
FPGA-Accelerated Molecular Dynamics

M.A. Khan, M. Chiu, and M.C. Herbordt

Abstract Molecular dynamics simulation (MD) is one of the most important ap-
plications in computational science and engineering. Despite its widespread use,
there exists a many order-of-magnitude gap between the demand and the perfor-
mance currently achieved. Acceleration of MD has therefore received much at-
tention. In this chapter, we discuss the progress made in accelerating MD using
Field-Programmable Gate Arrays (FPGAs). We first introduce the algorithms and
computational methods used in MD and describe the general issues in accelerating
MD. In the core of this chapter, we show how to design an efficient force compu-
tation pipeline for the range-limited force computation, the most time-consuming
part of MD and the most mature topic in FPGA acceleration of MD. We discuss
computational techniques and simulation quality and present efficient filtering and
mapping schemes. We also discuss overall design, host-accelerator interaction and
other board-level issues. We conclude with future challenges and the potential of
FPGA-accelerated MD.

1 Introduction to Molecular Dynamics

Molecular Dynamics simulations (MD) are based on the application of classical
mechanics models to ensembles of particles and are used to study the behavior of
physical systems at an atomic level of detail [39]. MD simulations act as virtual
experiments and provide a projection of laboratory experiments with potentially

M.A. Khan
Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA, e-mail: azkhan@bu.edu

M. Chiu
Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA, e-mail: mattchiu@bu.edu

M.C. Herbordt
Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA, e-mail: herbordt@bu.edu

1

2 M.A. Khan, M. Chiu, and M.C. Herbordt

greater detail. MD is one of the most widely used computational tools in biomedical
research and industry and has so far provided many important insights in under-
standing the functionality of biological systems (see, e.g., [1, 25, 31]). MD models
have been developed and refined over many years and are validated through fitting
models to experimental and quantum data. Although classical MD simulation is in-
herently an approximation, it is dramatically faster than a direct solution to the full
set of quantum mechanical equations.

But while use of classical rather than quantum models results in orders-of-
magnitude higher throughput, MD remains extremely time-consuming. For exam-
ple, the simulation of even a comparatively simple biological entity such as the
STM virus (a million-atom system) for 100 nanoseconds (ns) would take 70 years
if run on a single CPU core [14]. Fortunately MD scales well for simulations of this
size or greater. The widely used MD packages, e.g., AMBER [6], CHARMM [5],
Desmond [4], GROMACS [21], LAMMPS [37], NAMD [34], can take full advan-
tage of scalability [27]. But typical MD executions still end up taking month-long
runtime, even on supercomputers [45].

To make matters worse, many interesting biological phenomena occur only on far
longer timescales. For example, protein folding, the process by which a linear chain
of amino acids folds into a three dimensional functional protein, is estimated to
take at least a microsecond [12]. The exact mechanism of such phenomena remains
beyond the reach of the current computational capabilities [44]. Longer simulations
are also critical to facilitate comparison with physically observable processes, which
(again) tend to be at least in the microsecond range. With stagnant CPU clock fre-
quency and no remarkable breakthrough in the underlying algorithms for a decade,
MD faces great challenges to meet the ever increasing demand for larger and longer
simulations.

Hardware acceleration of MD has therefore received much attention. ASIC-based
systems such as Anton [43] and MD-Grape [32] have shown remarkable results, but
their non-recurring cost remains high. GPU based systems, with their low cost and
ease of use also show great potential. But GPUs are power hungry and, perhaps
more significantly, are vulnerable to data communication bottle-necks [16, 48].

FPGAs on the other hand have a flexible architecture and are energy efficient.
They bridge the programmability of CPUs and the custom design of ASICs. Al-
though developing an FPGA-based design takes significantly longer than a GPU-
based system, because it requires both software and hardware development, the ef-
fort should be cost-effective due to the relatively long life-cycle of MD packages.
Moreover, improvements in fabrication process generally translate to performance
increases for FPGA-based systems (mostly in the form of direct replication of addi-
tional computation units). And perhaps most significantly for emerging systems, FP-
GAs are fundamentally communication switches and so can avoid communication
bottlenecks and form the basis of accelerator-centric high-performance computing
systems.

This chapter discusses the current state of FPGA acceleration of MD based pri-
marily on the work done at Boston University [8, 9, 18]. The remainder of this
Section gives an extended introduction to MD. This is necessary because while MD

FPGA-Accelerated Molecular Dynamics 3

is nearly trivial to define, there are a number of subtle issues which have a great
impact on acceleration method. In the next Section we present the issues universal
to MD acceleration. After that we describe in depth the state-of-the-art in FPGA
MD acceleration focusing on the range-limited force. Finally, we summarize fu-
ture challenges and potential especially in the creation of parallel FPGA-based MD
systems.

1.1 Overview of Molecular Dynamics Simulation (MD)

MD is an iterative process that models dynamics of molecules by applying classi-
cal mechanics [39]. The user provides the initial state (position, velocity, etc.), the
force model, other properties of the physical system, and some simulation parame-
ters such as simulation type and output frequency. Simulation advances by timestep
where each timestep has two phases: force computation and motion update. The
duration of the timesteps is determined by the vibration of particles and typically
corresponds to one or a few femtoseconds (fs) of real time. In typical CPU imple-
mentations, executing a single timestep of a modest 100K particle simulation (a
protein in water) takes over a second on a single core. This means that the 106 to
109 timesteps needed to simulate reasonable timescales result in long runtimes.

Fig. 1 MD Forces computed by MD include several bonded (covalent, angle, and dihedral) and
nonbonded (van der Waals and Coulomb).

There are many publicly available and widely used MD packages including
NAMD [34], LAMMPS [37], AMBER [6], GROMACS [21] and Desmond [4].
They support various force fields (e.g., AMBER [38] and CHARMM [30]) and
simulation types. But regardless of the specific package or force field model, force

4 M.A. Khan, M. Chiu, and M.C. Herbordt

computation in MD involves computing contributions of van der Waals, electrostatic
(Coulomb), and various bonded terms (see Figure 1 and Equation 1).

Ftotal = Fbond +Fangle +Fdihedral +Fhydrogen +FvanderWaals +Felectrostatic (1)

Van der Waals and electrostatic forces are non-bonded forces, the others bonded.
Non-bonded forces can be further divided into two types: the range-limited force
that consists of the van der Waals and the short-range part of the electrostatic force
and the long-range force that consists of the long-range part of the electrostatic
force.

Since bonded forces affect only a few neighboring atoms, they can be computed
in O(N) time, where N is the total number of particles in the system. Non-bonded
terms in the naive implementation have complexity of O(N2), but several algorithms
and techniques exist to reduce their complexity; these will be described in later
subsections. In practice, the complexity of the range-limited force computation is
reduced to O(N) and that of the long-range force computation to Nlog(N). Mo-
tion update and other simulation management tasks are also O(N). In a typical MD
run on a single CPU core, most of the time is spent computing non-bonded forces.
For parallel MD, inter-node data communication becomes an increasingly dominant
factor as the number of computing nodes increases, especially for small to medium
sized physical systems. Sample timing profiles for both serial and parallel runs of
MD are presented in Section 2.

The Van der Waals (VdW) force is approximated by the Lenard-Jones (LJ) po-
tential as shown in equation 2:

−→F i(LJ) = ∑
i6= j

εab

σ2
ab

{
12
(

σab

|r ji|

)14

−6
(

σab

|r ji|

)8
}
−→ri j (2)

where εab and σab are parameters related to particle types and ri j is the relative
distance between particle i and particle j.

A complete evaluation of VdW or LJ force requires evaluation of interactions
between all particle pairs in the system. The computational complexity is there-
fore O(N2), where N is the number of particles in the system. A common way to
reduce this complexity is applying a cut-off. Since the LJ force vanishes quickly
with the separation of a particle pair it is usually ignored when two particles are
separated beyond 8-16 Angstroms. To ensure a smooth transition at cut-off, an ad-
ditional switching function is often used. Using a cut-off distance alone does not
reduce the complexity of the LJ force computation because all particle pairs must
still be checked to see if they are within the cut-off distance. The complexity is re-
duced to O(N) by combining this with techniques like the cell-list and neighbor-list
methods, which will be described in Section 1.2.

The electrostatic or Coulomb force works between two charged particles and is
given by Equation 3:

FPGA-Accelerated Molecular Dynamics 5

−→F i(CL) = qi ∑
i6= j

(
q j

|ri j|3

)
−→ri j (3)

where qi and q j are the particle charges and ri j is the separation distance between
particles i and j.

