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Energy Minimization Accelerated with FPGAs

Huaxin Dai

ABSTRACT

Energy minimization is an important step in many molecular modeling applications

like molecular docking and mapping binding sites. It involves repeated iterations a of

evaluation of various bonded and non-bonded energies of a protein complex. Due to

the extensive computation in each iteration, energy minimization is a computationally

expensive process, with runtimes typically being many hours on a desktop system. We

find that FPGAs are suited to accelerating energy minimization. The extensive com-

putation time is overcome with a long processing pipeline An important contribution

is the change in data structure keeps the pipeline busy. The primary result is a mi-

croarchitecture for electrostatic energy evaluation that processes the majority part of

energy evaluation functions, resulting in a substantial speed-up over single core CPU

implementation for that part of the computation.
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Chapter 1

Introduction

1.1 What is Energy Minimization and What is It Used For?

Energy minimization is an iterative process which aims at computing the minimum

potential energy that can be achieved given the configuration of the atoms in a complex.

In order to evaluate the potential energy of the system, the complex is often represented

using force fields. A force field represents each atom in a molecular system as a point

of charge, and the total potential energy of the system is the sum of various particle-

particle interactions. Different kinds of force fields have been developed, with the more

popular ones being CHARMM [4] and AMBER [5]. Due to the popularity of CHARMM

force-field, energy minimization is often referred to as minimization of the CHARMM

potential or simply as CHARMM minimization.

Usually, one iteration of minimization involves three steps: computing the potential

energy of the complex at a point, updating forces acting on atoms in the complex, and

updating atoms’ coordinates based on the forces applied on them. Forces are obtained

by differentiating the potential energy function with respect to atom coordinates. This

procedure is generally repeated for many times until the energy of the system converges

within a threshold. During minimization process, the particle moves can be made us-

ing one of many optimization approaches such as steepest descent, conjugate gradient,

quasi-Newtonian, or Newton-Raphson. Depending on the method chosen, minimization

requires computing the first, and in some cases the second, derivatives of the energy
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function. The choice of method also affects the rate at which the energy of the system

converges.

Energy minimization is used in many biomolecular applications like molecular map-

ping and molecular docking programs. [3, 7]

1.2 Difficulties in Energy Minimization

The biggest problem with energy minimization is that it takes a long time to do the

computations. The energy calculation consists many terms, and each of them require

some amount of calculation. One of the energy terms, the electrostatic energy, requires

the majority of the calculation time. It calculates the electrostatic energy and forces

between atom pairs in the complex. The atom complex being evaluated usually consists

of several thousand pairs, and the calculation performed is very complex with many

high-order functions. These properties make energy minimization a computationally

intensive and time-consuming process. In fact, energy minimization takes the majority

of the runtime in many biomolecular applications like FTMap [3, 15]. Therefore if we can

accelerate it, according to Amdahl’s law, it could save a significant portion of runtime.

In this thesis we introduce a microarchitecture to accelerate the electrostatic energy

evaluation part of energy minimization. It has a demonstrated speedup of about 43x on

a single last-generation FPGA.

1.3 Outline of the rest of thesis

The rest of this thesis is organized as follows:

• Chapter 2 introduces the energy minimization process, its terms, applications, and

background information on FPGAs.

• Chapter 3 discusses issues related to porting original energy minimization program
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to FPGAs, including data structure changes and FPGA architectures.

• Chapter 4 presents the implementation of main modules on FPGA.

• Chapter 5 presents the result of the system and discusses future works.
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Chapter 2

Background

2.1 Biomolecular Applications

2.1.1 Molecular Dynamics

Molecular Dynamics(MD) is a form of computer simulation in which atoms and molecules

are allowed to interact for a period of time by approximations of known physics, giving

a view of the motion of the particles [6]. Figure 2·1 shows this iterative process.

Figure 2·1: Typical MD process

In each iteration, the forces acting on particles are evaluated based on their positions.

Then the position and velocity of atoms are updated as a result of forces and used as next

iteration’s input. The forces evaluated here has multiple terms mainly in two categories:

bonded(“straight” bond , angle, and torsion) and non-bonded(Lennard-Jones, Coulomb,

and hydrogen bond).

