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Abstract—Improved support for OpenCL has been an im-
portant step towards the mainstream adoption of FPGAs as
compute resources. Current research has shown, however, that
programmability derived from use of OpenCL typically comes
at a significant expense of performance, with the latter falling
below that of hand-coded HDL, GPU, and even CPU designs.
This can primarily be attributed to 1) constrained deployment
opportunities, 2) high testing time-frames, and 3) limitations of
the Board Support Package (BSP). We address these challenges
by penetrating the toolflow and utilizing OpenCL-generated HDL
(OpenCL-HDL), which is created as an initial step during the full
compilation. OpenCL-HDL can be used as an intermediate stage
in the design process to get better resource/latency estimates
and perform RTL simulations. It can also be carved out and
used as a building block for an existing HDL system. In this
work, we present the process of generating, isolating, and re-
interfacing OpenCL-HDL. We first propose a kernel template
which reliably exploits parallelism opportunities and ensures all
compute pipelines are implemented as a single HDL module.
We then outline the process of identifying this module from
the thousands of lines of compiler generated code. Finally, we
categorize the different types of interfaces and present methods
for connecting/bypassing them in order to support integration
into an existing HDL shell. We evaluate our approach using a
number of benchmarks from the Rodinia suite and Molecular
Dynamics simulations. Our OpenCL-HDL implementations of
all benchmarks show an average of 37x, 4.8x, and 3.5x speedup
over existing FPGA/OpenCL, GPU, and FPGA/Verilog designs,
respectively. We demonstrate that OpenCL-HDL is able to
deliver hand-coded HDL-like performance with significantly less
development effort and with competitive resource overhead.

Index Terms—FPGA; OpenCL; Rodinia

I. INTRODUCTION

FPGAs enable developers to design custom systems that
leverage application-specific optimizations. Unlike GPUs, FP-
GAs are not constrained to data parallelism, a coprocessor
configuration, standard data types, or other limitations of fixed
architectures. They can support virtually any computation, can
be tailored based on the application’s nature and context, have
very high resource utilization, and consume much less energy.

Despite these advantages, FPGAs have faced difficulty in
mainstream adoption due to complexity of HDL program-
ming. Creating efficient configurations requires (at least) good
knowledge of the underlying hardware and how to get the
tools to map the application to it. IP cores and hierarchal
design approaches have helped reduce the effort, but as newer
technologies become available, these designs still need to be
updated regularly to make efficient use of available resources.
Moreover, if support for a particular IP does not exist for
particular target, the effort required increases substantially

and could even result in a complete overhaul being needed.
Consequently, there is a need for higher levels of abstraction
for creating and maintaining designs.

HLS tools, such as Intel/Altera OpenCL [1], have provided a
popular alternative to HDLs. They allow developers to express
designs in high level languages such as C99, and automate
the process of converting code into board configuration files.
Use of OpenCL automatically addresses design complexities
that extend beyond HDL coding to even more fundamental
tasks. These include dealing with fan-outs, latency matching
for variable sized data paths, stall hardware, interfaces, and
the entire control plane. OpenCL can also scale these appro-
priately for a given problem size. For features that cannot be
described using the OpenCL specification, pragmas, attributes,
and custom RTL libraries can be included in the design.

Reports of experiences using OpenCL, however, have shown
that this improved programmability and portability comes at
the expense of performance, even for applications that have
traditionally given FPGAs speedups over CPUs and GPUs
when using hand coded HDL. This can largely be attributed
to the shortcomings of the traditional OpenCL toolflow. That
toolflow, from C to bitstream, constrains the manner in which
the compiler can be used and, due to its limited scope,
diminishes several key potential benefits. We broadly partition
the negative impact into the following three categories.

• Deployment: Lack of support for deploying OpenCL
designs on host-independent applications, including real-
time and streaming, and for integrating OpenCL gener-
ated architectures into existing HDL systems.

• Testability: Lack of reliable estimates for resource usage
(post synthesis), latency, and operating frequency without
running the complete fitting operation; this results in
potentially hours spent per iteration to find better opti-
mizations.

• Board Support Package (BSP): No way of avoiding using
the BSP to reduce resource and latency overhead of
potentially inefficient designs.

