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ABSTRACT 

Computing applications in FPGAs are commonly built from 
repetitive structures of computing and/or memory elements. 
In many cases, application performance depends on the 
degree of parallelism – ideally, the most that will fit into the 
fabric of the FPGA being used. Several factors complicate 
determination of the largest structure that will fit the FPGA: 
arrays that grow polynomially and trees that grow 
exponentially, coupled structures that grow in different 
polynomial order, multiple design parameters controlling 
different aspects of the computing structure, and interlocked 
usage of different hardware resources. Combined with 
resource usage that depends on application-specific data 
elements and arithmetic details, these factors defeat any 
simple approach for scaling the computing structures up to 
the FPGA’s capacity. We present an analytic framework for 
maximizing FPGA utilization, including features for 
efficient exploration of array size alternatives. We also 
report on design tools containing extensions that support 
automated sizing of FPGA-based computation arrays. 

1. INTRODUCTION 

Recent product announcements by Cray [2] and Silicon 
Graphics, Inc. [12] show that FPGA acceleration is entering 
the main stream of performance computing. Tools for 
FPGA application development are still oriented toward 
traditional logic rather than computation, however, leading 
to the observation that “10×-100× of performance ... has 
been at the cost of 10×-100× increase in difficulty in 
application development.” [6] Much of this difficulty comes 
from the need to manage an FPGA’s biggest advantage, its 
inherently massive, fine grained parallelism. In many 
applications, however, well understood repetitive structures 
such as systolic arrays can be used to manage the 
parallelism [15][16]. These offer the possibility of 
effectively unbounded growth of computation arrays as 
FPGA sizes increase, with the promise of increased 
application throughput or of increased problem sizes. 
 One challenge to tools for FPGA-based computation 
lies in determining the size of the largest possible array for 
a given computation. Three factors affect the array size: 

resource limits set by the FPGA hardware, details of the 
specific application at hand, and the algebraic law 
governing permissible sizes for the application’s computing 
array.  
 The structure of a computing array is defined by the 
particular application at hand. Some applications use linear 
arrays, but others use square or cubical arrays, trees, or 
multiple structures coupled to each other. Good design 
practice often requires partitioning the structure into 
multiple components, coupling between components visible 
only at the highest design levels. Because of non-linear 
growth laws for computing arrays and because of the need 
for global analysis in determining the array’s total resource 
utilization, local approaches for linear scaling (e.g. loop 
unrolling) are not sufficient for determining how large an 
array can be instantiated. 
 Contributions in this paper address automated growth or 
sizing of FPGA-based computation arrays in the presence 
of nonlinear allocation of FPGA resources, multiple 
different growth-limiting resources in the FPGA (including 
logic, RAM, and hardware multipliers), and customization 
of the arrays for different applications. The remainder of 
this introduction presents the idea of application families, or 
reusable communication structures that can be instantiated 
with different data communicated data elements and with 
different inner components. Section 2 briefly reviews 
related work in design space exploration (DSE). It will be 
seen that the current problem has different goals than 
previous DSE research, but that many valuable ideas from 
DSE are applicable to automated sizing of computation 
arrays. Section 3 describes problem of optimizing the 
computation array in more detail, with examples of FGPA 
and application complications that must be addressed. This 
section ends with a formal statement of array sizing as a 
multidimensional optimization problem. Section 4 presents 
one solution to the array sizing problem, as implemented in 
the prototype LAMP tool set. This includes language 
primitives for heuristic resource estimation, and guidelines 
for implementing the optimization formalisms in terms of 
LAMP language features. We show how this addresses the 
reusable portion of the application accelerator, the portion 
unique to each instance of the accelerator, and the 
idiosyncrasies of each FPGA, with respect to allocation of 
its computing resources. Finally, section 5 describes factors 
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not addressed in the current implementation, suggests ways 
in which the current LAMP strategy may be strengthened. 

1.1. Application Families 

The problem of scaling an array of processing elements 
(PEs) arises when creating computation accelerators for 
families of applications. A family of applications is defined 
by a reusable computing pipeline and communication 
structure, within which the details of application-specific 
data type and leaf computations are free to vary. 
 One example of an application family addresses 
approximate string matching [15]. In that case study, the 
character strings may be DNA with a four-letter (two bit) 
alphabet, protein sequences composed of 20-letters (five 
bits each), IUPAC wildcards (four bits), codons (six bits), 
or any other type the user chooses. Character comparison 
functions also vary according to application choice: exact 
equality tests, tests for synonymous codons, wildcard 
matches, or a function returning graded goodness-of-match 
scores. Another application family arises in generalized 3D 
correlations used for screening molecules as potential drug 
leads [16]. In this case, the voxel data values and the 
intermolecular scoring functions vary widely according to 
the kinds of chemical interactions being modeled. Both the 
number of bits in the data values and the numbers of gates 
needed for the scoring functions vary widely across the 
range of family members. 
 In cases like these, the basic computation is performed 
by an array of hundreds or thousands of PEs. Larger arrays 
support higher parallelism, so support higher throughput or 
larger problem sizes. One design goal, therefore, is to 
implement the biggest array possible for a given problem. 
Efficient implementation depends on the FPGA’s capacity 
for fine-grained resource allocation. Each member of each 
application family allocates only as many gates as needed 
for its data elements and PEs. As a result, family members 
with lower resource allocation per PE can generate more 
PEs, allowing larger computations to be performed. 
 It is understood that we extend the conventional term 
‘PE’ to refer to any of the repeatable elements of the 
computing structure. This definition includes PEs 
containing RAM buffers, and even PEs with RAM only and 
no arithmetic processing.  