Since MD simulation often deals with systems with millions of particles, and non-

bonded interaction scales quadratically, the computational complexity is usually very



5

high. To reduce such complexity, a cut-off distance threshold is commonly applied. This

works well since Lennard-Jones force reduces significantly when the distance between

two particles is beyond a cut-off distance, usually between 8 Å and 12 Å. The Coulomb

force is generally partitioned into a short range component that is compute along with

the Lennard-Jones, and a long range component which is computationally less complex.

2.1.2 Molecular Docking

Molecular docking refers to the computational prediction of the pose (relative position

and rotation) between two interacting proteins that has the least total energy. This is a

computationally demanding process due to the complexity of the computation and the

enormous size of the protein complex. Therefore, most docking systems adopt a two-

step process. The first step is to find the best fit between two proteins, often assuming

both proteins are rigid. During the process, it scores up to billions of poses between the

two proteins and some of the top-scoring poses, often a few thousand, are preserved for

further evaluation.

A typical second step is to minimize the total potential energy of the poses generated

by the first step. This step is often referred to as minimization of the CHARMM

potential, or CHARMM minimization due to the popularity of CHARMM force-field.

During the step, the larger molecule of the pair(referred to as receptor) is generally held

fixed, while the side chain atoms of the smaller molecule of the pair(referred to as ligand)

are free to move. During each iteration, the total potential energy of the complex is

calculated, and a move of the ligand to a neighboring point is made using a standard

optimization technique, typically Newton-Raphson or quasi-Newtonian(L-BFGS). This

procedure is repeated until the energy converges within a given threshold. Usually,

several hundreds of iterations need to be performed for each conformation, resulting in

about 30 seconds per conformation.
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Since there are usually thousands of poses to be minimized per receptor-ligand pair,

the total time for the minimization phase can run up to many hours. Moreover, in drug

discovery, millions of candidate ligands are screened using docking-based methods for

a given protein. Acceleration of energy minimization is thus highly desirable. Some of

the docking programs that use energy minimization include DOCK [11], DARWIN [16],

RDOCK [10] and EADock [7].

2.1.3 Molecular Mapping

Molecular mapping refers to the process that aims at finding possible binding sites on

a given protein for a ligand. Mapping involves docking a set of small-molecule probes

using rigid docking, and performing energy minimization for each protein-probe complex.

The idea comes from observation that certain regions on protein binding sites, called

”hotspots”, contribute to the majority of the binding energy, and that they bind a large

variety of small molecules. This leads to the idea that such regions are likely to bind

inhibitors with high affinity [8].

One of the mapping algorithms, FTMap [3], utilizes energy minimization to help

find binding sites that has high probability of binding 16 probe molecules. For each

probe molecule, FTMap first runs rigid body docking. This is to filter the 2000 top-

scoring conformations from billions of possible conformations. Then, for each of the

2000 protein-probe complex, energy minimization is run to find the minimum free en-

ergy. Then the complexes containing the same probe molecule are divided into clusters,

which are ranked based on the average energy of complexes inside the cluster. The

lowest-scoring six clusters are retained and divided into larger clusters, where clusters

using different probes are mixed together. The cluster containing most sub-clusters is

expanded to find the final binding site.

During FTMap, energy minimization is run tens of thousands of times to determine
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each conformation’s minimum energy. Since cluster ranking uses a simple greedy algo-

rithm and is not computationally intense, energy minimization takes the majority of the

FTMap runtime. This is illustrated in section 2.3.

2.2 Difference between Energy Minimization and Molecular

Dynamics

The underlying computation of energy minimization is superficially similar to that of

molecular dynamics(MD), but has some fundamental differences. The first difference is

how particle positions are updated. MD produces a trajectory based on kinetic energy

and forces applied on theatom and does not care about total energy. Energy minimiza-

tion adjusts the atom’s coordinates only so as to lower the total energy of the system[4].