We address the above challenges for Altera OpenCL by
incorporating an extra stage into the compilation flow: using
the OpenCL-generated HDL (OpenCL-HDL) which is gen-
erated early during compilation (typically after <1% of the
compilation time). The OpenCL-HDL generated at this stage
represents the transition phase between code compilation and
hardware generation/fitting.

We find that using OpenCL-HDL provides a number of
benefits. It enables developers to get very quick reliable

978-1-5386-5989-2/18/$31.00 ©2018 IEEE



estimates of latency and resource usage. More significantly,
it allows developers to quickly gauge the effectiveness of
the C-to-HDL translation, e.g., to find whether the compiler
has unrolled a summation loop to make an adder tree, or
serial pipelines stages with a single addition per cycle. With
this additional step in the toolflow, only after the design has
been verified do developers then proceed to full compilation;
this significantly reduces the number of fitting iterations and
thus the development time. Moreover, for applications that
do not require host-machines, or to eliminate BSP overhead,
OpenCL-HDL can be carved out of a full system and in-
tegrated seamlessly into existing HDL designs. This is also
useful with large applications where a parameter change then
only requires a specific OpenCL-HDL building block to be re-
compiled and re-interfaced, rather than the entire architecture.
Since standard translation rules enable the entire process to be
done using scripts, OpenCL-HDL can be used by developers
across the HDL expertise spectrum.

The contributions of this paper are as follows:
• We use OpenCL-HDL to help bridge the Performance-

Programmability gap for FPGAs. OpenCL-HDL is gen-
erated as an intermediate stage in the standard OpenCL
compilation and addresses deployment, testability, and
BSP bottlenecks of traditional FPGA OpenCL designs.

• We present our process of generating, isolating, and re-
interfacing OpenCL-HDL modules. This includes (i) a
kernel template which reliably exploits parallelism op-
portunities and ensures all compute pipelines are imple-
mented as a single HDL module, (ii) identification of this
module from the thousands of lines of compiler generated
code, and (iii) categorization of the different types of
interfaces and methods for connecting/bypassing them.

• We demonstrate the effectiveness of our approach by
comparing the performance of our OpenCL-HDL mod-
ules against existing designs for a number of benchmarks
from the Rodinia suite [2] and from Molecular Dynamics
simulations.

The rest of this paper is organized as follows. Section 2
gives an overview of previous work in use of OpenCL for
FPGAs. Section 3 provides details of our proposed steps
for penetrating the standard OpenCL toolflow and carving
out OpenCL-HDL compute modules. Section 4 describes the
benchmarks used to test our approach and their kernel code
structure. Section 5 provides the resource and performance
results with respect to existing FPGA and GPU designs.

II. PREVIOUS WORK

In this section, we discuss previous work on OpenCL for
FPGAs in the context of compiler constraints and kernel
structure. To the best of our knowledge, there is no previous
work that deals with isolating, instrumenting, or embedding
OpenCL-HDL.

We find that implementations of various applications have
performed optimizations on baseline codes and achieved sub-
stantial speedups over that original code. Authors in [3] have
implemented a particle-in-cell simulation on an Arria 10 board

using OpenCL wit a 2.5x speedup after optimizations over
a single core CPU. Work in [4] presents OpenCL designs
for doing convolution on FPGAs and describes several op-
timizations which can improve performance up to 20x over
baseline. Authors in [5] achieve a 23x improvement over their
baseline GEM code using optimizations. A PDE solver for
Poisson’s equation using the Conjugated Gradient method is
implemented in [6], which demonstrates average speedups of
86x, 192x and 1517x over the baseline OpenCL code for
their Scaleadd, Dotc and LaplaceApply kernels, respectively.
Authors in [7] have designed FPGA OpenCL kernels for k-
nearest neighbor, Monte-Carlo, and bitonic sorting, with some
results showing speedups over GPUs. For Smith-Waterman
(SW), [8] has shown 1.53x improvement over an Altera staff
implementation [9]. Authors in [10] explore the performance
of OpenCL by porting some parts of the Rodinia benchmark.
They have performed the standard optimizations for a number
of kernels, but nearly all applications have shown worse
performance than the corresponding GPU design. In [11],
the authors have developed multi-producer single-consumer
architectures using OpenCL for processing particle interac-
tions with asynchronous producer-consumer pipelines. The
design suffers from a significant reduction in performance as
compared with the reference Verilog design.

