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ABSTRACT
Binarized Neural Networks (BNN) have drawn tremendous atten-
tion due to significantly reduced computational complexity and
memory demand. They have especially shown great potential in
cost- and power-restricted domains, such as IoT and smart edge-
devices, where reaching a certain accuracy bar is often sufficient,
and real-time is highly desired.

In this work, we demonstrate that the highly-condensed BNN
model can be shrunk significantly further by dynamically pruning
irregular redundant edges. Based on two new observations on BNN-
specific properties, an out-of-order (OoO) architecture – O3BNN,
can curtail edge evaluation in cases where the binary output of
a neuron can be determined early. Similar to Instruction-Level-
Parallelism (ILP), these fine-grained, irregular, runtime pruning
opportunities are traditionally presumed to be difficult to exploit.
We evaluate our design on an FPGA platform using three well-
known networks, including VggNet-16, AlexNet for ImageNet, and
a VGG-like network for Cifar-10. Results show that the out-of-
order approach can prune 27%, 16%, and 42% of the operations
for the three networks respectively, without any accuracy loss,
leading to at least 1.7×, 1.5×, and 2.1× speedups over state-of-the-
art BNN implementations on FPGA/GPU/CPU. Since the approach
is inference runtime pruning, no retraining or fine-tuning is needed.
We demonstrate the design on an FPGA platform; however, this is
only for showcasing the method: the approach does not rely on any
FPGA-specific features and can thus be adopted by other devices
as well.

CCS CONCEPTS
• Computing methodologies → Parallel algorithms; • Com-
puter systems organization→ Parallel architectures;Neural
networks.
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1 INTRODUCTION
Deep-Neural-Networks (DNNs) have been adopted widely due to
their ability to learn sufficiently well to achieve high accuracy
[6, 8, 16, 17]. For many high-volume but cost/power-restricted appli-
cations, however, accuracy is not an absolute requirement [15, 27].
Rather, reaching a certain well-defined level of accuracy is often
sufficient, but with low-latency–or even real-time–and low-cost
being highly desired. This is especially true for IoT and smart-edge
devices [14, 21, 30, 33].

To satisfy these requirements, Binarized-Neural-Networks (BNNs)
[24] have received tremendous attention. BNNs use a single bit to
encode each neuron and parameter and thus significantly reduce
computation complexity (from floating-point/integer to Boolean
operations) and memory demand (from bytes to bit-per-datum for
both memory storage and bandwidth). This potentially reduces
delay of inference by orders-of-magnitude with acceptably small
loss in accuracy.

Having only two values per neuron, a BNN’s network structure
is significantly different from a conventional DNN’s. Such differ-
ences expose various new optimization opportunities. For example,
Umuroglu, et al., [29] show that the Batch-Normalization functions
(BN) in most BNNs can be simplified to a threshold-based compare
operation thus avoiding the floating-point calculation. Fujii, et al.,
[5] use neuron pruning, which eliminates neurons in the case
where the sum of weights is lower than a pruning-threshold, and
retrains the network for this adjustment. By doing so, the number
of neurons, as well the as associated computation, is reduced. The
accuracy, however, is compromised.

This work is motivated by these previous studies together with
the following observation. In a BNN, a neuron’s output is a Boolean
whose value is determined by comparing the accumulation of all
dot-products of the edges (the links between two adjacent neurons)
linked to this neuron with a fixed threshold decided during the
training phase. The idea is that we can immediately cease further
computation of the dot-product and return (a) 1, as soon as the
current accumulation becomes larger than the activation threshold
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Figure 1: Three types of pruning: (A) & (B) Threshold-based
edge-pruning; by accumulating the inputs (ix ) and compar-
ing the accumulation result to a threshold, the value of a
neuron (Out) is calculated (binary 1/0). (C) Pooling-based
edge-pruning. Out from pooling is binary (1/0).

(Figure 1-A); or (b) 01, as long as the current accumulation is still
small enough that it has no chance of reaching the threshold in the
remaining accumulation (Figure 1-B). This cessation operation is
analogous to breaking out of a loop as soon as the result is deter-
mined. We call this approach threshold-based edge pruning.

Another observation is about pooling. For max-pooling, which
is the most widely used pooling method in BNNs, since the inputs
are binary, in the case where one of the n×n inputs (typically 2×2)
is shown to be 1, the pooling result is 1 as well; thus we can avoid
the evaluation of the remaining pooling entries. For example, in
Figure 1-C there is a 1 for the second entry in the 2×2 pooling, so
we can prune the convolution computation for the left two neurons.
We refer to this approach as pooling-based edge pruning. This
approach can be applied to min- and mean-pooling as well.

Although both observations are immediate, efficient harvesting
of these pruning opportunities is challenging. This is because both
are irregular, occasional, data-dependent, run-time, and strongly de-
pend on specific evaluation order. For threshold-based edge pruning,
it is difficult to decide when the partial accumulation will surpass
the threshold or when we can assert that it will never reach the
threshold. Pooling-based edge pruning is similarly difficult: it may
turn out that all pooling entries are eventually 0.

Exploiting these opportunities requires that the design be ex-
tremely flexible and dynamic. On the one hand, the control unit
must frequently assess the current accumulation and be capable of
immediately terminating the remaining execution of the neuron.
This appears to require that the computation be sequential for the
sake of pruning, but we still need parallelism to guarantee high
performance. On the other hand, in case the evaluation of a neuron
is early-terminated, the execution gap needs to be filled instantly to
avoid losing performance through pipeline bubbles. This combined
challenge has (elsewhere) been considered to be very difficult [5].
In this paper, we overcome these difficulties by proposing an out-
of-order edge-pruning architecture that can be used to effectively
accelerate BNN inference. The main contributions are as follows:

• Two run-time approaches to edge-pruning for BNN infer-
ence: threshold-based and pooling-based;

• A 2D-rotative out-of-order (OoO) design for dynamic work-
load scheduling and balancing; and

1−1 is encoded as 0 in XNOR Net[24].
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Figure 2: A typical 2-CONV-1-FC BNN Network structure. It
is similar to DNN, except that Activation acts as BIN, Multi-
plication acts as XNOR, Accumulation acts as POPCOUNT.