Also, minimization does not consider the effect of temperature. Therefore, the final state

after minimization does not depend on the initial state at the beginning of minimiza-

tion. The second difference is the number of particles in a typical complex. While MD

often simulates many thousands to millions of particles, energy minimization is often

performed on a local part of the complex, which consists only a few thousand atoms with

tens of thousands of atom pairs. A third difference is that the actual energy expressions

evaluated during minimization are different than those in MD. For example, in MD,

the van der Waal energy term is evaluated using a 12-6 Lennard-Jones function, while

in energy minimization it is often approximated with a sum of two or four Gaussians

[12]. A fourth difference is that in MD, particularly in liquid simulations, each particle

has a similar number of neighbors, typically in the hundreds. In energy minimization,

most particles only have a small number of neighbors, although a few may have many

more. And finally, in MD neighbor lists are updated every few iterations, in energy

minimization these lists are only updated a few times over the entire computation.
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2.3 Content of Energy Minimization Terms

In energy minimization, the total energy of the system is defined as the sum of bonded

and non-bonded energies of all the atoms in the system. Equation 2.1 shows the total

energy of the system as a function of various energy terms:

Esystem = Eelec + Evdw + Eangle + Ebond + Etorsion + Eimproper (2.1)

Of these different energy terms, the non-bonded energy evaluation, including elec-

trostatic energy and van der Waals energy, is the most computationally intensive step,

requiring more than 95% of the total runtime, based on previous profiling of serial

FTMap program [15]. In non-bonded energy evaluation, the energy of each atom is the

sum of contributions from all neighboring atoms within a certain cutoff distance. Thus,

the computation is often arranged in a neighbor-list format, with each atom has a list

of neighboring atoms.

Energy minimization involves evaluation of this expression every iteration. As said

earlier, advancing to next iteration requires moving atoms in the direction of least energy

conformation. Thus, at each iteration, the forces acting on atoms are also calculated

and atoms are moved in the direction of such forces. Figure 2·2 shows the profiling of

the FTMap program running on a serial processor.

(a) (b) (c)

Figure 2·2: Runtime profiling of serial FTMap program. (a)function
in one evaluation iteration; (b)function in energy minimization step; and
(c)function in energy evaluation step
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The electrostatic energy of a system with N particles can be evaluated using equation

2.2.

Eelec =
N∑
i=0

Eself
i +

∑
i<j,j<N

Eint
ij (2.2)

The first term is the sum of N self-energy terms, each of which is proportional to the

square of the charge of the atom. This represents the electrostatic potential energy due

to the charge itself. For a point charge, such energy is infinite [17]. Thus, computing the

self energy requires the charge to be represented as distributed charge, which is often

done by distributing the charge uniformly over a small sphere with radius Ri. [13]

The second term is the sum of pair-wise interaction terms between atoms, each of

which is proportional to the product of two charges of the pair. Both self-energy and

pair-wise terms depend on the geometry of the solute.

For the self-energy term, each atom’s self energy is determined as a sum of its Born

self energy in the solvent with dielectric constant εs, and the sum of effective pairwise

interactions with all other atoms, as equation 2.3 shows.

Eself
i =

q2i
2εsRi

+
∑
i 6=j

Eself
ij (2.3)

To compute the second term of equation 2.3, ACE defines atom charges as Gaussian

distributions. Eself
ik can be computed by integrating the energy density of the electric

field. This is often approximated as the sum of a short-range term that approximates the

Gaussian and a long range term. In equation 2.4, the first term represents the Gaussian,

while the second term represents the long range term.

Eself
ij =

τq2i
ωij

e
−(

r2ij

σ2
ij

)

+
τq2i Ṽk

8π
(

r3ij
r4ij + µ4

ij

)4 (2.4)

Here qi is the charge on atom i, rij is the distance between atom i and atom j. ωij
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and σij determines the Gaussian used to approximate Eself
ij and µij is an atom-atom

parameter. Ṽk is defined as solvent-inaccessible volume, which is defined by the radius

of a solvent probe sphere with radius Rprobe.

The pair-wise interaction energy, Eint
ij , is given the generalized Born (GB) equation,

which is the sum of Coulomb’s law in a dielectric and the Born equation. [14]

Eint
ij = 332

∑
i 6=j

qiqj
rij

− 166τ
∑
i 6=j

qiqj√
q2ij + αiαje

−(
r2
ij

4αiαj
)

(2.5)

In equation 2.5, αi and αj represent the Born radii for atom i and j, respectively.

Born radii values are determined by self energy values of the atoms.

Equations 2.4 and 2.5 are the main computations needed for all atom-atom pairs to

evaluate the total electrostatic energy of a given complex. In addition, energy gradi-

ents need to be computed to determine the forces acting on the atoms, which in turn

determine the new position of the atom.