Summarizing these reports, despite the speedups over base-
line, most of these implementations have performed worse
than reference GPU designs even for application character-
istics that traditionally favor FPGAs configured using HDLs.

III. OPENCL-HDL

We outline the steps needed to obtain isolated OpenCL-
HDL designs as part of the standard OpenCL compilation
process. We first present a kernel template that not only
exploits many forms of parallelism, but also reduces the
OpenCL-HDL isolation effort by implementing all compute
pipelines in a single HDL module. We then identify the point
where compilation must be stopped and give the location of
the source files. These include the kernel implementation and
the pre-existing modules used to build it. Within the kernel
implementation, we identify the lowest level module in the
design hierarchy that contains the entire ICL. Finally, we
describe the module interface and how the different ports can
be connected.

A. Kernel Template

Algorithm 1 illustrates our proposed single-kernel single
work-item kernel template. We implement all computations
within a single Outer Compute Loop (OCL). Each iteration of
the OCL represents an algorithm progression, with the actual
amount depending on whether the problem was folded or not.
Folding can be required since there may not be sufficient
board resources to implement a full algorithm iteration for
each iteration of the OCL. Outer Persistent Variables (OPVs)
exist throughout the duration of a kernel execution. Hence their
state is explicitly preserved by the compiler using feedback
logic. Typically, OPVs are used to hold intermediate values
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being passed to the next algorithm iteration. Inner Persistent
Variables (IPVs) are used to source and sink data for the
compute pipelines. Based on the size of an IPV array, it can
implemented using registers (small) or SRAM (large). The
Inner Compute Loop (ICL) contains a complete description of
all compute pipelines in the design. All loops within the ICL,
and including it, are fully unrolled. The ICL uses access to data
sources and sinks, along with the order in which instructions
are specified, to enable the compiler to determine the structure
of compute pipelines.

Algorithm 1 Kernel Template
1: kernel void kernel name (.......
2: Declare and Initialize Outer-Persistent Variables
3: for Memory Loop = 1 : N do
4: Initialize Data for Outer-Persistent Variables
5: for Outer Compute Loop = 1 : K do
6: Declare and Initialize Inner-Persistent Variables
7: for Memory Loop = 1 : J do
8: Initialize Data for Inner Persistent Variables
9: #pragma unroll

10: for Inner Compute Loop = 1 : J do
11: COMPUTE
12: for Memory Loop = 1 : J do
13: Store Results to Outer-Persistent Variables
14: Output Inner-Persistent Variable Data
15: for Memory Loop = 1 : M do
16: Output Outer-Persistent Variable Data

A fully unrolled ICL enables all compute infrastructure to be
grouped into the same OpenCL-HDL module, which reduces
isolation effort. From a performance perspective, by expressing
all computations in the same loop, the compiler can establish
data dependencies and identify opportunities for data, task and
instruction parallelism.

Data Parallelism: Unrolled loops with no data dependencies
between iterations are implemented in a SIMD manner. This
enables each loop to have an arbitrary number of SIMD lanes,
as opposed to a fixed global value defined in multiple work-
item kernels.
Task Parallelism: Code fragments with no data dependencies
are implemented as separate pipelines that operate concur-
rently, irrespective of their ordering in the ICL. Use of a shared
variable can allow communication between these tasks, similar
to blocking OpenCL channels. However, task parallel pipelines
in ICL do not stall in order to wait for a new shared variable
value. Instead, delay modules are added to ensure that the
new value is available on the exact cycle that it is needed. It
is possible to synchronize pipelines in this manner using our
template because all pipelines operate based on the same OCL
and ICL iterators.
Instruction Parallelism: For all computations performed, the
compiler attempts to maximize the amount of work done per
pipeline stage (minimize latency), while ensuring pipelines are
deep enough for the design to operate at high frequencies.