Unlike the van der Waals force, the Coulomb force does not fall off sufficiently
quickly to immediately allow the general application of a cut-off. The Coulomb
force is therefore often split into two components: a range-limited part that goes
to zero in the neighborhood of the LJ cut-off, and a long-range part that can be
computed using efficient electrostatic methods, the most popular being based on
Ewald Sums [11] or Multigrid [46]. For example, one can split the original Coulomb
force curve in two parts (with a smoothing function ga(r)):

1
r
= (

1
r
−ga(r))+ga(r). (4)

The short range component can be computed together with the Lennard-Jones force
using particle indexed look-up tables Aab, Bab, and QQab. Then the entire short range
force to be computed is:

Fshort
ji

rji
= Aabr−14

ji +Babr−8
ji +QQab(r−3

ji +
g′a(r)

r
). (5)

In addition to the non-bonded forces, bonded interactions (e.g., bond, angle, and
dihedral in Figure 1) must also be computed every timestep. They have O(N) com-
plexity and take a relatively small part of the total time. Bonded pairs are generally
excluded from non-bonded force computation, but if for any reason (e.g., to avoid
a branch instruction in an inner loop) a non-bonded force computation includes
bonded pairs, then those forces must be subtracted accordingly. Because the long-
range force varies less quickly than the other force components, it is often computed
only every 2-4 timesteps.

1.2 Cell Lists and Neighbor Lists

We now present two methods of reducing the naive complexity of O(N2) to O(N).
In the cell-list method [22, 40] a simulation box is first partitioned into several cells,
often cubic in shape (see Figure 2 for a 2D depiction). Each dimension is typi-
cally chosen to be slightly larger than the cut-off distance. This means, for a 3D
system, that traversing through the particles of the home cell and 26 adjacent cells
suffices, independent of the overall simulation size. If Newton’s third law is used,
then only half of the neighboring cells need to be checked. If the cell dimension is
less than cut-off distance, then more number of cells need to be checked. The cost

6 M.A. Khan, M. Chiu, and M.C. Herbordt

Fig. 2 2D Illustration of cell
and neighbor lists. In the
range-limited force, particles
only interact with those in
the cell neighborhood. Neigh-
bor lists are constructed by
including for each particle
only those particles within the
cutoff radius C (shown for P).

of constructing cell lists scales linearly with the number of particles, but reduces the
complexity of the force evaluation to O(N).

Using cell lists still results in checking many more particles than necessary. For a
particle in the center of a home cell, we only need to check its surrounding volume
of (4/3) ∗ 3.14 ∗R3

c , where Rc is the cut-off radius. But in the cell-list method we
end up checking a volume of 27∗R3

c , which is roughly 6 times larger than needed.
This can be improved using neighbor lists [49]. In this method, a list of possible
neighboring particles is maintained for each particle and only this list is checked
for force evaluation. A particle is included in the neighbor list of another particle if
the distance between them is less than Rc +Rm, where Rm is a small buffer margin.
Rm is chosen such that the neighbor-list also contains the particles which are not yet
within the cut-off range but might enter the cut-off range before the list is updated
next. In every timestep, the validity of each pair in a neighbor list is checked before
it is actually used in force evaluation. Neighbor lists are usually updated periodi-
cally in a fixed number of time steps or when displacements of particles exceed a
predetermined value.

Although neighbor lists can be constructed for all particles in O(N) time (using
cell-lists), it is far more costly as many particles must still be checked for each
reference particle. But as long as the neighbor lists are not updated too frequently,
which is the case generally, this method reduces the range-limited force evaluation
time significantly. The savings in runtime comes at the cost of extra storage required
to save the neighbor-list of each particle. For most high-end CPUs, this is not a major
issue.

1.3 Direct Computation vs. Table Interpolation

The most time consuming part of an MD simulation is typically the evaluation of
range-limited forces. One of the major optimizations is the use of table look-up in
place of direct computation. This avoids expensive square roots and er f c evalua-
tions. This method not only saves computation time, but is also robust in incorpo-
rating small changes such as the incorporation of a switching function.

FPGA-Accelerated Molecular Dynamics 7

Fig. 3 In MD interpolation, function values are typically computed by Section with each having a
constant number of bins, but varying in size with distance.

Typically the square of the inter-particle distance (r2) is used as the index. The
possible range of r2 is divided into several sections or segments and each section is
further divided into intervals or bins as shown in Figure 3. For an M order interpola-
tion, each interval needs M+1 coefficients and each section needs N ∗(M+1) coef-
ficients, where N is the number of bins in the section. Accuracy increases with both
the number of intervals per section and the interpolation order. Generally the rapidly
changing regions are assigned relatively higher number of bins, and relatively stable
regions are assigned fewer bins. Equation 6 shows a third order interpolation.

F(x) = a0 +a1x+a2x2 +a3x3 (6)

For reference, here we present a sample of table interpolation parameters used in
widely known MD packages and systems.

• NAMD (CPU) – Ref: [34] and Source code of NAMD2.7
Order = 2 bins/segment = 64 Index: r2

Segments: 12 – segment size increases exponentially, starting from 0.0625
• NAMD (GPU) – Ref: [48] and Source code of NAMD2.7

Order = 0 bins/segment = 64 Index: 1/
√

r2

Segments: 12 – segment size increases exponentially
• CHARMM – Ref: [5]

Order = 2 bins/segment = 10-25 Index: r2

Segments: Uniform segment size of 1Å2 is used which results in relatively more
precise values near cut-off

• ANTON – Ref: [28]
Force Table Order = Says 3 but that may be for energy only. Value for force may
be smaller.
of bins = 256 Index: r2

Segments: Segments are of different widths, but values not available, nor whether
the number of bins is the total or per segment.

8 M.A. Khan, M. Chiu, and M.C. Herbordt

• GROMACS – Ref: [21] and GROMACS Manual 4.5.3, page 148
Order = 2 bins = 500 (2000) per nm for single (double) precision
Segments: 1 Index: r2

Comment: Allows user-defined tables.

Clearly there are a wide variety of parameter settings. These have been chosen
with regard to cache size (CPU), routing and chip area (Anton), and the availability
of special features (GPU texture memory). These parameters also have an effect on
simulation quality, which we discuss next.

1.4 Simulation Quality – Numeric Precision and Validation

Although most widely used MD packages use double-precision floating point (DP)
for force evaluation, studies have shown that it is possible to achieve acceptable
quality of simulation using single-precision floating point (SP) or even using fixed
point arithmetic, as long as the exact atomic trajectory is not the main concern
[36, 41, 43]. Since floating point (FP) arithmetic requires more area and has longer
latency, a hardware implementation would always prefer fixed point arithmetic. Care
must be taken, however, to ensure that the quality of the simulation remains accept-
able. Therefore a critical issue in all MD implementations is the trade off between
precision and simulation quality.

Quality measures can be classified as follows (see, e.g., [13, 33, 43]).
1. Arithmetic error here is the deviation from the ideal (direct) computation done
at high precision (e.g. double-precision). A frequently used measure is the relative
RMS force error, which is defined as follows [42]:

∆F =

√√√√(∑i ∑α∈x,y,z[Fi,α −F∗i,α]2

∑i ∑α∈x,y,z[F∗i,α]2

)
(7)

2. Physical invariants should remain so in simulation. Energy can be monitored
through fluctuation (e.g., in the relative RMS value) and drift. Total fluctuation of
energy can be determined using the following expression (suggested by Shan et al.
[42]):

∆E =
1
Nt

Nt

∑
i=1
|E0−Ei

E0
| (8)

where E0 is the initial value, Ni is the total number of time steps in time t, and
Ei is the total energy at step i. Acceptable numerical accuracy is achieved when
∆E ≤ 0.003.

FPGA-Accelerated Molecular Dynamics 9

2 Basic Issues with Acceleration and Parallelization

2.1 Profile

The maximum speed-up achievable by any hardware accelerator is limited by Am-
dahl’s law. It is therefore important to profile the software to identify potential tar-
gets of acceleration. As discussed in Section 1.1, a timestep in MD consists of two
parts, force computation and motion integration. The major tasks in force computa-
tion are computing range-limited forces, computing long-range forces, and comput-
ing bonded forces. Table 1 shows the timing profile of a timestep using the GRO-
MACS MD package on a single CPU core [21]. These results are typical; see, e.g.,
[43]. As we can see the range-limited force computation dominates and consumes
60% of the total runtime. The next major task is the long-range force computation,
which can be further divided into two tasks, charge-spreading/force-interpolation
and FFT-based computation. FFT, Fourier-space computation, and inverse FFT take
17% of the total runtime while charge spreading and force interpolation take 13%
of the total runtime. Computing other forces takes only 5% of the total runtime.
Unlike the force computation, motion integration is a straightforward process and
takes only 2% of the total runtime. Other remaining computations take 3% of the
total runtime. In addition to serial runtime, data communication becomes a limiting
factor in parallel and accelerated version. We discuss this in Section 2.3.

