
An Investigation of Unified Memory Access
Performance in CUDA

Raphael Landaverde, Tiansheng Zhang, Ayse K. Coskun and Martin Herbordt
Electrical and Computer Engineering Department, Boston University, Boston, MA, USA

{soptnrs, tszhang, acoskun, herbordt}@bu.edu

Abstract—Managing memory between the CPU and GPU is
a major challenge in GPU computing. A programming model,
Unified Memory Access (UMA), has been recently introduced by
Nvidia to simplify the complexities of memory management while
claiming good overall performance. In this paper, we investigate
this programming model and evaluate its performance and
programming model simplifications based on our experimental
results. We find that beyond on-demand data transfers to the
CPU, the GPU is also able to request subsets of data it requires
on demand. This feature allows UMA to outperform full data
transfer methods for certain parallel applications and small data
sizes. We also find, however, that for the majority of applica-
tions and memory access patterns, the performance overheads
associated with UMA are significant, while the simplifications
to the programming model restrict flexibility for adding future
optimizations.

I. INTRODUCTION

GPUs have been used extensively in the past 7-8 years
for a wide variety of computational acceleration. For many
applications, the level of parallelism introduced by the GPU
architecture and enabled by the use of Nvidia CUDA have al-
lowed for orders of magnitude of acceleration [1]. Examples of
a few problem spaces accelerated by GPU acceleration include
molecular docking [2], numerical weather prediction [3], and
geophysical signal processing [4].

Although GPUs provide many mechanisms for accelerating
a wide variety of programs, its use is not a silver bullet
for time consuming calculations. There are significant lim-
itations, particularly concerning memory bandwidth latency
and GPU utilization. Along with these difficulties, acceleration
over mature and highly optimized CPU implementations of
computations for many problem spaces may not provide the
order of magnitude improvement that people have come to
expect from GPUs [5]. These issues are exacerbated by the
already difficult nature of mapping existing algorithms to the
unique and parallel design of a GPU.

To partially alleviate this issue, Nvidia has introduced
Unified Memory Access (UMA) in their most recent CUDA
6 SDK [6]. UMA is primarily a programming model im-
provement created to simplify the complicated methods which
GPUs require for memory communication with a host device,
typically a CPU. Nvidia’s primary goal in this design is to
create a SDK feature that enables quick acceleration of simple
applications, while providing high bandwidth for data transfers
at runtime for shared CPU and GPU data.

In this paper, we investigate the performance and behavior
of UMA on a variety of common memory access patterns,
especially the communication behavior between a host CPU

and GPU. In particular, we investigate the behavior of UMA
memory transfers and analyze whether UMA provides better
performance over the standard data transfer implementation
as was done prior to the introduction of CUDA 6. We also
analyze whether certain sparse memory access patterns provide
an immediate and simple performance benefit with UMA
usage. To test this feature, we develop multiple customized
microbenchmarks for the GPU architecture. Furthermore, to
investigate UMA performance on representative problems and
applications, we provide a brief classification of the Rodinia
benchmark suite [7], categorize the benchmarks by their behav-
ior, and then create UMA implementations for a subset of them
to investigate the changes in performance. We find that for
the vast majority of applications, UMA generates significant
overhead and results in notable performance loss. Furthermore,
the UMA model only marginally simplifies the programming
model for most applications.

The rest of this paper is organized as follows. We first intro-
duce the background of current GPU architecture as well as the
means of communication between CPU and GPU in section II.
Section III presents our general experimental methodology,
including the benchmarks we develop and experimental setup
we use in this paper. In section IV, we show the classification
of Rodinia benchmarks based on our setup. We evaluate and
discuss our experimental results in section V and section VI
concludes this paper.

II. GPU MEMORY MODEL AND UMA

GPUs originated from the need to dedicate off-chip pro-
cessors for rendering the computationally intensive tasks of
rendering computer graphics. However, this dramatically dif-
ferent design for a microprocessor enabled massive gains in
parallelism that could accelerate time-consuming computations
unrelated to graphics. For this reason, Nvidia introduced com-
pute unified device architecture (CUDA), a language and pro-
gramming interfaces for interacting with GPUs using C/C++,
providing the mechanisms for organizing threads on to the
GPU architecture [6], [1].