B. Optimizations

Optimizations are a critical part of any OpenCL coding
effort. Within the kernel template, we perform the following.
Minimizing OPVs: We avoid using OPVs whenever possible
due to data dependencies across OCL iterations. Every iter-
ation of the OCL can potentially be stalled for a significant
number of cycles to ensure updated values of OPVs are avail-
able. This also prevents the compiler from inferring deeper
pipelines.
Constants: Use of constants not only reduces the interfacing
effort, but also saves resources by removing the associated
logic for fetching data and applying values directly at the
inputs of compute units.
Register Arrays: We ensure all IPVs are inferred as regis-
ters by breaking large variable arrays, which are inferred as
SRAMs, into smaller ones. Use of registers allows a large
number of concurrent reads and writes to different elements
in a variable array. On the other hand, parallel accesses of an
SRAM based array results in memory replication, which, in
turn, can cause device resources to be exceeded.
Detailed Computations: We perform all computations in as
much detail as possible to minimize the dependence on the
compiler to correctly infer design patterns or potential pipeline
stages.
Selective Operations: We avoid using conditional statements
in the ICL because hardware is persistent and cannot be
reliably turned off. Instead, we prevent results of invalid
operations from modifying the system state by assigning safe
values to their outputs, e.g., zeroing out the result if it is
connected to an adder.

C. Compilation Breakpoint

OpenCL-HDL is available early in the compilation process,
immediately after the first stage completes, but its extraction
currently requires manual termination. One method is to
compile with the verbose (-v) flag and stop compilation once
the message regarding successful generation of source files has
been posted.

D. Source Files

The compiler places source files in a directory
relative to the kernel file. Specifically this is [Path
to Kernel File]/ <kernel filename>/ kernel subsystem/
<kernel filename> system 140/ synth /. The file
<kernel filename>.v contains the implementations for
all kernels in the compiled OpenCL source. Other files
include <kernel filename> system.v, which is a wrapper,
and the Altera modules that form the lowest level in the
design hierarchy. These building blocks can range from
commonly used components, such as FIFOs and Load-Store
Units (LSUs), to kernel-specific ones, such as floating point
arithmetic units. While Altera maintains a large number of
modules, only those identified by the compiler as required
are copied here. Before using these files, however, it is
important to change their file extension to .sv from .v due to
certain syntax that would otherwise prevent compilation as
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Verilog. In the remaining sections of this paper, we refer to
<kernel filename>.v as the OpenCL-HDL source.

E. Basic Blocks

The OpenCL toolflow compiles kernels through multiple
modules called basic blocks, and uses a function module
to describes their connectivity. The observed rules for ba-
sic block module generation are as follows. Typically, each
loop generates a basic block module. Nested normal loops
will generate their independent modules and are connected by
their parent loop module. Unrolled loops will also generate a
separate module. However, consecutive unrolled loops, or any
unrolled nested loop within an unrolled loop, will not generate
a new module. Based on these rules, the entire ICL is created
in a unique basic block which significantly reduces the effort
of isolating it.

F. Interfaces

We broadly categorize common interfaces to be either LSU,
Direct, Control, Feedback, or Don’t Care. A basic block
can have variations in the number and types of these ports
based on individual applications and problem sizes. Modifying
interfaces eliminates hardware that was required for interfacing
the pipelines with the BSP OpenCL wrappers (and hence does
not impact the functionality of our compute pipelines). This
reduces resource usage and simplifies data paths resulting in
lower latency. Once the interfaces have been mapped, the
module can be used for RTL simulation or integrated into
a different HDL shell for compilation.

Load Store Unit (LSU) ports consist of Avalon interfaces
to LSU modules. LSU modules source and sink data to
compute pipelines and are typically created, one per variable
per operation (read/write), when a memory access depends on
the outer loop iterator. Both the module, as well as the Avalon
protocol, have associated overheads which can be removed by
interfacing pipelines directly with variable data. We bypass
these LSU modules by creating explicit variable input/output
ports and connecting them to the corresponding LSU module’s
source/sink interfaces (o readdata/i writedata). The Quartus
compiler then removes the LSU modules during fitting opti-
mizations.