Table 1 Timing profile of an MD run from a GROMACS study [21]

Step Task % execution time

Force Computation

Range-limited Force 60
FFT, Fourier-space computation, IFFT 17
Charge spreading and force interpolation 13
Other Forces 5

Motion Integration Position & velocity updates 2
Others 3

2.2 Handling Exclusion

While combining various forces before computing acceleration is a straightforward
process of linear summation, careful consideration is required for bonded pairs, es-
pecially when using hardware accelerators. In particular, covalently bonded pairs
need to be excluded from non-bonded force computation. One way to ensure this
is to check whether two particles are bonded before evaluating their non-bonded
forces. This is expensive because it requires on-the-fly check for bonds. Another
way is to use separate neighbor lists for bonded and non-bonded neighbors. Both of
these methods are problematic for hardware acceleration: one requires implement-

10 M.A. Khan, M. Chiu, and M.C. Herbordt

ing a branch instruction while the other forces the use of neighbor-lists, which may
be impractical for hardware implementation (see Section 3.2).

A way that is often the preferred for accelerators is to compute non-bonded forces
for all particle-pairs within the cut-off distance, but later subtract those for bonded
pairs in a separate stage. This method does not need either on-the-fly bond checking
or neighbor-lists. There is a different problem here though. The r14 term of the LJ
force (Equation 2) can be very large for bonded particles because they tend to be
much closer than non-bonded pairs. Adding and subtracting such large scale values
can overwhelm real but small force values. Therefore, care needs to be taken so that
the actual force values are not saturated. For example, an inner as well as an outer
cutoff can be applied.

2.3 Data Transfer and Communication Overhead

Accelerators are typically connected to the host CPU via some shared interface,
e.g., the PCI or PCIe bus. For efficient computation on the accelerator, frequent data
transfers between the main memory of the CPU and accelerator must be avoided.
Input data need to be transferred to the accelerator before the computation starts and
results need to be sent back to the host CPU. Although this is usually done using
DMA, it may still consume a significant amount of time that was not required in
a CPU-only version. It is preferred that the CPU remains engaged in other useful
tasks while data transfer and accelerated computation take place, allowing efficient
overlap of computation and communication, as well as parallel utilization of the
CPU and the accelerator. Our studies show that, host-accelerator data transfer takes
around 5%-10% of the accelerated runtime for MD (see Section 3.2).

Fig. 4 Apoa1 benchmark runtime/timestep using NAMD showing overhead in a small-scale par-
allel simulation.

In addition to intra-node (host-accelerator) data transfer, inter-node data com-
munication may become a bottleneck, especially for accelerated versions of MD.
MD is a highly parallel application and typically runs on multiple compute nodes.
Parallelism is achieved in MD by first decomposing the simulation space spatially
and assigning one or more of such decomposed sections to a compute node (see e.g.
[34]). Particles in different sections then need to compute their pairwise interaction

FPGA-Accelerated Molecular Dynamics 11

forces (both non-bonded and bonded) which requires inter-node data communica-
tion between node-pairs. In addition to that, long-range force computation requires
all-to-all communication [50]. Thus, in addition to the serial runtime, inter-node
communication plays an important role in parallel MD. Figure 4 shows an example
of inter-processor communication time as the number of processors increases from
1 to 4. We performed this experiment using Apoa1 benchmark and NAMD2.8 [34]
on a quad-core Intel CPU (2 core2-duo) of 2.0 GHz each. For a CPU-only version
the proportion may be acceptable. For accelerated versions, however, the proportion
increases and becomes a major problem [35].

2.4 Newton’s 3rd Law

Newton’s 3rd law (N3L) allows computing forces between a pair of particles only
once and use the result to update both particles. This provides opportunities for cer-
tain optimizations. For example, when using the cell-list method, each cell now only
needs to check half of its neighboring cells. Some ordering needs to be established
to make sure that all required cell-pairs are considered, but this is a trivial problem.

The issue of whether to use N3L or not becomes more interesting in parallel and
accelerated version of MD. It plays an important role in the amount and pattern of
inter-node data communication for parallel runs, and successive accumulation of
forces in multi-pipelined hardware accelerators (see discussion on accumulation in
Section 3.1). For example, assume a parallel version of MD where particles x and y
are assigned to compute nodes X and Y respectively. If N3L is not used, we need to
send particle data of y from Y to X and particle data of x from X to Y before the force
computation of a timestep can take place. But no further inter-node communication
will be required for that timestep as particle data will be updated locally. In contrast,
if N3L is used, particle data of y need to be sent from Y to X before the computation
and results need to be sent from X to Y . Depending on the available computation
and communication capability, these two may result in different efficiency. Similar,
but more fine-grained, issues exist for hardware accelerators too.

2.5 Partitioning and Routing

Parallel MD requires partitioning of the problem and routing data every timestep.
Although there are various ways of partitioning computations in MD, practically all
widely used MD packages use some variation of spatial decomposition (e.g. recur-
sive bisection, neutral territory, half shell, or midpoint [4, 23]). In such a method,
each compute node or process is responsible for updating particles in a certain re-
gion of the simulation space. In other words, it owns the particles in that region.
Particle data such as position and charge need to be routed to the node that will
compute forces for that particle. Depending on the partitioning scheme, computa-

12 M.A. Khan, M. Chiu, and M.C. Herbordt

tion may take place on a node that owns at least one of the particles involved in
the force computation, or it may take place on a node that does not own any of the
particles involved in the force computation. Computation results may also need to
be routed back to the owner node. This also depends on several choices such as the
partitioning scheme and the use of N3L.

For an accelerated version of MD, partitioning and routing may cause additional
overhead. Because hardware accelerators typically require a chunk of data to work
on at a time in order to avoid frequent data communication with the host CPU.
This means fine grained overlapping of computation and communication, which is
possible in a CPU-only version, becomes challenging.

3 FPGA Acceleration Methods

Several papers have been published from CAAD Lab at Boston University describ-
ing a highly efficient FPGA kernel for the range-limited force computation [7, 8, 9].
The kernel was integrated into NAMD-lite [19], a serial MD package developed at
UIUC to provide a simpler way to examine and validate new features before in-
tegrating them into NAMD [34]. The FPGA kernel itself was implemented on an
Altera Stratix-III SE260 FPGA of Gidel ProcStar-III board [15]. The board con-
tains four such FPGAs, and is capable of running at a system speed of up to 300
MHz. The FPGAs communicate with the host CPU via a PCIe bus interface. Each
FPGA is individually equipped with over 4GB of memory.

The runtime of the kernel was 26x faster over the end-to-end runtime of NAMD,
for Apoa1, a benchmark consisting of 92224 atoms [10]. The electrostatic force was
computed every cycle using PME and both LJ and short-rage portion of electrostatic
force were computed on the FPGAs. Particle data, along with cell-lists and particle
types are sent to the FPGA every timestep, while force data is received from the
FPGA and then integrated on the host. A direct end-to-end comparison with the
software-only version was not done since the host software itself (NAMD-lite) is
not optimized for performance. In the next three Subsections we discuss the key
contributions of this work in depth. In the following two Subsections we describe
some preliminary work in the FPGA-acceleration of the long-range force and in
mapping MD to multi-FPGA systems.

3.1 Force Pipeline

In Section 1.1 we described the general methods in computing the range-limited
forces (see Equation 5). Here we present their actual implementation emphasizing
compatibility with NAMD.