Typically, the huge performance improvement gained from
a GPU lies in the massive quantity of cores that behave
in a single instruction multiple threads (SIMT) manner [1].
However, in order to keep these cores active, memory must
remain local to the GPU. The memory hierarchy of a Kepler
generation GPU, the modern state of the art, is shown in
Figure 1. Global memory is the bulk of the memory on the
GPU, stored in off-chip DRAM, and with the slowest latency
on board. The fastest memory is shared memory for each of
the Steaming Multiprocessors (SMs), accessible directly by
threads and programmer managed. This hierarchy enables a
programmer to control data flow and minimize access latency.978-1-4799-6233-4/14/$31.00 c©2014 Crown

herbordt
Cross-Out

herbordt
Replacement Text
data

herbordt
Cross-Out

herbordt
Replacement Text
an

herbordt
Cross-Out

herbordt
Replacement Text
current

herbordt
Cross-Out

herbordt
Replacement Text
GPU device

herbordt
Sticky Note
Marked set by herbordt

However, the data to be operated on is always generated
on the host CPU first, as the GPU is simply a slave device
when using CUDA. Thus, the common programming model is
as follows:

1) CPU serial code and data initialization
2) Data transfer to the GPU
3) Parallel computation execution
4) Data transfer back to the CPU.
5) CPU serial code

Without significant changes to the design of the parallel
computation for the purposes of optimization, there is no
possible overlap between data transfer and GPU computation.
The introduction of Nvidia UMA does not change this, but
rather simplifies the model to

1) CPU serial code and data initialization
2) Parallel kernel execution
3) Synchronization between CPU and GPU.
4) CPU serial code

Here, there is no more need for explicit data transfer
in the code. Nvidia claims that the data transfer occurs on
demand for both GPU and CPU, requiring the use of only
one array of data, and no need for duplicate pointers as data
is transferred between the two processors. Furthermore, they
further emphasize that this new method both simplifies the
programming model and enables close to maximum bandwidth
for the data transfer [6], [9]. This model is best seen in
Figure 2, where from the developer’s point of view, the CPU
and GPU memory are the same. The simplified data model
expands the ease of GPU programming and ideally, provides
immediate performance benefits of full bandwidth data transfer
to the GPU. Along with this, Nvidia hints that the future of
UMA lies in providing more automatic performance benefits
within a simplified programming model [9]. Unfortunately, the
details of UMA are hidden from the programmer’s perspective.
When profiling applications with Nvidia tools, neither the
destination of transferred data nor the actual size or length
of transfers is observable. Thus, it is important to analyze
the performance and behaviors of UMA for different memory
access patterns from a raw latency perspective.

Other than Nvidia’s UMA, there is very little work in
the field of improving the communication between CPU and

Thread

Shared
Memory

L1
Cache

L2 Cache

Read-Only
Data Cache

DRAM

Fig. 1: Memory hierarchy of the Kepler GPU architecture [8].

System

Memory
GPU Memory

Developer View Today Developer View With

Unified Memory

Unified Memory

Fig. 2: Traditional and unified memory access model [9].

GPU. A fine grained GPU-CPU synchronization scheme using
full/empty bits is one of the only articles directly addressing
the communication pattern [10]. However, their work requires
both modifications to the GPU architecture, and a more robust
and complicated programming model in order to yield raw
performance gains. We instead focus on examining UMA
and discussing the potential of UMA to become a more
performance oriented tool.

Our goal in this paper is analyzing the performance of this
simplified model, and discovering the details of how UMA
transfers data between GPU and CPU. Since UMA operates
similarly to a standard paging mechanism [6], we focus on
analyzing the particular effects this mechanism has on the
overall performance.