Direct ports are automatically generated by the compiler to
supply data directly to compute pipelines without requiring
LSU modules or the Avalon protocol. They can be further
categorized into Constants, Variables, and Initialization. Con-
stant direct ports correspond to kernel inputs that are individual
elements (instead of pointers). Variable direct ports correspond
to cases where the LSU unit is moved outside the basic
block. This can occur if the outer loop variable is not used
to index/address memory accesses, or if the problem size is
too small. Initialization direct ports are used to load initial
values for (outer/inner) persistent variables.

Control ports primarily consist of clock, reset, Stall, and
Valid ports. Stall ports are used by a basic block to stall up-
stream modules, while Valid ports are used to stall downstream
basic blocks. Since we isolate the compute pipelines from

the overall system, we hardwire both Stall and Valid ports.
As a result, the Quartus compiler minimizes or removes the
associated stall hardware during fitting optimizations.

Feedback ports are typically generated to maintain the state
of Outer Persistent Variables (OPVs) across algorithm itera-
tions. They are created in input-output pairs, with the output
feedback ports being looped back and connected to input ports
of the same basic block. However, if the algorithm does not
use OPVs, we do not connect Feedback ports. This allows the
Quartus compiler to remove the unnecessary associated logic.
If the OpenCL compiler generates individual feedback inputs
(and not pairs), then we hardwire them since these correspond
to selecting between initial and steady-state values of OPVs.

Don’t Care ports can correspond to a variety of logic such
as parallel control and data paths that do not interact with
compute pipelines, or logic that interfaces LSU modules, e.g.,
address computation. Leaving Don’t Care ports unconnected
in our HDL shell optimizes away these unnecessary resources.

IV. EVALUATION AND BENCHMARKS

We evaluate our kernel optimizations by porting a number
of benchmarks from Rodinia and Molecular Dynamics to SWI
OpenCL and comparing the performance of OpenCL-HDL
against existing implementations. The design pattern is given
in parentheses. Benchmarks from Rodinia are Needlman-
Wunsch (Dynamic Programming) and Pathfinder (Dynamic
Programming). For Molecular Dynamics, the benchmarks are
FFT (Spectral), Range-Limited Electrostatics Force Calcula-
tion with Filtering (N-Body), and Charge Mapping (Structured
Grids).

A. Hardware Specifications

We implemented our designs on an Altera Arria
10AX115H3F34E2SGE3 FPGA using Altera OpenCL SDK
16.0. The FPGA has 427,200 ALMs, 1506K Logic Elements,
1518 DSP blocks, and 53Mb of on-chip storage. For reference,
for the Rodinia benchmarks, we use the Tesla P100 PCIe 12GB
GPU. It has 3584 Cuda cores and peak bandwidth of 549 GB/s.

B. Needleman-Wunsch

Needleman-Wunsch is a pairwise sequence alignment algo-
rithm that is a fundamental application in bioinformatics. It
evaluates all possible alignments by using two strings to fill
a table and then finding a minimum through the table path
using Dynamic Programming (DP). The two strings form the
first row and column of this table, respectively, with index
(0,0) being the top-left corner of this table. Each table entry
is scored based on the values of the input sequences. The best
path score at each entry is found by looking at the already
computed path scores of its immediate top, left, and top-left
indices. The computation on FPGAs is typically performed
using a systolic array that processes entire rows or columns
in sequence (as opposed to evaluating diagonals/wavefronts).
Algorithm 2 presents the structure of our ICL. A single
variable, value[i], is used to represent the state of each systolic
array processing element [12], [13].
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In our implementation, we used a 1024 element systolic
array to process string sizes of 16,384 (similar to those in
[10]). The data type used here is char. The table is divided
into blocks and the algorithm was executed 16 times in total.
For each execution, the running time was 16,384 cycles, plus
a load latency of 1 cycle and an unload latency of 512
cycles (2 systolic modules processed per pipeline stage). The
GPU implementation from the Rodinia suite is run as is,
i.e., using the integer data type. We also perform a direct
comparison with [10], who used a Stratix V 5SGXA7 FPGA,
since the design does not use DSP blocks. From the results
(Table I), we can see that OpenCL-HDL outperforms both
the high end GPU and existing OpenCL implementation by
at least 40x. Moreover, since only 13% ALMs were used,
greater parallelism can be exploited by having more processing
elements in the systolic array or by replicating the pipelines.

