
SIZING OF PROCESSING ARRAYS FOR FPGA-BASED COMPUTATION*

Tom VanCourt and Martin Herbordt

Boston University, Department of Electrical and Computer Engineering
 8 St. Mary’s St., Boston MA USA 02215

 email: {tvancour, herbordt} @ bu.edu

ABSTRACT

Computing applications in FPGAs are commonly built from
repetitive structures of computing and/or memory elements.
In many cases, application performance depends on the
degree of parallelism – ideally, the most that will fit into the
fabric of the FPGA being used. Several factors complicate
determination of the largest structure that will fit the FPGA:
arrays that grow polynomially and trees that grow
exponentially, coupled structures that grow in different
polynomial order, multiple design parameters controlling
different aspects of the computing structure, and interlocked
usage of different hardware resources. Combined with
resource usage that depends on application-specific data
elements and arithmetic details, these factors defeat any
simple approach for scaling the computing structures up to
the FPGA’s capacity. We present an analytic framework for
maximizing FPGA utilization, including features for
efficient exploration of array size alternatives. We also
report on design tools containing extensions that support
automated sizing of FPGA-based computation arrays.

1. INTRODUCTION

Recent product announcements by Cray [2] and Silicon
Graphics, Inc. [12] show that FPGA acceleration is entering
the main stream of performance computing. Tools for
FPGA application development are still oriented toward
traditional logic rather than computation, however, leading
to the observation that “10×-100× of performance ... has
been at the cost of 10×-100× increase in difficulty in
application development.” [6] Much of this difficulty comes
from the need to manage an FPGA’s biggest advantage, its
inherently massive, fine grained parallelism. In many
applications, however, well understood repetitive structures
such as systolic arrays can be used to manage the
parallelism [15][16]. These offer the possibility of
effectively unbounded growth of computation arrays as
FPGA sizes increase, with the promise of increased
application throughput or of increased problem sizes.
 One challenge to tools for FPGA-based computation
lies in determining the size of the largest possible array for
a given computation. Three factors affect the array size:

resource limits set by the FPGA hardware, details of the
specific application at hand, and the algebraic law
governing permissible sizes for the application’s computing
array.
 The structure of a computing array is defined by the
particular application at hand. Some applications use linear
arrays, but others use square or cubical arrays, trees, or
multiple structures coupled to each other. Good design
practice often requires partitioning the structure into
multiple components, coupling between components visible
only at the highest design levels. Because of non-linear
growth laws for computing arrays and because of the need
for global analysis in determining the array’s total resource
utilization, local approaches for linear scaling (e.g. loop
unrolling) are not sufficient for determining how large an
array can be instantiated.
 Contributions in this paper address automated growth or
sizing of FPGA-based computation arrays in the presence
of nonlinear allocation of FPGA resources, multiple
different growth-limiting resources in the FPGA (including
logic, RAM, and hardware multipliers), and customization
of the arrays for different applications. The remainder of
this introduction presents the idea of application families, or
reusable communication structures that can be instantiated
with different data communicated data elements and with
different inner components. Section 2 briefly reviews
related work in design space exploration (DSE). It will be
seen that the current problem has different goals than
previous DSE research, but that many valuable ideas from
DSE are applicable to automated sizing of computation
arrays. Section 3 describes problem of optimizing the
computation array in more detail, with examples of FGPA
and application complications that must be addressed. This
section ends with a formal statement of array sizing as a
multidimensional optimization problem. Section 4 presents
one solution to the array sizing problem, as implemented in
the prototype LAMP tool set. This includes language
primitives for heuristic resource estimation, and guidelines
for implementing the optimization formalisms in terms of
LAMP language features. We show how this addresses the
reusable portion of the application accelerator, the portion
unique to each instance of the accelerator, and the
idiosyncrasies of each FPGA, with respect to allocation of
its computing resources. Finally, section 5 describes factors

* This work was supported in part by the NIH through award
RR020209-01, and facilitated by donations of software and
equipment from Xilinx Corporation

not addressed in the current implementation, suggests ways
in which the current LAMP strategy may be strengthened.