While the van der Waals term shown in Equation 2 converges quickly, it must
still be modified for effective MD simulations. In particular, a switching function is

FPGA-Accelerated Molecular Dynamics 13

hgy Switch
distance CutoffEn

er
g

Distance
0

Fig. 5 Graph shows the van der Waals potential with switching/smoothing function (dashed line).

implemented to truncate van der Waals force smoothly at the cutoff distance (see
Equations 9-11).

s = (cuto f f 2− r2)2 ∗ (cuto f f 2 +2∗ r2−3∗ switch dist2)∗denom (9)

dsr = 12∗ (cuto f f 2)∗ (switch dist2− r2)∗denom (10)

denom = 1/(cuto f f 2− switch dist2)3 (11)

Without a switching/smoothing function, the energy may not be conserved as the
force would be truncated abruptly at the cutoff distance. The graph of van der Waals
potential with the switching/smoothing function is illustrated in Figure 5. The van
der Waals force and energy can be computed directly as shown here:
IF (r2 ≤ switch dist2) UvdW =U, FvdW = F
IF (r2 > switch dist2 && r2 < cuto f f 2) UvdW ∗ s, FvdW = F ∗ s+Uvdw ∗dsr
IF (r2 ≥ cuto f f 2) UvdW = 0, FvdW = 0

For the Coulomb term the most flexible method used by NAMD for calculating
the electrostatic force/energy is Particle Mesh Ewald (PME). The following is the
pairwise component:

Es =
1

4πε0

1
2 ∑

n

N

∑
i=1

n

∑
i=0

qiq j

|ri− r j +nL|
er f c(

|ri− r j +nL|√
2σ

) (12)

To avoid computing these complex equations explicitly, software often employs
table lookup with interpolation (Section 1.3). Equation 5 can be rewritten as follows:

Fshort
ji (|r ji|2(a,b))

rji
= AabR14(|r ji|2)+BabR8(|r ji|2)+QQabR3(|r ji|2) (13)

14 M.A. Khan, M. Chiu, and M.C. Herbordt

where R14, R8, and R3 are three tables indexed with |r ji|2 (rather than |r ji|, to avoid
the square root operation).

Fig. 6 Logic for computing
the range-limited force. Red
diamonds indicate respective
table lookups for the two van
der Waals force components
and the Coulombic force.

Particle Pair Position Vectors parameters
h

+

^2

threshold
cutoff

y

z2

r2

charges

y2x2

zx
^2 ^2

<

mux

colvdw1 vdw2

14 8 3
0 0

<

0

comparators

r 14 r 8 r 3

multipliers

parameter2parameter1

+

Particle Pair Force Vectors

multipliers

Designing a force computation pipeline on FPGA to accurately perform these
tasks requires careful consideration of several issues. Figure 6 illustrates the major
functional units of the force pipelines. The force function evaluators are the dia-
monds marked in red; these are the components which can be implemented with
the various schemes. The other units remain mostly unchanged. The three function
evaluators are for the R14, R8, and R3 components of Equation 13, respectively. In
particular, Vdw Function 1 and Vdw Function 2 are the R14 and R8 terms but also
include the cutoff shown in Equations 9-11. Coulomb Function is the R3 term but
also includes the correction shown in Equation 12.

For the actual implementation we use a combination of fixed and floating point.
Floating point has far more dynamic range, while fixed point is much more effi-
cient and offers somewhat higher precision. Fixed point is especially advantageous
for use as an index (r2) and for accumulation. We therefore perform the following
conversions: float to fixed as data arrives on the FPGA; to float for interpolation; to
fixed for accumulation; and to float for transfer back to the host.

A significant issue is determining the minimum interpolation order, precision,
and number of intervals without sacrificing simulation quality. For this we use two

FPGA-Accelerated Molecular Dynamics 15

-2.24E+05

-2.23E+05

-2.22E+05

-2.21E+05

-2.20E+05

-2.19E+05

-2.18E+05

-2.17E+05

-2.16E+05

0 50 100 150 200

En
er

gy
 (k

ca
l/m

ol
)

Time unit = 100 fs

Energy Plot NAMD-Lite (Ref)
DP_Order2_B64
DP_Order1_B64
DP_Order0_B64
DP_Order2_B256
DP_Order1_B256
DP_Order0_B256
SP_Order2_B64
SP_Order1_B64
SP_Order0_B64
SP_Order2_B256
SP_Order1_B256
SP_Order0_B256

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

256 64

R
el

at
iv

e
R

M
S

Fo
rc

e
Er

ro
r

Bins per Segment

All_O2

All_O1

All_O0

Fig. 7 Right graph shows Relative RMS Force Error versus bin density for interpolation orders 0,
1, and 2. Left graph shows energy for various designs run for 20,000 timesteps. Except for 0-order,
plots are indistinguishable from the reference code.

methods both of which use a modified NAMD-lite to generate the appropriate data.
The first method uses Equation 7 to compute the relative RMS error with respect
to the reference code. The simulation was first run for 1000 timesteps using direct
computation. Then in the next timestep both direct computation and table lookup
with interpolation were used to find the relative RMS force error for the various
lookup parameters. Only the range-limited forces (switched VdW and short-range
part of PME) were considered. All computations were done in double-precision.
Results are shown in the right half of Figure 7. We note that 1st and 2nd order
interpolation have two orders of magnitude less error than 0th order. We also note
that with 256 bins per section (and 12 sections), 1st and 2nd order are virtually
identical.

The second method was to measure energy fluctuation and drift. Results are pre-
sented for the NAMD benchmark ApoA1. It has 92,224 particles, a bounding box
of 108Å×108Å×78Å, and a cut-off radius of 12Å. The Coulomb force is evaluated
with PME. A switching function is applied to smooth the LJ force when the intra-
distance of particle pairs is between 10Å and 12Å. Preliminary results are shown in
the left side of Figure 7. A number of design alternatives were examined, includ-
ing the original code and all combinations of the following parameters: bin density
(64 and 256 per section or segment), interpolation order (0th, 1st, and 2nd), and
single and double-precision floating point. We note that all of the 0th order simula-
tions are unacceptable, but that the others are all indistinguishable (in both energy
fluctuation and drift) from the serial reference code running direct computation in
double-precision floating point.

To validate the most promising candidate designs, longer runs were conducted.
An energy plot for 100,000 timesteps is provided in Figure 8. The graphs depict the
original reference code and two FPGA designs. Both are single precision with 256
bins per interval; one is first order the other second order. Good energy conservation

16 M.A. Khan, M. Chiu, and M.C. Herbordt

Fig. 8 Reference code and two designs run for 100,000 timesteps.

is seen in the FPGA-accelerated versions. Only a small divergence of 0.02% was
observed compared to the software-only version. The ∆E values, using equation 8,
for all accelerated versions were found to be much smaller than 0.003.

One of the interesting contributions of this work was with respect to the uti-
lization of Block RAM (BRAM) architecture of the FPGAs for interpolation. MD
packages typically choose the interval such that the table is small enough to fit in
L1 cache. This is compensated by the use of higher order of interpolation, second
order being a common choice for force computation [9]. FPGAs, however, can af-
ford having finer intervals because of the availability of on-chip BRAMs. It was
found that, by doubling the number of bins per section, first order interpolation can
achieve similar simulation quality as the second order interpolation (see Figure 7).
This saves logic and multipliers and increases the number of force pipelines that can
fit in a single FPGA.

3.2 Filtering and Mapping Scheme

The performance of an FPGA kernel is directly dependent on the efficiency of the
force computation pipelines. The more useful work pipelines do every cycle, the
better the performance is. This in turn requires that the force pipelines be fed, as
much as possible, with particle pairs that are within cut-off distance. Section 1.2 de-
scribed two efficient methods for finding particle-pairs within cut-off distance. But
for MD accelerators, this requires additional considerations. The cell list computa-
tion is very fast and the data generated is small, so it is generally done on the host.
The results are downloaded to the FPGA every iteration. The neighbor-list method,

FPGA-Accelerated Molecular Dynamics 17

on the other hand, is problematic if the lists are computed on the host. The size of
the aggregate neighbor-lists is hundreds of times that of the cell lists, which makes
their transfer to FPGA impractical. As a consequence, neighbor-list computation, if
it is done at all, must be done on the FPGA.

This work first looks at MD with cell lists. For reference and without loss of
generality, we examine the NAMD benchmark NAMD2.6 on ApoA1. It has 92,224
particles, a bounding box of 108Å×108Å×78Å, and a cut-off radius of 12Å. This
roughly yields a simulation space of 9× 9× 7 cells with an average of 175 parti-
cles per cell with a uniform distribution. On the FPGA, the working set is typically
a single (home) cell and its cell neighborhood for a total of (naively) 27 cells and
about 4,725 particles. Using Newton’s third law (N3L), home cell particles are only
matched with particles of part of the cell neighborhood, and with, on average, half
of the particles in the home cell. For the 14- and 18-cell configurations (see later
discussion on mapping scheme), the number of particles to be examined is 2,450
and 3,150, respectively. Given current FPGA technology, any of these cell neigh-
borhoods (14, 18, or even 27) easily fits in the on-chip BRAMs.

On the other hand, neighbor-lists for a home cell do not fit on the FPGA. The
aggregate neighbor-lists for 175 home cell particles is over 64,000 particles (one
half of 732 per particle – 732 rather than 4,725 because of increased efficiency).