III. METHODOLOGY

A. GPU Microbenchmarks

To analyze the behavior of UMA, we develop microbench-
marks that address common computation and memory access
patterns between the GPU kernel and CPU code. In particular,
we choose that the data is always organized as a matrix of
floating point values arranged in a one-dimensional array. The
computation then follows the following steps:

1) Memory allocation on the Host CPU
2) Initialization of data on the Host CPU
3) (Non UMA) Transfer data to the GPU
4) Perform matrix computation on the GPU
5) (Non UMA) Transfer data to the Host CPU
6) Iterate over matrix on the Host CPU

The items listed as non UMA are not performed for the
UMA version of the benchmarks, as UMA removes the need
for explicit data transfers. Our goal is generalizing the process
of GPU acceleration of a core computation, followed by further
analysis performed on the same data on the host CPU.

Since UMA operates similarly to a paging mechanism [6],
a UMA enabled version of a CUDA program has the potential
to optimize certain memory transfer operations. If CUDA
UMA were to transfer data in small blocks between devices,
there is the potential that UMA may perform better than
the standard data transfer methods while being simpler to
implement for cases in which only a subset of the total data
is used on the CPU or GPU. Thus, we analyze various access
patterns that may alter the data transfers created by UMA.

herbordt
Cross-Out

To simulate these access patterns, we create 5 microbench-
marks categorized by the memory access behavior of the
GPU kernel and the CPU component. With the exception of
one microbenchmark, the GPU kernels are created simply to
access and quickly change the data in memory. We do not
implement complex algorithms because the focus is isolating
the memory transfer behavior using UMA, not the computation
performance. Our microbenchmarks are:

• All GPU All CPU: All of the elements in the matrix are
accessed by the GPU during computation. Each element is
simply incremented by one in place. Data is transferred to
the CPU and all of the matrix elements are incremented by
one again to simulate an exhaustive post processing.

• All GPU All CPU SOR: Identical to the previous method,
with the exception that the kernel implements a single step
of Successive Over Relaxation (SOR), a common linear
algebra algorithm. For each element of the matrix, a thread
averages its neighbors with the element itself, and modifies
the element value as a weighted sum of the average and
its current value. This kernel requires significantly more
memory accesses, more threads, and is performed out of
place, requiring an input and output matrix. We implement
this kernel to observe the effect of more complex memory
access patterns on the runtime of UMA. After the GPU
kernel completes, the CPU computes the difference between
the output and input for each element, and compares the
difference to a threshold.

• Subset GPU All CPU: On the host CPU, three elements
are chosen at random and provided to the GPU kernel at
launch. On the GPU, only the threads which pass over
the matching elements perform the computation: a simple
in place addition and multiplication to the element. Only
three elements of the matrix are ever accessed by the GPU.
After the GPU kernel returns, the CPU adds one to every
element as an exhaustive post processing.

• Subset GPU All CPU RAND: Similar to the previous
microbenchmark, with the exception that the elements
accessed by the GPU are a random subset of the input
matrix. This is achieved by performing the computation
out of place, with an input and output matrix. An element
of the output matrix is assigned if the input matrix value
is below a threshold. The threshold is used to control the
percentage of elements in the output that are touched, since
A is given random values within a range.

• All GPU Subset CPU: This microbenchmark uses the
same GPU kernel as the All GPU All CPU case. The CPU
computation is changed so that only a subset of the output
matrix is accessed at random on the CPU.

We run these microbenchmarks for various matrix dimen-
sions ranging from 32 to 8192, and discuss the results in
greater details in section V.

B. Rodinia Benchmarks

Rodinia is a benchmark suite designed for heterogeneous
computing infrastructures with OpenMP, OpenCL and CUDA

implementations [7]. It provides benchmarks that exhibit vari-
ous types of parallelism, data-access patterns, and data-sharing
characteristics while covering a diverse range of application
domains. In this paper, we use this benchmark suite (CUDA
version) to further investigate other common GPU and CPU
patterns when utilizing UMA, as well as investigate the perfor-
mance effect of UMA on a full benchmark suite alongside our
microbenchmarks. We classify Rodinia benchmarks into three
categories according to their memory access patterns and pick
representative ones from each category as targets for analysis.
The chosen benchmarks are modified to use UMA in CUDA
6 and are run to test the performance difference between the
UMA and non-UMA version.