• An architecture called O3BNN to realize efficient run-time
BNN inference pruning.

We evaluate our design on an FPGA platform using VGG-16 [26],
AlexNet [19] for ImageNet and a VGG-like network [3] for Cifar-10.
Evaluation results demonstrate that our out-of-order approach can
prune 27%, 16%, and 42% of the operations for the three networks
respectively, without any accuracy loss, bringing 1.7×, 1.5×, and
2.1× inference-speedup over state-of-the-art FPGA/GPU/CPU BNN
implementations.

The organization of this paper is as follows. In Section 2, BNN
backgrounds and the motivations of using edge-pruning to optimize
networks are discussed. In Section 3, the edge-pruning opportu-
nities are introduced. In Section 4, an Out-of-Order BNN pruning
design is proposed in detail. In Section 5, experimental results are
given and discussed. In Section 6, related work is discussed. Finally,
we conclude and suggest further work in Section 7.

2 BNNS AND MOTIVATION FOR PRUNING
2.1 Basic BNN Structure
BNNs evolved from conventional CNNs through Binarized Weight
Networks (BWN) [3] with the observation that if the weights were
binarized to 1 and−1, expensive floating-pointmultiplications could
be replaced with additions and subtractions. It was next observed
that if both weights and inputs were binarized, then even the 32-bit
additions and subtractions could be demoted to logical bit oper-
ations. With this observation, XNOR-Net was proposed and has
become one of the most researched BNNs. In XNOR-Net, both the
weights and the inputs of the convolutional and fully connected
layers (except the first layer) are approximated with binary values,
allowing an efficient way of implementing convolutional operations
via Exclusive-NOR (XNOR) and bit-counting operations [4, 24]. In
this paper, we use the terminology from XNOR-Net [24].

The basic structure of BNNs has four essential functions in each
CONV/FC layer: XNOR, Population Count (POPCOUNT), Batch
Normalization (BN), and Binarization (BIN) (see Figure 2-A). The
weights, inputs, and outputs are binary, so multiply-accumulate in
traditional DNNs becomes XNOR and POPCOUNT in BNNs. The
output of POPCOUNT is normalized in BN, which is compulsory
for high accuracy in BNNs. Batch Normalization (BN) incorporates
full-precision floating-point (FP) operations, i.e., two FP MUL/DIV
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and three FP ADD/SUB:

yi, j =

(
xi, j − E[x∗, j ]√
Var [x∗, j ] + ϵ

)
· γj + βj (1)

The normalized outputs from BN (i.e., yi, j ), which are floating
point, are binarized in BIN by comparing with 0:

xb = siдn(x) =

{
1 if x ≥ 0
−1 otherwise

(2)

Here, BIN acts as the non-linear activation function. Max pooling
can be required. Traditionally, pooling is between BN and BIN. It can
be shown, however, that this is equivalent to placing pooling after
BIN; thus the FP operations in pooling become bit-OR operations,
significantly reducing computation complexity.

2.2 Motivation for Pruning
Asmentioned in Section 1, researchers have observed various oppor-
tunities to further optimize the basic BNN structure. FINN [2, 29]
stands out by merging BN and BIN. As shown in Figure 2, the
original FP-based BN function in Equation 1 and BIN function in
Equation 2 are integrated as a threshold:

Thresholdi, j,k =
E∗, j,k + Lj,k

2 −

βj,k ·

√
Var [x∗, j,k ] + ϵ

2 · γj,k
(3)

where L is the length of the vector K×K×IC, K is the filter size,
and IC is the number of input channels. Note that γj,k and βj,k
are learned in training and are fixed in inference. The threshold
can, therefore, be obtained after training and kept constant in infer-
ence. In this way the expensive FP operations in BN now become
a simple threshold comparison. With a fixed threshold, our new
observation is that we can prune certain computation in CONV/FC
in case a partial accumulation result is already sufficient to obtain
a comparison result.

Another motivating study is about neuron pruning [5]. In the
FC layers, when the sum of weights for a neuron’s linking edges
are smaller than a threshold, this neuron is noted as inactive and
is pruned. Fine-tuning is required and accuracy degrades due to
the reduced number of neurons. The authors also mentioned edge-
pruning, expecting it can be more beneficial than neuron pruning,
but did not pursue it due to the irregularity and the difficulty in
hardware implementation. In this work, we demonstrate that edge-
pruning is feasible and propose a dynamic out-of-order architecture
to realize it with little hardware overhead, and with no (or control-
lable) accuracy loss.

3 PRUNING OPPORTUNITIES
In this section, we first introduce the basic design of BNNs and then
discuss the pruning possibilities. BCONV denotes bit convolution.
The bit-fully-connected layers are treated as 1 × 1 BCONVs.

3.1 Basic BCONV design
Figure 3 shows the pseudo code for a BNN with BCONV layers. K
is the convolution filter size; NIC is the number of input channels;
NOC is the number of output channels;WIDTH and HEIGHT are
the width and height of the feature maps; LAYER is the number of
layers.

Figure 3: Pseudo code of a traditional BCONV/BFC without
pruning and the symbols of edge and curve.