2.4 Steps of Energy Minimization Process

Energy minimization is an iterative process. That is, each iteration’s output becomes

next iteration’s input. The main steps in an iteration of energy minimization process is:

1. Check if the neighbor list needs update. If so, perform neighbor list update.

2. Perform calculations for electrostatic, van der Waals, and bonded energy as well

as forces acting on each of the atoms in the complex.

3. Use energy values as well as force values to perform L-BFGS optimization on the

atom complex, mainly coordinates of atoms.

4. If the total potential energy of the complex converges, finish. Otherwise, repeat

from step 1.
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2.5 Field Programmable Gate Arrays

Field Programmable Gate Arrays, or FPGAs, are pre-fabricated integrated circuits that

can be prgrammed and reprogrammed to implement logic. A hardware description

language, such as VHDL or Verilog HDL, is usually used to describe the logic being

implemented. A compiler maps the logic to the device specified. Modern FPGAs have

logic capacity equivalent to millions of gates as well as independently accessible on-

chip memory and hardwired DSP blocks. Figure 2·3 shows the top-level architecture of

current-generation Altera Stratix IV FPGA [1].

Figure 2·3: Stratix IV FPGA Architecture

Although FPGA performance is generally an order-of-magnitude lower than that of

an equivalent ASIC, they are much cheaper to design, much less expensive(for modest

quantities), as well as being versatile. Also, they often provide superior performance

than a standard processor for specified applications despite running at a much lower

frequency. The reason behind this is that FPGAs can be configured specifically for

the application, creating customized architecture that is optimized for the application.

Therefore, FPGA-based systems are often used to implement custom accelerators or

co-processors for applications. Another major application domain is for prototyping

new architectures. Also, FPGAs consume much less power than their generic processor
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counterpart, thanks to the lower operating frequency. This can make FPGA-based

systems a great performance-per-watt value comparing to traditional HPC systems.



13

Chapter 3

System Architecture and Design

3.1 Data Structure

In the original serial code, input data of atom pairs is structured into a neighbor-list

format, that is, a list contains all atoms that is the first atom in an atom pair, and each

entry in that list has a pointer to another list that contains all atoms that forms a pair

with this atom entry. Figure 3·1 shows the data structure.

Figure 3·1: Neighbor list data structure

Such structure is not optimal to FPGA-based systems since the FPGA does not

have special support for pointer arithmetic. However, FPGA-based systems are good

at deep pipelining and custom architecture. Therefore, it’s possible to change the atom

pair-list structure so that its processing can be pipelined. We now introduce one data

structure optimization for energy minimization on FPGA. The idea is to read every

pairs in the list and put them into a long array, with each array element containing

one pair. Therefore, it’s able to pipeline the pair-list, thus maximizing the efficiency of

FPGA. The advantaFigure 3·2 shows the transform of pair-list.

However, this approach has a drawback: when the first atom of the pair changes, it

requires an additional cycle to update the partially accumulated energy or force value
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Figure 3·2: Data structure transformation

of the last “first” atom. For example, when the pair changes from 1/3 to 2/4, it requires

an additional cycle to update partially accumulated value for atom 1. This drawback

could be solved by future work discussed in Section 5.6.

3.2 FPGA as a Co-processor

Although the idea of using reconfigurable circuits for computing has been around since

1960’s, it has only become feasible recently. One factor is that current high-end FPGAs

are actually hybrid circuits that has many ASIC components(especially DSP blocks and

memories) built in. Another factor is that FPGAs can be configured and reconfigured

to different algorithms in a matter of milliseconds. Also FPGAs can be mapped to

high-speed interface like PCI-express to off-chip devices, giving developers a chance to

offload different work and data onto FPGA without losing too much performance due

to the transfers.

Since FPGAs can be configured to perform almost arbitrary computations, and since

the process of energy minimization is an iterative process that computes and combines

different factors of forces acting on atoms(see Section 2.4), it is therefore able to offload

some of the evaluation functions to FPGA while the host can calculate others, given

there is no data dependency between host and FPGA. In this work, the electrostatic

energy evaluation is offloaded to FPGA, and while FPGA is evaluating electrostatic
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energy, host machine evaluates other energy terms. At the end, results from FPGA and

host are combined together to get the final force and energy values for optimization.

