of direct computation (DC) to 5 to 6 to 7 with interpolation order 2,

1, and 0, respectively. According to the quality results, the six pipeline design with 1st

111

Figure 4·8: Energy for 100,000 timesteps for selected designs

order interpolation is likely to be preferred. This design takes advantage of the BRAM

architecture and increases performance by almost 50% over direct computation. The

resource utilization results indicate that the limiting factor is the logic resources,

mostly registers. An interesting observation is that number of bins is not a major

concern and could be doubled if needed to achieve better simulation quality.

Thus, by using 1st order interpolation, rather than 2nd order interpolation

which is the choice of the reference software, we maintain the simulation quality

while achieving better performance. This is largely a consequence of the number of

interpolation intervals (bins) that we were able to use: over 3,000 for each of the

three terms in Equation 4.2. Our ability to do this is a direct result of the

availability of BRAMs in high-end FPGAs. By comparison, the 72 KB storage

needed for these tables would swamp the L1 data cache of a modern CPU core and

would likely reduce performance substantially.

We have also synthesized the designs with respect to the Stratix IV EP4SE530

112

Table 4.2: Resource utilization and performance of various pipeline
configurations on the Stratix III EP3SE260 (bins/segment = 256)

LUP Order 0 LUP Order 1 LUP Order 2 DC

Multipliers 67% 63% 66% 68%

Logic 87% 88% 85% 94%

BRAM (M9K) 89% 86% 89% 62%

BRAM (M144K) 87.5% 75% 62.5% 50%

Number of Pipeline 7 6 5 4

Timing (ms) @ 200 MHz NA 45 56 67

Table 4.3: Resource utilization and performance of various pipeline
configurations on the Stratix IV EP4SE530 (bins/segment = 256)

LUP Order 0 LUP Order 1 LUP Order 2 DC

Multipliers 76% 87% 98% 100%

Logic 69% 75% 78% 86%

BRAM (M9K) 98% 98% 95% 67%

BRAM (M144K) 100% 100% 94% 75%

Number of Pipeline 12 11 10 8

(post place-and-route) with the results shown in Table 4.3. After optimization we

anticipate achieving an operating frequency similar to that for the Stratix III. This

indicates a nearly proportional increase in performance.

4.6 Chapter Summary

In this chapter we provided a description of the FPGA kernel that we use in this

design, and how we enhanced its performance by utilizing BRAM architecture of the

FPGAs. The availability of BRAMs allowed us to use finer-grained table for table

interpolation method without sacrificing simulation quality, saving logic resources,

which were then used to implement more force computation pipelines. The net result

was a 50% improvement in the performance of the kernel.

113

Chapter 5

Intra-node Parallelization of

FPGA-accelerated MD

The FPGA kernel enhanced and used in this work was originally integrated into

NAMD-Lite [73], a serial MD package developed at UIUC to provide a simpler way

to test new features before integrating them into NAMD, a widely used full-parallel

production MD package [130]. In this work, we integrate the kernel into NAMD

(version 2.8), the production package; and study various scaling issues. Although

NAMD is a full-parallel software, in this chapter we restrict the discussion to its

serial run and rather focus on intra-node parallelization of the kernel itself, including

relevant integration issues. Full-parallel integration will be described in the next

chapter. The work described in this chapter is motivated by the fact that most recent

FPGA boards come with multiple high-end FPGAs. Intra-node parallelization of

the kernel, that is, being able to use all on-board FPGAs in parallel, thus, becomes

absolutely crucial in realizing the full potential of such FPGA-based systems.

5.1 Challenges and Opportunities

As described in Chapter 4, data need to be sent back and forth between the host

processor and the FPGA every timestep in the FPGA-acclerated MD. Several

conversions need to take place before and after each data communication. In order

to take advantage of the availability of multiple FPGAs on a board, we now also

need to partition the workload accordingly. We study these issues, without loss of

114

generality, using the ApoA1 benchmark which is described in Section 4.2. Our

target software, NAMD [130], uses neighbor-list method for the range-limited

non-bonded force computation. Parallelization is achieved by spatially decomposing

the simulation box into patches, where a patch is typically a cubic box with each

dimension much larger than the cut-off distance. The reason of choosing such large

dimensions is to make sure that all interacting particle-pairs remain in neighboring

patches for a substantial number of timesteps. Particles are allowed to be marginally

outside the border of their patches, but migration is performed when it becomes

necessary, e.g. when a particle moves too far outside the border of its patch.

Particle data are also managed in a per-patch basis. That is, each patch, a C++

object in actual implementation, contains and owns data of all particles that belong

to it; and is responsible for updating the data every timestep. It should be noted

that, just like in cell-list method, smaller patch-dimensions can also be used; it will

only require checking more neighboring patches to find interacting particle-pairs.

5.1.1 Data Conversion and Communication

We recall from the discussion in Chapter 4 that the FPGA kernel uses cell-list method

in combination with Newton’s third law and half-moon mapping scheme. This scheme

assumes that each of the cell in the simulation box will become the reference cell at one

time during the computation when its 18 neighboring cells (in a 3D system with cell-

dimension slightly larger than the cut-off distance) will be checked for range-limited

non-bonded force computation.

Since our reference software NAMD does not use cell-list method, cell-list data

structure needs to be computed every timestep, before invoking the FPGA kernel.

And since the FPGA returns the result of the computation grouped by cells as they

appear in the cell-list, the result also needs to be transfered to patch data structure.

Other data conversions, e.g. conversion from double-precision to single-precision

115

Single FPGA

Quad FPGA (Naïve)

Quad FPGA (Ideal)

Quad FPGA (Achieved)

0 20 40 60 80 100 120 140

Receive
Kernel
Send
Preparation

millisecond

Figure 5·1: Profiling of kernel-related runtime of a timestep in the FPGA-
accelerated MD

floating point etc., also need to done. We note that the conversion to cell-list can be

avoided if we just use patches as cells. But this would require checking substantially

large number of particle-pairs for potential interaction. The volume of a patch is

roughly 3.375x larger than that of a cell (9x9x6 cells vs. 6x6x4 patches in ApoA1),

resulting in a 60.75 (18 × 3.375) fold increase. Besides, fitting particle data of 18

patches in on-chip cache of our target platform is also challenging.

Although data communication between the host and the FPGA is an overhead, it

also provides some opportunities for optimization when we have multiple FPGAs on a

board. To understand this we first provide a profiling of the kernel related operations

of a timestep in a single FPGA run.

Using a host and a single FPGA on the Gidel board (details of the hardware will

be provided in Section 5.4), it takes about 9 milliseconds (ms) to prepare cell-list data,

including data structure to map the results back to patch data. About 4 ms is spent in

sending all data to the FPGA with multiple DMA transactions. The computation on

kernel itself takes 113 ms to compute range-limited non-bonded forces of all particles.

116

Then 3 ms is spent bringing the data back to the host CPU and converting back to

patch data. Figure 5·1 shows this runtime profiling and contrasts a naive and ideal

parallelization scenario using 4 FPGAs. A naive implementation will simply spend 4x

more time in sending data to and receiving data from the FPGA. Assuming a perfect

scaling for the kernel computation time, this will result in only a little less than 2x

speed-up. An ideal implementation will hide successive DMAs behind computation

on CPU and FPGAs, and achieve close to 3x speed-up (we assume sending the same

data to all FPGAs, as will be described in Section 5.3.2). A perfect speed-up (4x

using 4 FPGAs) is not feasible due to Amdahl’s law (because the other portions,

especially the data conversion time, do not scale). Actual speed-up will depend on

partitioning of the workload and other implementation issues.

5.1.2 Partitioning

Partitioning of the workload plays an important role in achieving speed-up using

multiple on-board FPGAs. First, partitioning of the workload determines the size of

the data that needs to be sent to and received from each of the FPGAs. For example,

we can send the same data to all FPGAs and set parameters separately such that

they compute different portions of the workload. Or we can send to each FPGA

only the data that are necessary for computing its designated workload. Partitioning

scheme also determines the runtime of the kernel of each individual FPGA. We can

assign larger workload to the FPGAs that are invoked first and smaller workload to

those that are invoked later. Partitioning also affects how we integrate the results

from multiple FPGAs on the host. For example, we can partition the workload such

that each FPGA will compute the total range-limited non-bonded force acting on the

particles that it is responsible for. This will mean, we can use these values directly in

the software. On the other hand, we can have a strategy where each FPGA will be

responsible for partial computation of certain cells only (e.g. interaction with only 18

117

neighboring cells). We will have to combine forces from all FPGAs to get the total

force in this case.

5.2 Data Communication with Software Pipelining

5.2.1 Data Conversion

Creating cell-list data structure and copying all required data to the DMA buffer is

done by traversing through all particles in the patches twice. In the first traversal we

compute the number of particles in each cell and create data structure necessary to

map particles from cell data structure back to patch data structure. In the second

traversal, particle data are copied in the DMA buffer for transfer. The first traversal

is necessary because particle data need to be prepared for DMA in a contiguous

memory buffer, grouped by cell ID. That is, all particles in cell 0 need to appear first,

followed by all particles in cell 1 and so on. This is a requirement from the FPGA

kernel. Therefore, it becomes essential to know the number of particles in the cell

before actually copying data to the buffer.

Another way of of accomplishing this will be to create separate arrays of particle

data for each cell first (as shown in Figure 5·2) and then copying them again to the

DMA buffer in order. This is not implemented because of the significant increase in

memory requirement. Separating the creation of cell-list data structure also allows

us to keep this process simple, which will be helpful when we use software pipelining

(see Section 5.2.2).

Particle data are mapped from cell-list data structure back to patch data structure

using a patch ID and a particle ID that is local to the owner patch. This is illustrated

in Figure 5·2. While creating cell-list data from the coordinates of the particles, only

these two IDs are saved. Particle data are shown in Figure 5·2 only to illustrate the

concept, they are not actually saved. They are rather copied to the DMA buffer

118

Figure 5·2: Mapping particle data from cell-list data structure back to patch
data structure using two IDs

directly from patch data using these two IDs. The computation results from the

FPGA are also copied from DMA buffer to patch data structure using these IDs.

These IDs allow a mapping between cell-list data structure and patch data structure

in O(1) time.

While copying data to the DMA buffer, coordinate and charge data are converted

from double precision to single precision floating point. In addition to coordinate and

charge data, cell-list data structure (number of particles in each cell) and particle type

data are also sent to the FPGA using DMA. In total, there are three DMA transfers

before invoking the FPGA kernel and one DMA transfer after the kernel finishes.

The last DMA is for results, which are received from the FPGA as single-precision

119

floating point, and then converted to double-precision floating point while they are

copied to patch data structure.

5.2.2 Software Pipelining

As shown in Figure 5·1, ideal intra-node scaling would be achieved if there is no

additional overhead in transferring data to multiple FPGAs, as opposed to sending

to only one FPGA; and the computation on the kernel itself achieves a perfect scaling.

It follows that the time for DMA transfers to second and successive FPGAs needs

to be be hidden behind the computation time of the FPGA kernel or other tasks on

the host. In fact, ideally, all communication should be overlapped with computation.

Here, we describe the software pipelining that we use in this work to improve intra-

node scaling.

Figure 5·3 shows the sequence in which the on-board FPGAs are invoked by

the host in every timestep. As shown there, cell-list data structure needs to be

computed first. For the first FPGA, right after setting necessary parameters, we kick

off DMA1, where cell-list data is transferred to Bank C of the FPGA. While this

DMA is running, we prepare particle data for this FPGA. This includes converting

double-precision floating point to single-precision floating point and copying data to

DMA buffer. Once DMA1 finishes, we send coordinate and charge data as DMA2

and type data as DMA3. We need to wait for the completion of DMA1, because both

cell-list (DMA1) and type (DMA3) are saved in Bank C.

For the successive FPGAs, we first wait for DMA2 and DMA3 of previous FPGA

to finish. Now, this was necessary because of an implementation issue that restricted

the design to use the same DMA channel for a certain Bank for all on-board FPGAs.

So, DMA to Bank C of all FPGAs must finish before we can start DMA1 of any

FPGA. Once the completion of DMA2 and DMA3 is confirmed, “start” signal is sent

to that FPGA to begin computation. While computation goes on there, the current

120

Figure 5·3: Software pipelining to overlap communication and computation
during the kick-off of multiple FPGA kernels

FPGA begins its own DMA1 and follows the loop. For the last FPGA on the board,

after kicking off its DMA2 and DMA3, software immediately waits for completion of

the data transfer and then sends a “start” signal to it.

We now describe how software pipelining is used while reading the results back

from FPGA to the host. We keep polling for the “done” signal from the first FPGA.

As soon as we receive that, DMA is kicked-off to read the result. Once the DMA

is complete, we begin copying the data (including conversion from single-precision

floating point to double-precision floating point) to the patch data structure. While

doing so, we periodically check for “done” signal from the next FPGA. If we receive

121

that, we kick-off the DMA to read results from that FPGA and then continue copying

result for the current FPGA. Once copying is done, we wait for the completion of any

DMA that may have started already. Otherwise we just keep polling for the “done”

signal of the next FPGA. This loop continues until results from all of the FPGAs are

read.

5.3 Intra-node Partitioning

As described in Section 4.3, our FPGA kernel uses half-moon mapping scheme. It

assumes that each cell in the simulation space will become a reference cell at some

point during the computation, when it will check 18 of its 27 neighboring cells for

possible interactions, according to half-moon scheme. For any particle A in the

reference cell, inter-particle range-limited non-bonded forces for all particles that are

to the right hand side of A and inside cut-off distance, will be computed right away.

But for the particles to the left of A, force will be computed when the cells

containing those particles become reference cells. Thus, the kernel goes through all

cells in the cell-list and treat them as reference cells. After all cells have become

reference cell once, computation for that timestep is done.

5.3.1 Method 1

To use multiple FPGAs without modifying the kernel, we need to make sure that force

computation is not duplicated in the result in any way. This can be done by assigning

computations of certain cells (target cells) to each FPGAs. Since neighboring cells

are also required for a complete evaluation of the range-limited non-bonded forces,

we will also have to send the data for particles in the neighboring cells. Once all cells

(target cells and neighboring cells) are treated as reference cells, the forces of the

particles in the target cells will be evaluated completely and can be read back and

used in the software. The results for the neighboring cells will simply be discarded.

122

The advantage of this method are listed below.

• No change required in the kernel.

• Results from one FPGA can be used in software without waiting for results

from other FPGAs.

• The amount of data communication between the host and the FPGAs can be

reduced.

The disadvantages are as follows.

• FPGAs will go through more reference cells than required in a single FPGA

implementation.

• The need for data of the neighboring cells will limit the reduction of data

communication.

• Additional time is required on the host to convert cell IDs accordingly (see the

discussion below)

One problem arises in this method is the traversal logic in the kernel. The kernel

simply starts at cell 0 and increments cell ID by 1 to find the next reference cell. This

continues until all cells are treated as reference cell once. Cell ID is a simple function

of the coordinates of a cell and and is shown in Equation 5.1.

Cell ID = ((zIndex× yDim) + yIndex)× xDim+ xIndex (5.1)

Here, xDim, yDim, zDim are number of cells in x, y, z directions and

xIndex, yIndex, zIndex are the indexes of the cell in x, y, z dimensions (zDim not

used in the equation).

This means, original number of cells and indexes cannot be used in the partitioned

version. Number of cells must be updated and indexes must be shifted or rotated

123

Figure 5·4: Example of partitioning of cells using Method 1 in one dimension

such that cell ID starts from 0 and increases by 1 until all required cells (target

cells and neighboring cells) are accounted for. To accomplish this we implement a

simple rotation in each direction. As shown in Figure 5·4, we rotate left by a certain

amount such that the required cells are grouped together and index begins with 0.

The amount of rotation in each dimension is determined by finding the longest range

of cells in that dimension (periodicity needs to be considered too) which will not be

needed for computation. The amount of rotation is simply the index of the first such

cell plus the number of such cells. Figure 5·4 shows this operation for one dimension

only. Once we repeat this in all three dimensions, we get the compact indexes of the

124

cells that we need. New number of cells are simply the number of required cells in each

dimension. It should be noted that the neighboring cells may end up having unwanted

interactions with other neighboring cells due to periodic boundary condition. But this

is not a problem since these results will be discarded anyway.

In Figure 5·4 seven cells in one dimension are assigned to four FPGAs. For the

first partition, 3 cells starting from cell 3 are not needed. Therefore, we rotate to left

by 6. Cells 0, 1 now become cells 1, 2, and neighboring cells become cells 0 and 3.

Similarly for the second partition, cells 5,6,0 are not needed. Therefore, we rotate to

left by 8 or 1. For the next partitioning, cells 0,1,2 are not needed. So we rotate to

left by 3. For the last partition, cells 1 to 4 are not needed. So we rotate to left by 5.

5.3.2 Method 2

Although Method 1 does not require modification of the FPGA kernel and has

potential of reducing the amount of data communication between host and FPGA,

in practice the reduction in data was not significant for the benchmark we used.

This is because, to accommodate neighboring cells in all three dimensions, we end

up requiring many more cells than the target cells. For example, a partitioning of

2x2x2 target cells require 3x3x3 total cells. In addition to that, for the bordering

regions of the partitioning, same computations are duplicated in multiple FPGAs.

These issues significantly affect performance.

To avoid these issues, we modified the FPGA kernel to allow setting two cell IDs

to indicate starting and ending cell IDs for cell traversal. We now send the same data,

data of particles in all cells, to all FPGAs, but each FPGA only treats a designated

portion of the cells as reference cells. For example, if we have 16 cells and 4 FPGAs,

FPGA[0] will compute cells[0-3], FPGA[1] will compute cells[4-7] and so on. Results

from all FPGAs now will be combined at the software level.

This method allows nearly perfect scaling for the computation on the kernel, as

125

we can simply divide the cells evenly among the FPGAs. It only required changes

in parameter setting and cell traversal logic portion of the FPGA design. The only

disadvantages are as follows.

• Now we have to send all data to each of the FPGAs.

• Results from all FPGAs now need to be combined on the host.

5.4 Results

We implement 4 force computation pipelines in each FPGA and run the design at 125

MHz on the Gidel board, described in Section 4.2. The host is a Dell Precision T5400

workstation with Intel Xeon CPU E5405 (Harpertown) @2GHz. It has 4 processing

cores built with 45 nm process, each having a 32 KB L1 I-Cache and a 32 KB L1

D-Cache. It has two 6MB L2 caches each shared by two cores. The workstation has

a main memory of 2GB. The operating system is Ubuntu 8.04 (Linux kernel 2.6.24).

We use Gidel ProcWizard (version 8.9) to generate the interface with the board and

Altera Quartus II (version 9.1) for compilation and bit-stream generation.