There are 7 loops. Each iteration of Loop 7 processes an edge,
i.e., XNOR + POPCOUNT, in the network graph, denoted in red in
Figure 3. Each iteration of Loop 5 is called a curve; it processesK×K
edges per input and output channel, i.e., a convolution window,
as shown in Figure 3 and denoted in green. The resulting value
of a curve is the aggregation of its K × K edges. We annotate
IC & OC along the curve to indicate the index of the curve in
Loop 5 and Loop 4. We also annotate H & W at the arrow of the
curve to indicate its index in Loop 2 and Loop 3. Therefore, a curve
indexed by [IC,OC,W ,H ] represents the workload of evaluating
a convolution window of K × K neurons for the input channel IC
and the output channel OC at location [W ,H ] of the input feature
map. The complete calculation of each output channel requires the
accumulation of NOC curves (Loop-4); the entire BCONV layer
requires NIC × NOC × HEIGHT ×WIDTH curves. In our design
a curve is the basic granularity for edge-pruning. Existing work
[5, 23, 32] generally exploits parallelism in the loop-nest through:
• Loop 6-7 : Parallel execution for K × K edges in a curve.
• Loop 5: Parallel evaluation of different input channels IC for the
same output channel OC .

• Loop 4: Parallel processing different output channels OC .
• Loop 2-3: Generally in sequential for the sake of data reuse across
neighboring [H ,W ] (i.e., neighboring CONV windows overlap).

• Loop 1: Mostly sequential, as for data parallelism. In general,
a hardware implementation to exploit model parallelism may
suffer from layer-wise workload imbalance and excessive storage
demand for intermediate results.

3.2 Threshold-based Edge-Pruning
Recall the threshold-based BN for each output channel (OC in
Loop 4). Figure 4-A illustrates the process: (1) calculate and accu-
mulate NIC curves for this output channel, i.e., Loop 5; (2) binarize
via threshold comparison. Since the threshold is fixed in inference
and the output is a binary value, we may not necessarily need to
evaluate and accumulate all the curves before making a comparison.
In other words, if the partial results are already sufficient to imply
the output bit, we can avoid the evaluation and accumulation of the
remaining curves. In the following, we use ACC_Cur to denote
the accumulated partial curves; ACC to denote the accumulation
results for ACC_Cur curves; and T to denote threshold.
Condition 1: ACC > T implies that the remaining (NIC −

ACC_Cur ) curves can be pruned. As both input features and
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Figure 4: (A): illustration of the evaluation process of an
output neuron using threshold-based BN function; (B)&(C):
Conditions of threshold-based edge pruning

weights in BNNs are binary (1/0), the curve’s value is always non-
negative. Therefore accumulation will never decrease ACC . Conse-
quently, whenever ACC exceeds T , the binarization result is 1 and
will never flip to 0 during the remaining accumulation. Therefore
(NIC −ACC_Cur ) curves are pruned, as shown in Figure 4-B.
Condition 2: ACC < T − K2 × (NIC − ACC_Cur ) implies that
(NIC −ACC_Cur ) curves can be pruned. Conversely, as the max-
imum value of each curve is K2 (all XNOR results are 1), with
ACC_Cur input channels already accumulated in ACC, for the rest
evaluation of (NIC −ACC_Cur ) curves the maximum possible con-
tribution is K2 × (NIC − ACC_Cur ). Therefore if ACC + K × K ×

(NIC −ACC_Cur ) is still less than T , then ACC will never reach T
and we can safely prune the remaining (NIC −ACC_Cur ) curves
and output 0 (as shown in Figure 4-C).

Implementation Difficulty: (1) To prune in Loop 5, Loop 5
must execute sequentially; this may harm parallelism that can be
otherwise be leveraged in a traditional design; (2) Due to pruning,
the latency for each iteration in Loop 4 can differ dramatically,
which may lead to a workload imbalance; (3) such dynamic, asyn-
chronous, and data-dependent slacks must be immediately filled
and sufficiently leveraged, otherwise pruning will not result in any
performance benefit; (4) The hardware overhead for verifying prun-
ing conditions, ceasing the present execution, and stealing new jobs
for workload balancing must be constrained.

3.3 Pooling-based-Edge-Pruning
Given a threshold-based BN design, we now consider the pooling
function (see Figure 5-A). Figure 5-B shows how the 4 entries of a
2×2 pooling window are sub-sampled after a convolution. As the
entries are binary, the “max” operation is equivalent to a bitwise-OR
among the 4 entries. Therefore, once an entry is identified as 1 (e.g.,
the first entry in Figure 5-B), the pooling result is 1; we can safely
prune the evaluation of the remaining entries. For example, the
convolution of 3 entries in Figure 5-B) is pruned.

Implementation Difficulty: (1) To prune the pooling entries,
the computation (e.g., convolution) of these entries must be pro-
cessed sequentially limiting parallelism; (2) Pruning may lead to
workload imbalance; (3) These dynamic and data-dependent slacks
due to pruning must be effectively leveraged; (4) Extra delay and
hardware overhead must be limited.

Figure 5: (A): BNN structure used in this work: POOLING fol-
lows threshold-basedBN; (B): Illustration of the condition of
Pooling-based Edge Pruning.

4 OUT-OF-ORDER BNN PRUNING DESIGN
Faced with the conflict between sequential (for pruning) and paral-
lel (for performance) execution, in this section we first present a
trade-off strategy and a method to compensate for compromised
parallelism. We then show how to achieve workload balance via
rotative workload scheduling. Finally, we discuss the O3BNN hard-
ware implementation.

4.1 Parallelization Strategy
To achieve threshold and pooling edge-pruning, Loop 5 must be exe-
cuted sequentially and Loop 4 partially sequentially. To compensate
for this reduced parallelism, we exploit the inter-layer parallelism
(i.e., model parallelism) from Loop 1. Note, the data reuse in Loops 2
and 3 is still critical for performance. Here, we resolve layer-wise
workload imbalance by allocating computation resources propor-
tionally with per-layer workload. For large storage demand, we
adopt a layer-fusion technique, as referred to in [1]. Overall, paral-
lelism from K (Loop 6-7),OC (Loop 4), and L (Loop 1) are exploited
for parallel execution.

4.2 Rotative Workload Scheduling
For the clarity and without loss of generality, let us first assume
that 4 Processing Elements (PEs) process a BNN layer with 8 input
channels (IC=8) and 8 output channels (OC=8). We present three
approaches to show the evolution of our design: in-order, 1D Rotative
OoO, and 2D Rotative OoO.