3.3 System Architecture

Figure 3·3 shows the overall system architecture.

Figure 3·3: System Architecture

The system contains three major parts: the FPGA, the accelerator board that carries

the FPGA and its external memory, and the host machine. FPGA is the main compu-

tation unit, and it stores atom’s coordinates, as well as parameters used for self energy

calculation. The acceleration board has a larger memory space for data structures such

as the formatted neighbor list. Also the board provides a interface between FPGA and

host, allowing host machine to transfer data to FPGA via PCI express bus. The host

machine controls the running of the FPGA, and it calculates part of the minimization

process that is not accelerated by the FPGA.
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Chapter 4

FPGA Implementation

4.1 Floating Point Datapath

4.1.1 Floating point datapath on FPGA

Although FPGAs are well known for their customizable architecture and programma-

bility, the computation power within FPGAs are sometimes underestimated, especially

when it comes to floating point computation. Generic processors like Intel’s Xeon and

AMD’s Operton have a piece of dedicated hardware specially optimized for floating point

computation, which FPGAs usually lack. Modern FPGAs, however, are capable of doing

complex computation, thanks to the increased DSP blocks being built into FPGA chip.

For example, one version of the current generation of Altera’s Stratix family, Stratix IV,

has 1288 18x18 multipliers [2]. Creating a floating point datapath remains a problem

for designers. Manually connecting IP cores is one solution, but that is inefficient and

wastes resources. For example, concatenated IP FP cores have redundant normalization

and denormailzation. Since the goal is the get the final computation value, there is no

need to fully normalize/denormalize all the intermediate variables between stages, which

is the case for manually connecting IP cores.

4.1.2 Floating Point Compiler

In this work, we use a C compiler designed for FPGA by Altera. The floating point com-

piler [9] as this product is called, translates a C function into a data flow graph(DFG), It
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uses the DFG, together with its internal floating point library to implement the function

in VHDL. This approach saves a significant amount of area since it does not normal-

ize/denormalize every intermediate value. Instead it uses a “fused” approach. That is,

it uses a different representation of numbers, and does normalization/denormalization

only after several operation stages. Based on the number of stages between normaliza-

tion/denormalization, which is customizable between 2 and 16, the fused approach could

save about 50% of the area and latency, comparing to sequential IEEE 754 datapath.

Figure 4·1 shows the difference between two methods.

(a)

(b)

Figure 4·1: Floating datapath. (a) manually connecting IP; and (b)
using Floating Point Compiler

In figure 4·1, N stands for normalization, F for fixed-point arithmetics, and D for

denormalization. We can see that in manually built path, multiple normalization and

denormalization is used through the datapath. These parts could be replaced by using

another data format and flowing through modified fixed-point arithmetic block(indicated

by N’ and F’), with denormalization/re-normalization taking place after several stages(as

indicated by N”) before being denormalized back to IEEE-754 format.
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4.1.3 Precision in Floating Point Computation

Unlike fixed-point datapath, where the range of operand is pre-defined, floating-point

datapath has to deal with data with potentially large dynamic range. Therefore over-

flow/underflow may happen when operands have a significant difference. Such excep-

tions may affect the accuracy of the computation. It is explained in [9] that it’s possible

to avoid such error by allowing such exception flow within a cluster before being normal-

ized. However, the overflow/underflow is not guaranteed to be solved by doing this, and

such error could propagate through the datapath, causing precision error at the output

of the computation. This will be discussed further in 5.6.

4.2 Data pre-optimization for FPGA

The data used by FPGA includes mostly atom coordinates and parameters for self energy

calculation. From profiling data and analysis of the algorithm, we found that some of the

data could be pre-optimized to save resource on FPGA. The self energy calculation uses

parameters related to atom types to determine the Gaussian used to evaluate energy

function. From profiling it is known that the parameter matrix is sparse and could be

shrunk to save on-chip memory space. In fact, by only transferring parameters that

are featured in the pair list, we save 99% of the memory that would be occupied by

these parameters. Also, analysis of equation 2.4 shows that the µij and σij term can be

pre-computed on the host before being transferred to FPGA. This save some multiplier

usage and latency in the floating-point pipeline.