C. Experimental Setup

We run the experiments using a system that contains Intel
Xeon E5530 4-core CPUs (2.4GHz), 24GB main memory,
Kepler era K20c GPUs and uses the latest CUDA 6 to enable
UMA. UMA is only enabled to run on Kepler era GPUs.
The operating system is CentOS 6.4. We use runtime as the
performance metric, to keep in line with the ultimate goal
of GPU computations: speed. To get accurate timings from
our experiments, we apply several different mechanisms for
different cases. For our microbenchmarks and the UMA vs non-
UMA testing of our Rodinia benchmark modifications, we put
gettimeofday timing functions inside the programs to extract
the execution time for memory copies and kernel computa-
tions. For Rodinia benchmark classification, we use nvprof,
a profiling software provided by Nvidia, to get the detailed
timing of each function call (e.g. cudaMalloc, cudaMemcpy
and kernel function). We do not use nvprof for timing any
UMA computations as data transfers are hidden from profiling
when using UMA. Since the runtime of experiments varies
for different runs, we average the results of ten runs for all
experiments.

IV. RODINIA BENCHMARKS CHARACTERIZATION

The Rodinia benchmark suite contains 19 benchmarks
in total. Due to compiling issues, we do not include mum-
mergpu and lavaMD in our experiments. For Speckle Reduc-
ing Anistropic Diffusion (SRAD), there are two versions in
the benchmark suite released and these two versions expose
quite different behaviors, so we include both of them in
the experiments. Since these benchmarks only support up to
CUDA 5, we need to modify them to use UMA for memory
management. Thus, we first categorize the benchmarks and
then select representatives from each category to address the
modifications.

We use the reference input size for each benchmark (pro-
vided by the developers) and nvprof to profile the execution
period. As introduced in section III, this profiling software
gives us the time spent in kernel computation, memory copy
between device (GPU) and host (CPU) respectively. Figure 3
displays the profiling results (distribution of runtime to differ-
ent tasks) for all 19 benchmarks we test, ranked in descending
order based on the proportion of time spent on the kernel
computation. In this figure, red blocks represent the percentage
of time spent on kernel computation; yellow blocks stand for
that of the memset function; white ones represent device to
device (DtoD) copy, typically referring to data duplication in

0

0.2

0.4

0.6

0.8

1

1.2
P

er
ce

nt
ag

e
of

 e
ac

h
fu

nc
tio

n
in

 to
ta

l r
un

tim
e

cfd
leukocyte hotspot

srad_v1
particlefilter

myocyte lud
gaussian

kmeans bfs
streamcluster nw b+tree

srad_v2
backprop

pathfinder nn

kernel memset DtoD DtoH HtoD

Fig. 3: GPU behavior characterization of Rodinia benchmarks.

TABLE I: Categorization of Rodinia benchmarks.

Types Benchmarks

kernel leukocyte, hotspot, srad v1, myocyte,
cfd, particlefilter, lud, gaussian, kmeans

memory HtoD bfs, b+tree, pathfinder
Balanced streamcluster, nw, srad v2, backprop, nn

GPU memory when only one GPU is being used; green blocks
indicate device to host (DtoH) data transfers; and blue blocks
show host to device (HtoD) data transfers. Since memset and
DtoD always take less than 1% of execution time for the
benchmarks, they do not stand out in this figure.