In-order Scheduling: All PEs work in lock-step. Whenever
ACC (accumulation of curves) at one PE triggers one of the thresh-
old pruning conditions, this PE aborts and remains idle (see Fig-
ure 6-A). The simple in-order design has two advantages. The first
is low storage demand. Since the NOC output channels can be
statically partitioned among PEs (e.g., PE2 in Figure 6-A always
processes OC-2 and OC-6), the weights for convolution can be dis-
tributively conserved, saving memory space. The second advantage
is simple data feeding logic under a fixed curve mapping plan. The
drawback of in-order scheduling, however, is that it hardly benefits
from pruning (except when all PEs conduct pruning, which is rare),
wasting computation resources and leading to pipeline bubbles.

1D Rotative OoO: In the basic OoO design, a new curve im-
mediately fetches and fills the gap from pruning. For example, in
PE2, curves with OC=6 (in dark blue) issue after curves with OC=2
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Figure 6: 3 methods of workload scheduling. (A) is a 2D-
Rotative OoO scheduling method and is adopted in O3BNN.

(in green) are pruned in cycle-3. To efficiently address the target
curve location (using IC and OC) in the input feature map, which is
stored sequentially in (possibly very large) memory, we propose a
vertical rotative design: we use a counter to rotatively count from 1
to 8 for IC, while dynamically controlling the value of OC for OoO.
As shown in Figure 6-B, PEs periodically execute curves with IC
rotating from 1 to 8, while OC is updated in the arbitrary cycle in
case pruning occurs. We refer to the group of curves with the same
OC (but different IC) as a curve-group.

This design achieves OoO for pruning without introducing any
pipeline bubbles. A major shortcoming, however, is storage cost:
since it is not known in advance which OC will be fetched for a
particular PE (pruning is data dependent), every PE has to retain a
local copy of the entire set of weights. If the weights were globally
shared, a very clever data-feeding circuit would have to be designed
for issuing the required weight portion on-time. This would intro-
duce delay as well as area and power overhead. In addition, neither
approach is scalable to a large number of PEs.

2D Rotative OoO: To resolve the memory issue, we propose 2D
rotative OoO. The idea is to distribute the weights among PEs in a
time-sharing approach. Specifically, rather than partitioning curves
along OC among PEs (as for the in-order design), we partition
along ICs. In other words, each PE statically handles a portion of
ICs. For example, PE3 in Figure 6-C only processes IC-5 and IC-6.
Consequently weights can also be statically partitioned along IC
and distributively reside in PE’s local memory. For the horizontal

rotation, PEs are connected to their right neighbors forming a
unidirectional circle among PEs (horizontally in Figure 6-C).When a
PE finishes its portion of ICs, it forwards the unfinished curve-group
to the side buffer of its right neighbor. To fetch a curve for execution
each cycle, a PE first checks its left side buffer and continues the
unfinished curve-group; otherwise, it fetches a new curve-group
(the current curve-group is either pruned or completed) and starts
execution.

To summarize: by simultaneously rotating them along the verti-
cal dimension, we dynamically dispatch curve-groups with desired
pruning capability and with lowmemory addressing cost; and while
distributively sharing weights among PEs in a time-sharing manner
by rotating along the horizontal dimension. Given these advan-
tages, the 2D rotative design is adopted for the O3BNN hardware
implementation.

4.3 O3BNN Architecture
We introduce O3BNN architecture as shown in Figure 7. To achieve
workload balancing, the PEs and other hardware resources are
allocated roughly proportionally to workload per-layer. In this way,
layers linked in a daisy chain can cooperate effectively in a deeply-
pipelined manner, exploiting inter-layer parallelism from Loop 1.
Each PE contains 3 major modules: PE array for workload execution,
Score-Board for tracking curve execution status and ensuring in-
order commitment, and Data Feeding System, or DFS, for buffering
and feeding correct input data.

4.3.1 Processing Element Array. Figure 8 shows the detailed ar-
chitecture of the PE array. To realize horizontal rotation, PEs are
linked via a unidirectional circular communication network with
two channels: one for forwarding the unfinished curve-group (red-
line) and one for conveying the present ACC value. Inside a PE,
there are three buffers. (1) The buffer at the bottom-left is used
to buffer and reuse input feature at a particular [H ,W ] (i.e., reuse
input feature data across OCs), with each curve per time slot. The 2-
to-1 multiplexer linked to this buffer is used to select among reused
input features for the next OC (i.e., curve-group), or buffering a new
input feature from the next image pixel [H ,W ]. The FIFO loop-back
implements vertical rotation by repeatedly reusing the buffered data
for different OCs. (2) The middle buffer is for distributively storing
weights with each PE holding NIC/PEs ∗ NOC curve entries. The
input feature and weights for a curve are XNORed and accumulated
in parallel (into ACC). (3) The upper-right buffer is for pending
data for inter-PE communication. The 3-to-1 multiplexer selects
from: (a) 0-input for a completely new curve-group; (b) self-input
for continuous accumulation within its curve-group portion; (c)
neighbor-input to start its portion of a curve-group following its
left neighbor. The 2-to-1 multiplexer chooses from continuously
processing its curve-group portion or conveying the curve-group
to its right neighbor PE.

4.3.2 Scoreboard. Analogous to reservation stations in Tomasulo’s
algorithm [12, 28] for exploiting instruction-level-parallelism (ILP)
in an OoO CPU, the Scoreboard here tracks curve-group execution
status and enforces commitment of curve-groups in the right order.
As shown in Figure 9, each entry tracks a curve-group and has three
basic fields: OC for curve-group ID, status for control, and the 1-bit
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Figure 7: Overall architecture of O3BNN; architectures of PE
array, Scoreboard and DFS are shown in Figure 9, 8 and 10.

output for this OC. Each column with NOC entries in the same
color tracks NOC curve-groups for the pixels with the same [W,
H] at all (NOC) output channels. In our design, the 1-bit outputs of
entries in the same column are committed to the succeeding layer
simultaneously. Thus the number of entries in the Scoreboard is an
integral multiple of NOC .