The memory requirements are therefore very different. Cell-lists can be swapped
back and forth between the FPGA and the DDR memory, as needed. Because of the
high level of reuse, this is easily done in the background. In contrast, neighbor-list
particles must be streamed from off-chip as they are needed. This has worked when
there are one or two force pipelines operating at 100MHz [26, 41], but is problematic
for current and future high-end FPGAs. For example, the Stratix-III/Virtex-5 gener-
ation of FPGAs can support up to 8 force pipelines operating at 200MHz leading to
a bandwidth requirement of over 20 GB/s.

The solution proposed in this work is to use neighbor-lists, but to compute them
every iteration, generating them continuously and consuming them almost immedi-
ately. There are three major issues that are addressed in this work, which we discuss
next.

1. How should the filter be computed?
2. What cell neighborhood organization best takes advantage of N3L?
3. How should particle pairs be mapped to filter pipelines?

3.2.1 Filter Pipeline Design and Optimization

For a cell-list based system where one home cell is processed at a time, with no
filtering or other optimization, forces are computed between all pairs of particles i
and j, where i must be in the home cell but j can be in any of the 27 cells of the cell
neighborhood, including the home cell. Filtering here means the identification of
particle pairs where the mutual short-range force is zero. A perfect filter successfully
removes all such pairs. The efficiency of the filter is the ratio of undesirable particle
pairs that were removed to the original number of undesirable particle pairs. The

18 M.A. Khan, M. Chiu, and M.C. Herbordt

extra work due to imperfection is the ratio of undesirable pairs not removed to the
desirable pairs.

Three methods are evaluated, two existing and one new, which trade off filter
efficiency for hardware resources. As described in Section 3.1, particle positions are
stored in three Cartesian dimensions, each in 32-bit integer. Filter designs have two
parameters, precision and geometry.
1. Full Precision: Precision = full, Geometry = sphere
This filter computes r2 = x2+y2+z2 and compares whether r2 < r2

c using full 32-bit
precision. Filtering efficiency is nearly 100%. Except for the comparison operation,
this is the same computation that is performed in the force pipeline.
2. Reduced: Precision = reduced, Geometry = sphere
This filter, used by D.E. Shaw [28], also computes r2 = x2 + y2 + z2,r2 < r2

c , but
uses fewer bits and so substantially reduces the hardware required. Lower precision,
however, means that the cut-off radius must be increased (rounded up to the next bit)
so filtering efficiency goes down: for 8 bits of precision, it is 99.5 for about 3% extra
work.

Fig. 9 Filtering with planes
rather than a sphere – 2D
analogue.

rc

rc

3. Planar: Precision = reduced, Geometry = planes
A disadvantage of the previous method is its use of multipliers, which are the critical
resource in the force pipeline. This issue can be important because there are likely to
be 6 to 10 filter pipelines per force pipeline. In this method we avoid multiplication
by thresholding with planes rather than a sphere (see Figure 9 for the 2D analog).
The formulas are as follows:

• |x|< rc, |y|< rc, |z|< rc

FPGA-Accelerated Molecular Dynamics 19

• |x|+ |y|<
√

2rc, |x|+ |z|<
√

2rc, |y|+ |z|<
√

2rc
• |x|+ |y|+ |z|<

√
3rc

With 8 bits, this method achieves 97.5% efficiency for about 13% extra work.

Table 2 Comparison of three filtering schemes with respect to quality and resource usage. A
force pipeline is shown for reference. Percent utilization is with respect to the Altera Stratix-III
EP3SE260.

Filtering Method LUTs/Registers Multipliers Filter Eff. Extra Work
Full precision 341/881 0.43% 12 1.6% 100% 0%
Full prec. - logic only muls 2577/2696 1.3% 0 0.0% 100% 0%
Reduced precision 131/266 0.13% 3 0.4% 99.5% 3%
Reduced prec. - logic only muls 303/436 0.21% 0 0.0% 99.5% 3%
Planar 164/279 0.14% 0 0.0% 97.5% 13%
Force pipe 5695/7678 5.0% 70 9.1% NA NA

Table 2 summarizes the cost (LUTs, registers, and multipliers) and quality (effi-
ciency and extra work) of the three filtering methods. Since multipliers are a critical
resource, we also show the two “sphere” filters implemented entirely with logic.
The cost of a force pipeline (from Section 3.1) is shown for scale.

The most important result is the relative cost of the filters to the force pipeline.
Depending on implementation and load balancing method (see later discussion on
mapping scheme), each force pipeline needs between 6 and 9 filters to keep it run-
ning at full utilization. We refer to that set of filters as a filter bank. Table 2 shows
that a full precision filter bank takes from 80% to 170% of the resources of its force
pipeline. The reduced (logic only) and planar filter banks, however, require only a
fraction: between 17% and 40% of the logic of the force pipeline and no multipliers
at all. Since the latter is the critical resource, the conclusion is that the filtering logic
itself (not including interfaces) has a minor effect on the number of force pipelines
that can fit on the FPGA.

We now compare the reduced and planar filters. The Extra Work column in
Table 2 shows that for a planar filter bank to obtain the same performance as logic-
only-reduced, the overall design must have 13% more throughput. This translates,
e.g., to having 9 force pipelines when using planar rather than 8 for reduced. The
total number of filters remains constant. The choice of filter therefore depends on
the FPGA’s resource mix.

3.2.2 Cell Neighborhood Organization

For efficient access of particle memory and control, and for smooth interaction be-
tween filter and force pipelines, it is preferred to have each force pipeline handle the
interactions of a single reference particle (and its partner particles) at a time. This
preference becomes critical when there are a large number of force pipelines and a
much larger number of filter pipelines. Moreover, it is highly desirable for all of the

20 M.A. Khan, M. Chiu, and M.C. Herbordt

neighbor-lists being created at any one time (by the filter banks) to be transferred
to the force pipelines simultaneously. It follows that each reference particle should
have a similar number of partner particles (neighbor-list size).

A

B

1 2

3

4

Home

rc rc

rc

1 2

3

4

Home

5rc
a) b)

Fig. 10 Shown are two partitioning schemes for using Newton’s 3rd Law. In a), 1-4 plus home are
examined with a full sphere. In b), 1-5 plus home are examined, but with a hemisphere (shaded
part of circle).

The problem addressed here is that the standard method of choosing a reference
particle’s partner particles leads to a severe imbalance in neighbor-list sizes. How
this arises can be seen in Figure 10a, which illustrates the standard method of op-
timizing for N3L. So that a force between a particle pair is computed only once,
only a “half shell” of the surrounding cells is examined (in 2D, this is cells 1-4 plus
Home). For forces between the reference particle and other particles in Home, the
particle ID is used to break the tie, with, e.g., the force being computed only when
the ID of the reference particle is the higher. In Figure 10a, particle B has a much
smaller neighbor-list than A, especially if B has a low ID and A a high.

In fact neighbor-list sizes vary from 0 to 2L, where L is the average neighbor-list
size. The significance is as follows. Let all force pipelines wait for the last pipeline to
finish before starting work on a new reference particle. Then if that (last) pipeline’s
reference particle has a neighbor-list of size 2L, then the latency will be double that
if all neighbor-lists were size L. This distribution has high variance (see Figure 11),
meaning that neighbor-list sizes greater than, say, 3

2 L, are likely to occur. A simi-
lar situation also occurs in other MD implementations, with different architectures
calling for different solutions [2, 47].

One way to deal with this load imbalance is to overlap the force pipelines so that
they work independently. While viable, this leads to much more complex control.

An alternative is to change the partitioning scheme. Our new N3L partition is
shown in Figure 10b. There are three new features. The first is that the cell set has
been augmented from a half shell to a prism. In 2D this increases the cell set from
5 cells to 6; in 3D the increase is from 14 to 18. The second is that, rather than
forming a neighbor-list based on a cut-off sphere, a hemisphere is used instead (the

FPGA-Accelerated Molecular Dynamics 21

Distribution of Neighborlist Sizes

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 2
Neighborlist size -- Normalized to Avg.

Pr
ob

ab
ili

ty

Fig. 11 Distribution of neighbor-list sizes for standard partition as derived from Monte Carlo sim-
ulations.

“half-moons” in Figure 10b). The third is that there is now no need to compare IDs
of home cell particles.