As shown in Figure 5·1, using software pipelining and Method 2 for partitioning,

we were able to hide all overhead due to send DMAs (Data trasfter from host to

FPGA), except the overhead of the very first one. A bottleneck in scaling was the

initial creation of cell-list, which had to be done separately in serial. Although we

implemented software pipelining for reading data back from the FPGAs, this did not

seem to have noticeable effect, most likely because we distributed load evenly between

the FPGAs. This means, an FPGA that starts processing 4 ms later will also finishes

4 ms later. Since reading back results took only 3 ms, there was nothing to overlap

in the mean time. One way to balance this would be to assign smaller workloads to

the FPGAs that start later. This was not implemented, because the impact on the

overall end-to-end speed-up would not be significant (see Table 5.1).

126

Table 5.1: Speed-up using FPGAs over a single CPU core

Kernel-only Kernel-only End-to-end End-to-end

Runtime Speed-up Runtime Speed-up

1 CPU Core ∼1437 ms 1x 1957 ms 1x

1 CPU Core + 1 FPGA 129 ms 11.14x 648 ms 3.02x

1 CPU Core + 4 FPGAs 53.25 ms 26.99x 580 ms 3.37x

Theoretical limit 0 ms ∞ 520 ms 3.76x

Table 5.1 summarizes the results of intra-node parallelization. The kernel-only

(range-limited non-bonded force computation portion, including data

communication) speed-up improved from 11.14x to 26.99x using all 4 FPGAs in the

Gidel board. However, since we are using 1 CPU core only, the rest of the

computation (PME, motion integration etc.) still takes significant amount of time.

The end-to-end speed-up was about 3x with a single FPGA, and 3.37x with all

on-board FPGAs. The improvement in kernel-only speed-up is likely to be more

significant once the rest of the computation on the CPU is parallelized.

5.5 Chapter Summary

In this chapter we described our work on parallelizing the kernel to use all on-board

FPGAs. Using suitable partitioning and software pipelining techniques, we were

able to achieve a 3.37x end-to-end speed-up over a single CPU core. This is

reasonably close to the 3.76x speed-up that is theoretically possible, given the

serialization constraints that arise from the kernel design. We particularly discussed

partitioning, data conversion, and communication issues in this regard.

127

Chapter 6

Full-parallel FPGA-accelerated MD

In this chapter we describe the integration framework we created for

FPGA-accelerated MD. We begin with a description of our target software,

including the reasons for choosing it. Then we present the challenges that need to

be addressed in order to integrate an FPGA kernel into such a full-parallel

production-level MD package. We then provide a detailed description of how the

actual integration was done and what features the framework provides. Finally we

evaluate the results and provide suggestions for future designs.

6.1 Description of the Target Software (NAMD)

Many of the widely used MD packages were introduced in Section 2.2.2. Among

them, we chose NAMD (version 2.8) as the target software of our integration

framework. NAMD is developed and maintained by the Theoretical and

Computational Biophysics Group of UIUC [83, 121, 130]. It is designed for

high-performance simulation of large biomolecular systems and is especially known

for scaling well on various platforms [94, 112]. It runs on top of Charm++, a

machine independent parallel programming system, which provides higher level of

abstraction for inter-processor communication, synchronization, load-balancing etc

[82, 157]. The source code of NAMD is high-level object-oriented and mostly

written in C++, as opposed to low-level codes like assembly language, such as those

found in GROMACS [79]. The software is widely used and the source code is

128

Figure 6·1: Partitioning in NAMD [84]

publicly available for free. In addition, it has a GPU-accelerated version that

achieves good speed-up and reasonable scaling for complex systems.

NAMD parallelizes the simulation in two levels, as shown in Figure 6·1. First

the simulation space is divided into patches, where each patch is large enough in size

such that only the 26 nearest-neighboring patches are involved in bonded and range-

limited non-bonded interactions. The patches fill the simulation space in a regular

grid and ensures that atoms in any pair of non-neighboring patches are separated by

at least the cutoff distance at all times during the simulation. Atoms are reassigned

to patches as required, at regular intervals. The number of patches is determined

by the size of the simulation independently of the number of processors. Additional

parallelism can be generated through options that double the number of patches, by

reducing size, in one or more dimensions. Patches are distributed among processors

129

Figure 6·2: Startup sequence of NAMD

to achieve the first level of parallelism, the spatial decomposition.

The next level of parallelism is achieved by creating compute objects. Each

compute object evaluates the forces between particle-pairs of the same patch or two

neighboring patches. In the simplest case, one patch will have 27 such compute

objects. In practice, by using Newton’s 3rd law, each patch has 14 such compute

objects. These compute objects are then further distributed among the processor

nodes. Thus, massive parallelism is achieved.

When NAMD is run, patches are distributed as evenly as possible, keeping

nearby patches on the same processor when there are more patches than processors,

or spreading them across the machine when there are not. A patch is called a

homepatch of the processor that it resides in. During the simulation, each

130

Figure 6·3: Sequencer algorithm on a homepatch

homepatch is responsible for integrating the equations of motion for the atoms of

the patches it contains. After the patches, the compute objects (roughly 14 times

the number of patches) are distributed across the processors, minimizing

communication by grouping compute objects responsible for the same patch

together on the same processors. At the beginning of the simulation, the actual

processor time consumed by each compute object is measured, and this data is used

later to redistribute compute objects to balance the workload among processors.

Figure 6·2 shows a simplified startup sequence of NAMD on each processor.

Processor 0 or Node 0 creates a list of patches and compute objects for the target

system and sends this information (patch map and compute map) to all other

processors. Each processor or node then actually creates the compute objects that

will run on that processor. If any compute object requires a patch that is not

assigned to the same processor (called a remote patch for this processor), a proxy

131

patch is created for it on that processor. All communication from this processor to

the actual patch, which resides in a different processor (called a local patch for

that processor), is done via this proxy patch. This allows higher level of abstraction,

as well as the least amount of communication. For example, multiple compute

objects on a processor can share a single proxy patch.

Each processor also receives the data for its homepatches and then runs a

sequencer for each homepatch. In addition, Node 0 also runs a controller for the

global maintenance of the simulation. Controller and sequencers are independent

user level threads, managed by Charm++, and they synchronize through some

global barriers. Figure 6·3 shows the skeleton of a sequencer algorithm that runs on

each homepatch. For every timestep of ∆t, a sequencer performs force integration

and motion update for all particles in the corresponding patch in a two-step

leapfrog style method, as described in Section 2.1.5. In the first step, velocity is

updated for ∆t/2 (using the force values from the previous timestep) and position is

updated for ∆t. All compute objects that need data from this patch are notified at

this point. The sequencer resumes after all these compute objects finish processing.

Velocity is updated for the remaining of the timestep, ∆t/2 (using the newly

computed force values from the current timestep), and all global values are

evaluated. Particle migration from one patch to another is also performed at this

point. This loop continues until the end of the simulation.

In this study, we use ApoA1 benchmark of NAMD for verification and performance

evaluation. The benchmark is described in Section 4.2. Here, we note that NAMD

uses neighbor-list method for range-limited force computation and that we compute

the long-range portion of PME every timestep, although it is possible to compute it

only every few timesteps (e.g. every four timesteps).

132

6.2 Challenges in Integrating FPGA Kernel into NAMD

6.2.1 Scale and Complexity of the Software

The scale and complexity of NAMD probably poses the toughest challenge in

integrating an FPGA kernel into it. The binary of NAMD is compiled from

thousands of lines of code from hundreds of files in various different languages, e.g.

C/C++, Tcl, Charm++ etc. Table 6.1 shows the scale and complexity of the

package in terms of file count and line count. It considers the relevant files in the

“src” folder of NAMD2.8 only. As we can see, there are around 400 source files with

more than 100,000 lines of code (excluding blank/comment lines).

Understanding this gigantic software alone is an extremely challenging task.

Therefore, it should not come as a surprise that integrating an FPGA kernel

efficiently into NAMD has never been attempted before. The only such work that

used NAMD as the baseline code used a simplified version of it [91]. The simplified

code ran approximately 4x slower than the production version. Yet, the speed-up

(over the simplified code) achieved by the FPGA-accelerated version was limited to

only 1.3x to 3x.

In fact, the scale and complexity issue is not particularly unique to NAMD. All

production-level MD packages are highly optimized for performance, which make it

very difficult to extract an interface for efficient integration of FPGA kernel. The

only attempt, that we are aware of, to integrate an FPGA-accelerator into a

Table 6.1: Scale and complexity of NAMD in terms of file count and line
count of the source code (“src” folder of NAMD2.8 only)

File Type Total Files Total Lines Blank Comment Code

C/C++ (.c/.C) 175 108,749 14,788 14,610 79,351

C/C++ header (.h) 201 31,898 5,542 5,590 20,766

Charm++ interface (.ci) 23 1,160

133

Figure 6·4: Source code of “ComputeNonbondedStd.C” in NAMD2.8

full-parallel production-level MD package was described in Section 2.2.3, where an

FPGA kernel was integrated into LAMMPS. The result was a 2x slowdown in

end-to-end performance, although the kernel itself was reported to be 12x faster

than the corresponding section of the software.

A compute object in NAMD starts computing forces once the particle data of

the patch or patches it works on are updated for the current timestep. Depending

on the simulation parameters, there are a vast majority of slightly different tasks

that these compute objects need to do. To have one version of software code for

each of these tasks will require maintaining around 27 different functions. To avoid

this nightmare, NAMD uses C preprocessor to parse a single function definition

containing flags to differentiate the different tasks. While this provides a single

maintenance point, it makes the initial understanding of the code (from the reader’s

perspective) extremely challenging. For example, the functions that evaluate the

134

Figure 6·5: A portion of source code of “ComputeNonbondedBase.h” in
NAMD2.8

135

range-limited non-nonded forces are defined in “ComputeNonbondedUtil.h” and

implemented in “ComputeNonbondedStd.C”. “ComputeNonbondedStd.C” includes

another file, called “ComputeNonbondedBase.h”, multiple times with different

preprocessor definitions for each inclusion. That is how various different functions

are defined using just a single maintenance point, “ComputeNonbondedBase.h”.

Appropriate functions are then chosen to run in “ComputeNonbondedUtil.C”, in

accordance with simulation objectives. Figure 6·4 shows the source code of

“ComputeNonbondedStd.C” and Figure 6·5 shows a portion of code from

“ComputeNonbondedBase.h”, where various preprocessor values are actually used.

Note that, even the function name itself is also generated using a defined value

(ComputeNonbondedUtil :: NAME in Figure 6·5). This means, one will not be able

to search for a function using its name and simply replace it with a corresponding

FPGA kernel call. The preprocessor defines are also used extensively inside the

body of the function. Therefore, a significant level of understanding of the entire

software is required to make any meaningful change.

6.2.2 Gathering Particle Data

In NAMD, data of a particle are managed by the patch it belongs to. Patches are

distributed among processors and they send particle data to the corresponding

compute objects, which may not necessarily reside in the same processor. Thus,

there is a certain amount of data communication already required in the CPU-only

version. This amount increases significantly when we use our FPGA kernel. The

reason is that, FPGA requires a relatively large chunk of data to produce results

efficiently. Although this is generally true for any accelerator, because they need to

amortize the additional data communication time between the host and the

accelerator, it becomes especially problematic in the current design of the FPGA

kernel. Our kernel uses half-moon mapping scheme (as discussed in Section 4.3.4),

136

which requires 18 neighboring cells of a certain cell to be present in the same

FPGA. In the CPU-only version, particles in these 18 neighboring cells could be

assigned to different processors, according to the distribution of the patches. But

now they all need to be communicated to the processor that invokes the FPGA

kernel, in every timestep. This gets further complicated by the fact that the unit of

data management in NAMD is patch, not cell; and patch dimensions are much

larger than cell dimensions. So, collecting data for a single neighboring cell actually

requires collecting data for one or more of the neighboring patches, increasing the

amount of data communication further more.

6.2.3 Overlapping Communication and Computation

As mentioned before, NAMD uses the Charm++ parallel programming system and

runtime library, where the computation is decomposed into objects that interact by

sending messages to other objects on either the same or remote processors. These

messages are asynchronous and one sided. This means, a particular method is

invoked on an object whenever a message arrives for it rather than having the

object waste resources while waiting for incoming data. This message-driven

programming style effectively hides communication latency of one compute object

behind the computation time of other compute objects. This advantage decreases

when we use the current FPGA kernel. The problem is caused by the previously

stated fact that the FPGA requires a relatively large chunk of data to get started.

Therefore, a large amount of communication needs to take place before the kernel

can start computation. And a large amount of data also becomes ready at once,

when the kernel finishes. This lack of finer granularity makes overlapping of

communication and computation challenging.

137

6.3 Integration Methods

In this work, we aim at limiting the required amount of edit in NAMD to as low as

possible. Only a few files are actually edited and all edits are separated from the

original source code using a preprocessor define (ASHFAQ FPGA), except one line

in “WorkDistrib.ci”. Care is take to maintain the original structure and organization

of the source code. Only 3 files are added; a header file for the driver of the Gidel

FPGA board, a header and and a source for the software interface of the FPGA

kernel. These additional files are included in the compilation process (in the “Make”

environment) and the driver module for the Gidel board is also linked appropriately.

The aforementioned preprocessor define can be used to generate binary executable

file for either the regular NAMD or the FPGA-accelerated NAMD.

6.3.1 Creating FPGA Compute Object

A new compute object type is defined in “ComputeMap.h” and it is named

“computeNonbondedFPGAType”, following the naming convention of NAMD. A

regular compute object in NAMD contains either one or two patch IDs, depending

on whether it computes inter-particle forces within one patch or between two

neighboring patches. The FPGA kernel, however, works on more patches than these

regular compute objects do. Instead of updating the structure “ComputeData” to

allow saving arbitrary number of patch IDs, we only added four additional numbers.

The first one is the ID of a patch, and the rest are the number of patches that the

FPGA compute object is responsible for, in three dimensions (x, y, and z).

All patches are initially assigned three coordinates or indexes to identify them

uniquely, and patch ID is only a simple function of those coordinates as shown in

Equation 6.1.

Patch ID = ((zIndex× yDim) + yIndex)× xDim+ xIndex (6.1)

138

Here, xDim, yDim, zDim are number of patches in x, y, z directions and

xIndex, yIndex, zIndex are the indexes of the patch in x, y, z dimensions (zDim

not used in the equation).

Using the four numbers of the FPGA compute object, we can easily express the

space (in terms of patches) an FPGA compute object is responsible for. For example,

if there are 6x6x4 patches, (1,2,2,1) will mean that the FPGA compute object is

responsible for all patches whose indexes (x, y, z) lie within (1-2, 0-1, 0-0), a total

of 4 patches (patch IDs: 1, 2, 5, 6). A new function, “storeComputeFPGA”, is also

defined to store the FPGA compute object type in the map or list of the compute

objects (compute map). This function saves all parameters of the FPGA compute

object, including the ID of the node or the processor that this compute object will

be assigned to and run on. The function is implemented in “ComputeMap.C”.

During the runtime, an FPGA compute object is listed in the compute map,

along with other regular compute objects of NAMD, and mapped to a node. This is

done in “WorkDistrib::mapComputes” function in “WorkDistrib.C”, which is called

on Node 0 only, as shown in Figure 6·2. A new function,

“mapComputeNonbondedFPGA”, is defined in “WorkDistrib.h” and implemented

in “WorkDistrib.C” for this purpose and it is called from

“WorkDistrib::mapComputes”. After all processors or nodes receive the compute

map, the node that owns the FPGA compute object actually creates and initializes

the object. This procedure is the same as with any other compute object in NAMD

and the source code is in “ComputeMgr.C”. The function

“ComputeMgr::createCompute” is modified to accommodate the creation of the

FPGA compute object. Finally, the actual FPGA compute object is defined and

implemented in a new pair of files, named “ComputeNonbondedFPGA.h” and

“ComputeNonbondedFPGA.C” respectively.

139

The internal functionality of the FPGA object is basically the same as described

in Chapter 5. Data are converted from patch data structure to cell-list data structure

and then sent to the FPGA by DMA. A “done” signal is received after the kernel

finishes, when the results are copied back to the host and converted to patch data

structure. Software pipelining is used to minimize serial overhead. A major difference

between the version described there and this final version is that, in this version,

while the FPGA kernel runs, CPU overlaps other computations using the Charm++

message passing infrastructure. This will be described in Section 6.3.2.

It should be noted that multiple FPGA compute objects can be created in this

fashion, depending on the input parameters from the user. The user can provide the

total number of partitions (each partition represents one FPGA compute object) or

number of partitions in each direction. The files “SimParameters.h” and

“SimParameters.C” are modified to accommodate a few new parameters. However,

in this work we create one FPGA compute object for every four processors, since

our target system consists of a quad-core CPU and a Gidel FPGA board. This

means, for actual runs using the FPGA board, only one FPGA object is created.

Since the range-limited non-bonded forces will be computed on FPGA now, we

need to modify the original NAMD functions that would otherwise do this job. This

is done by updating the corresponding function definition in

“ComputeNonbondedBase.h” such that it does not compute forces when FPGA is

computing. More discussion on this will follow in Section 6.3.3.

6.3.2 Managing Data Communication

We discussed in Section 6.1 how proxy patches are created when the patches required

by one or more compute objects are not on the same processor. This is done in the

“createProxies” function in “ProxyMgr.C”. We extend the function to accommodate

necessary proxy patch creation for the FPGA compute object as well. We make

140

the “ProxyMgr” a friend class of “ComputeMap” class (in “ComputeMap.h”). This

allows us to access the compute map data of the FPGA compute object and create

proxy patches for it. The FPGA kernel requires all neighboring patches of the original

compute target patches to be on the same processor. If any of them is not on the

same processor, a proxy is created for it accordingly. As mentioned before, only one

proxy of a patch is created on a processor even if multiple compute objects require it.

In every timestep, “WorkDistrib::messageEnqueueWork” function is called for

every compute object once the corresponding patches (or proxy patches) become

ready. This in turn calls the “doWork” function of the compute object, as long as

there are things to do. This is done by sending a message for the corresponding

compute object from “messageEnqueueWork”. A new function, called

“enqueueFPGA”, is defined and implemented in “WorkDistrib.h” and

“WorkDistrib.C” respectively, following the convention of regular compute objects

of NAMD, to do the same (call “doWork”) for the FPGA compute object. This

function is also registered in “WorkDistrib.ci” for Charm++ message passing. The

net effect is that, like other compute objects, the function “messageEnqueueWork”

is also called for the FPGA compute object once the required patches (or proxy

patches) are ready. The function “messageEnqueueWork” in turn calls the

“doWork” function of the FPGA compute object. The “doWork” function is

implemented, along with other necessary code for the object, in

“ComputeNonbondedFPGA.C”.