We define the OoO capability of an O3BNN design as the num-
ber of column entries in its Scoreboard. The coordinate field is
for tracking curve-groups with multiple [W, H]s and used when a
multi-column Scoreboard is needed for more OoO capability (dis-
cussed later). The pooling field is used when pooling is required
after the convolution, where curve-groups belong to the same pool-
ing window share the same Scoreboard entry. When performing
convolution for the elements covered by the same pooling window,
in case an element returns 1, the status field is marked as “skip” and
the output field is set to 1. With skip status, the remaining elements
sharing the same Scoreboard entry will not be issued to PE array,
or are pruned.

4.3.3 Data Feeding System. DFS is designed to effectively feed a
K ×K window for a curve-group from the input feature map, which
is typically stored sequentially in [H ,W , IC] order, while the K ×K
window is from [H ,W ]. For efficiency, a simple segmented line-
buffer design is proposed (see Figure 10): the entire input feature
map flows along each segment of the line-buffer, with theK vertical
segments extracting the required rows of the K × K window and
feeding into the PE array when a new curve-group is requested.

4.4 Design Extensions
In this section, we sketch extensions to O3BNN. First, we analyze
how different OoO capability of O3BNN affects the performance
of BNN inference. Second, we add a relaxing factor to the thresh-
old and discuss how the relaxing factor affects the accuracy and
performance.

4.4.1 OoO capability. Because of in-order commitment, when the
Scoreboard has only one column of entries it can only track NOC
curve-groups for the pixels with the same [W, H] at the same time.
New curve-groups with new coordinators cannot be issued before
the present curve-groups are completely evaluated, which may
limit the OoO capability. If more hardware resources are available
for the Scoreboard, we can track multiple NOC curve-groups (each
per-column as shown in Figure 9), by initiating the coordinate
field. This is a trade-off between hardware consumption and OoO
capability: a larger Scoreboard provides higher OoO capability.

4.4.2 Threshold Relaxing. Until now all of the pruning designs are
accuracy-lossless. Nevertheless, if accuracy can be compromised
a little, we can gain more pruning benefits. The idea is to set a
relaxing factor (δ ∈ [0, 1]) on the threshold. For condition 1, we
relax T to a lower threshold, δ × T , so that condition 1 will be
triggered earlier than it would have been. Similarly, for condition 2,
we relaxT to a higher threshold, (1+ (1−δ )) ×T . This is a trade-off
between accuracy and pruning rate. When δ is 1, threshold relaxing
is not used and the pruning is lossless.

5 EVALUATION AND EXPERIMENTAL
RESULTS

In this section we evaluate the efficiency of O3BNN by showing
two trade-offs and comparing them to state-of-the-art FPGA, GPU,
and CPU implementations. First, we give the trade-off of pruning
rates versus network accuracy by adjusting the relaxing factor
of thresholds, δ (Section 4.4.2). Second, we give the trade-off of
hardware resource demand versus performance by adjusting the
OoO capability of O3BNN (Section 4.4.1). Finally, using the most
efficient OoO capabilities and, in the where case lossy pruning is
used, the optimal relaxing factors obtained from trade-off analysis,
the efficiency of O3BNN is compared with the state-of-the-art BNN
implementations of FPGAs, GPUs, and CPUs.

In our evaluation, we use Pytorch to train BNNs and augment
Pytorch to profile the ideal pruning rates and measure accuracy. Ac-
curacy is the inference accuracy on the testing set. For performance,
hardware demand, and energy efficiency, we use an embedded-scale
FPGA development kit, Xilinx ZC706, which is one of the most
widely used platforms in embedded systems, robotic control, au-
tonomous cars, and research prototyping [2, 29]. The FPGA results
are compared with two Intel CPUs (Xeon-E5 2640 [20] and Xeon-
Phi 7210 [13]), two NVIDIA GPUs (Tesla-V100 and GTX-1080 [13]),
and three FPGA systems: FINN [29], ReBNet [10], FP-BNN [20]. For
networks, we use the well-known AlexNet and VGG-16 tested on
the ImageNet dataset. We also use a VGG-like network for cifar-10,
which is also widely used in the BNN literature [2, 13, 20, 29]. The
structure configurations of these networks are listed in the first 3
rows of Table 1. Since FINN adjusts the structure of the VGG-like
network (at the first row of Table 1), to make a fair comparison with
FINN, we also test a VGG-like network with the same structure as
the one used in FINN (noted as VGG-Like-FINN). Its structure is
listed in the last row of Table 1.

5.1 Ideal Pruning Rate vs Network Accuracy
As mentioned in Section 3.2, there are 3 types of edge-pruning in
our work: (1)&(2) “Condition 1” and “Condition 2” of threshold-
based-edge-pruning; and (3) Pooling Pruning. Figure 11 shows the
overall pruning rates of networks with the breakdown of the 3
types of pruning and network accuracy using different relaxing
factors. For each network we use 5k random pictures from the test
sets to profile the average pruning rates.

For lossless pruning, i.e., δ = 1, the top-1 accuracy is 88.5%
and the pruning rate is 27% for VGG-Like. The top-5 accuracies
are 72.7% and 75.5%, while the pruning rates are 19% and 42% for
AlexNet and VGG-16. When the relaxing factor decreases, (1) the
pruning rates increase almost linearly, especially for VGG-16 and
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Figure 8: Architecture of PE array

Table 1: Structures of the Networks used to evaluate O3BNN. “512FC” refers to a fully-connected layer with 512 neurons.
“2x128C3” refers to 2 convolution layer with 128 output channels and 3x3 filter. “MP2” refers to a 2x2 max-pooling layer.