Algorithm 2 Needleman Wunsch ICL structure
1: char value[N]
2: Initialize value array
3: for k = 1 : M do
4: #pragma unroll
5: for i = 1 : N do
6: if i < N then
7: b[i+1]←value[i] + ref[k*N+i+1]
8: if i == 1 then
9: value[i] = north[k]

10: else
11: a[i]←value[i]-penalty
12: c[i]←value[i-1]-penalty
13: d[i]←MAX(a[i],b[i])
14: value[i]←MAX(d[i],c[i])

TABLE I
RESOURCE USAGE AND PERFORMANCE FOR NEEDLEMAN-WUNSCH

Design ALM Freq.(MHz) Time(ms)
OpenCL [10] - 148 251.3
OpenCL-HDL 56274(13%) 307 0.9

GPU - 1328 36.7

C. Path Finder

Pathfinder is a grid traversal algorithm that determines the
minimal cost of moving from each point on the first row of a
grid to any point in the last row. Movement is constrained to be
either vertical or diagonal. We follow the algorithm provided
in the Rodinia suite as shown in Algorithm 3 and implement
it using systolic arrays.

Similar to [10], our evaluation is done using row sizes of
100,000. However, we use a column size of 1024 instead of
100 in order to perform a more reliable comparison with
the GPU (implemented in CUDA 8.0). Load and unload
latencies for the OpenCL-HDL design are negligible. Similar
to Needleman-Wunsch, we compare with [10] directly since
no DSP blocks are used. From Table II, we see that OpenCL-
HDL achieves ≈10x speedup over the FPGA OpenCL design
despite having 10x more columns. With respect to GPU, the

Algorithm 3 Pathfinder ICL structure
1: int value[N]
2: Initialize value array
3: for k = 1 : M do
4: #pragma unroll
5: for i = 1 : N do
6: West ← value[(i==1) ? 1 : i-1]
7: East ← value[(i==N) ? N : i+1]
8: Center ← value[i]
9: Up ← ref[i]

10: Smallest = MIN (West, East, Center)
11: value[i]← Smallest + Up

P100 was <2x faster than OpenCL-HDL. In comparison, in
[10] the Tesla K20c (2496 cores, 208GB/s) GPU was ≈5x
faster than the OpenCL FPGA version.

TABLE II
RESOURCE USAGE AND PERFORMANCE FOR PATHFINDER

Design ALM Freq.(MHz) Time(ms)
OpenCL [10] (col:100) - 143 4.57

OpenCL-HDL 129,508 (30%) 228 0.44
GPU-P100 (CUDA) - 1328 0.25

D. 1D FFT

FFT is a critical step in a number of modern scientific
applications where the k-space transformation allows time
domain computations, such as convolutions, to be performed
with O(NlogN) complexity. We discuss FFT in detail in a
separate publication [14] and hence will provide only a brief
outline here. As shown in Algorithm 4 we have implemented
a Radix-2 1D FFT compute kernel that produces a complete
transformed vector every cycle. We compare the performance
of our design, for a 64 points FFTs, against the same algorithm
implemented in HDL, OpenCL and using IP core [15] based
designs [16]–[18]. The throughput of all designs is constrained
to be 64. For IP core instantiations that do not have available
DSPs, we use ALMs to implement them. Table III lists the
results of our implementations. OpenCL-HDL has similar
resource overhead and frequency with respect to the pure
HDL design. While manual datapath tuning in pure HDL
resulted in better latency, that impact is diminished as a larger
number of vectors is processed. IP cores, on the other hand,
were significantly worse than both HDL and OpenCL-HDL,
consuming 10x more ALMs and ≈300 more DSP blocks to
get the same performance.