The FPGA compute object uses repeated calls to “messageEnqueueWork” to

overlap other computation and communication while it is waiting for the FPGA

kernel to finish. This is done by using a flag named “fpga work started”. When the

compute object runs for the first time during a timestep, computation on the FPGA

kernel is kicked off (including the DMA transfers) and this flag is set to 1. Then

141

repeated calls to “messageEnqueueWork” are made to check if the kernel finished

computing (if “done” signal is received). The flag is used to distinguish whether the

FPGA compute object should kick off the FPGA kernel or wait for the “done”

signal. After receiving the “done” signal, the flag is reset to 0. For the calls to check

the completion of the kernel, the priority of the message (the message that is used

to enqueue the “doWork” function) is lowered such that other computation can be

overlapped while the FPGA kernel is running. This is done by defining a new level

of priority, “PROXY DATA PRIORITY”, in “Priorities.h” (following the

convention used in GPU-accelerated NAMD).

6.3.3 Computing Energy and Handling Exclusion

In a typical MD simulation, force is computed every timestep but energy is not. This

is because, computation of energy requires additional runtime and the measurement

of energy is not needed to maintain the correct execution of the simulation. Rather it

is only needed to study the system (e.g. stability of the simulation); and computing

it every many timesteps (e.g. once in every 100 or 1,000 timesteps) suffices.

Therefore, in our FPGA kernel, we only compute forces and leave energy

computation to the host. In the timestep where energy needs to be computed, the

FPGA kernel is not invoked at all. Instead, the original functions in NAMD are

used. But for the timesteps where only force is computed, original NAMD

functions, defined in “ComputeNonbondedBase.h” and shown the last line in

Figure 6·5, are modified such that they do not compute regular range-limited

non-bonded forces. These forces are now computed on the FPGA.

As described in Section 4.3.5, excluded particle-pairs are handled in the FPGA

by adding a saturation force. This force needs to be subtracted accordingly on the

host. We accomplish this by re-using the aforementioned original NAMD functions.

We add codes such that, in a timestep where energy is not computed, these

142

functions subtract the saturation forces for the excluded particles. The regular

NAMD functions maintain three neighborlists for each particle. One for excluded

particles, one for modified particles and the other for the rest. We use the first and

the second to subtract forces (and also re-compute as necessary). The subtraction is

done simply by reversing the sign of the forces, using a preprocessor define,

following the design style of NAMD. The saturation distance, instead of the actual

distance between a particle-pair, is used for subtraction when the actual distance is

smaller than the saturation distance. These modifications were done by editing the

files “ComputeNonbondedBase.h” and “ComputeNonbondedBase2.h”.

6.4 Simulated FPGA Kernel and Other Features

One of the key features of our integrated framework is the ability to simulate the

FPGA kernel. We have created a simulated version of our FPGA kernel, which can

be invoked from the FPGA compute object, allowing users to study or verify the kernel

without requiring an actual FPGA board. It should be noted that this simulator only

mimics the functionality of the kernel and cannot simulate system level functions (e.g.

DMA transfers) which require the presence of the actual hardware device.

The simulated kernel for the range-limited non-bonded force computation is

defined as a separate class inside “ComputeNonbondedFPGA.h/C” and has the

same interface as the actual kernel driver. It has local variables to contain various

values (e.g. simulation parameters like number of cells, coefficients for table look-up

etc.) required for the simulation. DMA buffers are pre-allocated, and no DMA

transfer is required because the host (FPGA compute object) is already designed to

copy to and from the DMA buffers. Another major difference between the real

kernel and the simulated version is that, the simulated version still consumes CPU

runtime. With the simulated FPGA kernel, the end-to-end runtime is roughly 4x

143

Figure 6·6: Two partitioning schemes for computing long-range portion of
electrostatic force using the PME method

slower than the original CPU-only NAMD.

Although our FPGA kernel only computes range-limited non-bonded forces, we

also implemented an interface for the FPGA-acceleration of long-range portion of

electrostatic forces using PME method. This simply assumes that each processor will

make a kernel call to off-load the FFT computations in PME method to the FPGA.

Using this, we also provide a sample study to demonstrate what can be done using this

integrated infrastructure. As data communication is a limiting factor in parallel 3D

FFT, we choose to study how the amount of data communication changes when two

different partitioning methods, namely slab-decomposition and pencil-decomposition,

are used. We instrumented the files “ComputePme.h” and “ComputePme.C” files for

this purpose.

Figure 6·6 shows the flow of computation using the two partitioning methods. In

slab-decomposition, the FFT grids are partitioned in one dimension only. This

results in fewer, but larger, number of partitions. On the other hand, in

144

2 4 8 16 32 64
1

10

100

1000

10000
To Self
To Others
Total

Processor Count

D
at

a
Am

ou
nt

 in
 K

B

Figure 6·7: Amount of SendGrid data (in ApoA1) per processor per PME-
cycle (independent of partitioning scheme)

pencil-decomposition, the FFT grids are partitioned in two dimensions. So, it

results in more, but smaller, number of partitions. The first batch of communication

is required to send the contribution of particle charge to grid points (Grid data).

Then 2D forward FFT is done for slab-decomposition, 1D forward FFT is done for

pencil-docomposition. This is followed by the next batch of communication, the

communication of transpose data (Trans data). For pencil-decomposition, one more

round of 1D forward FFT and Trans data communication is performed. Then a 1D

forward FFT, PME computation in Fourier space and a 1D reverse FFT (rFFT) is

performed. Then transpose data in reverse direction (Untrans data) is

communicated, followed by a 2D reverse FFT and 1D reverse FFT for

slab-decomposition and pencil-decomposition respectively. For

pencil-decomposition, another round of communication of Untrans data and a 1D

145

2 4 8 16 32 64
1

10

100

1000

10000
SLAB
PENCIL

Processor Count

D
at

a
Am

ou
nt

 in
 K

B

Figure 6·8: Amount of SendTrans data (in ApoA1) per processor per PME-
cycle for the two partitioning schemes

reverse FFT is performed. Finally force contribution of grid points are

communicated (Ungrid data) and interpolated back to particles.

Figure 6·7 shows the average amount of Grid data that is sent from one

processor (SendGrid data) to other processors or to itself every time PME

computation is done (PME-cycle). Since the grand total of this data (per processor

data × number of processors) depends only on the patches, which are created

independent of partitioning schemes or processor counts, it is constant for all

processor counts (except when processor count is 1 and no communication is

required). So, the total amount of SendGrid data in the graph scales linearly with

the number of processors. However, as the number of processors increases, the

proportion of communication to self decreases, and for large processor counts, most

of the communication becomes inter-processor. It should be noted that nearly the

same amount of Grid data are also received by each processor, and nearly the same

146

amount of Ungrid data are also sent and received by each processor.

Figure 6·8 compares the average amount of Trans data that is sent by each

processor (SendTrans data) to other processors or to itself every PME-cycle. As we

can see, pencil-decomposition requires twice the amount of data communication

than required in slab-based decomposition. As with Grid data, Trans data also

depends on patches, making the grand total of the data constant for all processor

counts (except when processor count is 1 and no communication is required).

Thus the integrated framework can be used to study various characteristics of a

system, which should be especially helpful in designing new systems.

6.5 Results

6.5.1 Speed-up

Using the integrated framework, the speed-up was measured using a quad-core host

machine, the Gidel FPGA board and the ApoA1 benchmark. The host machine

details and FPGA configuration are provided in Section 5.4, where as the Gidel

FPGA board and the ApoA1 benchmark are described in Section 4.2. Figure 6·9

shows how the runtime changes from 1 CPU core to 4 CPU cores, when only CPU

cores are used. As we can see, a perfect speed-up is prevented by the inter-processor

data communication, although the impact of the data communication is relatively

modest compared to the total runtime.

Figure 6·9: Graphical illustration of CPU-only runtime for ApoA1
benchmark in NAMD2.8

147

Table 6.2: Speed-up using FPGAs over a quad-core CPU

Kernel Other Data End-to-end End-to-end

Only Compu- Commu- Runtime Speed-up

tation nication

4 CPU Cores ∼359.25 ms 130 ms 28.75 ms 518 ms 1x

4 CPU Cores 25 ms (rest 130 ms 78 ms 233 ms 2.22x

+ 4 FPGAs overlapped)

Theoretical limit 0 ms 130 ms 28.75 ms 158.75 ms 3.26x

When the quad-core version is accelerated using the Gidel FPGA board, an end-

to-end speed-up of 2.22x is achieved (a total of 1957/233 = 8.39x speed-up over a

single CPU core). Table 6.2 summarizes this result and also shows the theoretical

limit of achievable speed-up, 3.26x, in the current settings. The “Kernel” in the

table refers to the range-limited non-bonded force computation. Next, we analyze

the difference between the achieved speed-up and its theoretical limit.

Figure 6·10: Graphical illustration FPGA-accelerated runtime for ApoA1
benchmark in NAMD2.8

148

Figure 6·11: Current overlap scenario

As shown in Figure 6·10, the amount of data communication increases in the

FPGA-accelerated version. This issue was anticipated and discussed in

Section 6.2.2. Amount of data communication increases significantly because the

FPGA kernel requires all neighboring patches of a patch to be present on the same

processor to compute its force. Since FPGA kernel is launched by only one CPU

core in the current benchmark and hardware setup, practically all data from all

patches must be communicated to this processor. This means, the amount of patch

data communication is now 4x compared to a quad-core CPU-only version. From

the previously measured data communication time (from Figure 6·9, around 30 ms

for each core in the CPU-only version), we conclude that this increase in data

communication time is the biggest bottleneck in achieving further speed-up in the

current settings.

Figure 6·11 shows the overlap scenario of the current implementation. As we can

see, the computation time of the FPGA kernel is effectively hidden behind the CPU

workload. This means, further improvement of the kernel computation time itself

149

will have modest effect on the overall speed-up. This was confirmed by running the

FPGA design at faster clock speed. The end-to-end speed-up remained almost the

same.

6.5.2 Re-evaluating Kernel Design

In light of the results from the final integrated version, here we re-evaluate the design

of the FPGA kernel that we used. First, the kernel uses cell-list method and traverses

one reference cell (called home cell) after another to evaluate the range-limited non-

bonded force. While this is efficient for a hardware implementation, it requires extra

data conversion time on the software. This ultimately leads to additional runtime,

reducing the advantages of the FPGA acceleration.

Another feature of the kernel is the half-moon mapping scheme, which was proved

to improve the efficiency of the force computation pipelines on the FPGA by balancing

workload. However, this requires two-thirds of the neighboring cells (18 cells) of a

cell to compute its forces. The FPGA traverses through the cells one by one, each

time computing interactions with 18 neighboring cells. This requires additional data

communication to bring the neighboring cells to the processor that drives the FPGA.

In addition to these two issues, in the current implementation we invoked the

FPGA kernels for all on-board FPGAs from the same processor. Driving each FPGA

from an individual processor could save some of the serialization time. However,

the above mentioned data communication issue will very likely diminish any savings

earned this way. Another implementation level issue was the inability to use a large

number of DMA channels for data transfer (although Gidel seems to support a large

number), which could have allowed more aggressive software pipelining.

The kernel also does not support multi-step execution of PME, where the long-

range portion of electrostatic force is computed once in a few cycles, as opposed to

every cycle.

150

6.5.3 Suggestions for Future Designs

Achieving good speed-up over any highly-optimized parallel MD package requires

good understating and careful consideration of the software. First, we need to

address the issue that theoretical limit of end-to-end speed-up can be improved

significantly. This can be done by using multi-step execution of PME, e.g.

computing the long-rage portion of electrostatic force in every 4 cycles. This will

increase the proportion of range-limited non-bonded computation time compared to

the overall runtime. This proportion is only about 70% now, which will go close to

90% with multi-step execution of PME (note that multi-step execution also reduces

data communication). A reasonable practical goal for speed-up by accelerating only

range-limited non-bonded force computation will be roughly 6x - 10x. Achieving

speed-up over 10x will very likely require accelerating other portions of MD, e.g.

long-rage force computation, motion update etc. But, even to realize the 6x - 10x

speed-up by accelerating range-limited non-bonded force computation only, several

design issues will have to be handled.

Figure 6·12: A good overlap scenario

151

One of the major changes required will be to enable FPGA kernels such that

patches can be used directly in the kernel. Sorting the compute objects by patch and

computing those objects accordingly on the FPGA is likely to achieve better results

than converting them into cells and requiring data of the neighboring cells. The FPGA

kernel already has very inexpensive yet highly efficient filters to create neighbor-lists

on the fly. These can be used more aggressively to tackle the problem that a large

proportion of the particle-pairs will be outside the cut-off distance if we use patches

directly. This approach will not only reduce data conversion time significantly, but

also eliminate the need for additional inter-processor communication due to the FPGA

accelerator.

Computation on CPU and computation on FPGA, along with data

communication, will have to be overlapped adequately too. This can be done

efficiently by splitting the FPGA kernel call into at least two calls. One for

computing forces that involve remote patches and the other for computing forces for

local patches, as shown in Figure 6·12. It should be noted that having the fastest

kernel does not necessarily guarantee the best speed-up. Efficient overlap is one of

the most important keys in achieving good speed-up, especially for parallel

implementations.

An open issue with accelerators in general is that, accelerated systems do not

scale well with a large number of compute nodes. This is unavoidable with current

hardware, since inter-processor communication is very slow compared to the

computation on an accelerated system. We will comment on how FPGAs can be

used to solve this issue in Chapter 8.

152

6.6 Chapter Summary

In this chapter we described our work on the integrated framework for

FPGA-accelerated MD. We introduced NAMD as the target software and discussed

the challenges in integrating an FPGA kernel into such a highly-optimized parallel

software. We described how the integration was actually done in this work and how

the framework can be used for various architectural studies. Using this framework,

we achieved an end-to-end speed-up of 2.22x over a quad-core CPU, making it the

first FPGA-accelerated MD ever to achieve a positive end-to-end speed-up. We

analyzed our speed-up result and compared it to its theoretical limit. We also

discussed the issues with the current kernel design and provided guidelines for

future designs.

153

Chapter 7

Communication Requirements for

FPGA-centric MD

FPGA-centric clusters use FPGAs for both computation and communication and

thereby address three fundamental problems of future High Performance clusters:

efficient use of silicon, power, and removing communication bottlenecks. In this

chapter we instrument our framework, described in Chapter 6, to determine the

plausibility of using such clusters for MD, in particular by determining the

communication requirements for such a cluster. We begin by reviewing MD on a

single FPGA-based node and use the estimated performance of an optimized

implementation to determine the time budget for the communication. We then

quantify the data communication characteristics for a production MD code

(NAMD) in two ways: analytically and by instrumenting the code. We apply this

information to clusters of various sizes and node complexity. The conclusion is that

a cluster with 256 FPGAs distributed in 64 nodes is appropriately provisioned, even

for modest simulations, with a bidirectional 3D torus where each link consists of 1-2

of an FPGA’s serial ports.

7.1 Justification of FPGA-centric MD

7.1.1 Communication Bottleneck in MD

A critical issue in high performance MD is data movement. By Amdahl’s Law,

scalability of parallel applications that have significant communication depends on

154

the number of nodes, the problem size, and the ratio of communication to

computation. Accelerators are an additional factor in that they add additional

communication overhead between host and accelerator and also reduce the

communication-computation ratio. Right now MD scales well to 100s of CPU nodes

for well-designed codes and sufficiently large simulations (e.g., [20, 132]), and for

much smaller simulations using dedicated hardware [154].

The problems are as follows:

1. Scaling with accelerators. Adding accelerators to nodes makes scalability

more challenging, as seen, e.g., with respect to three of the most prominent MD

codes, NAMD [131, 161], AMBER [151], and GROMACS [62]. The problem

is two-fold: (i) there is additional overhead to move data on and off of the

accelerator and (ii) the reduction in compute time per time-step makes the

communication latency harder to hide.

2. Small problems for long time-scales. At some point no matter what the

hardware, the number of nodes will become too large or the problem size too

small to achieve strong scaling. It appears, however, that significant MD

problems in the range of 10s of thousands of particles can currently achieve

strong scaling only with specialized hardware [154].

3. Technology trend. Nodes will continue to get ever more powerful. Process

technology appears able to advance with Moore’s law [115] for a few more

generations even while operating frequencies remain static. The fraction of

silicon available for computation is increasing both through the use of

accelerators (on and off chip) and with the increased emphasis on performance

in new generation high-end CPUs [173]. All these factors decrease the

communication-computation ratio.

155

The implication is that not only is communication critical now, but it is only

going to get more so. In current high-end clusters this communication includes

transfers between accelerator and CPU. While projected integration of accelerator

and CPU will help, problems 2 and 3 remain. The obvious solution has two parts:

provisioning nodes with appropriate bandwidth and reducing latency by integrating

communication directly into the computation chip. The first part is straightforward

and the second has been well studied. Here are some solutions, past, present, and

future:

Past: In the early 1990s several projects looked at integrating communication and

run-time systems into the chip fabric (e.g., [43]) and reduced latency of the entire

communication stack to a few cycles.

Present: A current solution is the Anton processor [153] which uses dedicated

hardware to pipeline communication with computation and effectively reduce

amortized communication latency to zero.

Future: The need for direct communication solutions for GPUs has been stated by

Patterson as one of his Top Three Next Challenges [127] and proposed by Dally in

his plan for GPUs as Exascale accelerators [42].

7.1.2 FPGAs for Data Communication

In this work we examine a solution for the present that is built entirely with

commodity hardware. In particular, we examine the possibility of, and requirements

for, large-scale clusters scalable for MD based on FPGAs as the central component

for both computation and communication. This design is motivated as follows.

• It has been demonstrated that FPGAs can be competitive for single node MD

acceleration. In particular, the range-limited parts of the 92K ApoA1

benchmark can be computed in less than 20 ms per time-step using high-end

156

FPGAs [33]. The range-limited force is computed with full electrostatics and

is compatible with production MD codes.

• Many prototype FPGA-centric clusters have been built, including products from

BEEcube [16] and SciEngines [145]. One example, the Novo-G Reconfigurable

Supercomputer at the University of Florida, has a peak performance of 100

GFLOPS while drawing less than 12 kilowatts power and requiring no additional

cooling infrastructure [58].

• The primary market for high-end FPGAs is as communication processors,

especially in high-end routers [28, 40]. The use of FPGAs for communication

offload is also well established. For example BittWare [18] has long had

products that use this approach for large-scale DSP. For HPC, computers with

FPGAs for communication are currently in use for physics computations

[13, 142].

7.2 Target Systems

7.2.1 FPGA-based Systems

We briefly state our assumptions about the target systems with FPGA-based

accelerators. They are typical for current products.

• The overall system consists of some number of standard nodes. Typical node

configurations have 1-4 accelerator boards plugged into a high-speed

connection (e.g., the Front Side Bus or PCI Express). The host node runs the

main application program. CPUs communicate with the accelerators through

function calls.

• Each accelerator board consists of 1-4 FPGAs, memory, and a bus interface. On-

board memory is tightly coupled to each FPGA either through several interfaces

157

(e.g., 6 x 32-bit) or a wide bus (128-bit). 4GB - 64GB of memory per FPGA is

currently standard.