From this figure, we see that the benchmarks express
significant variances on runtime composition. For example,
cfd, luekocyte etc. spend more than 90% of execution time on
kernel computation while for benchmarks such as pathfinder
and nn, data transfer time predominates over the kernel
computation time. Therefore, we categorize the first type as
kernel-intensive benchmarks and the second type as memory-
intensive benchmarks. Additionally, it is clear to see that
among memory-intensive ones, b+tree and pathfinder have
far more HtoD transfers than DtoH transfers while the rest
ones show more comparable transfers between HtoD and
DtoH. Thus we further categorize memory-intensive bench-
marks into HtoD-memory-intensive and Balanced-memory-
intensive benchmarks. The benchmark categorization is shown
in Table I. Due to such variation in the Rodinia benchmark
suite, we pick one benchmark from each category and modify
them for the UMA test. We pick lud, pathfinder and nn
as the representative kernel-intensive, HtoD-memory-intensive
and Balanced-memory-intensive benchmarks respectively.

To modify these benchmarks to use UMA, we remove
all references to device pointers and memory transfers, and
convert all host pointers containing working data to CUDA
managed pointers. Of note is that these conversions are not
always trivial, as some algorithms were designed to work
with multiple pointers for output and input, or merged data
into single pointers. Furthermore, the number of lines saved
between the two versions of code (UMA vs non-UMA) is in
the single digits for these benchmarks. While the programming
model is easier to understand when using UMA, as memory
is treated as a single space, it is not a significant amount of
code saved, nor does it necessarily simplify the design of the
program.

V. EXPERIMENTAL RESULTS

A. Results for GPU Microbenchmarks

For a subset of our microbenchmarks, Subset GPU All
CPU, Subset GPU All CPU RAND, and All GPU Subset
CPU, our expectation is that the UMA version would perform
better across all sizes. This is anticipated if UMA operates
similarly to a paging mechanism, because these benchmarks
operate on only subsets of the input data and would have a
distinct advantage in UMA, requiring only a subset of data to
be transferred. Interestingly, the experimental results do not
support this theory, but rather, the performance of the UMA
version is consistently worse than non-UMA version.

Figure 4 shows the performance of the microbenchmarks
for a varying matrix dimension normalized to the runtime of
the non-UMA version. The red line is the performance of the
UMA version and the black dashed line shows the performance
of the non-UMA version. The performance is measured as the
time between the initial transfer to the GPU up to the finish of
the CPU computation that follows kernel execution. The CPU
portion of the computation is included in the timing in order to
ensure that all UMA transfer latencies are also included. From
this figure, it is clear that for almost all cases, the performance
of the UMA version is worse than the performance of the non-
UMA version. Furthermore, the difference in performance is
not static, but changes as the data set size changes.

Although each microbenchmark has different performance
scaling between the UMA and non-UMA versions, there are
evident trends in the data that reveal some details on the
UMA mechanism. First, the performance of UMA appears to
be split up into two phases based on the dimension of the
matrix. As soon as the matrix dimension hits 1024, there is
an immediate performance loss. Thereafter, the performance
stabilizes as a constant factor differences compared to the non-
UMA version, up to sizes of 8192. One key observation we
can glean from these experiments is that 1024 corresponds
to the paging value UMA uses: 4 KB. Prior to that size, the
performance is more variable due to shifting access patterns
for small matrices where a page of data may span multiple
rows of the input matrix. This also implies that controlling
the page size to match the problem size can improve UMA
performance in general.

A further observation is that the benchmarks that are
expected to perform well, marked c to e in Figure 4, at times
perform worse than All GPU All CPU and All GPU All CPU

32 64 128 256 512 1024 2048 4096 8192
0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) All GPU All CPU

N
or

m
al

iz
ed

 R
un

tim
e

32 64 128 256 512 1024 2048 4096 8192
0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) All GPU All CPU SOR

32 64 128 256 512 1024 2048 4096 8192
0.6

0.8

1

1.2

1.4

1.6

1.8

2

(c) Subset GPU All CPU

32 64 128 256 512 1024 2048 4096 8192
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

(d) Subset GPU All CPU RAND

N
or

m
al

iz
ed

 R
un

tim
e

32 64 128 256 512 1024 2048 4096 8192
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

(e) All GPU subset CPU

Fig. 4: UMA vs non-UMA performance for the GPU microbenchmarks. The X axis represents the dimension of the input matrix
for the microbenchmarks.