1.1. Application Families

The problem of scaling an array of processing elements
(PEs) arises when creating computation accelerators for
families of applications. A family of applications is defined
by a reusable computing pipeline and communication
structure, within which the details of application-specific
data type and leaf computations are free to vary.
 One example of an application family addresses
approximate string matching [15]. In that case study, the
character strings may be DNA with a four-letter (two bit)
alphabet, protein sequences composed of 20-letters (five
bits each), IUPAC wildcards (four bits), codons (six bits),
or any other type the user chooses. Character comparison
functions also vary according to application choice: exact
equality tests, tests for synonymous codons, wildcard
matches, or a function returning graded goodness-of-match
scores. Another application family arises in generalized 3D
correlations used for screening molecules as potential drug
leads [16]. In this case, the voxel data values and the
intermolecular scoring functions vary widely according to
the kinds of chemical interactions being modeled. Both the
number of bits in the data values and the numbers of gates
needed for the scoring functions vary widely across the
range of family members.
 In cases like these, the basic computation is performed
by an array of hundreds or thousands of PEs. Larger arrays
support higher parallelism, so support higher throughput or
larger problem sizes. One design goal, therefore, is to
implement the biggest array possible for a given problem.
Efficient implementation depends on the FPGA’s capacity
for fine-grained resource allocation. Each member of each
application family allocates only as many gates as needed
for its data elements and PEs. As a result, family members
with lower resource allocation per PE can generate more
PEs, allowing larger computations to be performed.
 It is understood that we extend the conventional term
‘PE’ to refer to any of the repeatable elements of the
computing structure. This definition includes PEs
containing RAM buffers, and even PEs with RAM only and
no arithmetic processing.

2. RELATED WORK

Standard FPGA design tools attempt to increase FPGA
resource utilization through better placement and routing
choices [3] or through new algorithms for choosing
between available resources within an FPGA [8]. In these
cases, the design tools perform low-level tradeoffs between
resource instances or resource types in order to implement a
fixed logic design. These optimizations sometimes replicate
logic structures in order to meet timing requirements or to

improve performance. This kind of replication, however,
does not change the apparent degree of parallelism in the
system. Array sizing, however, changes the number of PEs
in visible ways, in order to increase the size or speed of the
computation.
 Design space exploration (DSE) is another family of
approaches to increasing FPGA utilization. This generally
considers an application of strictly defined function, and
tries multiple implementations of the application
subsystems. In some forms, DSE proposes alternative
implementations of a fixed system definition with different
space-time tradeoffs [3], or with maximum speed [5].
 Another DSE approach seeks to reduce hardware costs
through temporal partitioning of one algorithm into
multiple logic patterns for one FPGA, subject to the
constraint that the FPGA computation and reload times
meet stated timing constraints [11].
 DSE differs from the current study in one major respect:
it holds the application to perform constant. Various DSE
approaches then try to reduce hardware cost or improve
other performance criteria, possibly within some
performance constraint. In the current study, a single
parameterized implementation is used, but the application is
allowed to vary up to the capacity of the chosen FPGA.
Although automated sizing relies on many of the same
estimation techniques as DSE, its goals are very different.

3. INPUTS TO THE OPTIMIZATION PROBLEM

Whatever the computation array and FPGA capacity, the
accelerator designer generally wants one thing that no
current design tools are able to state explicitly: as many PEs
as possible, in order to maximize parallelism in between the
PEs. This indefinite number depends on the resource
utilization per PE, permissible sizes for computation and
memory arrays, and FPGA capacity.
 Three major sources of information affect an application
accelerator’s implementation. First, the choice of FPGA
specifies the available amounts of each computing resource.
Second, resource utilization specific to a particular member
of the application family specifies the amount of FPGA
fabric needed for each PE. Third, the geometry of the
computing array, shared across all members of the
application family, specifies the numbers of PEs in each
valid configuration. The remainder of this section discusses
how those factors combine to define an application-specific
accelerator.

3.1. FPGA resources

The FPGA resources are simply the programmable logic,
hardware multipliers, block RAMs, and other features
accessible to the logic designer. (Connectivity resources are
usually allocated by development tools, and not directly
available to the logic designer.) A larger FPGA in a given

product family contains more of some or all resources,
potentially allowing a larger computation array for a given
application’s accelerator. The resources of interest are
expected to differ between applications or application
families; one family member may require hardware
multipliers where another does not, for example.
 Care must be taken in creating the resource abstraction
since some resources are available only in specific quanta,
such as block sizes for RAM bits. Extra care must be taken
when the abstraction must cross FPGA product lines, since
resources from different vendors are not always directly
comparable. Block RAMS typify resource differences
between vendors: the Xilinx Virtex-II Pro products contain
18Kb block RAMs, but comparable Altera Stratix-II chips
offer a combination of 512b, 4Kb, and 512Kb RAMs.