Network Network Structure Dataset Input Image Size Categories
VGG-like (2x128C3)-MP2-(2x256C3)-MP2-(2x512C3)-MP2-(2x1024FC) Cifar-10 32 × 32 × 3 10
AlexNet (64C11/4)-MP3-(192C5)-MP3-(384C3)-(256C3)-(256C3)-MP3-(2x4096FC) ImageNet 224 × 224 × 3 1000

VGGNet (2x64C3)-MP2-(2x128C3)-MP2-(3x256C3)-MP2-(3x512C3)-MP2-
(3x512C3)-MP2-(2x4096FC)

ImageNet 224 × 224 × 3 1000

VGG-like-FINN [29] (2x64C3)-MP2-(2x128C3)-MP2-(2x256C3)-MP2-(2x512FC) Cifar-10 32 × 32 × 3 10

Figure 9: O3BNN Scoreboard

Figure 10: Architecture of DFS

VGG-Like; (2) the accuracy decreases slowly before the relaxing

factor reaches an inflection point after which it decreases rapidly.
The reason is as follows. (1) When the relaxing factor is larger than
the inflection point, then the relaxed threshold causes more curves
to get pruned (for each neuron - compared with lossless pruning),
but the threshold is not relaxed enough to change the value of
neurons. Hence the network accuracy is not affected significantly.
AlexNet with large relaxing factors (δ > 0.9) is the outlier. When
the relaxing factor used in AlexNet decreases from 1 to 0.9, neurons
start to flip from 0 to 1, leading to increased condition 1 and pooling
pruning, but without hurting the accuracy; this does not happen
in the other two networks. This difference comes from the old-
fashioned 3 × 3 max-pooling filter and 11 × 11 CONV filter used in
AlexNet. (2) When the relaxing factor is smaller than the inflection
point, then the neurons’ values start to flip, i.e., 0 becomes 1 and 1
becomes 0, incurring errors.

The relaxing factors at the inflection points of VGG-Like, AlexNet,
and VGG-16 are 0.7, 0.85, and 0.9 respectively. The pruning rates
of these three networks at their corresponding inflection points
increase to 49%, 46%, and 48%, with only 3.3%, 0.9%, and 2.9% loss
on accuracy, respectively. The networks of ImageNet are more
sensitive to lowering the relaxing factors. The reason is that Ima-
geNet has 1000 classification categories, while Cifar-10 only has 10.
The complexity of the classification task affects the vulnerability
of networks, i.e., the networks’ sensitivity to threshold relaxing.
VGG-16 is more sensitive than AlexNet. A possible reason is that
the pruning rate of VGG-16 without threshold relaxing is already
close to that at the inflection point of AlexNet. We also measure
the variance in pruning rates among all test images. Error bars are
shown at the tops of the pruning rate bars. It is observed that for
different images the pruning rates are stable.
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Figure 11: Pruning rates vs Accuracy trade-offwith different relaxing factors.When relaxing factor is 1, the pruning is lossless.

Figure 12: Pruning rates of different layers with different relaxing factors. When relaxing factor is 1, threshold relaxing is
disabled and lossless pruning is used.

In our evaluation, to show the effect of different values of relax-
ing factors, all layers share the same relaxing factor. In practice,
each layer can use a different relaxing factor. For the first two
CONV layers and the last three FC layers, the relaxing factor can
be relatively large because errors in these layers affect the final
classification result more seriously; the CONV layers in the middle
can use small relaxing factors. By doing so, O3BNN can obtain
higher pruning rates with less accuracy loss. Further analysis is left
to future work.

Figure 12 is similar to Figure 11 but shows the pruning rates
of each layer. It is observed that the pooling pruning is the most
significant pruning type for all networks. Condition 2 is triggered

much more frequently than condition 1 at most of the layers, espe-
cially when the relaxing factor is close to 1. It is also observed that
the pruning rates of the FC layers are very low when the relaxing
factor is close to 1, however, they increase much more rapidly than
the CONV layers with the decrease in relaxing factor.

5.2 Hardware Demand versus Performance
By pruning the BNN network dynamically, O3BNN is expected to
provide better performance than a traditional accelerator with no
pruning. To evaluate the efficiency of O3BNN, we take the classic
BNN inference implementation (described in Section 3.1) as the
baseline and compare it to three O3BNN designs with different OoO
capabilities. In the baseline design, Loops 1, 2, and 3 (in Figure 3)
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Figure 13: Performance and hardware consumption of O3BNNs with different OoO capabilities and with lossless (without
threshold relaxing) or lossy (with threshold relaxing) pruning. O3BNNs are compared to baseline without pruning and ideal
designwith perfect pruning. The relaxing factors used inVGG-Like, AlexNet andVGG-16 are 0.7, 0.85 and 0.9 for lossy pruning.

Table 2: Latency, hardware demand and accuracy of baseline and O3BNN designs with OoO capability of 1, 2 and 3 and with
lossless or lossy pruning. The relaxing factors used in VGG-Like, AlexNet and VGG-16 are 0.7, 0.85 and 0.9 respectively when
lossy pruning is used.

VGG-Like AlexNet VGG-16
OoO capability 1 2 3 1 2 3 1 2 3
Latency(µs ) 619 609 608 793 774 772 5779 5626 5603

Without Threshold Relaxing Hardware Demand (CLB) 22264 22607 22954 23357 23736 24102 23466 23876 24285
Accuracy 88.5% 72.7% 74.3%

With Relaxing Factor at inflection Latency(µs ) 430 419 418 565 545 541 5186 5080 5059
points: VGG-Like: 0.7, Hardware Demand (CLB) 22264 22607 22954 23357 23736 24102 23466 23876 24285

AlexNet: 0.85, VGG-16: 0.9. Accuracy 85.2% 71.8% 71.4%
Latency(µs ) 809 899 9251

Baseline Hardware Demand (CLB) 21930 23005 23056
Accuracy 88.5% 72.7% 74.3%

are processed sequentially, while Loops 4, 5, 6, and 7 are processed
in parallel. The architecture of our baseline design is traditional
and similar to the ones used in [20, 23]. At each clock cycle, each
PE calculates the value of one curve. Assuming there are NOC ×

NIC PEs, at each cycle NOC neurons with the same coordinate
are completely evaluated. AfterWidth × Heiдht cycles, a layer is
processed completely and processing begins on the next layer.