4.3 Overall design

The overall block diagram of the FPGA computation unit is shown in figure 4·2.

The GiDEL IP shown in the figure is dealing with interfacing with on board DDR
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Figure 4·2: Block diagram of FPGA design

RAM, providing a easy-to-use interface for user design to access data. It is provided

by the manufacturer of the development board. Now we discuss the function of other

modules.

4.4 Loading module

The loading module is responsible for loading the parameters, as well as atom coordinates

and initial self energy values, from on-board DDR memory and into FPGA’s Block

RAM(BRAM). Since the parameters used by equation 2.4 does not change during the

entire application, they only need to be loaded once. Coordinates and energy values, on

the other hand, change on every iteration, and therefore must be loaded every iteration.

In order to speed up the loading, the loading module uses a parallel-loading scheme

to write multiple values into their respective destinations at the same time. The block

diagram for loading module is shown in figure 4·3.

4.5 Self Energy Pipeline

The self energy pipeline calculates the update on each atom’s self energy, as well as the

switching function, its derivative, and forces acting on each atom pair. Figure 4·4 shows

the architecture of self energy pipeline.

The inputs are atom coordinates from each atom in a pair, as well as parameters

related to types of the atoms. The comparators are used to determine whether the
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Figure 4·3: Block diagram of loading module

Figure 4·4: Self Energy Pipeline

switching function number is to be calculated or a pre-defined value is to be used. They

also determine if the distance between atoms is larger than the cutoff; if so, then the self

energy and force coefficient from this pair are ignored. The output goes into a ID-based

fixed-point accumulator described in section 4.7 to update the self energy value stored

in BRAM, while force coefficient is stored serially in another BRAM.

4.6 Pair-wise Energy Pipeline

The pair-wise energy pipeline finishes the calculation. It consists of two main parts to

finish the calculation. The reason for using two parts is that one variable of the GB

pipeline has to be accumulated before it can be used, creating a double summation which
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cannot be pipelined. Figure 4·5 shows the first part of the pair-wise energy pipeline.

Figure 4·5: First part of GB Pipeline

As shown in figure 4·5, the Born radius of each atom in a pair is calculated based on

atom’s self energy value, and then be used to calculate forces and an intermediate value

for the next stage. Both of these values are accumulated to their respective atom, and

the sum is used by the next part of the pair-wise energy pipeline.

It is worth mentioning that there are three different kinds of atom pairs in the

original data input, the computation performed in this part of the pipeline is slightly

different among these kinds. This is addressed by adding a pair-dependent parameter

to the input of the pipeline, and by slightly modifying the computation structure to use

a unified computation structure.

The second part of the pair-wise energy pipeline is shown in figure 4·6.

Figure 4·6: Second part of GB Pipeline

This part uses the intermediate value calculated in the first part of pair-wise energy

pipeline and the force coefficients calculated in self-energy pipeline to update the forces
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acting on each atom. Note that the diarr value has two parts. The first part is atom-

based, that is, each atom has its own diarr value, regardless of whether it interacts with

other atoms. The second part is the sum of partial diarr values because of pair-wise

interaction. Since the pair-wise energy pipeline is based on atom pairs, a bit vector

indicating whether the atom-based diarr value has been added to the total diarr value

is introduced to avoid accumulating atom-based diarr value multiple times.

4.7 Accumulator

For each pipeline, the output of self energy or force values comes with a corresponding

atom ID. Since the data is in IEEE-754 format, the accumulation of outputs is a problem.

Conventional IEEE-754 accumulators can only deal with a stream of data accumulating

to one variable with latency of several clock cycles. This does not fit this application

since the target of accumulation often changes, which requires frequent pre-load for the

accumulator. Moreover, since every clock cycle there are 2 values for different atoms

coming, it is possible that the same atom ID will show up in one stream while it is

in the accumulation pipeline of the other stream. Such a situation leads to inaccurate

accumulation due to a data hazard. We now introduce an accumulator that is designed

for this application. The block diagram for the accumulator is shown in figure 4·7.

Given the data structure shown in figure 3·2, it is desirable to accumulate data

coming from input stream 1, where the atom ID is stable for a period of time, while

doing simple addition from input stream 2, where the atom ID changes every clock cycle.