3.2. Application-specific resource usage

Different members of an application family share structures
for control, communication, and synchronization, but differ
in the numbers of bits in their operand data types and in the
complexity of the “leaf” calculations used within the
pipeline. For example, the case study of [16] uses a
generalized 3D correlation of the form:

∑ +++=
kji

ijkkzjyixxyz baFS
,,

,,),((1)

The data types of voxels a and b and the logic of function F
differ in each member of the application family, in order to
represent the chemical phenomena used in that instance of
the calculation. As a result, the numbers of data bits and the
size of each PE in the computing array differ between
family members. This means that, for a given FPGA,
different members of an application family can instantiate
different numbers of PEs.

3.3. Growth laws in computing arrays

A growth law is the set of arithmetic rules defining the
allowable array sizes. A crucial feature of the growth laws,
explained in the next section, is that they invert the sense of
the structural parameters commonly used for specifying
numbers of component instances in some logic design. In
this analysis, the set of parameter values is not supplied by
the designer, but chosen by the tools to create the most
useful accelerator possible given the resources available.
 For generality and for ease of discussion, the term
“processing element” and the same formalisms address
arrays of memory elements, computing elements, and
combinations. The goal of the discussion is to characterize
repeatable arrays of computing resources, whatever the
resource may be.
 Figure 1 suggests growth laws for several kinds of
computation array. Figure 1A, a linear array, is the
simplest. It allows an array of size N for any positive

integer value of the structural parameter N. If, as in
Figure 1B, an array has arbitrary rectangular shape, then
there are two different structural parameters, N1 and N2,
giving the dimensions of the array. Of course, an
accelerator family may have any number of structural
parameters. Figure1D demonstrates an exponential rather
than polynomial growth law, as just one example of growth
laws of arbitrary complexity. For example, [14] uses a bus
structure based on combinatorial Steiner systems. In that
example, a term in the growth law involves an expression
of the form N!/(N-K)!K!, for structural parameter N and
application parameter K.
 Figure 1C illustrates multiple coupled structures,
possibly representing a cubical computation array, a square
array of row reductions, and a linear array of column
reductions, where the sizes of the structures are locked to
each other. Each structure is assumed to have a different
unit cell with different resource requirements. The growth
law is represented by a polynomial with separate terms for
each of the inter-related structures: k1N+k2N2+k3N3.
Figure 1E shows a linear structure like that in 1A, but with
the added complication of consuming two different FPGA
resources: logic and RAM. Depending on the specific
FPGA’s resource availability and the specific application’s
resource consumption, either of the two resources could be
the one that limits the size of the array.
 Of course, all of these features can occur in the growth
law for any one system. One computing array can involve

N

A: Linear array.
One structural

parameter

N2

B: Rectangular array.
Two structural

parameters: N1, N2

N1

N

D: Tree.
Exponential growth

N

C: Coupled structures

Figure 1. Growth laws for computing arrays
specified in terms of structural parameters

Logic RAM

E: Use of multiple
 FPGA resources

multiple structural parameters describing nonlinear
relationships between coupled structures, with interlocking
terms for different types of FPGA resource.

3.4. Array growth – not just loop unrolling.

Loop unrolling is a standard compilation technique, both in
software compilation and in synthesis from high level
languages [1]. It could, in principle, be one approach to
expanding a linear structure up to the capacity of the FPGA.
 The factors illustrated in Figure 1 show some of the
reasons why loop unrolling is problematic at best and
impossible in the general case. The first problem is that
linear techniques for loop unrolling poorly represent non-
linear computing structures such as cubes or trees. The
second problem, suggested by Figure 1B, occurs when
multiple loops are candidates for unrolling, with no clear
way to decide how much unrolling should be performed
along each axis.
 A third problem is illustrated in Figure 1C. Typical
design decomposition will break the compound structure
into multiple communicating components, in any over
several meaningful ways. One designer might separate the
three substructures into separate components; another
designer might group a plane of the cube with a column of
the 2D array and a cell of the linear array. In either case, the
structural parameter creates a coupling between multiple
design components. Typical loop analysis operates locally,
within a single component. Total resource allocation,
however, depends on global analysis of multiple, coupled
design components.