We now compare the two partitioning schemes. There are two metrics: the effect
on the load imbalance and the extra resources required to prevent it.
1. Effect of load imbalance. We assume that all of the force pipelines begin comput-
ing forces on their reference particles at the same time, and that each force pipeline
waits until the last force pipeline has finished before continuing to the next reference
particle. We call the set of neighbor-lists that are thus processed simultaneously a co-
hort. With perfect load balancing, all neighbor-lists in a cohort would have the same
size, the average L. The effect of the variation in neighbor-list size is in the number
of excess cycles—before a new cohort of reference particles can begin processing—
over the number of cycles if each neighbor-list were the same size. The performance
cost is therefore the average number of excess cycles per cohort. This in turn is the
average size of the biggest neighbor-list in a cohort minus the average neighbor-list
size. It is found that, for the standard N3L method, the average excess is nearly 50%,
while for the “half-moon” method it is less than 5%.
2. Extra resources. The extra work required to achieve load balance is proportional
to the extra cells in the cell set: 18 versus 14, or an extra 29%. This drops the fraction
of neighbor-list particles in the cell neighborhood from 15.5% to 11.6%, which in
turns increases the number of filters needed to keep the force pipelines fully utilized
(overprovisioned) from 7 to 9. For the reduced and planar filters, this is not likely to
reduce the number of force pipelines.

22 M.A. Khan, M. Chiu, and M.C. Herbordt

3.2.3 Mapping Particle Pairs to Filter Pipelines

From the previous sections an efficient design for filtering and mapping particles
follows.

• During execution, the input working set (data held on the FPGA) consists of the
positions of particles in a single home cell and in its 17 neighbors;

• Particles in each cell are mapped to a set of BRAMs, currently one or two per
dimension, depending on the cell size;

• The N3L algorithm specifies 8 filter pipelines per force pipeline; and
• FPGA resources indicate around 6-8 force pipelines.

The problem we address in this subsection is the mapping of particle pairs to filter
pipelines. There are a (perhaps surprisingly) large number of ways to do this; find-
ing the optimal mapping is in some ways analogous to optimizing loop interchanges
with respect to a cost function. For example, one mapping maps one reference parti-
cle at a time to a bank of filter pipelines, and relates each cell with one filter pipeline.
The advantage of this method is that the outputs of this (8-way) filter bank can then
be routed directly to a force pipeline. This mapping, however, leads to a number of
load balancing, queuing, and combining problems.

Fig. 12 A preferred mapping
of particle pairs onto filter
pipelines. Each filter is used
to compute all interactions for
a single reference particle for
an entire cell neighborhood.

Force
pipeline

Filter

Buffer

8 filter units

Home cell

Neighboring
cells

Home cell
distribution
bus

Neighboring cell
distribution bus

FPGA-Accelerated Molecular Dynamics 23

A preferred mapping is shown in Figure 12. The key idea is to associate each
filter pipeline with a single reference particle (at a time) rather than a cell. Details
are as follows. By “particle” we mean “position data of that particle during this
iteration.”

• A phase begins with a new and distinct reference particle being associated with
each filter.

• Then, on each cycle, a single particle from the 18-cell neighborhood is broadcast
to all of the filter.

• Each filters output goes to a single set of BRAMs.
• The output of each filter is exactly the neighbor-list for its associated reference

particle.
• Double buffering enables neighbor-lists to be generated by the filters at the same

time they are drained by the force pipelines.

Advantages of this method include:

• Perfect load balance among the filters;
• Little overhead: each phase consists of 3150 cycles before a new set of reference

particles must be loaded;
• Nearly perfect load balancing among the force pipelines: each operates succes-

sively on a single reference particle and its neighbor-list; and
• Simple queueing and control: neighbor-list generation is decoupled from force

computation.

This mapping does require larger queues than mappings where the filter outputs
feed more directly into the force pipelines. But since there are BRAMs to spare, this
is not likely to have an impact on performance.

A more substantial concern is the granularity of the processing phases. The num-
ber of phases necessary to process the particles in a single home cell is d|particles-in-
home-cell| / |filters|e. For small cells the loss of efficiency can become significant.
There are several possible solutions.

• Increase the number of filters and further decouple neighbor-list generation from
consumption. The reasoning is that as long as the force pipelines are busy, some
inefficiency in filtering is tolerable.

• Overlap processing of two home cells. This increases the working set from 18
to 27 cells for a modest increase in number of BRAMs required. One way to
implement this is to add a second distribution bus.

• Another way to overlap processing of two home cells is to split the filters among
them. This halves the phase granularity and so the expected inefficiency without
significantly changing the amount of logic required for the distribution bus.

24 M.A. Khan, M. Chiu, and M.C. Herbordt

Fig. 13 Schematic of the
HPRC MD system.

POS Cache

Filter Bank

ACC Cache

POS SRAM

Summation

ACC SRAM

Filter

Buffer

Filter

Buffer

Force Pipeline

Position

0 Acceleration

3.3 Overall Design and Board-Level Issues

In this subsection we describe the overall design (see Figure 13), especially how
data are transferred between host and accelerator and between off-chip and on-chip
memory. The reference design assumes an implementation of 8 force and 72 filter
pipelines.
1. Host-Accelerator data transfers: At the highest level, processing is built around
the timestep iteration and its two phases: force calculation and motion update. Dur-
ing each iteration, the host transfers position data to, and acceleration data from, the
coprocessor’s on-board memory (POS SRAM and ACC SRAM, respectively). With
32-bit precision, 12 bytes are transferred per particle. While the phases are neces-
sarily serial, the data transfers require only a small fraction of the processing time.
For example, while the short-range force calculation takes about 55ms for 100K
particles and increases linearly with particle count through the memory capacity of
the board, the combined data transfers of 2.4MB take only 2-3ms. Moreover, since
simulation proceeds by cell set, processing of the force calculation phase can begin
almost immediately as the data begin to arrive.

FPGA-Accelerated Molecular Dynamics 25

2. Board-level data transfers: Force calculation is built around the processing of
successive home cells. Position and acceleration data of the particles in the cell
set are loaded from board memory into on-chip caches, POS and ACC, respectively.
When the processing of a home cell has completed, ACC data is written back. Focus
shifts and a neighboring cell becomes the new home cell. Its cell set is now loaded;
in the current scheme this is usually nine cells per shift. The transfers are double
buffered to hide latency. The time to process a home cell Tproc is generally greater
than the time Ttrans to swap cell sets with off-chip memory. Let a cell contain an
average of Ncell particles. Then Ttrans = 324×Ncell/B (9 cells, 32-bit data, 3 dimen-
sions, 2 reads and 1 write, and transfer bandwidth of B bytes per cycle). To compute
Tproc, assume P pipelines and perfect efficiency. Then Tproc = N2

cell × 2π/3P cy-
cles. This gives the following bandwidth requirement: B > 155∗P/Ncell . For P = 8
and Ncell = 175, B > 7.1 bytes per cycle. For many current FPGA processor boards
B ≥ 24. Some factors that increase the bandwidth requirement are faster processor
speeds, more pipelines, and lower particle density. A factor that reduces the band-
width requirement is better cell reuse.
3. On-chip data transfers: Force computation has three parts, filtering particle
pairs, computing the forces themselves, and combining the accumulated acceler-
ations. In the design of the on-chip data transfers, the goals are simplicity of control
and minimization of memory and routing resources. Processing of a home cell pro-
ceeds in cohorts of reference particles that are processed simultaneously, either 8
or 72 at a time (either one per filter bank or one per force pipeline). This allows a
control with a single state machine, minimizes memory contention, and simplifies
accumulation. For this scheme to run at high efficiency, two types of load-balancing
are required: (i) the work done by various filter banks must be similar and (ii) filter
banks must generate particle pairs having non-trivial interactions on nearly every
cycle.
4. POS cache to filter pipelines: Cell set positions are stored in 54-108 BRAMS,
i.e., 1-2 BRAMs per dimension per cell. This number depends on the BRAM size,
cell size, and particle density. Reference particles are always from the home cell,
partner particles can come from anywhere in the cell set.
5. Filter pipelines to force pipelines: A concentrator logic is used to feed the output
of multiple filters to a pipeline (Figure 14). Various strategies were discussed in [8].
6. Force pipelines to ACC cache: To support N3L, two copies are made of each
computed force. One is accumulated with the current reference particle. The other
is stored by index in one of the large BRAMs on the Stratix-III. Figure 15 shows the
design of the accumulator.

3.4 Preliminary Work in Long-Range Force Computation

In 2005, Prof. Paul Chow’s group at the University of Toronto made an effort to
accelerate the reciprocal part of SPME on a Xilinx XC2V2000 FPGA [29]. The
computation was performed with fixed-point arithmetic that has various precisions

26 M.A. Khan, M. Chiu, and M.C. Herbordt

Queue 0
Arbiter

Filter

Stall

Mux
Filter

Filter
Force pipeline

Queue 1

Queue 2

Filter
Queue 3

Fig. 14 Concentrator logic between filters and force pipeline.