An ID conflict may have to be solved though. That is, when input stream 1 starts to

accumulate value for atom ID 2, it needs to pre-load the current value from memory.

If atom ID 2’s value is not yet updated with the value from input stream 2 (two cycles

ago), accumulator is pre-loading with the wrong value, causing the output to be wrong.

A forwarding path is therefore provided in the accumulator to ensure that the pre-load
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Figure 4·7: Block diagram of accumulator

value of the accumulator is correct.

The dual portedness of the on-chip BRAM is utilized in this accumulator. One port

of the BRAM is dedicated to writing the updated value back to BRAM, while the other

port is dedicated to reading the existing value from BRAM. As stated in Section 3.1,

it requires 1 clock cycle to store the value in the accumulator once the atom ID from

stream 1 changes. This is done on the host software by inserting a pair identical to

the last pair that has the same first atom. When accumulator reads identical pairs in

consecutive clock cycles, it will write the sum from accumulator to atom ID 1’s address

in BRAM, instead of writing the sum from the adder to atom ID 2’s address in BRAM.
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Chapter 5

Result and future work

5.1 Toolset and reference

The FPGA configurations are written in VHDL. The host code in C and C++. The

FPGA programming files were generated using Quartus II v9.1 on a 64-bit machine

running Windows XP. The reason for using a 64-bit machine is that windows XP on

32-bit machine cannot support memory usage by a single process larger than 2GB, while

the compilation of the FPGA design requires more than that.

To validate the correctness and accuracy of the FPGA system, two different reference

code are used. One reference code is created in C as the basis of this work. Since floating

point datapath is used, Another reference code is created in MATLAB to verify FPGA

system’s compliance with IEEE-754 standard.

5.2 Test platform

The single-precision version of FPGA code runs on a GiDEL PROCe III board featuring

an Altera Stratix III EP3SE260 FPGA and 4.5GB of on-board DDR RAM. The host

code runs on one core of a dual-core 2.8GHz Intel Xeon CPU with 2GB RAM. The

operating system is 32-bit Windows XP. The host code is compiled using Microsoft

Visual Studio 2005 with /O2 option for maximizing speed. The interface between host

and board is PCI Express x4. Figure 5·1 shows the top-level block diagram of GiDEL

board [18]. The reference code (single precision C) runs on a single core of a 2.8GHz
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Figure 5·1: Block Diagram of GiDEL PROCe III board

dual-core Intel Xeon CPU with 2GB RAM. The operating system is 32-bit windows

XP. Reference code is compiled using Microsoft Visual Studio 2005 with /O2 option for

maximizing speed. The reference single-precision MATLAB code is running on a single

core of a 3.0GHz dual-core Intel Pentium D CPU with 1GB RAM. The operating system

is 64-bit Linux. MATLAB version is 7.8.0(R2009a).

The dataset used for testing contains 5 different probes, 2258 atoms in 22 different

types, and approximately 9800 pairs at the beginning of the simulation.

5.3 Results

We now present the resuls. Table 5.1 shows the resource used by the main computation

blocks and surronding modules like loading, offloading and accumulator. In total, these

blocks used all but 4 of the available DSP blocks on Stratix III SE260 FPGA. DSP

block number is the main limiting factor for this implementation to scale. Moving to

current-generation FPGAs or multi-FPGA systems should help solve this problem. This

will be discussed in section 5.6.

It is noticeable that the Altera Floating Point Compiler generates a large number of
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resource self-energy
pipeline

pair-wise
pipeline
pt.1

pair-wise
pipeline
pt.2

loading offloading accumulator

combinational
ALUTs

18552 21503 15994 452 625 651/ea

Registers 57362 59820 26290 506 905 1063/ea

Multipliers 276 332 156 0 0 0/ea

M9K BRAM 356

M144K BRAM 16

Table 5.1: Resource Utilization on Stratix III SE260

computation blocks that utilize the built-in DSP block multipliers. Also, that equations

2.3 and 2.5 require a number of division. To avoid using division and to further utilize

DSP blocks, we used a inverse-multiply wherever possible.

5.4 Accuracy

To verify the accuracy of the system, we made a number of comparisons of the acceler-

ated and the unaccelerated systems. These are the coordinate atoms, the force values

generated during electrostatic energy evaluation, and the total electrostatic energy.