3.5. Optimizing the computation array

Equation (2) summarizes the problem of optimizing the
computing array for a given member of some application
family, subject to the constraints of a specified FPGA.

Symbols in Equation (2) have the following meanings,
defined by the FPGA, the application family, or the specific
member of the application family being instantiated:
 N = (n1, n2, …nI) The set of structural parameters that
define an accelerator configuration, normally a tuple of
non-negative integer values. These parameters and their
meanings are defined by the application family. It is worth
noting that this approach inverts the usual sense of the
structural parameters. Normally, they are design inputs; in
this usage, they are consequences of other design decisions.
 Nopt defines the most desirable configuration possible, or
one of the configurations tied for most desirable
 V(N) This predicate determines whether structural
parameters (n1, n2, …nI) meet architectural validity criteria.
Validity constraints on structural parameters apply not only

individual parameters in N, but to arbitrary relationships
between sets of parameters It expresses the idea that, in
some application families, particular combinations of
structural parameter values may be disallowed, without
respect to the specific member of the application family or
capacity of the particular FPGA in use.
 B = (b1, b2, … bK) These application-specific values
represent the resource utilization for each element of the
application accelerator. Although the set of structural
parameters is specific to an application family, the actual
values of each parameter depend only on the details of the
family member. It is assumed, for now, that the values
describing resource utilization are independent of the FPGA
platform.
 RF = (r1

F, r2
F, … rJ

 F) These values specify the integer
amounts of resource j available in FPGA F. This assumes
that all models of FPGA under consideration support the
same types of computing resources, independent of any
other model of FPGA.
 Sj(N, B) These functions state the consumption of FPGA
resource j for design parameters N and application-specific
usage coefficients B. These functions capture the growth
laws of the application family. For current purposes, these
functions are assumed independent of the FPGA platform.
 U(N) The utility function is a scoring function such that
higher values indicate preferable accelerator configurations.
If U(N1) = U(N2) ∧ N1 ≠ N2, then configurations 1 and 2 are
different but equally desirable; either could be chosen.
Absolute values of the utility function have no significance.
The ranks of utility values simply establish the ordering of
more and less desirable accelerator configurations for an
application family.
 Equation (2) suggests that the most desirable accelerator
is the largest one that fits the FPGA-specific resources,
once the application family growth laws and application-
specific usage demands have been specified. Maximizing
U(N) for configuration parameters N is, in general, a
difficult problem, the exact solution of which is beyond
scope of this discussion. Because realistic parameter sets N
have modest numbers of structural parameters and modest
integer ranges, exhaustive search of the configuration space
defined by V is assumed to be acceptable.

Nopt = argmax U(N)
N | V(N) ∧ {∀j : rj

F ≥ Sj(N, B) } (2)

3.6. Simplifying assumptions

Without loss of generality, predicate V and functions U and
Sj are assumed to be monotonic in the following senses. Let
N and N’ be any tuples of structural parameters, such that
N’ is identical to N in all positions except one where
ni < ni’. Predicate V(N) is said to be monotonic if
¬V(N) ⇒ ¬V(N’). Holding all other nj≠i constant, there is
some limit for ni below which all configurations are valid
and above which they are not.
 It is also assumed that U(N') ≥ U(N), i.e. that the value
of an accelerator increases with at least weak monotonicity

in all components (and subsets of components) of N.
Functions Sj are assumed monotonic in the same sense as U,
for any given application family member characterized by
some fixed B.
 These constraints are not necessary for Equation (2) to
be valid. There is, however, intuitive appeal in the idea that
larger ni represent larger computation structures so have
utility U at least as high. There is also appeal in the
intuition that larger structures consume at least as much of
each FPGA resource according to Sj. The real reason for
monotonicity is pragmatic, however. Monotonic objective
functions U(N) are far easier to maximize than non-
monotonic functions. Monotonicity of Sj(N, B) helps in
limiting the number of configurations examined. Once
some resource limit is exceeded, it is no longer necessary to
continue examining configurations with larger values of ni,
since larger accelerators would consume at least as much of
any resource j, and would continue to violate resource
constraints. Also, non-negativity of ni and monotonicity of
predicate V(N) take the place of some alternative
mechanism for setting lower and upper bounds on values
for structural parameters, i.e. for limits to the parameter
space to be searched.