Cell-1

Cell-2force
pipeline n

accumulated
partial force

new force (i,j)
mux

i or j

0 1 2 3 4 5 6 7

Force Caches

Cell-18

force cache n

updated force

i

reference
particle Off-chip Force SRAM

Summation

) b)force cache np
force array

Off-chip Force SRAMa) b)

Fig. 15 Mechanism for accumulating per particle forces. a) shows the logic for a single pipeline
for both the reference and partner particles. b) shows how forces are accumulated across multiple
pipelines.

to improve numerical accuracy. Due to the limited logic resources and slow speed
grade, the performance was sacrificed by some design choices, such as the sequen-
tial executions of the reciprocal force calculation for x, y, and z directions and slow
radix-2 FFT implementation. The performance was projected to be a factor of 3x to
14x over the software implementation running in an Intel 2.4GHz Pentium 4 proces-
sor. At Boston University the long-range electrostatic force was implemented using
Multigrid [17] with a factor of 5x to 7x speed-up reported.

3.5 Preliminary Work in Parallel MD

Maxwell is an FPGA-based computing cluster developed by the FHPCA (FPGA
High Performance Computing Alliance) project at EPCC (Edinburgh Parallel Com-
puting Centre) at the University of Edinburgh [3]. The architecture of Maxwell com-
prises 32 blades housed in an IBM Blade Center. Each blade consists of one Xeon

FPGA-Accelerated Molecular Dynamics 27

processor and 2 Virtex-4 FX-100 FPGAs. The FPGAs are connected by a fast com-
munication subsystem which enables the total of 64 FPGAs to be connected together
in an 8 x 8 torus. Each FPGA also has four 256 MB DDR2 SDRAMs. The FPGAs
are connected with the host via a PCI bus.

In 2011, an FPGA-accelerated version of LAMMPS was reported to be imple-
mented on Maxwell [24, 37]. Only range-limited non-bonded forces (including po-
tential and virial) were computed on the FPGAs with 4 identical pipelines/FPGA. A
speed-up of up to 14x was reported for the kernel (excluding data communication)
on two or more nodes of the Maxwell machine, although the end-to-end perfor-
mance was worse than the software only version.

This work essentially implemented the inner-loop of a neighbor-list-based force
computation as the FPGA kernel. Every time a particle and its neighbor-list would
be sent to the FPGAs from the host and then corresponding forces would be com-
puted on the FPGAs. This incurred tremendous amount of data communication
which ultimately resulted in the slowdown of the FPGA-accelerated version. They
simulated a Rhodopsin protein in solvated lipid bilayer with LJ forces and PPPM
method. The 32K system was replicated to simulate larger systems. This work, how-
ever, to the best of our knowledge, is the first to integrate an FPGA MD kernel to a
full-parallel MD package.

4 Future Challenges and Opportunities

The future of FPGA-accelerated MD vastly depends on the co-operation and collab-
oration among computational biologists, computer architects and board/EDA tool
vendors. In the face of the high bar set by GPU implementations, researchers and
engineers from all of these three sectors must come together to make this a success.
The bit-level programmability and fast data communication capability, together with
their power efficiency, do make FPGAs seem like the best candidate for MD accel-
erator. But to realize the potential, computer architects will have to work with the
computational biologists to understand the characteristics of the existing MD pack-
ages and develop FPGA kernels accordingly. The board and EDA tool vendors will
have to make FPGA devices much easier to deploy. Currently FPGA kernels are
mostly designed and managed by hardware engineers. A CUDA-like breakthrough
here would make FPGAs accessible to a much broader audience.

Below, we discuss some of the specific challenges that need to be addressed in
order to achieve the full potential of FPGAs in accelerating MD. These challenges
provide researchers with great opportunities for inventions and advancements that
are very likely to be applicable to other similar computational problems, e.g., N-
body simulations.

28 M.A. Khan, M. Chiu, and M.C. Herbordt

4.1 Integration into Full-parallel Production MD Packages

After a decade of research on FPGA-accelerated MD, with many individual pieces
of work here and there, none of the widely used MD packages have an FPGA-
accelerated version. Part of this is because FPGA developers have only focused on
individual sections of the computation. But another significant reason is the lack of
understanding of how these highly optimized MD packages work and what needs
to be done to get the best out of FPGAs, without breaking the structure of the origi-
nal packages. Researchers need to take a top-down approach and focus on the need
of the software. Certain optimizations on the CPUs may need to be revisited, be-
cause we may have more efficient solutions on FPGAs, e.g. table-interpolation us-
ing BRAM as described in 3.1. Also, more effort must be given on overlapping
computation and communication.

4.2 Use of FPGAs for Inter-Node Communication

While CPU-only MD remains compute-bound for at least a few hundred compute
nodes, that is not the case for accelerated versions. It should be evident from the
GPU experience that communication among compute nodes will become a bottle-
neck even for small systems. The need for fast data communication is especially
crucial in evaluating the long-range portion of electrostatic force, which is often
based on the 3D FFT, and requires all-to-all communication during a timestep. With-
out substantial improvement in such inter-node communication, FPGA-acceleration
will be limited to only a few times of speed-up. This presents a highly promising
area of research where FPGAs can be used directly for communication between
compute nodes. FPGAs are already used in network routers and seem like a natural
fit for this purpose [20].

4.3 Building an Entirely FPGA-centric MD Engine

As Moore’s law continues, FPGAs are equipped with more functionality than ever. It
is possible to have embedded processors on FPGAs, either soft or hard, which makes
it feasible to create an entirely FPGA-centric MD engine. In such an engine, overall
control and simple software tasks will be done on the embedded processors while
the heavy work like the non-bonded force computations will be implemented on
the remaining logic. Data communication can also be performed using the FPGAs,
completely eliminating general purpose CPUs from the scene. Such a system is
likely to be highly efficient, both in terms of computational performance and energy
consumption.

FPGA-Accelerated Molecular Dynamics 29

4.4 Validating Simulation Quality

While MD packages typically use double-precision floating point for most of the
computation, most FPGA work used fixed, semi-floating or a mixture of fixed and
floating point for various stages of MD. Although some of these studies verified ac-
curacy through various metrics, none of the FPGA-accelerated MD work presented
results of significantly long (e.g. month-long) runs of MD. Thus it is important to
address this issue of accuracy. This may mean revisiting precision and interpolation
order in the force pipelines.

Acknowledgements This work was supported in part by the NIH through award #R01-RR023168-
01A1 and by the MGHPCC.

References

[1] Adcock SA, McCammon JA (2006) Molecular dynamics: Survey of methods
for simulating the activity of proteins. Chemical Reviews 106(5):1589–1615

[2] Anderson JA, Lorenz CD, Travesset A (2008) General purpose molecular dy-
namics simulations fully implemented on graphics processing units. Journal of
Computational Physics 227(10):5342–5359

[3] Baxter R, Booth S, Bull M, Cawood G, Perry J, Parsons M, Simpson A, Trew
A, McCormick A, Smart G, Smart R, Cantle A, Chamberlain R, Genest G
(2007) Maxwell - a 64 FPGA supercomputer. In: Second NASA/ESA Confer-
ence on Adaptive Hardware and Systems (AHS), pp 287–294

[4] Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis
JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE
(2006) Scalable algorithms for molecular dynamics simulations on commodity
clusters. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomput-
ing (SC), pp 84:1–84:13

[5] Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B,
Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner
AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T,
Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor
B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009)
CHARMM: The biomolecular simulation program. Journal of Computation
Chemistry 30(10, Sp. Iss. SI):1545–1614

[6] Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Jr KMM, Onufriev A,
Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation
programs. Journal of Computational Chemistry 26(16):1668–1688

[7] Chiu M, Herbordt MC (2009) Efficient particle-pair filtering for acceleration
of molecular dynamics simulation. In: International Conference on Field Pro-
grammable Logic and Applications (FPL), pp 345–352

30 M.A. Khan, M. Chiu, and M.C. Herbordt

[8] Chiu M, Herbordt MC (2010) Molecular dynamics simulations on high-
performance reconfigurable computing systems. ACM Transaction on Recon-
figurable Technology and Systems (TRETS) 3(4):23:1–23:37

[9] Chiu M, Khan MA, Herbordt MC (2011) Efficient calculation of pairwise non-
bonded forces. In: The 19th Annual International IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp 73–76