TABLE III
RESOURCE USAGE AND PERFORMANCE FOR FFT

Design ALM DSP Freq.(MHz) Latency
Verilog 15,558(4%) 1160 (76%) 488 37
IP Core 176,285(41%) 1412 (93%) 408 64
OpenCL 65,257(15%) 1280 (93%) 240 -

OpenCL-HDL 18,705(4%) 1160(76%) 483 53

E. Range-Limited Electrostatics with Filtering

Filtering uses a small amount of hardware to determine
whether a much larger computation needs to be executed (see,
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Algorithm 4 1D FFT ICL structure
1: N ← FFT Size
2: for Array of 1D Vectors →j = 1 : M do
3: float2 stage 0[N] .... stage logN[N]
4: Initialize stage 0
5: int L = N/2; int m = 1;
6: #pragma unroll
7: for Loop 1 →k = 1 : N/2 do
8: stage 1 ← COMPUTE(stage 0)
9: L = L >> 1; m = m << 1;

10:
...

11: #pragma unroll
12: for Loop logN →k = 1 : N/2 do
13: stage logN ← COMPUTE(stage logN-1)

e.g., [19]–[21]). Since the result of the filter is not known
a priori, these designs are asynchronous producer-consumer.
In Molecular Dynamics simulations, a set of filters is used
to pre-process particle pairs and only those within cut-off
radius are passed to the compute pipelines. Algorithm 5 gives
the ICL for our Filtered Pipeline implementation. The overall
computation is implemented as three task parallel stages, i.e.,
arbiter (Line 6-12), force pipeline (Line 13), and filters (Line
14-20). Following [11], we use 8 filters per pipeline.

Algorithm 5 Filtered Pipeline ICL structure
1: N ← Filters per Pipeline , P ← Particles per Filer
2: T ← Threshold
3: for Algorithm Iterations →j = 1 : M do
4: #pragma unroll
5: for Filters →i = 1 : N do
6: largest L ← Elements[i] > Elements[1→i-1]
7: largest R ← Elements[i] ≥ Elements[i+1→N]
8: largest C ← Elements[i] > 0
9: cmp[i] ← largest L & largest R & largest C

10: Pipeline In =
∑N

i=1 cmp[i]∗Buffer[i][Elements[i]]

11: Pipeline Valid =
∑N

i=1 cmp[i]
12: Pipeline Out = f(Pipeline In , Pipeline Valid)
13: #pragma unroll
14: for Filters →i = 1 : N do
15: Particle ← j ≤ P ? (x,y,z) : (T,T,T)
16: FilterPass[i] ← x ∗ x+ y ∗ y + z ∗ z ≤ T ? 1 : 0
17: Buffer[i][Elements[i]-cmp[i]] ← Particle
18: Elements[i] ← Elements[i] + FilterPass - cmp[i]
19: Elements[i] ← Elements[i] < 0 ? 0 : Elements[i]

Table IV shows the results of our OpenCL-HDL design as
compared to the implementations given in [11]. The Verilog
design refers to the state-of-the art, while OpenCL refers
to their best case implementation (which uses distributed
control). We use the data set values given in the reference
work, i.e., 216 slices, 27 slices per filter, and 15 particles
per slice. The load latency for OpenCL-HDL is at least 67
cycles, with the value increasing based on the complexity of

the compute pipeline. In the results we observe that worst-case
OpenCL-HDL execution time outperforms both the state-of-
the-art and the existing best-case OpenCL design by at least
50x. While the results are similar to the Verilog, we can also fit
up to 20 copies of the filtered pipeline system using OpenCL-
HDL.

TABLE IV
RESOURCE USAGE AND PERFORMANCE FOR FILTER PIPELINE

Design ALM DSP Freq.(MHz) Time(ms)
Verilog 654(1%) 53(2%) 195 0.5

OpenCL 39709(5%) 56(4%) 257 3.1
OpenCL-HDL 6206(1%) 67(4%) 324 0.01

F. Charge Mapping

Charge Mapping is an interpolation operation that maps
point charges, distributed randomly in space, to a regular grid
[?], [22], [23]. It is a critical step in enabling FFT computation,
which in turn reduces the complexity of Coulombic force
evaluation to O(NlogN). While Charge Mapping itself is
an O(N) problem, the high arithmetic workload (almost 500
FLOPs per particle) highlights the importance of accelerating
this computation. The interpolation operation is performed
by evaluating four polynomials per dimension (12 total).
Each unique combination of one polynomial per dimension
corresponds to a specific grid point (64 total per particle).
Algorithm 6 illustrates our Charge mapping kernel. Table V
compares our implementation with the Arria-10 Verilog design
presented in [24]. The load latency of our OpencL-HDL design
is 35 cycles. We achieved similar performance to the reference
design, but have significantly less DSP resource overhead.