4. LAMP IMPLEMENTATION

Equation 2 provides an analytic model for exploring the
space of array sizes, but it can not be readily expressed in
current hardware description languages. Experience
suggests that function U and predicate V often have
convenient representation in closed form, but that resource
estimation functions Sj are relatively complicated and must
incorporate knowledge of many design components. Values
B that represent resource utilization of any given family
member depend on the numbers of bits in the data elements
and on the complexity of the member’s unique logic
elements. No existing hardware design languages make
these values available explicitly.
 The Logic Architecture by Model Parameterization
(LAMP) tool set supports parameter search using two basic
mechanisms: heuristic leaf estimation, and extensions to the
underlying HDL on which LAMP operates. LAMP tools
acknowledge that an FPGA based accelerator involves at
least two developers with different skills, design
responsibilities, and preferred programming tools: a logic
designer who creates the communication and pipeline
structure, and an application specialist who uses the
accelerated computation.
 The logic designer uses a standard HDL such as VHDL,
with XML-based markup language (LAMPML) to
parameterize the leaf functions and data types in the design.
Standard hierarchical logic design already creates a tree
structure. The tree’s root is the outermost design
component; branches and sub-branches represent instances
of components and of their inner components. LAMP

allows the logic designer to overlay the call graphs of
resource estimation functions onto this design hierarchy.
The logic designer uses LAMP markup to define functions
in each component that estimate the usage of each resource
for a given set of structural parameters. That estimation
function is defined in terms of estimation functions
exported by the inner components, numbers of component
instances, knowledge of the logic structures outside of
LAMP control, and leaf resource estimates. Each
component uses only local knowledge of its own structure
and of symbols exported by its immediate inner
components, as recommended by the Law of Demeter [9],
but the recursive structure makes a global resource estimate
available at the root level.
 The application specialist defines application-specific
data types (e.g. the kinds of characters used in string
comparison) and leaf functions (e.g. the function that rates
quality of match between characters). These type and
function definitions are written in a C-like syntax unique to
LAMP, and coupled to LAMP markup in the HDL portion
of the accelerator design. Since these definitions are written
in LAMPML they are accessible to the LAMPML language
processor, and in particular to LAMP’s resource estimation
heuristics.
 LAMPML provides two related primitives for resource
estimation:
 (1) n = synthSize(typeName);
and
 (2) n = synthSize(fctn, typeName, …);
The first form of synthSize returns the number of bits
allocated to the data type named, somewhat the way the C
language’s sizeof operator works on types or values. The
second form of synthSize estimates the number of logic
elements needed to implement function fctn. Since
LAMPML supports polymorphic function definitions, the
caller must provide parameter type declarations to
disambiguate the function implementation.
 LAMPML provides a second level of polymorphism at
the level of a HDL design component. A FIFO, for
example, may be instantiated repeatedly with different data
types of different widths. The synthSize function works
with that type parameterization, so that form (1) of
synthSize returns a value appropriate to the actual type
bound to symbol typeName in each different instance of
the component in which it occurs. Also, because LAMPML
can treat function implementations as parameters, form (2)
of synthSize returns potentially different values
according to the bindings of its typeName parameters and
depending on the local binding of actual function definition
to symbol fctn.
 Exact resource utilization figures can only come from
actual synthesis, so LAMP uses conservative heuristics to
estimate the numbers of logic elements needed for a
function. The synthSize function is part of the LAMP
language tool, but is loosely coupled to other parts of