[10] Chiu S (2011) Accelerating molecular dynamics simulations with high-
performance reconfigurable systems. PhD dissertation, Boston University,
USA

[11] Darden T, York D, Pedersen L (1993) Particle Mesh Ewald: An N.log
(N) method for Ewald sums in large systems. Journal of Chemical Physics
98(12):10,089–10,092

[12] Eaton WA, Muoz V, Thompson PA, Chan CK, Hofrichter J (1997) Submil-
lisecond kinetics of protein folding. Current Opinion in Structural Biology
7(1):10–14

[13] Engle RD, Skeel RD, Drees M (2005) Monitoring energy drift with shadow
Hamiltonians. Journal of Computational Physics 206(2):432–452

[14] Freddolino PL, Arkhipov AS, Larson SB, McPherson A, Schulten K (2006)
Molecular dynamics simulations of the complete satellite tobacco mosaic
virus. Structure 14(3):437–449

[15] Gidel (2009) Gidel website. http://www.gidel.com
[16] GROMACS (2012) GROMACS installation instructions for GPUs.

http://www.gromacs.org/Downloads/Installation_
Instructions/GPUs

[17] Gu Y, Herbordt MC (2007) FPGA-based multigrid computation for molec-
ular dynamics simulations. In: 15th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp 117–126

[18] Gu Y, Vancourt T, Herbordt MC (2008) Explicit design of FPGA-based copro-
cessors for short-range force computations in molecular dynamics simulations.
Parallel Computing 34(4-5):261–277

[19] Hardy DJ (2007) NAMD-Lite. http://www.ks.uiuc.edu/
Development/MDTools/namdlite/, University of Illinois at Urbana-
Champaign

[20] Herbordt M, Khan M (2012) Communication requirements of fpga-centric
molecular dynamics. In: Proceedings of the Symposium on Application Ac-
celerators for High Performance Computing

[21] Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: Algo-
rithms for highly efficient, load-balanced, and scalable molecular simulation.
Journal of Chemical Theory and Computation 4(3):435–447

[22] Hockney R, Goel S, Eastwood J (1974) Quiet high-resolution computer mod-
els of a plasma. Journal of Computational Physics 14(2):148–158

[23] Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J,
Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: Greater scalability
for parallel molecular dynamics. Journal of Computational Physics 151:283–
312

FPGA-Accelerated Molecular Dynamics 31

[24] Kasap S, Benkrid K (2011) A high performance implementation for molec-
ular dynamics simulations on a FPGA supercomputer. In: 2011 NASA/ESA
Conference on Adaptive Hardware and Systems (AHS), pp 375–382

[25] Khalili-Araghi F, Tajkhorshid E, Schulten K (2006) Dynamics of K+ ion con-
duction through Kv1.2. Biophysical Journal 91(6):72–76

[26] Kindratenko V, Pointer D (2006) A case study in porting a production scien-
tific supercomputing application to a reconfigurable computer. In: 14th An-
nual IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp 13–22

[27] Kumar S, Huang C, Zheng G, Bohm E, Bhatele A, Phillips JC, Yu H, Kalé LV
(2008) Scalable molecular dynamics with NAMD on the IBM Blue Gene/L
system. IBM Journal of Research and Development 52(1-2):177–188

[28] Larson R, Salmon J, Dror R, Deneroff M, Young C, Grossman J, Shan Y,
Klepeis J, Shaw D (2008) High-throughput pairwise point interactions in
Anton, a specialized machine for molecular dynamics simulation. In: IEEE
14th International Symposium on High Performance Computer Architecture
(HPCA), pp 331–342

[29] Lee S (2005) An FPGA implementation of the Smooth Particle Mesh Ewald
reciprocal sum compute engine. Master’s thesis, The University of Toronto,
Canada

[30] MacKerell AD, Banavali N, Foloppe N (2000) Development and current status
of the CHARMM force field for nucleic acids. Biopolymers 56(4):257–265

[31] Moraitakis G, Purkiss AG, Goodfellow JM (2003) Simulated dynamics and
biological macromolecules. Reports on Progress in Physics 66(3):383

[32] Narumi T, Ohno Y, Futatsugi N, Okimoto N, Suenaga A, Yanai R, Taiji M
(2006) A high-speed special-purpose computer for molecular dynamics sim-
ulations: MDGRAPE-3. NIC Workshop, From Computational Biophysics to
Systems Biology, NIC Series 34:29–36

[33] Nilsson L (2009) Efficient table lookup without inverse square roots for cal-
culation of pair wise atomic interactions in classical simulations. Journal of
Computational Chemistry 30(9):1490–1498

[34] Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot
C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with
NAMD. Journal of Computational Chemistry 26(16):1781–1802

[35] Phillips JC, Stone JE, Schulten K (2008) Adapting a message-driven parallel
application to GPU-accelerated clusters. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC), pp 8:1–8:9

[36] Phillips L, Sinkovits RS, Oran ES, Boris JP (1993) The interaction of shocks
and defects in Lennard-Jones crystals. Journal of Physics: Condensed Matter
5(35):6357–6376

[37] Plimpton S (1995) Fast parallel algorithms for short-range molecular dynam-
ics. Journal of Computational Physics 117(1):1–19

[38] Ponder JW, Case DA (2003) Force fields for protein simulations. Advances in
Protein Chemistry 66:27–85

32 M.A. Khan, M. Chiu, and M.C. Herbordt

[39] Rapaport DC (2004) The art of molecular dynamics simulation, 2nd edn. Cam-
bridge University Press

[40] Schofield P (1973) Computer simulation studies of the liquid state. Computer
Physics Communications 5(1):17–23

[41] Scrofano R, Gokhale M, Trouw F, Prasanna VK (2006) A hardware/software
approach to molecular dynamics on reconfigurable computers. In: The 14th
Annual IEEE Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), pp 23–34

[42] Shan Y, Klepeis J, Eastwood M, Dror R, Shaw D (2005) Gaussian split Ewald:
A fast Ewald mesh method for molecular simulation. Journal of Chemical
Physics 122(5):54,101:1–54,101:13

[43] Shaw DE, Deneroff MM, Dror RO, Kuskin JS, Larson RH, Salmon JK, Young
C, Batson B, Bowers KJ, Chao JC, Eastwood MP, Gagliardo J, Grossman JP,
Ho CR, Ierardi DJ, Kolossváry I, Klepeis JL, Layman T, McLeavey C, Moraes
MA, Mueller R, Priest EC, Shan Y, Spengler J, Theobald M, Towles B, Wang
SC (2007) Anton, a special-purpose machine for molecular dynamics simula-
tion. In: Proceedings of the 34th Annual International Symposium on Com-
puter Architecture (ISCA), pp 1–12

[44] Shaw DE, Deneroff MM, Dror RO, Kuskin JS, Larson RH, Salmon JK, Young
C, Batson B, Bowers KJ, Chao JC, Eastwood MP, Gagliardo J, Grossman JP,
Ho CR, Ierardi DJ, Kolossváry I, Klepeis JL, Layman T, McLeavey C, Moraes
MA, Mueller R, Priest EC, Shan Y, Spengler J, Theobald M, Towles B, Wang
SC (2008) Anton, a special-purpose machine for molecular dynamics simula-
tion. Communications of the ACM 51(7):91–97

[45] Shaw DE, Dror RO, Salmon JK, Grossman JP, Mackenzie KM, Bank JA,
Young C, Deneroff MM, Batson B, Bowers KJ, Chow E, Eastwood MP, Ier-
ardi DJ, Klepeis JL, Kuskin JS, Larson RH, Lindorff-Larsen K, Maragakis P,
Moraes MA, Piana S, Shan Y, Towles B (2009) Millisecond-scale molecular
dynamics simulations on Anton. In: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis (SC), pp 39:1–
39:11

[46] Skeel RD, Tezcan I, Hardy DJ (2002) Multiple grid methods for classical
molecular dynamics. Journal of Computational Chemistry 23(6):673–684

[47] Snir M (2004) A note on N-body computations with cutoffs. Theory of Com-
puting Systems 37(2):295–318

[48] Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K
(2007) Accelerating molecular modeling applications with graphics proces-
sors. Journal of Computational Chemistry 28(16):2618–2640

[49] Verlet L (1967) Computer “Experiments” on classical fluids. I. Thermodynam-
ical properties of Lennard-Jones molecules. Physical Review 159(1):98–103

[50] Young C, Bank JA, Dror RO, Grossman JP, Salmon JK, Shaw DE (2009) A
32x32x32, spatially distributed 3D FFT in four microseconds on Anton. In:
Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis (SC), pp 23:1–23:11