This baseline design is standard and widely used in the DNN
literature. For a fair comparison of hardware consumption and
performance, the baseline design is equipped with the same num-
ber of PEs as O3BNN. Compared with the O3BNN architecture,
the baseline design has similar DSF and simpler PEs: they do not
have logic to support pruning and OoO processing (e.g. the circular
communication network and pending buffer for horizontal rota-
tion, comparators for redundancy check, and control logic for OoO
scheduling and edge-pruning). In addition, there is no Scoreboard
in the baseline design, which uses static in-order scheduling.

Besides being compared with the no-pruning baseline imple-
mentation, the performance of O3BNNs is also compared to ideal
performance, i.e., the performance of an ideal system which is able
to exploit all pruning opportunities profiled in Section 5.1, and
without any bubbles in the pipeline incurred by dynamic schedul-
ing. The performance differences between the ideal performance

and the O3BNNs indicate the OoO processing efficiency. For each
O3BNN design, 2 performance values are given: one for lossless
pruning (threshold relaxing is not used and the relaxing factor is 1)
and the other one for lossy pruning using the relaxing factor at the
inflection point in Figure 13.

In Figure 13, the blue and orange lines indicate the latency using
lossless and lossy pruning, respectively. Without any pruning, the
inference latency of VGG-Like, AlexNet, and VGG-16 are 809, 899,
and 9251 µs , respectively. The hardware consumption is 21930,
23005, and 23056 Configurable Logic Block (CLBs). Using a O3BNN
design whose OoO capability is 1, i.e., the Scoreboard can track the
status of 1 × NOC curve-group at a time, the inference latency of
these 3 networks are decreased to 619, 793, and 5779 µs when using
lossless pruning (δ = 1), and 430, 565, and 5186 µs when relaxing
factors at the inflection points are used. The hardware overheads
are only 1.5%, 1.5%, and 1.8% compared with the baseline design.
The performance of lossless and lossy O3BNNs with OoO capability
of 1 are, on average, only 4.4%, and 6.5% lower than the ideal ones.
The difference between ideal performance and the performance
of lossy O3BNN is larger than the one between ideal and lossless
O3BNN. The reason is that the pruning rates using lossy pruning
are much larger than the ones using lossless pruning, requiring
stronger OoO capability.
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Table 3: Cross-platform evaluation of Latency, Energy Efficiency and Accuracy. 4 Networks are used: VGG-like [3] and VGG-
like-FINN [2] for Cifar-10 and AlexNet [19] and VGGNet-16 [26] for ImageNet. For lossy pruning, δ are the relaxing factors at
inflection points.

.
Existing works or self-implemented BNN inference as reference

CPU GPU FPGA
Platform Xeon E5-2640[20] Phi 7210[13] V100 (self-implemented) GTX1080[13] VCU108[10] Stratix-V[20] ZC706[29]

Frequency (MHz) 2.5K 1.3K 1.37K 1.61K 200 150 200
Network VGG-Like VGG-16 VGG-Like AlexNet VGG-16 AlexNet AlexNet VGG-Like-FINN

Latency (us) 1.36E6 1.18E4 994 2226 1.29E4 1920 1160 283
Energy (Img/kJ) 7.79 395 5543 2475 433 2.7E4 3.3E4 3.9E5

Accuracy 86.31% 76.8% 89.9% 71.2% 76.8% N/A 66.8% 80.1%
O3BNN (OoO capability = 2)

FPGA
Platform ZC706 (Stratix-V used in [20] and VCU108 used in [10] have hardware resources around 4× and 2.5× as much as ZC706 has)

Frequency (MHz) 200
Network VGG-Like-FINN VGG-Like AlexNet VGG-16

Latency (us) 116 (lossy) 167 (lossless) 419 (lossy) 609 (lossless) 545 (lossy) 774 (lossless) 5080 (lossy) 5626 (lossless)
Energy (Img/kJ) 9.58E5 6.65E5 2.65E5 1.82E5 2.04E5 1.44E5 2.19E4 1.97E4

Accuracy 79.3% 82.6% 85.2% 88.5% 71.8% 72.7% 71.4% 74.3%

When the OoO capability of O3BNN increases from 1 to 2, for
lossless pruning, the latencies are reduced by 1.5%, 2.5%, and 2.6%,
respectively for the three networks, and reach 609, 774, and 5626 µs .
The hardware demand is slightly increased, i.e., by 1.5%, 1.5%, and
1.7%. For lossy pruning with the relaxing factors at the inflection
points, the latencies are reduced by 2.6%, 3.7%, and 2.1%, respectively
and reach 419, 545, and 5080 µs . The performance of O3BNN with
OoO capability of 2 is only 5% lower than the ideal, on average.
When the OoO capability is adjusted from 2 to 3, there is almost no
additional performance improvement, but the hardware demand
increases on average by 1.6%.

The latency, hardware demand, and accuracy of baseline and
O3BNN-based BNN implementations are summarized in Table 2.
As mentioned in Section 4.4, a larger Scoreboard can track the
processing status of more curve-groups. The more unbalanced the
pruning timing of different curve-groups, the larger the Scoreboard
that is needed to avoid pipeline bubbles caused by a fully occupied
Scoreboard. According to our experimental results, the support of
OoO processing of 2×NOC curve groups is already enough for the
unbalance of the edge pruning timing in BNNs. This result indicates
that, if we retrain the network and push the thresholds to either
0 or the maximal accumulation value of a curve-group, then the
pruning rates may increase while the pruning timing may become
much more unbalanced. In this case, O3BNN architecture brings
even more benefits.