LAMP logic. That makes it easy to modify the
synthSize logic as improved estimation techniques
become available. The current implementation of LAMP
supports only estimates of logic utilization, not of RAM,
block multipliers, or other resources.
 Additional input to LAMP describes the FPGA itself,
and provides another place in which resource estimation
functions may be defined. FPGA-dependent estimation
functions are especially helpful for estimating block RAM
utilization, which depends not only on the number of bits to
be stored but also on the word width. As an example,
consider a RAM logically organized as 128 words of 128
bits each. Block RAMs in the Xilinx Virtex family contain
18Kb, in word widths to 36 bits. Even though one of those
block RAMs holds enough bits to contain the 128×128 bits,
it take four Virtex block RAMs to implement the full word
width. Block RAM sizes and supported word widths are
different in different models of FPGA, so device-specific
estimation functions help in retargeting of the application-
specific part of an accelerator without changes to the code
representing the application logic.
 Referring to Equation (2), it can be seen that the
synthSize function fills the role of application-specific
usage values B, and LAMPML functions embedded in each
logic component support recursive construction of
estimation functions Sj. The LAMP input representing
FPGA specifics is expected to define the constants RF for
the resources in FPGA F. Validity test V and utility scoring
function U can be written in LAMPML with the same
notation used for the other functions described above.
 Case studies have shown that a modest number of
structural parameters N describe many useful accelerator
structures, and that useful values of structural parameters
tend not to exceed a few hundred or a few thousand. Given
the simplifying assumptions of section 3.6, exhaustive
search of the parameter space is a practical approach to
solving for Nopt, the most desirable accelerator
configuration, in Equation (2).
 Thus, LAMP primitives and programming features
support automated array sizing in terms of the application
family, details of the application family member, and
FPGA-specific resources.

5. CONCLUSION AND FUTURE DIRECTIONS

Although sizing is very different from traditional DSE,
there appear to be common low-level components in their
logic. In particular, DSE typically involves synthesis
estimation based on heuristics [5] or measurements of
component synthesis [13]. The initial implementation of
sizing logic uses only crude synthesis estimation. We look
forward to improving this phase of the sizing calculations
using techniques from the DSE literature.

6. REFERENCES

[1] R. Camposano. “From Behavior to Structure: High-level
synthesis,” IEEE Design and Test of Computers pp 8-19,
Oct. 1990.

[2] Cray, Inc. “Cray XD1 Supercomputer,”
www.cray.com/products/xd1, 2005 (verified 3 Mar. 2006)

[3] R. Dutta, J. Roy, and R. Vemuri. “Distributed Design-Space
Exploration for High-Level Synthesis Systems.” Proc.
Design Automation Conference (DAC) 1992.

[4] D. Gajski, F. Vahid, S. Narayan, and J. Gong. “System-
Level Exploration with SpecSyn.” Proc. DAC 1998.

[5] J. Gerlach and W. Rosenstiel. “Development of a High-
Level Design SpaceExploration Methodology,” Technical
Report WSI-98-13, University of Tübingen, 1998.

[6] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski, M.
“Stream-oriented FPGA computing in the Streams-C high-
level language.” Proc. FCCM. 2000.

[7] M. Goosman. “Improve Design Performance using
PlanAhead Design Tools.” XCell Journal, Q4 2005.

[8] S. L. Graham, M. Snir, and C. A. Patterson. Getting Up to
Speed: The Future of Supercomputing. National Academies
Press, Washington DC 2004.

[9] K. Lieberherr, I. Holland, and A. Riel. “Object-Oriented
Programming: An Objective Sense of Style.” Proc. OOPSLA
1988, p.323-334

[10] D. Rautela and R. Katti. ”Design and Implementation of
FPGA Router for Efficient Utilization of Heterogeneous
Routing Resources,” Proc. Annual Symp. on VLSI. 2005.

[11] B. Schoner, J. Villanesor, S. Malloy, and R. Jain.
“Techniques for FPGA Implementation of Video
Compression Systems.” Proc. FPGA 1995.

[12] Silicon Graphics, Inc. “Extraordinary Accleration of
Workflows with Reconfigurable Application-Specific
Computing from SGI.” www.sgi.com/pdfs/3721.pdf 2004
(verified 3 Mar. 2006)

[13] B. So, P. Diniz, and M. W. Hall. “Using Estimates from
Behavioral Synthesis Tools in Compiler-Directed Design
Space Exploration.” Proc. DAC 2003.

[14] T. VanCourt, M. Herbordt, and R. Barton “Microarray data
analysis using an FPGA-based coprocessor,”
Microprocessors and Microsystems 28(4):213–222. 2004.

[15] T. VanCourt and M. Herbordt. “Families of FPGA-based
algorithms for approximate string matching,” Proc. ASAP
2004.

[16] T. VanCourt, Y. Gu, V. Mundada, and M. Herbordt. “Rigid
Molecule Docking: FPGA Reconfiguration for Alternative
Force Laws.” European Journal of Applied Signal
Processing, to appear 2006