• Besides configurable logic, the FPGA has dedicated components such as

independently accessible multiport memories (e.g., 2000 x 1KB) called Block

RAMs (or BRAMs) and a similar number of multipliers. FPGAs used in High

Performance Reconfigurable Computing typically run at 200 MHz, although

with optimization substantially higher operating frequencies can sometimes be

achieved.

• FPGAs have substantial I/O and communication capability. High-end FPGAs

have on the order of 1000 I/O pins which have latency of 5-6 ns. They also

have dozens multi-Gbps interconnects; some members of the Altera Stratix V

family have dozens of 14 Gbps interconnects. Latency on the Gbit interconnects

for FPGA-FPGA communication can be less than 100 ns. FPGAs on a board

typically communicate via I/O with latency of a few cycles while inter-node

FPGA-FPGA communication is typically done via the Gbit interconnects.

We are initially targeting the Novo-G, the High Performance Reconfigurable

Supercomputer at the University of Florida [58], which has nearly 400 FPGAs and

both a commercial off-the-shelf interconnect and direct FPGA-FPGA connections.

7.2.2 MD on FPGA-based Systems

We now give an overview of the assumed accelerator design (details were described in

Chapter 4 with suggestions for improvement in Chapter 6) with the goal of justifying

the communication budget in the next section.

Our accelerated MD system runs on one to four FPGAs of a Gidel PROCStar III

board. The PROCStar III is a PCI-based system with an 8-lane PCI Express (PCIe

x8) host interface. Each processing unit contains an Altera Stratix III SE260 FPGA

158

and three memory banks, each of which has a 128-bit interface. The system has

also been tested in simulation on an Altera Stratix-V, the current generation FPGA.

The host processor runs the main application program and communicates with the

accelerator board through function calls. The program is partitioned as follows. The

accelerators process the range-limited forces, while the hosts process the balance of

the computation. In each iteration, particle data are downloaded to the accelerator

and forces are uploaded to the host.

Main computation pipeline: The main computation pipeline is partitioned into

two levels. The first is the filter pipeline; it determines whether the particle pair has

a non-zero force. The second level, the force pipeline, accepts the particle pairs that

pass the filter and computes their mutual force. Six to eight force pipelines fit on the

Stratix-III, each with 8-10 filter pipelines. This number doubles for the Stratix-V.

Host-accelerator data transfers: At the highest level, processing is built around

the timestep iteration and its two phases: force computation and motion update.

During each iteration, the host transfers position data to, and acceleration data from,

the accelerator’s on-board memory.

Board-level data transfers: Force calculation is built around the processing of

successive home cells. Position and acceleration data of the particles in the cell set

are loaded from board memory into on-chip caches. When the processing of a home

cell has completed, acceleration data is written back. Focus shifts and a neighboring

cell becomes the new home cell.

Force pipelines to accumulation cache: To support an optimization due to

Newton’s Third Law, two copies are made of each computed force. One is

accumulated with the current reference particle. The other is stored by index in one

of the large BRAMs on the Stratix.

The performance for the range-limited force computation is as follows. Each of

159

the 12-16 pipelines on the Stratix-V runs at 200 MHz and completes a payload force

calculation every cycle. All data transfer latencies are hidden as described in [33]

yielding a compute time of less than 20 ms per time-step, or roughly 10x the speed

of an 8-core CPU.

A 3D FFT kernel for long-range portio of PME is not implemented yet, but

highly efficient IP is available for 1D FFTs from both Xilinx [177] and Altera [5].

The remaining parts of the computation are mostly the communication described in

the next section.

7.3 MD Communication and Support Requirements

In this section we first describe the major types of communication. Then we quantify

the communication analytically and experimentally.

7.3.1 MD Communication Description

Several tiers of inter-processor communication take place during a parallel run of MD.

The majority of these transfers are due to the non-bonded force computation, while

most the rest are required for maintenance of the simulation, e.g., re-assignment of

particles to nodes as particles move during each timestep.

Range-limited: Position data of each particle need to be updated every timestep

before the range-limited non-bonded forces can be computed for that particle. The

owner node of a particle (the node that is responsible for updating the motion data of

that particle) sends position data (and also charge data as required) to all nodes that

require this data at the beginning of a timestep. After computing the forces, these

nodes send the force data back to the owner node. The owner node then combines

these results to update the motion of that particle for that timestep.

With cell-based decomposition (or neighbor lists) the amount of communication

160

Figure 7·1: Projected and measured data communication for range-limited
forces

per particle is a constant with respect to the problem size and the number of

processors. Assuming spatial decomposition and assignment of those spatially

decomposed cells to nodes we have two scenarios defined by the ratio of problem

size to cluster size.

For large problem to cluster size, multiple cells are assigned to each node,

potentially cubes of slabs. If the number of cells per node is the same for all nodes,

each node can simply compute forces for 13 neighboring cells for each of the cells

that is assigned to it. If that is not the case, e.g., if some nodes own two cells, some

own 3 cells, then additional decomposition involving the force computation improves

load-balance.

For small problem to cluster size, multiple nodes are assigned to each cell. There

is further decomposition of neighbor pairs to node. That is, force computation of a

cell will be decomposed such that it can be done in parallel by multiple nodes. In the

161

Figure 7·2: Projected and measured data communication for grid
interpolation

simplest case, there are 13 cell-pairs for each cell. These 13 cell-pairs are assigned to

multiple nodes for computation. The motion integration will still take place in one

node.

Data communication for range-limited force computation is typically limited to

neighboring nodes, as long as node assignment corresponds to the physical simulation

space.

Grid Interpolation: For the long-range part of the electrostatic force

computation, first the charge contribution of a particle to nearby grid points need to

be interpolated. This contribution is computed by the owner node and is sent to the

processor responsible for that particular grid point. These grid data are then used

to compute forces in Fourier space, using the 3D FFT, after which the computed

result is sent back to the owner node for motion update. While sending the force

contribution may be restricted to a subset of neighboring nodes, receiving such data

162

Figure 7·3: Projected and measured data communication for FFT/transpose

involves distant nodes, since unit of grid point assignment can span the entire

length of one or two dimensions of the simulation space. The same is true for

sending and receiving computation results since this is merely the same

communication in the reverse direction.

FFT/Transpose: The 3D FFT-based long-range force computation requires all-to-

all communication among nodes. if the 3D FFT uses slab-based decomposition, then

this involves sending/receiving transpose data once each for the forward and reverse

FFT. For pencil-based decomposition, this needs to happen twice for both the forward

and reverse FFT.

Others (Migration etc.): While the above three types of communication comprise

the majority of the data communication, there are a few other types of communication

required to maintain the simulation. These include migration of particles and other

system-wide communication among nodes, e.g. synchronization. Migration becomes

163

necessary when a particle crosses the boundary of its current cell by a predetermined

margin. At that point, it is re-assigned to another cell and this information must be

communicated among the involved nodes. Data communication required for migration

of particles is only a fraction of other communication and is limited among neighboring

nodes.

7.3.2 MD Communication Characterization

Communication in MD is primarily determined by the size of the problem, the

number of computing nodes, and the compute capability of the nodes. In this

subsection we provide some simple formulas to predict this communication amount

and validate them using a production MD code. The data are shown per node,

assuming a direct communication between every node-pair. We use NAMD2.8 [130]

and ApoA1 benchmark for measuring data communication. The source code of

NAMD2.8 was instrumented for this purpose as described in Chapter 6. The ApoA1

benchmark consists of 92,224 particles and uses periodic boundary condition with

an original simulation box of 108Å× 108Å× 78Å. It uses a cut-off radius of 12Å for

the range-limited force computation and a switching function is applied to smooth

the force when the inter-particle distance is between 10Å and 12Å. The Coulomb

force is evaluated using PME. The cell dimension used for cell-decomposition is

approximately 18Å, which results in 6× 6× 4 cells. The number of grid points used

for PME is 108× 108× 80.

Range-limited: For a large number of cells per node, the communication required

for the range-limited force can be approximated by assuming the import region to be

a spherical volume. If the volume of region owned by a node is 4×π× r3/3, then the

import volume would be 4×π× (r+m)3/3−4×π×r3/3, where r is the radius of the

spherical volume owned by the node and m is the inter-particle interaction distance.

164

The number of particles can be derived by using the density of the system, which is

0.1 for a typical bio-medical system.

For a small number of cells per node, this approximation does not hold due to the

cell-based decomposition. However, assuming that neighboring cells are assigned to

each node, we can predict the communication using the following equation

D = (C + 13)× P × d× 2 (7.1)

where D is the amount of data per node, C is the number of cells per node, P is the

number of particles per cell and d is the amount of data amount per particle. The 2

at the end of the equation is for a node’s contribution to other nodes.

For multiple nodes per cell, most of the computation requires importing data from

other nodes. This results in a communication amount of (Number of compute objects

per node + 1) × (Number of Particles per cell) × (Amount of Data per particle) ×

2.

Figure 7·1 shows the projected and measured data communication for

range-limited force computation. For low processor counts (2 and 4), where there

are many cells per node, we use import volume; for the rest we use Equation 7.1

Grid Interpolation: The communication for the grid interpolation can be

approximated by the following equation

D = (G/n)× d× 4× n1/4 (7.2)

where D is the amount of data per node, G is the total number of grid points, n is the

number of nodes and d is the amount of data per grid point. The 4 in the equation

accounts for sending/receiving of grid data before and after the force computation.

The n1/4 is empirically determined.

165

Figure 7·2 shows the projected and measured data communication for grid

interpolation.

FFT/Transpose: The communication for 3D FFT can be approximated by the

following equation (for slab-based decomposition)

D = (G/n)× d× 4 (7.3)

where D is the amount of data per node, G is the total number of grid points, n is the

number of nodes and d is the amount of data per grid point. The 4 in the equation

accounts for sending/receiving of grid data in the forward and reverse FFTs.

Figure 7·3 shows the projected and measured data communication for

FFT/transpose stages.

7.4 FPGA Cluster Communication Requirements

In this section we estimate the communication requirements for MD of an FPGA-

centric cluster. Figure 7·4 shows an estimate of required time per timestep for various

simulation sizes on a CPU-only system, assuming a perfect linear speed-up. These

numbers are based on benchmark results from the NAMD web site [130]. This data,

along with the communication characterization from the previous section, can be

used to determine the required bandwidth per node. Figure 7·5 shows this data. The

values for node counts 128 and 256 are computed using the method from the previous

section.

The bandwidth requirement of an accelerator-based system can be roughly

determined by comparing to an equivalent number of CPU cores. With high-end

FPGAs, it should be possible to achieve order of magnitude speed-up over an 8 core

CPU, assuming communication is also improved as required. This is shown in

166

Figure 7·4: Time per timestep for various simulation sizes and core counts
assuming perfect scaling. This is computation only and gives the time budget
for communication

Figure 7·5 in terms of CPU core-equivalence. For example, an FPGA-based node

equivalent to 256 CPU cores will have the bandwidth requirement of the top-most

line in this graph.

It should be noted that several adjustments are likely to be necessary as system

and implementation are specified further. The bandwidth requirement shown is the

absolute amount of data, assuming an all-to-all network. In practice, we must

consider the header, the amount of hops, and other implementation issues.

Therefore, actual bandwidth requirement is likely to be at least twice that shown in

Figure 7·5. Although this data is derived using a benchmark of about 100K

particles, it should give a reasonable estimate for larger simulations too, since both

runtime/timestep and amount of data communication will increase with the size of

the simulation. Another point to note is that, this estimation includes intra-node

communication, which is significant at low node counts, but can be ignored for high

167

Figure 7·5: Bandwidth requirement for various systems for a 100K particle
problem size. Systems are ideal with all-to-all interconnect and no in-channel
particle filtering

node counts. That is, at low node counts, the observed inter-node bandwidth

requirement will be significantly lower than what we present here.

We now examine the communication at the packet level to determine whether

latency (time-of-flight) is likely to have an impact on channel provisioning. That is,

we determine whether packet count must be considered (in this preliminary study) or

bandwidth alone is adequate. A packet for range-limited computation consists of all

position/charge/force data of all particles in a cell. With an 18Å cell and a particle

density of 0.1 particles per cubic angstrom, the average number of particles in a cell

is approximately 600. With double-precision floating point, the position/charge data

amount is 32 Bytes per particle, while force data amount is 24 Bytes per particle

giving an average packet size of 16 KB. With a 14 Gbps transceiver, this corresponds

to 8.72 microseconds per data packet. This time is significantly larger than what

we assume for inter-node data latency (a few hundred nanoseconds). An efficient

168

Figure 7·6: Bandwidth per channel requirement for various systems for a
100K problem size. Some likely system information is integrated such as
number of hops per packet and in-channel particle filtering

implementation is likely to be able to hide this latency. Similar arguments hold for

grid interpolation and FFT/transpose. Therefore, for further discussion, we only

consider bandwidth.

Next we determine the actual bandwidth requirement, assuming a 3D

bi-directional torus network. Our goal here is to determine bandwidth needed for

each of the 12 channels on a node in such a network topology. Data communication

for range-limited non-bonded force computation is contained within neighboring

nodes at 1-3 hops. This will on average cause about 2 times increase in data

communication. At the same time, however, the FPGA easily supports in-channel

filtering to remove particles not needed by a particular neighbor. For patch and

cut-off sizes described earlier, this results in a reduction of data to be transferred

(weighted by number of hops) to 73% of the original. For long-range

communication, all-to-all communication is required which roughly doubles the data

169

Figure 7·7: Bandwidth per channel requirement for various systems for a
problem size of 1 million. Some likely system information is integrated such
as number of hops per packet and in-channel particle filtering

amount for a 4 × 4 × 4 node system and further doubles it on an 8 × 8 × 8 node

system.

The final bandwidth requirement for a 100K simulation is shown in Figure 7·6.

The series node = 256 cores represents projected performance of a 4 FPGA node.

For a system with 64 such nodes, configured in a 3D bidirectional torus, each channel

must support 27 Gbps bandwidth; this is possible with 2 14 Gbps serial links. The

aggregate of 24 links is a small fraction of the 176 available among the four FPGAs

on such a node, assuming the appropriate Altera Stratix V FPGA.

Figure 7·7 shows the same results for a 1 million particle simulation. As expected,

this significantly reduces the communication requirement. Again examining the series

node = 256 cores we see that the last three points (64, 128, and 256 nodes) require

bandwidths of 17.2, 17.7, and 20.3 Gbps, respectively. This approaches what can be

achieved with a single serial port, especially in the next generation of FPGAs where

170

the link capacity is likely to double.

7.5 Chapter Summary

In this chapter, we have performed an initial study on communication network

requirements for an FPGA-centric cluster executing molecular dynamics

simulations. We find that current production boards (with 4 FPGAs) are

appropriate for use as nodes in such a system. Even for relatively small simulations

which are hard to scale to large clusters (<100K particles) we find that only a small

fraction of the FPGA’s communication capability is required. Some of this is due to

the fact that the FPGA channel is programmable which can significantly reduce the

amount of data that needs to be transferred. We conclude that a cluster with 256

FPGAs distributed in 64 nodes is appropriately provisioned, even for modest

simulations, with a bidirectional 3D torus where each link consists of 1-2 of an

FPGA’s serial ports. This study should serve as a baseline in the creation of a

scalable FPGA-accelerated MD solution.

171

Chapter 8

Conclusions

We conclude this dissertation by summarizing our work on parallelization of DMD

and integration of FPGA-accelerated MD into full-parallel production MD package.

We also discuss some of the lessons we learned from this study and how this work

can be extended in the future.

8.1 Summary

In this research we have worked towards achieving fast yet scalable molecular

dynamics simulation using FPGAs and multicore processors. We enhanced the

performance of an existing FPGA kernel for range-limited non-bonded force

computation, and then incorporated it into a full-parallel production-level MD

package. We also parallelized DMD, an emerging alternative to timestep-driven MD,

by taking advantage of the shared memory architecture of multicore processors.

In our PDMD work, we first systematically studied the difficulties in

parallelizing DMD and defined three possible kinds of hazards. To circumvent these

difficulties, we used event-based decomposition, as opposed to the existing

approaches that use spatial decomposition. In our method, multiple events in DMD

are processed in parallel, but committed in serial. We utilized a recently developed

data structure and the shared-memory architecture of multicore processors to

minimize the serial commitment and other synchronization time. We presented

three possible implementations of our approach and found that, having a dedicated

172

helper thread and multiple worker threads resulted in the best performance scaling.

This implementation achieved more than 5.5x (8.5x) speed-up for 3D systems on an

8 (12) core CPU. We analyzed our results in terms of available concurrency in the

application and architectural features of the hardware.

In our work on FPGA-accelerated MD, we first enhanced the performance of an

existing FPGA kernel by taking advantage of the BRAM architecture of the FPGAs.

We explored the design space of the table interpolation method and found that, we

can trade-off the granularity of the table with the order of interpolation without

sacrificing simulation quality. Unlike in CPU-based systems, the BRAM architecture

in the FPGAs allows us to have finer-grained tables and lower order of interpolation.

This saves logic resources on the FPGA, which are then used to implement more

force computation pipeline. The net result is a 50% improvement in performance,

compared to direct computation.

Next, we parallelized the FPGA kernel to utilize multiple on-board FPGAs. We

used partitioning and software pipelining methods to achieve a 3.37x end-to-end

speed-up over a single CPU core, using the Gidel FPGA board. We discussed the

serialization issues and determined the theoretical upper bound of speed-up to be

3.76x, when only the range-limited non-bonded force computation is accelerated and

long-range portion of PME is computed every timestep.

Then we integrated the FPGA kernel into NAMD, a widely used full-parallel

production MD package. We discussed how the scale and complexity of a production-

level package make efficient integration a very challenging task. We described how we

actually integrated the FPGA-kernel, and how the integrated framework can be used

in architectural studies. Our integrated version achieved 2.22x end-to-end speed-up

over a quad-core CPU, making it the first ever full-parallel production-level FPGA-

accelerated MD to achieve a positive end-to-end speed-up.

173

Finally, we studied the plausibility of using FPGA-centric clusters for MD. We

instrumented our framework to quantify the data communication characteristics of

MD. We applied this information to clusters of various sizes and node complexity,

and found that a cluster with 256 FPGAs distributed in 64 nodes is appropriately

provisioned, even for modest simulations, with a bidirectional 3D torus where each

link consists of 1-2 of an FPGA’s serial ports.

8.2 Observations

Need to know both the application and the platform it runs on: In this work,

we found that knowing both the hardware and the software is absolutely essential in

achieving high performance. The design space to explore not only consists of choices

in the application, but also includes the features of the available hardware platforms.

A proper understanding is, therefore, required to determine how an application can

be best mapped on a target hardware. We see an example of this in our PDMD work,

where we determined that spatial decomposition is likely to have too much data

communication, making it a bad choice for parallelization. We rather chose a method

that circumvents this issue by taking advantage of the shared memory architecture of

our target hardware, multicore processors. Another example is how we took advantage

of the BRAM architecture of the FPGAs to implement finer-grained tables, a choice

not likely to be favorable on CPUs, for table interpolation method.