Algorithm 6 Charge Mapping ICL structure
1: N ← PME Order (4), M ← Num Atoms
2: const factors3 [4] ← {-0.5, 1.5, -1.5, 0.5}
3: const factors2 [4] ← {1.0, -2.5, 2.0, -0.5}
4: const factors1 [4] ← {-0.5, 0.0, 0.5, 0.0}
5: const factors0 [4] ← {0.0, 1.0, 0.0, 0.0}
6: for Atoms →j = 1 : M do
7: x = px[j]; y = py[j]; z = pz[j]; q = pq[j];
8: #pragma unroll
9: for xx = 1 : 4 do

10: #pragma unroll
11: for yy = 1 : 4 do
12: #pragma unroll
13: for zz = 1 : 4 do
14: index ← (xx << 4) + (yy << 2) + zz
15: a ← f (x, xx, factors 0-3)
16: b ← f (y, yy, factors 0-3)
17: c ← f (z, zz, factors 0-3)
18: output[index] ← a∗b∗c∗q

TABLE V
RESOURCE USAGE AND PERFORMANCE FOR CHARGE MAPPING

Design ALM DSP Freq.(MHz)
Verilog 3752 (1%) 319 (20%) 571

OpenCL-HDL 1900 (<1%) 117(8%) 488
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V. OVERALL PERFORMANCE

Figure 1 summarizes the performance of OpenCL-HDL ver-
sus FPGA OpenCL, GPU, Verilog, and IP-core-based designs.
The reference execution time for Needleman-Wunsch (NW)
and Path Finder (PF) is from the GPU implementation. The
reference time for FFT, Electrostatics with Filtered Pipelines
(FP), and Charge Mapping (CM) is Verilog. We demonstrate
that in all cases, the optimized OpenCL-HDL performance is
competitive and can be up to 40x and 50x higher than GPUs
and Verilog, respectively.

Figure 2 presents the geometric mean for all comparisons. It
shows that, on average, OpenCL-HDL outperforms previous
FPGA OpenCL, GPU, and Verilog codes by 37x, 4.8x and
3.5x, respectively. This demonstrates that, with the correct
code structure and bypassing the BSP, FPGA OpenCL can
achieve both good programmability, and high performance.
The result is particularly significant with respect to Verilog.
While it is expected that hand-coded HDL will outperform
OpenCL-HDL, writing optimal HDL to do so requires sig-
nificant expertise and effort. On the other hand, by using
OpenCL-HDL, we have the advantage of not only reducing
programming effort, but also of having the code compile to
an efficient architecture that provides HDL-like performance.

Fig. 1. Performance comparison for all five benchmarks

Fig. 2. Geometric mean of OpenCL-HDL speedup across all applications

VI. CONCLUSION

In this paper, we presented our approach for addressing
the Performance-Programmability challenges of FPGAs us-

ing OpenCL-HDL. By penetrating the traditional OpenCL
toolflow, we have developed an approach for carving out
compute pipelines from OpenCL wrappers and integrating
them into custom HDL shells for RTL simulation, more accu-
rate resource estimation and deployment as host-independent
applications. We also propose a kernel template, which not
only efficiently leverages application-specific opportunities for
parallelism, but also reduces the effort of isolating OpenCL-
HDL from thousands of lines of compiler generated code.
We demonstrate that OpenCL-HDL can be used for a variety
of design patterns by testing our approach using bench-
marks from Rodinia and Molecular Dynamics. The results are
promising as the OpenCL-HDL designs outperform existing
FPGA OpenCL implementations, GPU codes, and Verilog
(for Filtered Pipelines), with the average speedup being 37x,
4.8x and 3.5x, respectively. OpenCL-HDL also used fewer
resources on average to implement designs, as compared with
existing FPGA OpenCL codes.
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