5.4.1 Force values

The total force values calculated by FPGA has a maximum difference of 2.49×10−5 N

with respect to CPU code, and a maximum difference of 2.47×10−5 N is observed be-

tween FPGA and MATLAB code. The main reason for such difference is that the FPGA

floating-point datapath uses a different mantissa length than that of Intel processor.

This difference could introduce rounding errors, since when normalizing operands for



27

floating point calculations, mantissa of one number may be shifted too much. Although

FPC uses several guard bits, it may not fully prevent such situation from happening.

Also, because of the FPC’s use of fused datapath, it does not denormalize the result for

every stage of the datapath. Therefore rounding errors and underflows could propagate

within the datapath. Although they may be canceled by subsequent operation within

the cluster, they may well propagate across the cluster border and become error.

5.4.2 Coordinates

The coordinate values calculated by FPGA has a maximum difference of 1.24×10−3

Å. The main reason for this difference is that the force calculation has the precision

error described above. Since energy minimization is an iterative process, this error is

propagated to the next iteration, therefore the final result could be random. In actual

run, the final coordinates of atoms of interest have a maximum difference of 0.5 Å, with

most atoms matching precisely. This is acceptable for most applications.

5.4.3 Total energy

The total energy values calculated by FPGA has a difference of about 0.014%. The main

reason for such difference is again that FPC has some internal issues that may generate

several bits of rounding error as well as the input data has too much range. However,

over 25 iterations where the FPGA calculation converges for probe 0, the difference

between CPU result and FPGA result remains within acceptable range.

5.5 Performance

Table 5.2 shows the time used by one iteration of electrostatic energy evaluation on

FPGA and on host.

We managed to get the system running at 125MHz with no difficulty. The com-
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platform host-FPGA transfer computation FPGA-host transfer total

FPGA 7ms 0.46ms 6ms 13.46ms

CPU N/A 15.82ms N/A 15.82ms

Speedup N/A 34.39x N/A 1.17x

Table 5.2: Run time per iteration, single precision

Complex 1 2 3 4 5

FPGA SP iteration 25 27 29 15 22

FPGA SP time 0.578 0.539 0.534 0.312 0.421

CPU SP iteration 50 44 61 67 69

CPU SP time 0.859 0.766 1.047 0.969 0.89

Table 5.3: Iteration count and end-to-end time(in seconds) for each
complex

putation time for FPGA shown here reflects all five stages of the system. From table

5.2, we obtain a speed-up of about 34.39x for the computation part of the electrostatic

energy evaluation. However, the transfer between host and FPGA is the bottleneck of

the system, dragging down the performance to about 1.17x. The reason behind this is

that the transfer between host and FPGA is through a 4-lane PCI-express 1.0 bus, and

the overhead of establishing a DMA connection is much more than the time that the

actual data transfer take. Also, because of the resource limit on FPGA we currently

use, it can only fit the electrostatic energy part of the computation, meaning that the

total electrostatic energy, as well as each atom’s force values have to be transferred back

to host before the computation can continue. By moving to newer generation FPGAs

that have larger capacity, such transfer may be eliminated by performing other energy

computation and optimization from host to FPGA. In that case, the transfer time could

be reduced to twice per complex(initial coordinates and final coordinates), instead of

twice per iteration.
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5.6 Future work

There is much room for future optimization. One is to modify the accumulation mod-

ule to further utilize the simultaneous 2-port access capability of on-chip BRAMs to

eliminate the 1-cycle stall in the stream. Another is that the precision of floating point

computation could be increased by using a later version of Floating Point Compiler or

a custom/proprietary floating point library, and so giving a more accurate result. Also,

although frequency is not the main roadblock for performance, moving to the current-

generation FPGA e.g. Altera’s Stratix V, will allow more logic to fit on the chip as well

as enabling a higher operating frequency. The benefit of more logic is that for now only

the electrostatic energy part of the calculation is done on FPGA. By adding the Van

der Waals calculation, it could accelerate 99.8% of the total calculation. Furthermore,

by using a simpler optimization method that requires less logic than L-BFGS, we could

put the whole probe on FPGA, eliminating majority of the host-board transfer.
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