Implementation-level details matter: From our experience in the PDMD work,

we find that implementation-level details have serious consequence in the final

performance. We had three implementations of the same task-decomposed

approach, where only the synchronization methods were different. The achieved

performance varied significantly, ranging from slow-down to near-linear speed-up.

174

Data communication is the key in parallel applications: Our integration work

on the FPGA-accelerated MD shows that correctly handling data communication is

the key in parallel applications. Much of the benefits of acceleration can be diminished

if the accelerator incurs additional data communication. Efforts need to be made not

only to minimize data communication between the host and the accelerator, but also

to minimize data communication among host processors.

Striking the right balance is more important than making individual pieces

optimal: By using our integrated framework for FPGA-accelerated MD, we can see

that, by overlapping accelerator runtime with CPU computation and communication

time, a relatively slower accelerator can achieve the same or even better performance

than a faster accelerator. The available features of the accelerator, e.g. the ability to

split force computations for remote and local patches, is no less important than the

throughput of its force computation pipeline.

Top-down approach is necessary to achieve end-to-end speed-up using

FPGAs: While many previous work on FPGA-accelerated MD used simplified

software to prove a concept, the methods developed using such simplified software

are sometimes in conflict with the structure of the highly optimized production-level

software. This ends up requiring significant modifications in the software,

diminishing the advantages of acceleration. To achieve meaningful end-to-end

speed-ups, it is crucial to take a top-down approach, where the accelerators will

incorporate the needs of the software, not the other way around.

175

8.3 Future Directions

8.3.1 Hardware Implementation of Task-decomposed DMD

A hardware implementation of our task-decomposed PDMD is highly promising as

a future work. Considering the non-recurring cost of ASICs, FPGAs seem to be the

most viable option. GPUs may also be a good choice, but in that case, functional

decomposition (described in Section 3.1.2) may be a better choice, since GPUs are

especially good at running many tiny identical threads.

8.3.2 FPGAs for Data Communication of MD

While CPU-only MD remains compute-bound for at least a few hundred compute

nodes, that is not the case for accelerated versions. Communication among compute

nodes become a bottleneck even for small systems. The need for fast data

communication is especially crucial in evaluating the long-range portion of

electrostatic force, which is often based on 3D FFT, and requires all-to-all

communication during a timestep. Without substantial improvement in such

inter-node communication, FPGA-acceleration will be limited to only a few times of

speed-up. This presents a highly promising area of research where FPGAs can be

used directly for communication between compute nodes. FPGAs are already used

in network routers and seem like a natural fit for this purpose [28]. As shown in

Chapter 7, our integrated framework for FPGA-accelerated MD can provide useful

insights in making crucial design choices.

8.3.3 FPGA-centric MD Engine

As Moore’s law [115] continues, FPGAs are equipped with more functionality than

ever. It is possible to have embedded processors on FPGAs [5, 177], either soft or

hard, which makes it feasible to create an entirely FPGA-centric MD engine. In such

176

an engine, overall control and simple software tasks will be done on the embedded

processors while the heavy work, like the non-bonded force computations, will be

implemented on the remaining logic. Data communication can also be performed

using the FPGAs, completely eliminating general purpose CPUs from the scene. Such

a system is likely to be highly efficient, both in terms of computational performance

and energy consumption. We already showed the plausibility of such a system in

Chapter 7. This work can be extended to actually create such a system and implement

an FPGA-centric MD engine.

8.3.4 Broader Application

Many of the methods developed in this work can be generalized and extended to

other scientific problems. In fact, the task-decomposed method used in parallelizing

DMD has already been found useful in achieving better energy efficiency and thermal

behavior for a parallel workload, called DeDup (Data Deduplication), in the PARSEC

benchmark suite [88, 89]. The integrated framework of the FPGA-accelerated MD

can be used to study quantitatively various design trade-offs in future designs. For

example, we have instrumented the code to extract data communication pattern which

can potentially be used to study performance and energy efficiency of a system where

certain data communication can be reduced at the cost of additional local filtering

computation.

177

References

[1] Accelera (2012). Accelerating bio-molecular simulations. Accelera website.
http://www.acellera.com/acemd/.

[2] Adcock, S. A. and McCammon, J. A. (2006). Molecular dynamics: Survey of
methods for simulating the activity of proteins. Chemical Reviews,
106(5):1589–1615. http://dx.doi.org/10.1021/cr040426m.

[3] Allen, M. P. (2004). Introduction to molecular dynamics simulation.
Computational Soft Matter: From Synthetic Polymers to Proteins, Lecture
Notes, NIC Series, 23:1–28.

[4] Altera (2006). FPGA architecture. http://www.altera.com/literature/

wp/wp-01003.pdf.

[5] Altera (2012). Altera website. http://www.altera.com.

[6] AMBER (2011). NVIDIA GPU acceleration support. http://ambermd.org/

gpus/benchmarks.htm.

[7] AMBER (2012). AMBER on Tesla GPUs. http://www.nvidia.com/object/

amber_on_tesla.html.

[8] Amisaki, T., Fujiwara, T., Kusumi, A., Miyagawa, H., and Kitamura, K.
(1995). Error evaluation in the design of a special-purpose processor that
calculates nonbonded forces in molecular dynamics simulations. Journal of
Computational Chemistry, 16(9):1120–1130.
http://dx.doi.org/10.1002/jcc.540160906.

[9] Anderson, J. A., Lorenz, C. D., and Travesset, A. (2008). General purpose
molecular dynamics simulations fully implemented on graphics processing units.
Journal of Computational Physics, 227(10):5342–5359. http://dx.doi.org/

10.1016/j.jcp.2008.01.047.

[10] Annapolis (2003). WILDSTAR-II Hardware Reference Manual. Annapolis
Micro Systems Inc., USA.

[11] Annapolis (2006). WILDSTAR II PRO for PCI. Annapolis Micro Systems
Inc., USA.

http://www.acellera.com/acemd/
http://dx.doi.org/10.1021/cr040426m
http://www.altera.com/literature/wp/wp-01003.pdf
http://www.altera.com/literature/wp/wp-01003.pdf
http://www.altera.com
http://ambermd.org/gpus/benchmarks.htm
http://ambermd.org/gpus/benchmarks.htm
http://www.nvidia.com/object/amber_on_tesla.html
http://www.nvidia.com/object/amber_on_tesla.html
http://dx.doi.org/10.1002/jcc.540160906
http://dx.doi.org/10.1016/j.jcp.2008.01.047
http://dx.doi.org/10.1016/j.jcp.2008.01.047

178

[12] Azizi, N., Kuon, I., Egier, A., Darabiha, A., and Chow, P. (2004).
Reconfigurable molecular dynamics simulator. In The 12th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines (FCCM),
pages 197–206. http://dx.doi.org/10.1109/FCCM.2004.48.

[13] Baker, Z., Bhattacharya, T., Dunham, M., Graham, P., Gupta, R., Inman, J.,
Klein, A., Kunde, G., McPherson, A., Stettler, M., and Tripp, J. (2009). The
PetaFlops Router: Harnessing FPGAs and accelerators for high performance
computing. In Proceedings of High Performance Embedded Computing
(HPEC), pages 1–3.

[14] Bargiel, M., Dzwinel, W., Kitowski, J., and Moscinski, J. (1991). C-language
molecular dynamics program for the simulation of Lennard-Jones particles.
Computer Physics Communications, 64(1):193–205.
http://dx.doi.org/10.1016/0010-4655(91)90061-O.

[15] Baxter, R., Booth, S., Bull, M., Cawood, G., Perry, J., Parsons, M., Simpson,
A., Trew, A., McCormick, A., Smart, G., Smart, R., Cantle, A., Chamberlain,
R., and Genest, G. (2007). Maxwell - a 64 FPGA supercomputer. In Second
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pages 287–
294. http://dx.doi.org/10.1109/AHS.2007.71.

[16] BEEcube (2012). BEEcube website. http://www.beecube.com.

[17] Berendsen, H., van der Spoel, D., and van Drunen, R. (1995). GROMACS: A
message-passing parallel molecular dynamics implementation. Computer
Physics Communications, 91(1-3):43–56.
http://dx.doi.org/10.1016/0010-4655(95)00042-E.

[18] BittWare (2012). BittWare website. http://www.bittware.com.

[19] Board, J. A. J., Humphres, C. W., Lambert, C. G., Rankin, W. T., and
Toukmaji, A. Y. (1997). Ewald and multipole methods for periodic N-body
problems. In Proceedings of the Eighth SIAM Conference on Parallel
Processing for Scientific Computing (PPSC), pages 1–8.

[20] Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen,
B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon,
J. K., Shan, Y., and Shaw, D. E. (2006). Scalable algorithms for molecular
dynamics simulations on commodity clusters. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing (SC), pages 84:1–84:13.
http://dx.doi.org/10.1145/1188455.1188544.

[21] Bowers, K. J., Dror, R. O., and Shaw, D. E. (2007). Zonal methods for the
parallel execution of range-limited N-body simulations. Journal of

http://dx.doi.org/10.1109/FCCM.2004.48
http://dx.doi.org/10.1016/0010-4655(91)90061-O
http://dx.doi.org/10.1109/AHS.2007.71
http://www.beecube.com
http://dx.doi.org/10.1016/0010-4655(95)00042-E
http://www.bittware.com
http://dx.doi.org/10.1145/1188455.1188544

179

Computational Physics, 221(1):303–329.
http://dx.doi.org/10.1016/j.jcp.2006.06.014.

[22] Bowers, K. J., Lippert, R. A., Dror, R. O., and Shaw, D. E. (2010). Improved
twiddle access for Fast Fourier Transforms. Transaction on Signal Processing,
58(3):1122–1130. http://dx.doi.org/10.1109/TSP.2009.2035984.

[23] Brandt, A. (1977). Multi-level adaptive solutions to boundary-value
problems. Mathematics of Computation, 31(138):333–390.
http://dx.doi.org/10.1090/S0025-5718-1977-0431719-X.

[24] Brooks, B. R., Brooks, III, C. L., Mackerell, Jr., A. D., Nilsson, L., Petrella,
R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A.,
Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek,
M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E.,
Pastor, R. W., Post, C. B., Pu, J. Z., Schaefer, M., Tidor, B., Venable, R. M.,
Woodcock, H. L., Wu, X., Yang, W., York, D. M., and Karplus, M. (2009).
CHARMM: The biomolecular simulation program. Journal of Computation
Chemistry, 30(10):1545–1614. http://dx.doi.org/10.1002/jcc.21287.

[25] Brooks, C. and Case, D. A. (1993). Simulations of peptide conformational
dynamics and thermodynamics. Chemical Reviews, 93(7):2487–2502. http:

//dx.doi.org/10.1021/cr00023a008.

[26] Brown, W. M. (2011). GPU acceleration in LAMMPS.
http://lammps.sandia.gov/workshops/Aug11/Brown/brown11.pdf.

[27] Buldyrev, S. V. (2008). Application of discrete molecular dynamics to protein
folding and aggregation. In Aspects of Physical Biology, volume 752 of Lecture
Notes in Physics, pages 97–131. Springer-Verlag. http://dx.doi.org/10.

1007/978-3-540-78765-5_5.

[28] Byrne, J., Bolaria, J., and Halfhill, T. R. (2011). A guide to FPGAs. Technical
report, The Linley Group.

[29] Case, D., Darden, T., Cheatham, T., Simmerling, C., Wang, J., Duke, R.,
Luo, R., Walker, R., Zhang, W., Merz, K., Roberts, B., Wang, B., Hayik, S.,
Roitberg, A., Seabra, G., Kolossvry, I., Wong, K., Paesani, F., Vanicek, J., Liu,
J., Wu, X., Brozell, S., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang,
J., Hsieh, M., Cui, G., Roe, D., Mathews, D., Seetin, M., Sagui, C., Babin, V.,
Luchko, T., Gusarov, S., Kovalenko, A., and Kollman, P. (2010). AMBER 11.
University of California, San Francisco.

[30] Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Jr., K. M. M.,
Onufriev, A., Simmerling, C., Wang, B., and Woods, R. J. (2005). The

http://dx.doi.org/10.1016/j.jcp.2006.06.014
http://dx.doi.org/10.1109/TSP.2009.2035984
http://dx.doi.org/10.1090/S0025-5718-1977-0431719-X
http://dx.doi.org/10.1002/jcc.21287
http://dx.doi.org/10.1021/cr00023a008
http://dx.doi.org/10.1021/cr00023a008
http://lammps.sandia.gov/workshops/Aug11/Brown/brown11.pdf
http://dx.doi.org/10.1007/978-3-540-78765-5_5
http://dx.doi.org/10.1007/978-3-540-78765-5_5

180

Amber biomolecular simulation programs. Journal of Computational
Chemistry, 26(16):1668–1688. http://dx.doi.org/10.1002/jcc.20290.

[31] Chellappa, S., Franchetti, F., and Püschel, M. (2008). How to write fast
numerical code: A small introduction. In Generative and Transformational
Techniques in Software Engineering II, volume 5235 of Lecture Notes in
Computer Science, pages 196–259. Springer-Verlag.
http://dx.doi.org/10.1007/978-3-540-88643-3_5.

[32] Chiu, M. and Herbordt, M. C. (2009). Efficient particle-pair filtering for
acceleration of molecular dynamics simulation. In International Conference
on Field Programmable Logic and Applications (FPL), pages 345–352.
http://dx.doi.org/10.1109/FPL.2009.5272272.

[33] Chiu, M. and Herbordt, M. C. (2010a). Molecular dynamics simulations on
high-performance reconfigurable computing systems. ACM Transaction on
Reconfigurable Technology and Systems (TRETS), 3(4):23:1–23:37. http://

dx.doi.org/10.1145/1862648.1862653.

[34] Chiu, M. and Herbordt, M. C. (2010b). Towards production
FPGA-accelerated molecular dynamics: Progress and challenges. In Fourth
International Workshop on High-Performance Reconfigurable Computing
Technology and Applications (HPRCTA), pages 1–8.
http://dx.doi.org/10.1109/HPRCTA.2010.5670800.

[35] Chiu, M., Herbordt, M. C., and Langhammer, M. (2008). Performance
potential of molecular dynamics simulations on high performance
reconfigurable computing systems. In Second International Workshop on
High-Performance Reconfigurable Computing Technology and Applications
(HPRCTA), pages 1–10.
http://dx.doi.org/10.1109/HPRCTA.2008.4745685.

[36] Chiu, M., Khan, M. A., and Herbordt, M. C. (2011). Efficient calculation of
pairwise nonbonded forces. In The 19th Annual International IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages 73–76.
http://dx.doi.org/10.1109/FCCM.2011.34.

[37] Chiu, S. (2011). Accelerating molecular dynamics simulations with
high-performance reconfigurable systems. PhD dissertation, Boston
University, USA.

[38] Cho, E., Bourgeois, A., and Fernndez-Zepeda, J. (2008). Examining the
feasibility of reconfigurable models for molecular dynamics simulation. In
Algorithms and Architectures for Parallel Processing, volume 5022 of Lecture

http://dx.doi.org/10.1002/jcc.20290
http://dx.doi.org/10.1007/978-3-540-88643-3_5
http://dx.doi.org/10.1109/FPL.2009.5272272
http://dx.doi.org/10.1145/1862648.1862653
http://dx.doi.org/10.1145/1862648.1862653
http://dx.doi.org/10.1109/HPRCTA.2010.5670800
http://dx.doi.org/10.1109/HPRCTA.2008.4745685
http://dx.doi.org/10.1109/FCCM.2011.34

181

Notes in Computer Science, pages 109–120. Springer-Verlag.
http://dx.doi.org/10.1007/978-3-540-69501-1_13.

[39] Cho, E., Bourgeois, A., and Tan, F. (2007). An FPGA design to achieve fast
and accurate results for molecular dynamics simulations. In Parallel and
Distributed Processing and Applications, volume 4742 of Lecture Notes in
Computer Science, pages 256–267. Springer-Verlag.
http://dx.doi.org/10.1007/978-3-540-74742-0_25.

[40] Cisco (2012). Cisco website. http://www.cisco.com.

[41] Culler, D., Singh, J. P., and Gupta, A. (1998). Parallel Computer Architecture:
A Hardware/Software Approach. Morgan Kaufmann, 1st edition.

[42] Dally, W. J. (2010). Throughput computing. Keynote Talk, ACM/IEEE
Conference on Supercomputing (SC).

[43] Dally, W. J., Fiske, J. S., Keen, J. S., Lethin, R. A., Noakes, M. D., Nuth,
P. R., Davison, R. E., and Fyler, G. A. (1992). The Message-Driven Processor:
A multicomputer processing node with efficient mechanisms. IEEE Micro,
12(2):23–39. http://dx.doi.org/10.1109/40.127581.

[44] Darden, T., York, D., and Pedersen, L. (1993). Particle Mesh Ewald: An N.log
(N) method for Ewald sums in large systems. Journal of Chemical Physics,
98(12):10089–10092. http://dx.doi.org/10.1063/1.464397.

[45] DeMarco, M. L. and Daggett, V. (2004). From conversion to aggregation:
Protofibril formation of the prion protein. Proceedings of the National Academy
of Sciences of the United States of America, 101(8):2293–2298. http://dx.

doi.org/10.1073/pnas.0307178101.

[46] Dokholyan, N. V. (2006). Studies of folding and misfolding using simplified
models. Current Opinion in Structural Biology, 16(1):79–85. http://dx.doi.

org/10.1016/j.sbi.2006.01.001.

[47] Dror, R., Grossman, J., Mackenzie, K., Towles, B., Chow, E., Salmon, J.,
Young, C., Bank, J., Batson, B., Deneroff, M., Kuskin, J., Larson, R., Moraes,
M., and Shaw, D. (2011). Overcoming communication latency barriers in
massively parallel scientific computation. IEEE Micro, 31(3):8–19. http:

//dx.doi.org/10.1109/MM.2011.38.

[48] Dror, R. O., Grossman, J. P., Mackenzie, K. M., Towles, B., Chow, E.,
Salmon, J. K., Young, C., Bank, J. A., Batson, B., Deneroff, M. M., Kuskin,
J. S., Larson, R. H., Moraes, M. A., and Shaw, D. E. (2010). Exploiting
162-nanosecond end-to-end communication latency on Anton. In Proceedings

http://dx.doi.org/10.1007/978-3-540-69501-1_13
http://dx.doi.org/10.1007/978-3-540-74742-0_25
http://www.cisco.com
http://dx.doi.org/10.1109/40.127581
http://dx.doi.org/10.1063/1.464397
http://dx.doi.org/10.1073/pnas.0307178101
http://dx.doi.org/10.1073/pnas.0307178101
http://dx.doi.org/10.1016/j.sbi.2006.01.001
http://dx.doi.org/10.1016/j.sbi.2006.01.001
http://dx.doi.org/10.1109/MM.2011.38
http://dx.doi.org/10.1109/MM.2011.38

182

of the ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pages 1–12.
http://dx.doi.org/10.1109/SC.2010.23.