SOR. This is most evident with the All GPU Subset CPU case,
which at its worse, is 2.2x slower than the non-UMA version.
For high performance computing applications, a case like this
would be unacceptable. The Subset GPU All CPU RAND case
displays some favorable results for smaller matrix sizes up to
a dimension of 512, and has the best scaling for large sizes as
well, but it still performs worse than the non-UMA version.

Unusually, the All GPU All CPU SOR case performs better
than the non-UMA version for small matrix sizes. This may be
because UMA attempts to place data in a position in memory
to best improve performance and maintain consistency [9],
and for SOR which requires multiple memory accesses, this is
highly advantageous. In particular, these small sizes are close
to the UMA page size, and may have more efficient transfers
compared to the non-UMA version.

Overall, these results demonstrate that the performance hit
taken by these microbenchmarks when using UMA is not
trivial at large sizes, and weigh heavily against the positives
of a simplified memory model.

B. UMA Tests for Rodinia Benchmarks

After implementing UMA in representative Rodinia bench-
marks LUD, Nearest Neighbor (NN) and Pathfinder, we per-
form similar timing as with our microbenchmarks, but using
varying parameters as is appropriate for each of the bench-
marks. Figure 5 presents the experimental results for these
benchmarks, normalized to the case without using UMA. We
find interesting trends that demonstrate that UMA may indeed
have a use case in which it performs better than non-UMA
CUDA.

For Pathfinder and LUD, with smaller input sizes, the UMA
version performs comparably, or better than the non-UMA
version. These results differ from those seen with the mi-
crobenchmarks. In particular, these two benchmarks represent

a special case which is not included in the microbenchmarks:
subset data access on the GPU with multiple consecutive
kernels before the need for data transfers back to the host.

In this case, a subset of the data is moved to the GPU
via UMA and is repeatedly accessed across multiple kernels
before other data is ever referenced by the GPU. CUDA UMA
prioritizes memory coherence and locality when transferring
data to GPU, and the location of data is invisible to the
program [9]. Because of this, if a subset of data is repeatedly
being operated on, our results demonstrate that the location
of the data via UMA may provide a performance benefit over
a non-UMA version of memory transfer. Along these lines,
LUD’s performance appears to decrease as the input matrix
dimension approaches and passes the page size we mentioned
in the previous section. The memory locality benefit attained
from UMA thus seems linked to the data dimensions, how the
data is accessed on GPU, and how many times the data is
accessed before data is required to be returned to the CPU.

LUD is a kernel intensive application, and the performance
degradation due to the migration of data when using UMA for
large data sizes is larger than that of Pathfinder, a memory
intensive application. This indicates that kernel intensive ap-
plications are more adversely affected when memory overhead
becomes larger.

The performance of NN, however, aligns much more
closely to results from the microbenchmarks. NN is a balanced
memory intensive application which operates on all elements
of the input data, but only on a subset of the output. Thus, for
the different input sizes, the UMA version is simply a scale
factor worse than the non-UMA version, similarly to our results
from the microbenchmarks.

256 512 2048
0.4

0.6

0.8

1

1.2

1.4

Input Matrix Dimension

N
or

m
al

iz
ed

 R
un

tim
e (a) LUD

1000 10000 100000
0.4

0.6

0.8

1

1.2

1.4

Number of Columns

(b) Pathfinder

64 2048
0.4

0.6

0.8

1

1.2

1.4

Number of Samples

(c) Nearest Neighbor

Fig. 5: Performance results of the UMA version of the Rodinia benchmarks normalized to the non-UMA version.

C. Implications for UMA

These results demonstrate that the performance of UMA
varies greatly based on program design, kernel intensity, and
memory access patterns. In particular, we demonstrate that
there are indeed cases where a UMA version can perform better
than a non-UMA implementation. One particular note is that
in both our microbenchmarks and the Rodinia benchmarks,
the difference in code complexity between the UMA and non-
UMA version is little, with no more than 10 lines of code
changing across versions. For the majority of GPU applications
which operate on arrays of data, the introduction of UMA does
not provide a large simplification. However, for more complex
data structures where porting to the GPU may prove difficult,
UMA provides a simplification, albeit at a potentially large
performance cost. In our experimentation, we see an up to
2.2x decrease in performance.