5.3 Cross-platform Evaluation
In Table 3, O3BNN’s performance, energy efficiency, and accuracy
(with lossless and lossy pruning) are compared with the existing and
self-implemented systems using various CPUs, GPUs, and FPGAs
to accelerate BNN inference. The performance is evaluated by using
the latency of single-image inference. The energy efficiency is eval-
uated with respect to image inferences per Kilo-J (Image/kJ). Based
on the trade-off analysis of Section 5.1 and 5.2, the OoO capability
of O3BNNs is set as 2; in the case where threshold relaxing is used,

the relaxing factors in the inference of VGG-Like, VGG-Like-FINN,
AlexNet and VGG-16 are 0.7, 0.7, 0.85 and 0.9 respectively.

Compared with FINN [2, 29], using the same network (i.e., VGG-
Like-FINN) and FPGA board (i.e., ZC706), our lossless and lossy
O3BNN demonstrate 167 & 116 µs single-image inference latency
for 1.7× & 2.4× speed-ups. Compared with FP-BNN [20] and ReB-
Net [10], our AlexNet inference latency using lossless and lossy
pruning are 774 & 545 µs , 1.50× & 2.13× over FP-BNN, and 2.48× &
3.52× over ReBNet. Note that the FPGA boards used in FP-BNN (i.e.,
Stratix-V) and ReBNet (i.e., VCU108) are actually high-performance
FPGAs, which contain 4x and 2.5x the hardware resources as the
one adopted for our evaluation (ZC706, an embedded FPGA). The
energy efficiency of O3BNN also outperforms other FPGA work.
Regarding other platforms, our inference latency with lossless and
lossy pruning are 47.7% & 43.1% of the latency of Xeon-phi 7210 [13]
and 43.6% & 39.4% of the latency of GXT 1080 [13], showing great
advantage on performance. For energy-efficiency, the O3BNNs with
lossless and lossy pruning are 50× & 55× higher than Xeon-phi
7210 and 45× & 51× higher than GXT 1080. The energy efficiency
of baseline designs are not listed in Table 3. For VGG-Like-Finn,
AlexNet and VGG-16, the baseline results are 5.07E5, 1.25E5, 1.22E5
Img/kJ respectively; In our paper, we use FPGAs as the evaluation
platform. We believe the ratios of the overhead on hardware de-
mands, the improvement of performance and energy efficiency of
ASIC implementation are comparable to our FPGA results. The
exact numbers depend on the choices of EDA tools and process
technologies.

6 RELATEDWORK
BNNs have been implemented variously [10, 13, 20, 23, 29, 32].
Because of the flexibility and direct bit-manipulation capability
of FPGAs [7, 9, 25], most BNN implementations are FPGA-based
[10, 20, 23, 29, 32]. We have already discussed FINN [29] in Section 2.
In [32], Zhao, et.al., proposed the first high-level-synthesis-based
BNN implementation on FPGAs. In [20], Liang, et.al., proposed
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an FPGA-based BNN accelerator that drastically cuts down the
hardware consumption by using resource-aware model analysis.
Recently a CPU-based BNN design was proposed [13] that relies
on bit-packing and AVX/SSE vector instructions to achieve good
bit-processing performance. All of these are static designs and none
takes advantage of the pruning opportunities of BNNs.

With regard to the pruning of BNNs, multiple studies have de-
scribed BNN edge and neuron pruning. We have already discussed
the neuron pruning work [5] in Section 2. In [18], Li, et.al., proposed
a new training method for BNNs in which a bit-level accuracy sensi-
tivity analysis is conducted after initial training. The channels with
low accuracy sensitivity are then pruned. These pruning methods
are all performed offline and before inference. During the inference
phase, their designs are entirely static. Also, the network accuracy
is often compromised due to the pruning of neurons or edges. Our
method–in contrast to the static and offline pruning approaches–is
dynamic with on-line pruning of inference at run-time. Without
a relaxing factor, this method can prune a large number of edges
without affecting the accuracy of the networks.

Compared with the studies published on CNN pruning [11, 22,
31], our design has three distinguishing aspects: (1) Run-time dy-
namic pruning for post-training network models; (2) Without com-
promising accuracy and no need to optimize or modify the training
process; (3) 2D-rotative OoO-architecture to handle irregular paral-
lelism from run-time dynamic pruning. Our future work includes
applying O3BNN on general CNNs.

7 CONCLUSIONS
We propose O3BNN, an OoO high-performance BNN inference
architecture with fine-grained and dynamic pruning. The contri-
butions of O3BNN are two-fold. For algorithm, using O3BNN, the
highly-condensed BNN model can be further shrunk significantly
by dynamically pruning irregular redundant edges at all CONV,
FC, and POOLING layers. For architecture, O3BNN is an out-of-
order architecture which (1) checks the redundancy of edges at
run-time and in a fine-grained-manner; (2) ceases edge evaluation
in case the binary output of a neuron can be determined early; and
(3) schedules the evaluation workload of neurons to hardware in
a 2D-rotative OoO scheduling methodology with almost perfect
utilization. We have evaluated our design on an FPGA platform
using VGG-16, AlexNet for ImageNet, and a VGG-Like network for
Cifar-10. Results show that our out-of-order approach can prune
27%, 16%, and 42% of the operations for the three networks respec-
tively, without any accuracy loss, leading to, at least, 1.7×, 1.5×,
2.1× inference-speedup over state-of-the-art FPGA/GPU/CPU BNN
implementations. With only 3.3%, 0.9% and 2.9% accuracy loss, the
pruning rate increases to 49%, 43%, 48%, respectively, with, at least,
2.4×, 2.1×, and 2.3× speedup. Our approach is inference runtime
pruning, so no retrain or fine-tuning is needed. Although FPGA is
used as a showcase in this paper, the proposed architecture can be
adopted on any smart devices as well.
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