[49] Eaton, W. A., Muoz, V., Thompson, P. A., Chan, C.-K., and Hofrichter, J.
(1997). Submillisecond kinetics of protein folding. Current Opinion in
Structural Biology, 7(1):10–14.
http://dx.doi.org/10.1016/S0959-440X(97)80003-6.

[50] Ebisuzaki, T., Makino, J., Fukushige, T., Taiji, M., Sugimoto, D., Ito, T., and
Okumura, S. K. (1993). GRAPE project: an overview. Publications of the
Astronomical Society of Japan, 45:269–278.

[51] Engle, R. D., Skeel, R. D., and Drees, M. (2005). Monitoring energy drift
with shadow Hamiltonians. Journal of Computational Physics, 206(2):432–
452. http://dx.doi.org/10.1016/j.jcp.2004.12.009.

[52] Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen,
L. (1995). A smooth particle mesh Ewald method. Journal of Chemical
Physics, 103(19):8577–8593. http://dx.doi.org/10.1063/1.470117.

[53] Ewald, P. P. (1921). Die berechnung optischer und elektrostatischer
gitterpotentiale. Annalen der Physik, 369(3):253–287.
http://dx.doi.org/10.1002/andp.19213690304.

[54] Flower, D. R., Phadwal, K., Macdonald, I. K., Coveney, P. V., Davies, M. N.,
and Wan, S. (2010). T-cell epitope prediction and immune complex
simulation using molecular dynamics: state of the art and persisting
challenges. Immunome Research, 6(Suppl 2):S4.
http://dx.doi.org/10.1186/1745-7580-6-S2-S4.

[55] Freddolino, P. L., Arkhipov, A. S., Larson, S. B., McPherson, A., and Schulten,
K. (2006). Molecular dynamics simulations of the complete satellite tobacco
mosaic virus. Structure, 14(3):437–449. http://dx.doi.org/10.1016/j.

str.2005.11.014.

[56] Fujimoto, R. M. (1990). Parallel discrete event simulation. Communications
of the ACM - Special issue on simulation, 33(10):30–53. http://dx.doi.org/

10.1145/84537.84545.

[57] Fukushige, T., Taiji, M., Makino, J., Ebisuzaki, T., and Sugimoto, D. (1996).
A highly parallelized special-purpose computer for many-body simulations with
an arbitrary central force: MD-GRAPE. Astrophysical Journal, 468:51–61.
http://dx.doi.org/10.1086/177668.

http://dx.doi.org/10.1109/SC.2010.23
http://dx.doi.org/10.1016/S0959-440X(97)80003-6
http://dx.doi.org/10.1016/j.jcp.2004.12.009
http://dx.doi.org/10.1063/1.470117
http://dx.doi.org/10.1002/andp.19213690304
http://dx.doi.org/10.1186/1745-7580-6-S2-S4
http://dx.doi.org/10.1016/j.str.2005.11.014
http://dx.doi.org/10.1016/j.str.2005.11.014
http://dx.doi.org/10.1145/84537.84545
http://dx.doi.org/10.1145/84537.84545
http://dx.doi.org/10.1086/177668

183

[58] George, A., Lam, H., and Stitt, G. (2011). Novo-G: At the forefront of
scalable reconfigurable supercomputing. Computing in Science and
Engineering, 13(1):82–86. http://dx.doi.org/10.1109/MCSE.2011.11.

[59] Gidel (2009a). Gidel PROCStarIII data book. Gidel Ltd.

[60] Gidel (2009b). Gidel website. http://www.gidel.com.

[61] Gidel (2009c). PROCWizard user’s manual. Gidel Ltd.

[62] GROMACS (2012). GROMACS installation instructions for GPUs. http:

//www.gromacs.org/Downloads/Installation_Instructions/GPUs.

[63] Gu, Y. (2008). FPGA acceleration of molecular dynamics simulations. PhD
dissertation, Boston University, USA.

[64] Gu, Y. and Herbordt, M. C. (2007a). Amenability of multigrid computations
to FPGA-based acceleration. In Proceedings of High Performance Embedded
Computing (HPEC), pages 1–2.

[65] Gu, Y. and Herbordt, M. C. (2007b). FPGA-based multigrid computation for
molecular dynamics simulations. In 15th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 117–126. http:

//dx.doi.org/10.1109/FCCM.2007.42.

[66] Gu, Y., Vancourt, T., and Herbordt, M. C. (2005). Accelerating molecular
dynamics simulations with configurable circuits. In International Conference
on Field Programmable Logic and Applications (FPL), pages 475–480. http:

//dx.doi.org/10.1109/FPL.2005.1515767.

[67] Gu, Y., Vancourt, T., and Herbordt, M. C. (2006a). Accelerating molecular
dynamics simulations with configurable circuits. IEE Proceedings - Computers
and Digital Techniques, 153(3):189–195.
http://dx.doi.org/10.1049/ip-cdt:20050182.

[68] Gu, Y., Vancourt, T., and Herbordt, M. C. (2006b). Improved interpolation
and system integration for FPGA-based molecular dynamics simulations. In
International Conference on Field Programmable Logic and Applications (FPL),
pages 1–8. http://dx.doi.org/10.1109/FPL.2006.311190.

[69] Gu, Y., Vancourt, T., and Herbordt, M. C. (2006c). Integrating FPGA
acceleration into the Protomol molecular dynamics code: Preliminary report.
In IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 315–316. http://dx.doi.org/10.1109/FCCM.2006.52.

http://dx.doi.org/10.1109/MCSE.2011.11
http://www.gidel.com
http://www.gromacs.org/Downloads/Installation_Instructions/GPUs
http://www.gromacs.org/Downloads/Installation_Instructions/GPUs
http://dx.doi.org/10.1109/FCCM.2007.42
http://dx.doi.org/10.1109/FCCM.2007.42
http://dx.doi.org/10.1109/FPL.2005.1515767
http://dx.doi.org/10.1109/FPL.2005.1515767
http://dx.doi.org/10.1049/ip-cdt:20050182
http://dx.doi.org/10.1109/FPL.2006.311190
http://dx.doi.org/10.1109/FCCM.2006.52

184

[70] Gu, Y., Vancourt, T., and Herbordt, M. C. (2008). Explicit design of FPGA-
based coprocessors for short-range force computations in molecular dynamics
simulations. Parallel Computing, 34(4-5):261–277. http://dx.doi.org/10.

1016/j.parco.2008.01.007.

[71] Guo, H., Su, L., Wang, Y., and Long, Z. (2009). FPGA-accelerated molecular
dynamics simulations system. In International Conference on Scalable
Computing and Communications; Eighth International Conference on
Embedded Computing, pages 360–365.
http://dx.doi.org/10.1109/EmbeddedCom-ScalCom.2009.71.

[72] Hagen, S. J., Hofrichter, J., Szabo, A., and Eaton, W. A. (1996). Diffusion-
limited contact formation in unfolded cytochrome c: estimating the maximum
rate of protein folding. Proceedings of the National Academy of Science of
the United States of America, 93(21):11615–11617. http://dx.doi.org/10.

1073/pnas.93.21.11615.

[73] Hardy, D. J. (2007). NAMD-Lite. http://www.ks.uiuc.edu/Development/

MDTools/namdlite/. University of Illinois at Urbana-Champaign.

[74] Harvey, M. J. and De Fabritiis, G. (2009). An implementation of the Smooth
Particle Mesh Ewald method on GPU hardware. Journal of Chemical Theory
and Computation, 5(9):2371–2377. http://dx.doi.org/10.1021/ct900275y.

[75] Harvey, M. J., Giupponi, G., and Fabritiis, G. D. (2009). ACEMD:
Accelerating biomolecular dynamics in the microsecond time scale. Journal of
Chemical Theory and Computation, 5(6):1632–1639.
http://dx.doi.org/10.1021/ct9000685.

[76] Hennessy, J. L. and Patterson, D. A. (2006). Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 4th edition.

[77] Herbordt, M., Kosie, F., and Model, J. (2008). An efficient O(1) priority
queue for large FPGA-based discrete event simulations of molecular dynamics.
In The 16th International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 248–257.
http://dx.doi.org/10.1109/FCCM.2008.49.

[78] Herbordt, M. C., Khan, M. A., and Dean, T. (2009). Parallel discrete event
simulation of molecular dynamics through event-based decomposition. In
Proceedings of the 20th IEEE International Conference on Application-specific
Systems, Architectures and Processors (ASAP), pages 129–136.
http://dx.doi.org/10.1109/ASAP.2009.39.

http://dx.doi.org/10.1016/j.parco.2008.01.007
http://dx.doi.org/10.1016/j.parco.2008.01.007
http://dx.doi.org/10.1109/EmbeddedCom-ScalCom.2009.71
http://dx.doi.org/10.1073/pnas.93.21.11615
http://dx.doi.org/10.1073/pnas.93.21.11615
http://www.ks.uiuc.edu/Development/MDTools/namdlite/
http://www.ks.uiuc.edu/Development/MDTools/namdlite/
http://dx.doi.org/10.1021/ct900275y
http://dx.doi.org/10.1021/ct9000685
http://dx.doi.org/10.1109/FCCM.2008.49
http://dx.doi.org/10.1109/ASAP.2009.39

185

[79] Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. (2008). GROMACS
4: Algorithms for highly efficient, load-balanced, and scalable molecular
simulation. Journal of Chemical Theory and Computation, 4(3):435–447.
http://dx.doi.org/10.1021/ct700301q.

[80] Hockney, R., Goel, S., and Eastwood, J. (1974). Quiet high-resolution
computer models of a plasma. Journal of Computational Physics,
14(2):148–158. http://dx.doi.org/10.1016/0021-9991(74)90010-2.

[81] Ito, T., Makino, J., Fukushige, T., Ebisuzaki, T., Okumura, S. K., and
Sugimoto, D. (1993). A special-purpose computer for N-body simulations:
GRAPE-2A. Publications of the Astronomical Society of Japan, 45:339–347.

[82] Kalé, L. and Krishnan, S. (1993). CHARM++: A portable concurrent object
oriented system based on C++. In Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), pages
91–108. http://dx.doi.org/10.1145/167962.165874.

[83] Kalé, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N.,
Phillips, J., Shinozaki, A., Varadarajan, K., and Schulten, K. (1999). NAMD2:
Greater scalability for parallel molecular dynamics. Journal of Computational
Physics, 151:283–312. http://dx.doi.org/10.1006/jcph.1999.6201.

[84] Kalé, L. V., Zheng, G., Lee, C. W., and Kumar, S. (2006). Scaling
applications to massively parallel machines using projections performance
analysis tool. Future Generation Computer Systems, 22(3):347–358.
http://dx.doi.org/10.1016/j.future.2004.11.020.

[85] Karplus, M. and McCammon, J. A. (2002). Molecular dynamics simulations of
biomolecules. Nature Structural Biology, 9(9):646–652. http://dx.doi.org/

10.1038/nsb0902-646.

[86] Kasap, S. and Benkrid, K. (2011). A high performance implementation for
molecular dynamics simulations on a FPGA supercomputer. In 2011
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pages
375–382. http://dx.doi.org/10.1109/AHS.2011.5963962.

[87] Khalili-Araghi, F., Tajkhorshid, E., and Schulten, K. (2006). Dynamics of
K+ ion conduction through Kv1.2. Biophysical Journal, 91(6):72–76. http:

//dx.doi.org/10.1529/biophysj.106.091926.

[88] Khan, M. A., Hankendi, C., Coskun, A. K., and Herbordt, M. C. (2011a).
Application level optimizations for energy efficiency and thermal stability. In
Proceedings of High Performance Embedded Computing (HPEC), pages 1–2.

http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1016/0021-9991(74)90010-2
http://dx.doi.org/10.1145/167962.165874
http://dx.doi.org/10.1006/jcph.1999.6201
http://dx.doi.org/10.1016/j.future.2004.11.020
http://dx.doi.org/10.1038/nsb0902-646
http://dx.doi.org/10.1038/nsb0902-646
http://dx.doi.org/10.1109/AHS.2011.5963962
http://dx.doi.org/10.1529/biophysj.106.091926
http://dx.doi.org/10.1529/biophysj.106.091926

186

[89] Khan, M. A., Hankendi, C., Coskun, A. K., and Herbordt, M. C. (2011b).
Software optimization for performance, energy, and thermal distribution: Initial
case studies. In International Green Computing Conference and Workshops
(IGCC), pages 1–6. http://dx.doi.org/10.1109/IGCC.2011.6008575.

[90] Khan, M. A. and Herbordt, M. C. (2011). Parallel discrete molecular
dynamics simulation with speculation and in-order commitment. Journal of
Computational Physics, 230(17):6563–6582.
http://dx.doi.org/10.1016/j.jcp.2011.05.001.

[91] Kindratenko, V. and Pointer, D. (2006). A case study in porting a production
scientific supercomputing application to a reconfigurable computer. In 14th
Annual IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 13–22. http://dx.doi.org/10.1109/FCCM.2006.5.

[92] Komeiji, Y., Uebayasi, M., Takata, R., Shimizu, A., Itsukashi, K., and Taiji,
M. (1997). Fast and accurate molecular dynamics simulation of a protein
using a special-purpose computer. Journal of Computational Chemistry,
18(12):1546–1563.
http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1546::

AID-JCC11%3E3.0.CO;2-I.

[93] Krantz, A. T. (1996). Analysis of an efficient algorithm for the hard-sphere
problem. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 6(3):185–209. http://dx.doi.org/10.1145/235025.235030.

[94] Kumar, S., Huang, C., Zheng, G., Bohm, E., Bhatele, A., Phillips, J. C., Yu,
H., and Kalé, L. V. (2008). Scalable molecular dynamics with NAMD on
the IBM Blue Gene/L system. IBM Journal of Research and Development,
52(1-2):177–188. http://dx.doi.org/10.1147/rd.521.0177.

[95] Kuon, I., Azizi, N., Darabiha, A., Egier, A., and Chow, P. (2004). FPGA-based
supercomputing: an implementation for molecular dynamics. In ACM/SIGDA
12th International Symposium on Field Programmable Gate Arrays (FPGA),
pages 253–253. http://dx.doi.org/10.1145/968280.968340.

[96] LAMMPS (2012a). LAMMPS GPU benchmarks. http://users.nccs.gov/

~wb8/gpu/bench.htm.

[97] LAMMPS (2012b). LAMMPS molecular dynamics simulator.
http://lammps.sandia.gov.

[98] Langhammer, M. (2008). Floating point datapath synthesis for FPGAs. In
International Conference on Field Programmable Logic and Applications (FPL),
pages 355–360. http://dx.doi.org/10.1109/FPL.2008.4629963.

http://dx.doi.org/10.1109/IGCC.2011.6008575
http://dx.doi.org/10.1016/j.jcp.2011.05.001
http://dx.doi.org/10.1109/FCCM.2006.5
http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1546::AID-JCC11%3E3.0.CO;2-I
http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1546::AID-JCC11%3E3.0.CO;2-I
http://dx.doi.org/10.1145/235025.235030
http://dx.doi.org/10.1147/rd.521.0177
http://dx.doi.org/10.1145/968280.968340
http://users.nccs.gov/~wb8/gpu/bench.htm
http://users.nccs.gov/~wb8/gpu/bench.htm
http://lammps.sandia.gov
http://dx.doi.org/10.1109/FPL.2008.4629963

187

[99] Larson, R., Salmon, J., Dror, R., Deneroff, M., Young, C., Grossman, J.,
Shan, Y., Klepeis, J., and Shaw, D. (2008). High-throughput pairwise point
interactions in Anton, a specialized machine for molecular dynamics
simulation. In IEEE 14th International Symposium on High Performance
Computer Architecture (HPCA), pages 331–342.
http://dx.doi.org/10.1109/HPCA.2008.4658650.

[100] Lee, S. (2005). An FPGA implementation of the Smooth Particle Mesh Ewald
reciprocal sum compute engine. Master’s thesis, The University of Toronto,
Canada.

[101] Lindahl, E., Hess, B., and Van Der Spoel, D. (2001). GROMACS 3.0: a
package for molecular simulation and trajectory analysis. Journal of Molecular
Modeling, 7(8):306–317. http://dx.doi.org/10.1007/s008940100045.

[102] Lubachevsky, B. D. (1991). How to simulate billiards and similar systems.
Journal of Computational Physics, 94(2):255–283. http://dx.doi.org/10.

1016/0021-9991(91)90222-7.

[103] Lubachevsky, B. D. (1992). Simulating billiards: Serially and in parallel.
International Journal in Computer Simulation (IJCS), 2:373–411.

[104] MacKerell, A. D., Banavali, N., and Foloppe, N. (2000). Development and
current status of the CHARMM force field for nucleic acids. Biopolymers,
56(4):257–265. http://dx.doi.org/10.1002/1097-0282(2000)56:

4%3C257::AID-BIP10029%3E3.0.CO;2-W.

[105] Makov, G. and Payne, M. C. (1995). Periodic boundary conditions in ab initio
calculations. Physical Review B, 51(7):4014–4022. http://dx.doi.org/10.

1103/PhysRevB.51.4014.

[106] Malladi, R. K. (2009). Using Intel VTune performance analyzer events / ratios
& optimizing applications. http://software.intel.com/en-us/articles/.

[107] Marin, M. (1997). Billiards and related systems on the bulk-synchronous
parallel model. In Proceedings of the Eleventh Workshop on Parallel and
Distributed Simulation (PADS), pages 164–171.
http://dx.doi.org/10.1145/268823.268916.

[108] Marin, M. and Cordero, P. (1995). An empirical assessment of priority queues
in event-driven molecular dynamics simulation. Computer Physics
Communications, 92(23):214–224.
http://dx.doi.org/10.1016/0010-4655(95)00120-2.

http://dx.doi.org/10.1109/HPCA.2008.4658650
http://dx.doi.org/10.1007/s008940100045
http://dx.doi.org/10.1016/0021-9991(91)90222-7
http://dx.doi.org/10.1016/0021-9991(91)90222-7
http://dx.doi.org/10.1002/1097-0282(2000)56:4%3C257::AID-BIP10029%3E3.0.CO;2-W
http://dx.doi.org/10.1002/1097-0282(2000)56:4%3C257::AID-BIP10029%3E3.0.CO;2-W
http://dx.doi.org/10.1103/PhysRevB.51.4014
http://dx.doi.org/10.1103/PhysRevB.51.4014
http://software.intel.com/en-us/articles/
http://dx.doi.org/10.1145/268823.268916
http://dx.doi.org/10.1016/0010-4655(95)00120-2

188

[109] Marin, M., Risso, D., and Cordero, P. (1993). Efficient algorithms for many-
body hard particle molecular dynamics. Journal of Computational Physics,
109(2):306–317. http://dx.doi.org/10.1006/jcph.1993.1219.

[110] Matthey, T., Cickovski, T., Hampton, S., Ko, A., Ma, Q., Nyerges, M., Raeder,
T., Slabach, T., and Izaguirre, J. A. (2004). Protomol, an object-oriented
framework for prototyping novel algorithms for molecular dynamics. ACM
Transactions on Mathematical Software, 30(3):237–265. http://dx.doi.org/

10.1145/1024074.1024075.