In order to improve UMA performance, we find that the
application must use kernels which operate on subsets of the
output data at a time. In this way, the paging mechanism
provided by UMA provides the most benefit. Beyond this,
UMA should only be used when the data structures of a CPU
program are particularly difficult to arrange on the GPU, and
further optimizations are not necessary. Once a program is
designed for UMA, the use of streams for data overlap, as
well as various other data transfer optimizations, is made more
difficult and less obvious.

UMA can become a more performance oriented tool if it is
extended to support more features and controls. Dynamically
specifying the paging size between CPU and GPU memory
would be critical, as the data transfer can then be tuned
to match memory access behavior for a given application.
As is seen in Figure 4, once the input hits the page size,
performance decreases notably. Along with this, if CUDA
were more transparent in the data transfer mechanism using
UMA, the program design could be better optimized to match
data transfer patterns. Finally, if UMA allowed kernels to
access data on demand during transfer, similarly to the work
done in [10], significant performance benefits over a non-UMA
version would be attained.

VI. CONCLUSIONS

In this work, we present an investigation of unified memory
access performance in the latest CUDA version. We have
designed GPU microbenchmarks to probe the performance
features of UMA. Based on the results we collect from a
system with Kepler GPUs, we have demonstrated that the

performance of UMA varies significantly based on the memory
access patterns. We also show that there are cases in which
UMA versions can perform better than a non-UMA imple-
mentation. However, in its current form, UMA has limited
utility due to its high overhead and marginal improvement
in code complexity. Further work on UMA should include
greater transparency in the paging mechanism, greater control
of the internal mechanism, as well as further analytical tools
for optimizing UMA behaviors.

REFERENCES

[1] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla:
A unified graphics and computing architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, March 2008.

[2] B. Sukhwani and M. C. Herbordt, “Gpu acceleration of a production
molecular docking code,” in Proceedings of 2nd Workshop on General
Purpose Processing on Graphics Processing Units, ser. GPGPU-2.
New York, NY, USA: ACM, 2009, pp. 19–27. [Online]. Available:
http://doi.acm.org/10.1145/1513895.1513898

[3] J. Michalakes and M. Vachharajani, “Gpu acceleration of
numerical weather prediction,” Parallel Processing Letters,
vol. 18, no. 04, pp. 531–548, 2008. [Online]. Available:
http://www.worldscientific.com/doi/abs/10.1142/S0129626408003557

[4] S.-C. Wei and B. Huang, “Gpu acceleration of predictive partitioned
vector quantization for ultraspectral sounder data compression,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 4, no. 3, pp. 677–682, Sept 2011.

[5] R. Vuduc, A. Chandramowlishwaran, J. Choi, M. Guney,
and A. Shringarpure, “On the limits of gpu acceleration,”
in Proceedings of the 2Nd USENIX Conference on Hot
Topics in Parallelism, ser. HotPar’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 13–13. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1863086.1863099

[6] Nvidia, “Cuda,” https://developer.nvidia.com/cuda-toolkit, 2014, ac-
cessed: 2014-4-29.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in Workload Characterization, 2009. IISWC 2009. IEEE Interna-
tional Symposium on, Oct 2009, pp. 44–54.

[8] Nvidia, “Nvidia kepler gk110 architecture,”
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-
Architecture-Whitepaper.pdf, 2012, accessed: 2014-3-31.

[9] ——, “Unified memory in cuda 6,”
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-
6/, 2014, accessed: 2014-4-29.

[10] D. Lustig and M. Martonosi, “Reducing gpu offload latency via fine-
grained cpu-gpu synchronization,” 2013 IEEE 19th International Sym-
posium on High Performance Computer Architecture (HPCA), vol. 0,
pp. 354–365, 2013.