[111] MD3DLJ (1989). A pc/workstation c - language program for L-J molecular
dynamics. ftp://ftp.dl.ac.uk/ccp5/MD3DLJ.C.

[112] Mei, C., Sun, Y., Zheng, G., Bohm, E. J., Kalé, L. V., Phillips, J. C., and
Harrison, C. (2011). Enabling and scaling biomolecular simulations of 100
million atoms on petascale machines with a multicore-optimized message-driven
runtime. In Proceedings of International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pages 61:1–61:11. http:

//dx.doi.org/10.1145/2063384.2063466.

[113] Miller, S. and Luding, S. (2004). Event-driven molecular dynamics in parallel.
Journal of Computational Physics, 193(1):306–316. http://dx.doi.org/10.

1016/j.jcp.2003.08.009.

[114] Model, J. and Herbordt, M. (2007). Discrete event simulation of molecular
dynamics with configurable logic. In International Conference on Field
Programmable Logic and Applications (FPL), pages 15–158.
http://dx.doi.org/10.1109/FPL.2007.4380640.

[115] Moore, G. E. (1965). Cramming more components onto integrated circuits.
Electronics, 38(8):114–117.
http://dx.doi.org/10.1109/JPROC.1998.658762.

[116] Moraitakis, G., Purkiss, A. G., and Goodfellow, J. M. (2003). Simulated
dynamics and biological macromolecules. Reports on Progress in Physics,
66(3):383. http://dx.doi.org/10.1088/0034-4885/66/3/203.

[117] Narumi, T., Ohno, Y., Futatsugi, N., Okimoto, N., Suenaga, A., Yanai, R.,
and Taiji, M. (2006). A high-speed special-purpose computer for molecular
dynamics simulations: MDGRAPE-3. NIC Workshop, From Computational
Biophysics to Systems Biology, NIC Series, 34:29–36.

[118] Narumi, T., Susukita, R., Ebisuzaki, T., Mcniven, G., and Elmegreen, B.
(1999). Molecular Dynamics Machine: Special-purpose computer for
molecular dynamics simulations. Molecular Simulation, 21:401–415.
http://dx.doi.org/10.1080/08927029908022078.

http://dx.doi.org/10.1006/jcph.1993.1219
http://dx.doi.org/10.1145/1024074.1024075
http://dx.doi.org/10.1145/1024074.1024075
ftp://ftp.dl.ac.uk/ccp5/MD3DLJ.C
http://dx.doi.org/10.1145/2063384.2063466
http://dx.doi.org/10.1145/2063384.2063466
http://dx.doi.org/10.1016/j.jcp.2003.08.009
http://dx.doi.org/10.1016/j.jcp.2003.08.009
http://dx.doi.org/10.1109/FPL.2007.4380640
http://dx.doi.org/10.1109/JPROC.1998.658762
http://dx.doi.org/10.1088/0034-4885/66/3/203
http://dx.doi.org/10.1080/08927029908022078

189

[119] Narumi, T., Susukita, R., Furusawa, H., and Ebisuzaki, T. (2000a). 46
TFLOPS special-purpose computer for molecular dynamics simulations:
WINE-2. In 5th International Conference on Signal Processing Proceedings
(ICSP), volume 1, pages 575–582.
http://dx.doi.org/10.1109/ICOSP.2000.894557.

[120] Narumi, T., Susukita, R., Koishi, T., Yasuoka, K., Furusawa, H., Kawai, A.,
and Ebisuzaki, T. (2000b). 1.34 TFLOPS molecular dynamics simulation for
NaCl with a special-purpose computer: MDM. In ACM/IEEE Conference on
Supercomputing (SC), pages 54:1–54:20. http://dx.doi.org/10.1109/SC.

2000.10016.

[121] Nelson, M. T., Humphrey, W., Gursoy, A., Dalke, A., Kalé, L. V., Skeel,
R. D., and Schulten, K. (1996). NAMD: a parallel, object-oriented molecular
dynamics program. International Journal of High Performance Computing
Applications, 10(4):251–268.
http://dx.doi.org/10.1177/109434209601000401.

[122] Nilsson, L. (2009). Efficient table lookup without inverse square roots for
calculation of pair wise atomic interactions in classical simulations. Journal of
Computational Chemistry, 30(9):1490–1498. http://dx.doi.org/10.1002/

jcc.21169.

[123] NVIDIA (2012a). Fermi - the next generation CUDA architecture. http:

//www.nvidia.com/object/fermi_architecture.html.

[124] NVIDIA (2012b). High performance computing. http://www.nvidia.com/

object/tesla_computing_solutions.html.

[125] NVIDIA (2012c). Tesla bio workbench - enabling new science. http://www.

nvidia.com/object/tesla_bio_workbench.html.

[126] Owens, J., Houston, M., Luebke, D., Green, S., Stone, J., and Phillips, J.
(2008). GPU computing. Proceedings of the IEEE, 96(5):879–899. http:

//dx.doi.org/10.1109/JPROC.2008.917757.

[127] Patterson, D. (2009). The top 10 innovations in the new NVIDIA Fermi
architecture, and the top 3 next challenges. Expert Commentary. http:

//www.nvidia.com/object/fermi-architecture.html.

[128] Paul, G. (2007). A complexity O(1) priority queue for event driven molecular
dynamics simulations. Journal of Computational Physics, 221(2):615–625.
http://dx.doi.org/10.1016/j.jcp.2006.06.042.

http://dx.doi.org/10.1109/ICOSP.2000.894557
http://dx.doi.org/10.1109/SC.2000.10016
http://dx.doi.org/10.1109/SC.2000.10016
http://dx.doi.org/10.1177/109434209601000401
http://dx.doi.org/10.1002/jcc.21169
http://dx.doi.org/10.1002/jcc.21169
http://www.nvidia.com/object/fermi_architecture.html
http://www.nvidia.com/object/fermi_architecture.html
http://www.nvidia.com/object/tesla_computing_solutions.html
http://www.nvidia.com/object/tesla_computing_solutions.html
http://www.nvidia.com/object/tesla_bio_workbench.html
http://www.nvidia.com/object/tesla_bio_workbench.html
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1109/JPROC.2008.917757
http://www.nvidia.com/object/fermi-architecture.html
http://www.nvidia.com/object/fermi-architecture.html
http://dx.doi.org/10.1016/j.jcp.2006.06.042

190

[129] Petersen, H. G. (1995). Accuracy and efficiency of the Particle Mesh Ewald
method. Journal of Chemical Physics, 103(9):3668–3679. http://dx.doi.

org/10.1063/1.470043.

[130] Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E.,
Chipot, C., Skeel, R. D., Kalé, L., and Schulten, K. (2005). Scalable
molecular dynamics with NAMD. Journal of Computational Chemistry,
26(16):1781–1802. http://dx.doi.org/10.1002/jcc.20289.

[131] Phillips, J. C., Stone, J. E., and Schulten, K. (2008). Adapting a message-
driven parallel application to GPU-accelerated clusters. In Proceedings of the
ACM/IEEE Conference on Supercomputing (SC), pages 8:1–8:9. http://dx.

doi.org/10.1109/SC.2008.5214716.

[132] Phillips, J. C., Zheng, G., Kumar, S., and Kalé, L. V. (2002). NAMD:
Biomolecular simulation on thousands of processors. In Proceedings of the
ACM/IEEE Conference on Supercomputing (SC), pages 36:1–36:18.
http://dx.doi.org/10.1109/SC.2002.10019.

[133] Plimpton, S. (1995). Fast parallel algorithms for short-range molecular
dynamics. Journal of Computational Physics, 117(1):1–19.
http://dx.doi.org/10.1006/jcph.1995.1039.

[134] Ponder, J. W. and Case, D. A. (2003). Force fields for protein simulations.
Advances in Protein Chemistry, 66:27–85.
http://dx.doi.org/10.1016/S0065-3233(03)66002-X.

[135] President’s Information Technology Advisory Committee (2005).
Computational science: Ensuring america’s competitiveness. National
Coordination Office for Information Technology Research and Development.
http://www.nitrd.gov.

[136] Proctor, E. A., Ding, F., and Dokholyan, N. V. (2011). Discrete molecular
dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science,
1(1):80–92. http://dx.doi.org/10.1002/wcms.4.

[137] PubMed (2012). US National Library of Medicine, National Institutes of
Health. PubMed website. http://www.ncbi.nlm.nih.gov/pubmed/.

[138] Rapaport, D. (1980). The event scheduling problem in molecular dynamic
simulation. Journal of Computational Physics, 34(2):184–201. http://dx.

doi.org/10.1016/0021-9991(80)90104-7.

[139] Rapaport, D. C. (2004). The art of molecular dynamics simulation.
Cambridge University Press, 2nd edition.
http://dx.doi.org/10.1017/CBO9780511816581.

http://dx.doi.org/10.1063/1.470043
http://dx.doi.org/10.1063/1.470043
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1109/SC.2008.5214716
http://dx.doi.org/10.1109/SC.2008.5214716
http://dx.doi.org/10.1109/SC.2002.10019
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1016/S0065-3233(03)66002-X
http://www.nitrd.gov
http://dx.doi.org/10.1002/wcms.4
http://www.ncbi.nlm.nih.gov/pubmed/
http://dx.doi.org/10.1016/0021-9991(80)90104-7
http://dx.doi.org/10.1016/0021-9991(80)90104-7
http://dx.doi.org/10.1017/CBO9780511816581

191

[140] Reinders, J. (2005). VTune Performance Analyzer Essentials. Intel Press.

[141] Riken (2006). Completion of a one-petaflops computer system for simulation of
molecular dynamics. http://www.riken.jp/engn/r-world/info/release/

press/2006/060619/index.html. Press Release.

[142] Rinke, S. and Homberg, W. (2010). QPACE: Energy-efficient high performance
computing. In PRACE Workshop: New Languages and Future Prototypes.
http://www.prace-ri.eu/PRACE-Workshop-New-Languages.

[143] Sagui, C. and Darden, T. A. (1999). Molecular dynamics simulations of
biomolecules: long-range electrostatic effects. Annual Review of Biophysics
and Biomolecular Structure, 28(1):155–179.
http://dx.doi.org/10.1146/annurev.biophys.28.1.155.

[144] Schofield, P. (1973). Computer simulation studies of the liquid state.
Computer Physics Communications, 5(1):17–23.
http://dx.doi.org/10.1016/0010-4655(73)90004-0.

[145] SciEngines (2012). SciEngines website. http://www.sciengines.com.

[146] Scrofano, R., Gokhale, M., Trouw, F., and Prasanna, V. K. (2006). A
hardware/software approach to molecular dynamics on reconfigurable
computers. In The 14th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 23–34.
http://dx.doi.org/10.1109/FCCM.2006.46.

[147] Scrofano, R., Gokhale, M. B., Trouw, F., and Prasanna, V. K. (2008).
Accelerating molecular dynamics simulations with reconfigurable computers.
IEEE Transactions on Parallel and Distributed Systems, 19(6):764–778.
http://dx.doi.org/10.1109/TPDS.2007.70777.

[148] Scrofano, R. and Prasanna, V. K. (2004). Computing Lennard-Jones
potentials and forces with reconfigurable hardware. In International
Conference on Engineering Reconfigurable Systems and Algorithms (ERSA),
pages 284–290.

[149] Scrofano, R. and Prasanna, V. K. (2006). Preliminary investigation of
advanced electrostatics in molecular dynamics on reconfigurable computers.
In ACM/IEEE Conference on Supercomputing (SC), pages 90:1–90:12.
http://dx.doi.org/10.1145/1188455.1188550.

[150] Severin, P. M. D., Zou, X., Gaub, H. E., and Schulten, K. (2011). Cytosine
methylation alters DNA mechanical properties. Nucleic Acids Research,
39(20):8740–8751. http://dx.doi.org/10.1093/nar/gkr578.

http://www.riken.jp/engn/r-world/info/release/press/2006/060619/index.html
http://www.riken.jp/engn/r-world/info/release/press/2006/060619/index.html
http://www.prace-ri.eu/PRACE-Workshop-New-Languages
http://dx.doi.org/10.1146/annurev.biophys.28.1.155
http://dx.doi.org/10.1016/0010-4655(73)90004-0
http://www.sciengines.com
http://dx.doi.org/10.1109/FCCM.2006.46
http://dx.doi.org/10.1109/TPDS.2007.70777
http://dx.doi.org/10.1145/1188455.1188550
http://dx.doi.org/10.1093/nar/gkr578

192

[151] Shainer, G., Ayoub, A., Lui, P., and Liu, T. (2011). Raising the speed limit:
New GPU-to-GPU communications model increases cluster efficiency.
Scientific Computing: Information Technology for Science.

[152] Shan, Y., Klepeis, J., Eastwood, M., Dror, R., and Shaw, D. (2005). Gaussian
split Ewald: A fast Ewald mesh method for molecular simulation. Journal of
Chemical Physics, 122(5):54101:1–54101:13. http://dx.doi.org/10.1063/1.

1839571.

[153] Shaw, D. E., Deneroff, M. M., Dror, R. O., Kuskin, J. S., Larson, R. H.,
Salmon, J. K., Young, C., Batson, B., Bowers, K. J., Chao, J. C., Eastwood,
M. P., Gagliardo, J., Grossman, J. P., Ho, C. R., Ierardi, D. J., Kolossváry, I.,
Klepeis, J. L., Layman, T., McLeavey, C., Moraes, M. A., Mueller, R., Priest,
E. C., Shan, Y., Spengler, J., Theobald, M., Towles, B., and Wang, S. C.
(2007). Anton, a special-purpose machine for molecular dynamics simulation.
In Proceedings of the 34th Annual International Symposium on Computer
Architecture (ISCA), pages 1–12. SIGARCH Computer Architecture News,
35(2):1-12. http://dx.doi.org/10.1145/1250662.1250664.

[154] Shaw, D. E., Dror, R. O., Salmon, J. K., Grossman, J. P., Mackenzie, K. M.,
Bank, J. A., Young, C., Deneroff, M. M., Batson, B., Bowers, K. J., Chow, E.,
Eastwood, M. P., Ierardi, D. J., Klepeis, J. L., Kuskin, J. S., Larson, R. H.,
Lindorff-Larsen, K., Maragakis, P., Moraes, M. A., Piana, S., Shan, Y., and
Towles, B. (2009). Millisecond-scale molecular dynamics simulations on Anton.
In Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis (SC), pages 39:1–39:11. http://dx.doi.org/10.1145/

1654059.1654099.

[155] Shi, G. and Kindratenko, V. (2008). Implementation of NAMD molecular
dynamics non-bonded force-field on the cell broadband engine processor. In
IEEE International Symposium on Parallel and Distributed Processing
(IPDPS), pages 1–8. http://dx.doi.org/10.1109/IPDPS.2008.4536470.

[156] Shirvanyants, D., Ding, F., Tsao, D., Ramanchandran, S., and Dokholyan,
N. V. (2012). DMD: An efficient and versatile simulation method for fine
protein characterization. The Journal of Physical Chemistry B. In press.
http://dx.doi.org/10.1021/jp2114576.

[157] Shu, W. and Kalé, L. (1991). Chare Kernel - a runtime support system for
parallel computations. Journal of Parallel and Distributed Computing,
11(3):198–211. http://dx.doi.org/10.1016/0743-7315(91)90044-A.

[158] Sigurgeirsson, H., Stuart, A., and Wan, W. L. (2001). Algorithms for particle-
field simulations with collisions. Journal of Computational Physics, 172(2):766–
807. http://dx.doi.org/10.1006/jcph.2001.6858.

http://dx.doi.org/10.1063/1.1839571
http://dx.doi.org/10.1063/1.1839571
http://dx.doi.org/10.1145/1250662.1250664
http://dx.doi.org/10.1145/1654059.1654099
http://dx.doi.org/10.1145/1654059.1654099
http://dx.doi.org/10.1109/IPDPS.2008.4536470
http://dx.doi.org/10.1021/jp2114576
http://dx.doi.org/10.1016/0743-7315(91)90044-A
http://dx.doi.org/10.1006/jcph.2001.6858

193

[159] Skeel, R. D., Tezcan, I., and Hardy, D. J. (2002). Multiple grid methods for
classical molecular dynamics. Journal of Computational Chemistry, 23(6):673–
684. http://dx.doi.org/10.1002/jcc.10072.

[160] Smith, S. W., Hall, C. K., and Freeman, B. D. (1997). Molecular dynamics
for polymeric fluids using discontinuous potentials. Journal of Computational
Physics, 134(1):16–30. http://dx.doi.org/10.1006/jcph.1996.5510.

[161] Stone, J. E., Hardy, D. J., Ufimtsev, I. S., and Schulten, K. (2010). GPU-
accelerated molecular modeling coming of age. Journal of Molecular Graphics
and Modelling, 29(2):116–125. http://dx.doi.org/10.1016/j.jmgm.2010.

06.010.

[162] Stone, J. E., Phillips, J. C., Freddolino, P. L., Hardy, D. J., Trabuco, L. G.,
and Schulten, K. (2007). Accelerating molecular modeling applications with
graphics processors. Journal of Computational Chemistry, 28(16):2618–2640.
http://dx.doi.org/10.1002/jcc.20829.

[163] Sumanth, J., Swanson, D., and Jiang, H. (2003). Performance and cost
effectiveness of a cluster of workstations and MD-GRAPE 2 for MD
simulations. In Second International Symposium on Parallel and Distributed
Computing, pages 244–249.
http://dx.doi.org/10.1109/ISPDC.2003.1267670.

[164] Sutter, H. (2005). The free lunch is over: A fundamental turn toward
concurrency in software. Dr. Dobbs Journal, 30(3):202–210.

[165] Sutter, H. and Larus, J. (2005). Software and the concurrency revolution.
Queue, 3(7):54–62. http://dx.doi.org/10.1145/1095408.1095421.

[166] Taiji, M. (2004). MDGRAPE-3 chip: A 165-Gflops application-specific LSI for
molecular dynamics simulations. In IEEE Hot Chips Symposium, pages 1–12.

[167] Taiji, M., Narumi, T., Ohno, Y., Futatsugi, N., Suenaga, A., Takada, N., and
Konagaya, A. (2003). Protein Explorer: A petaflops special-purpose computer
system for molecular dynamics simulations. In Proceedings of the ACM/IEEE
Conference on Supercomputing (SC), pages 15:1–15:10. http://dx.doi.org/

10.1145/1048935.1050166.

[168] Toyoda, S., Miyagawa, H., Kitamura, K., Amisaki, T., Hashimoto, E., Ikeda,
H., Kusumi, A., and Miyakawa, N. (1999). Development of MD Engine:
High-speed accelerator with parallel processor design for molecular dynamics
simulations. Journal of Computational Chemistry, 20(2):185–199.
http://dx.doi.org/10.1002/(SICI)1096-987X(19990130)20:2%3C185::

AID-JCC1%3E3.0.CO;2-L.

http://dx.doi.org/10.1002/jcc.10072
http://dx.doi.org/10.1006/jcph.1996.5510
http://dx.doi.org/10.1016/j.jmgm.2010.06.010
http://dx.doi.org/10.1016/j.jmgm.2010.06.010
http://dx.doi.org/10.1002/jcc.20829
http://dx.doi.org/10.1109/ISPDC.2003.1267670
http://dx.doi.org/10.1145/1095408.1095421
http://dx.doi.org/10.1145/1048935.1050166
http://dx.doi.org/10.1145/1048935.1050166
http://dx.doi.org/10.1002/(SICI)1096-987X(19990130)20:2%3C185::AID-JCC1%3E3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1096-987X(19990130)20:2%3C185::AID-JCC1%3E3.0.CO;2-L

194

[169] Urbanc, B., Borreguero, J. M., Cruz, L., and Stanley, H. E. (2006a). Ab initio
discrete molecular dynamics approach to protein folding and aggregation.
Methods in enzymology, 412:314–338.
http://dx.doi.org/10.1016/S0076-6879(06)12019-4.

[170] Urbanc, B., Cruz, L., Teplow, D. B., and Stanley, H. E. (2006b). Computer
simulations of Alzheimer’s Amyloid β-Protein folding and assembly. Current
Alzheimer Research, 3(5):493–504.
http://dx.doi.org/10.2174/156720506779025170.

[171] Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., and
Berendsen, H. J. C. (2005). GROMACS: fast, flexible, and free. Journal of
Computational Chemistry, 26(16):1701–1718. http://dx.doi.org/10.1002/

jcc.20291.

[172] Verlet, L. (1967). Computer “Experiments” on classical fluids. I.
Thermodynamical properties of Lennard-Jones molecules. Physical Review,
159(1):98–103. http://dx.doi.org/10.1103/PhysRev.159.98.

[173] Vladimirov, A. (2012). Arithmetics on Intel’s Sandy Bridge and Westmere
CPUs: not all FLOPs are created equal. Technical report, Colflax Research.
http://research.colfaxinternational.com/.

[174] Wikipedia (2012). Protein folding - Wikipedia, the free encyclopedia. http:

//en.wikipedia.org/wiki/Protein_folding.

[175] Williams, S., Waterman, A., and Patterson, D. (2009). Roofline: an insightful
visual performance model for multicore architectures. Communications of the
ACM, 52(4):65–76. http://dx.doi.org/10.1145/1498765.1498785.

[176] Wolinski, C., Trouw, F., and Gokhale, M. (2003). A preliminary study of
molecular dynamics on reconfigurable computers. In International Conference
on Engineering of Reconfigurable Systems and Algorithms (ERSA), pages 304–
307.

[177] Xilinx (2012). Xilinx website. http://www.xilinx.com.

[178] Young, C., Bank, J. A., Dror, R. O., Grossman, J. P., Salmon, J. K., and Shaw,
D. E. (2009). A 32x32x32, spatially distributed 3D FFT in four microseconds
on Anton. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis (SC), pages 23:1–23:11. http://dx.doi.

org/10.1145/1654059.1654083.

[179] Yun, S. and Guy, H. R. (2011). Stability tests on known and misfolded
structures with discrete and all atom molecular dynamics simulations.

http://dx.doi.org/10.1016/S0076-6879(06)12019-4
http://dx.doi.org/10.2174/156720506779025170
http://dx.doi.org/10.1002/jcc.20291
http://dx.doi.org/10.1002/jcc.20291
http://dx.doi.org/10.1103/PhysRev.159.98
http://research.colfaxinternational.com/
http://en.wikipedia.org/wiki/Protein_folding
http://en.wikipedia.org/wiki/Protein_folding
http://dx.doi.org/10.1145/1498765.1498785
http://www.xilinx.com
http://dx.doi.org/10.1145/1654059.1654083
http://dx.doi.org/10.1145/1654059.1654083

195

Journal of Molecular Graphics and Modelling, 29(5):663–675.
http://dx.doi.org/10.1016/j.jmgm.2010.12.002.

[180] Zhou, Y. and Karplus, M. (1997). Folding of a model three-helix bundle protein:
a thermodynamic and kinetic analysis. Proceedings of the National Academy
of Sciences of the United States of America, 94(26):14429–14432.

http://dx.doi.org/10.1016/j.jmgm.2010.12.002

196

Curriculum Vitae

Md. Ashfaquzzaman Khan

CONTACT
Dept. of Electrical and Computer Engineering, Boston University
8 Saint Mary’s Street, Boston, MA 02215, USA

Tel: 917-496-2699, E-mail: azkhan@bu.edu
Homepage: http://people.bu.edu/azkhan/

RESEARCH INTERESTS
• Computer Architecture and Multicore/Reconfigurable Systems
• High-performance Computing and Acceleration of Bio-medical Applications
• CAD/EDA Tools and Simulation Technologies

EDUCATION
PhD, Computer Engineering, Sept 2008 - Jan 2013 (Defense: June 2012)
• Dept. of Electrical and Computer Engineering, Boston University, Boston, MA
• Advisor: Prof. Martin C. Herbordt
• Dissertation Title: “Scalable Molecular Dynamics Simulation using FPGAs and

Multicore Processors”
• GPA: 3.88/4.0 (Ranked 1st in the ECE PhD Qualifying Exam 2009)

Master of Eng., Electronic Engineering, April 2004 - March 2006
• Graduate School of Engineering, Tohoku University, Sendai, Japan
• Thesis Title: “A Study on Time-multiplexing of Reconfigurable LSI”
• GPA: 3.93/4.0

Bachelor of Eng., Electronic Engineering, April 2000 - March 2004
• Faculty of Engineering, Tohoku University, Sendai, Japan
• GPA: 3.88/4.0, Major GPA: 3.92/4.0 (Ranked 1st in the class)

PROFESSIONAL EXPERIENCE
Research Assistant, Boston University, MA (Sept 2008 - June 2012)
• Worked towards PhD under the supervision of Prof. Martin C. Herbordt.

Focused on acceleration of bio-medical applications, particularly Molecular
Dynamics Simulation and its discrete version, using advanced systems like
FPGAs, GPUs and Multicore processors. Also studied energy/temperature
aspects of parallel applications in general. Actively took part in graduate level
course preparation/instruction and preparation of research proposals.

http://people.bu.edu/azkhan/

197

Intern, Intel Corporation, Hudson, MA (May 2011 - October 2011)

• Enabled UPF-based (Unified Power Format, an industry standard) power
aware front end design flow, especially for next generation CPUs. Specific
works included the following items. 1. Proposing a UPF-based design
methodology to work seamlessly with the existing design flow and to ensure
smooth transition. 2. Converting power specification from XML-based
Intel-internal format to UPF-based description. 3. Developing a library of Tcl
procedures to reduce the verbosity of native UPF without sacrificing
readability. 4. Establishing a backward compatible conversion path from UPF
to XML, to support other Intel-internal tools. 5. Validating the new methods
and the converted design. 6. Developing documentation and training
materials.

Intern, Microsoft Research, Redmond, WA (May 2010 - July 2010)

• Developed gNOSIS, a board-level debugging and verification tool for FPGA
designs. gNOSIS uses the Capture/Readback features of the FPGA to
checkpoint the entire state of the circuit with little or no modification to the
DUT. It then correlates the design registers provided in the netlist with their
state in the FPGA configuration memory, and with the expected state. If the
states match, execution proceeds by restoring the state of the FPGA and
continuing execution for a set number of cycles. When an error is encountered,
the time and location of the error is reported and the last good checkpoint is
used for further debugging. gNOSIS eliminates the manual labor and long
wait times required by currently available tools (e.g. Chipscope), and provides
greater visibility at a lower cost.

Engineer, Sony Corporation, Japan (April 2006 - August 2008)

• Developed a system level simulator for Cell Broadband Engine Architecture
(CBEA). Written in SystemC, this simulator can provide cycle information for
a given benchmark circuit, when it will run on CBEA, with 95% accuracy. The
simulator runs a few hundred times faster than Cell SDK and thus provides
a quick way to evaluate different architectural parameters. I also made an
extended version of the simulator, which can handle up to 128 SPEs (Synergistic
Processing Elements).
• Developed Noise Reduction Application for Sony digital camera, Cybershot

series (Market arrival time: 2009).

Intern, Panasonic Corporation, Japan (August 2003 - September 2003)

• Verified scripts that were written to accelerate system-level design of digital
circuits.

Part-time Programmer, DataFair Ltd., Japan (Feb 2002 - Mar 2006)

• Developed business software for wholesale product suppliers using Visual Basic
6, MS-SQL and MS-ACCESS.

198

COMPUTER SKILLS
Platforms: Linux/Unix, Windows
Software Development Environments: Eclipse, MS Visual Studio, Emacs
Software Programming Languages:
• C, C++, Assembly
• Perl, Tcl
• HTML, JavaScript, PHP, MySQL, Visual Basic, MS-SQL
• Others: Ruby, Java, MATLAB

Hardware Description/Programming Languages: Verilog, VHDL, SystemC
EDA Tools: Cadence Virtuoso Layout Editor, Dracula DRC; Synopsys Design
Compiler, NanoSim, CosmosScope, VCS NLP; Mentor Graphics Modelsim;
Springsoft Verdi
FPGA IDEs: Xilinx ISE, Altera Quartus
Others: Pthread, Openmp, VTune, Perf, Pfmon, Cuda

PATENT AND PUBLICATIONS (Selected)

PATENT
• Md. Ashfaquzzaman Khan, Yasushi Fukuda, “Data Processing Apparatus,

Method Therefor, And Computer Program”, Pending Application No.
12/487799, Filed 2009, USA (Original: Pending Application No. P2008-161516,
Filed 2008, Japan)

PUBLICATIONS
• Md. Ashfaquzzaman Khan, Martin C. Herbordt (2011), “Parallel Discrete

Molecular Dynamics Simulation with Speculation and In-Order
Commitment”, Journal of Computational Physics, 230 (17): 6563-6582
• Md. Ashfaquzzaman Khan, Can Hankendi, Ayse K. Coskun, Martin C.

Herbordt (2011), “Application Level Optimizations for Energy
Efficiency and Thermal Stability”, Annual Workshop on High
Performance Embedded Computing (HPEC)
• Md. Ashfaquzzaman Khan, Can Hankendi, Ayse K. Coskun, Martin C.

Herbordt (2011), “Software Optimization for Performance, Energy,
and Thermal Distribution: Initial Case Studies”, International Green
Computing Conference and Workshops (IGCC), pp 1-6
• Matt Chiu, Md. Ashfaquzzaman Khan, Martin C. Herbordt (2011),

“Efficient Calculation of Pairwise Nonbonded Forces”, Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp 73-76
• Md. Ashfaquzzaman Khan, Richard Neil Pittman, Alessandro Forin (2010),

“gNOSIS: A Board-level Debugging and Verification Tool”,
International Conference on ReConFigurable Computing and FPGAs
(ReConFig), pp 43-48

199

• Martin C. Herbordt, Md. Ashfaquzzaman Khan, Tony Dean (2009),
“Parallel Discrete Event Simulation of Molecular Dynamics
Through Event-Based Decomposition”, International Conference on
Application-specific Systems, Architectures and Processors (ASAP), pp
129-136
• Bharat Sukhwani, Matt Chiu, Md. Ashfaquzzaman Khan, Martin C. Herbordt

(2009), “Effective Floating Point Applications on FPGAs: Examples
from Molecular Modeling”, High Performance Embedded Computing
(HPEC)
• Martin C. Herbordt, Bharat Sukhwani, Matt Chiu, Md. Ashfaquzzaman Khan

(2009), “Production Floating Point Applications on FPGAs”,
Symposium on Application Accelerators in High Performance Computing
(SAAHPC)
• Roel Pantonial, Md. Ashfaquzzaman Khan, Naoto Miyamoto, Koji Kotani,

Shigetoshi Sugawa, Tadahiro Ohmi (2007), “Improving Execution Speed of
FPGA using Dynamically Reconfigurable Technique”, Asia and South
Pacific Design Automation Conference (ASP-DAC), pp 108-109
• Md. Ashfaquzzaman Khan, Naoto Miyamoto, Roel Pantonial, Koji Kotani,

Shigetoshi Sugawa, Tadahiro Ohmi (2006), “Improving Multi-Context
Execution Speed on DRFPGAs”, Asian Solid-State Circuits Conference
(A-SSCC), pp 275-278
• Md. Ashfaquzzaman Khan, Naoto Miyamoto, Takeshi Ohkawa, Amir Jamak,

Soichiro Kita, Koji Kotani, Tadahiro Ohmi (2004), “An Aproach to Realize
Time-sharing of Flip-Flops in Time-multiplexed FPGAs”, International
Conference on Field Programmable Technology (ICFPT), pp 351-354

AWARDS AND HONORS (Selected)
• Ranked 1st in the ECE PhD Qualifying Exam: April 2009, Department

of Electrical & Computer Engineering, Boston University, Boston, MA.
• Dean’s Fellowship Award 2008: Awarded by the Dean of the College of

Engineering, Boston University. The award included tuition for PhD course
and monthly stipend.
• ASP-DAC 2007 Special Feature Award: Awarded at the University LSI

Design Contest of the ASP-DAC 2007, in recognition of the design and
implementation of FP3, a dynamically reconfigurable LSI. I developed this LSI
as a part of my master’s research work.
• Outstanding Research Award 2006: Awarded by the Electrical &

Information Eng. Managing Board, Graduate School of Engineering, Tohoku
University, in recognition of excellent research for master’s thesis.
• Tohoku University President’s Award 2004: Awarded by the President

of Tohoku University, in recognition of excellent undergraduate academic
performance. I topped the merit list of the Department of Electronic
Engineering.

200

• Monbukagakusho Scholarship 1999-2006: Awarded by the Ministry of
Education, Culture, Sports, Science and Technology, Japan. I received it for
two terms, 1999-2004 and 2004-2006, for a total of seven years. The scholarship
provided full tuition fee and a monthly stipend for undergraduate and master’s
studies in Japan.
• Certificate of Excellence 1997: Awarded by the Adjutant General of

Army, Bangladesh, in recognition of excellent performance in the countrywide
Higher Secondary Certificate (H.S.C.) examination. I topped the merit list in
my region. I also became the 2nd top ranked student in the entire country.
• Bangladesh Prime Minister’s Award 1995: Awarded by the Prime

Minister of the People’s Republic of Bangladesh for ranking in the merit list
(top 20) in the Secondary School Certificate (S.S.C.) examination.
• Others: Dean’s Award 2004, IEICE Encouragement Prize 2004

PROFESSIONAL ACTIVITIES (REVIEWS)

• HEART (Workshop on Highly-Efficient Accelerators and Reconfigurable
Technologies): 2012
• DAC (Design Automation Conference): 2012
• SASP (Symposium on Application Specific Processors): 2011
• JEST (Journal of Electronic Science and Technology): 2011
• FCCM (Symposium on Field-Programmable Custom Computing Machines):

2011, 2010
• PARCO (Journal of Parallel Computing): 2010
• LSPP (Large-Scale Parallel Processing Workshop): 2010
• PDS (Transactions on Parallel and Distributed Systems): 2009

Last updated: June 14, 2012

	Introduction
	The Problem
	Summary of Previous Work
	Hardware Acceleration of MD
	Parallelization of DMD

	Summary of Contributions
	Efficient Parallelization of DMD
	Integration Framework for FPGA-accelerated MD

	Organization of the Dissertation

	Molecular Dynamics Simulation (MD)
	Description of MD
	Periodic Boundary Condition (PBC)
	Van der Waals (VdW) or Lennard-Jones (LJ) Force
	Electrostatic or Coulomb Force
	Other Forces
	Motion Update
	Cell-list vs. Neighbor-list
	Direct Computation vs. Table Interpolation
	Parallelization of MD

	Hardware Acceleration of MD
	ASIC Acceleration
	GPU Acceleration
	FPGA Acceleration

	Discrete Molecular Dynamics Simulation (DMD)
	Overview of Discrete Event Simulation (DES) and DMD
	Event Queuing Policy: Rapaport vs. Lubachevsky
	Software Priority Queues
	Paul's Event Queue (PaulQ)
	Prior Work on Parallelization of DMD

	Chapter Summary

	Parallel DMD (PDMD)
	Issues in Parallelizing DMD
	PDMD Hazards
	Possible Approaches to PDMD

	Establishing a DMD Serial Baseline
	Experimental Methods
	Simulation Models and Conventions
	Selecting PaulQ Parameters
	Selecting Cell Sizes
	Selecting Event Queuing Policy
	Profiling the Serial Baseline Code

	Parallelizing DMD through Event-based Decomposition
	A Pipelined Event Processor
	Conceptual Description of Software Implementation
	Implementing PDMD through Event-based Decomposition
	Efficient Restart

	Results
	Scalability
	Available Concurrency
	Simple Model of Limitations on Scalability
	Architectural Limitations on Scalability

	Chapter Summary

	FPGA Kernel for Acceleration of MD
	FPGA Architecture
	Target Platform and Simulation Benchmark
	Description of the Kernel
	System-level Control Flow
	Board-level Integration
	Cell-list and Filtering
	Half-moon Mapping Scheme
	Particle Exclusion

	Improving Performance using Block RAM (BRAM) Architecture
	Exploring Design Space of Table Interpolation
	Studying Simulation Quality

	Results
	Chapter Summary

	Intra-node Parallelization of FPGA-accelerated MD
	Challenges and Opportunities
	Data Conversion and Communication
	Partitioning

	Data Communication with Software Pipelining
	Data Conversion
	Software Pipelining

	Intra-node Partitioning
	Method 1
	Method 2

	Results
	Chapter Summary

	Full-parallel FPGA-accelerated MD
	Description of the Target Software (NAMD)
	Challenges in Integrating FPGA Kernel into NAMD
	Scale and Complexity of the Software
	Gathering Particle Data
	Overlapping Communication and Computation

	Integration Methods
	Creating FPGA Compute Object
	Managing Data Communication
	Computing Energy and Handling Exclusion

	Simulated FPGA Kernel and Other Features
	Results
	Speed-up
	Re-evaluating Kernel Design
	Suggestions for Future Designs

	Chapter Summary

	Communication Requirements for FPGA-centric MD
	Justification of FPGA-centric MD
	Communication Bottleneck in MD
	FPGAs for Data Communication

	Target Systems
	FPGA-based Systems
	MD on FPGA-based Systems

	MD Communication and Support Requirements
	MD Communication Description
	MD Communication Characterization

	FPGA Cluster Communication Requirements
	Chapter Summary

	Conclusions
	Summary
	Observations
	Future Directions
	Hardware Implementation of Task-decomposed DMD
	FPGAs for Data Communication of MD
	FPGA-centric MD Engine
	Broader Application

	References
	Curriculum Vitae