2. RELATED WORK 

Standard FPGA design tools attempt to increase FPGA 
resource utilization through better placement and routing 
choices [3] or through new algorithms for choosing 
between available resources within an FPGA [8]. In these 
cases, the design tools perform low-level tradeoffs between 
resource instances or resource types in order to implement a 
fixed logic design. These optimizations sometimes replicate 
logic structures in order to meet timing requirements or to 

improve performance. This kind of replication, however, 
does not change the apparent degree of parallelism in the 
system. Array sizing, however, changes the number of PEs 
in visible ways, in order to increase the size or speed of the 
computation. 
 Design space exploration (DSE) is another family of 
approaches to increasing FPGA utilization. This generally 
considers an application of strictly defined function, and 
tries multiple implementations of the application 
subsystems. In some forms, DSE proposes alternative 
implementations of a fixed system definition with different 
space-time tradeoffs [3], or with maximum speed [5].  
 Another DSE approach seeks to reduce hardware costs 
through temporal partitioning of one algorithm into 
multiple logic patterns for one FPGA, subject to the 
constraint that the FPGA computation and reload times 
meet stated timing constraints [11]. 
 DSE differs from the current study in one major respect: 
it holds the application to perform constant. Various DSE 
approaches then try to reduce hardware cost or improve 
other performance criteria, possibly within some 
performance constraint. In the current study, a single 
parameterized implementation is used, but the application is 
allowed to vary up to the capacity of the chosen FPGA. 
Although automated sizing relies on many of the same 
estimation techniques as DSE, its goals are very different.  

3. INPUTS TO THE OPTIMIZATION PROBLEM 

Whatever the computation array and FPGA capacity, the 
accelerator designer generally wants one thing that no 
current design tools are able to state explicitly: as many PEs 
as possible, in order to maximize parallelism in between the 
PEs. This indefinite number depends on the resource 
utilization per PE, permissible sizes for computation and 
memory arrays, and FPGA capacity.  
 Three major sources of information affect an application 
accelerator’s implementation. First, the choice of FPGA 
specifies the available amounts of each computing resource. 
Second, resource utilization specific to a particular member 
of the application family specifies the amount of FPGA 
fabric needed for each PE. Third, the geometry of the 
computing array, shared across all members of the 
application family, specifies the numbers of PEs in each 
valid configuration. The remainder of this section discusses 
how those factors combine to define an application-specific 
accelerator. 

3.1. FPGA resources  

The FPGA resources are simply the programmable logic, 
hardware multipliers, block RAMs, and other features 
accessible to the logic designer. (Connectivity resources are 
usually allocated by development tools, and not directly 
available to the logic designer.) A larger FPGA in a given 



product family contains more of some or all resources, 
potentially allowing a larger computation array for a given 
application’s accelerator. The resources of interest are 
expected to differ between applications or application 
families; one family member may require hardware 
multipliers where another does not, for example.  
 Care must be taken in creating the resource abstraction 
since some resources are available only in specific quanta, 
such as block sizes for RAM bits. Extra care must be taken 
when the abstraction must cross FPGA product lines, since 
resources from different vendors are not always directly 
comparable. Block RAMS typify resource differences 
between vendors: the Xilinx Virtex-II Pro products contain 
18Kb block RAMs, but comparable Altera Stratix-II chips 
offer a combination of 512b, 4Kb, and 512Kb RAMs. 

3.2. Application-specific resource usage 

Different members of an application family share structures 
for control, communication, and synchronization, but differ 
in the numbers of bits in their operand data types and in the 
complexity of the “leaf” calculations used within the 
pipeline. For example, the case study of [16] uses a 
generalized 3D correlation of the form: 
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The data types of voxels a and b and the logic of function F 
differ in each member of the application family, in order to 
represent the chemical phenomena used in that instance of 
the calculation. As a result, the numbers of data bits and the 
size of each PE in the computing array differ between 
family members. This means that, for a given FPGA, 
different members of an application family can instantiate 
different numbers of PEs.  

3.3. Growth laws in computing arrays 

A growth law is the set of arithmetic rules defining the 
allowable array sizes. A crucial feature of the growth laws, 
explained in the next section, is that they invert the sense of 
the structural parameters commonly used for specifying 
numbers of component instances in some logic design. In 
this analysis, the set of parameter values is not supplied by 
the designer, but chosen by the tools to create the most 
useful accelerator possible given the resources available. 
 For generality and for ease of discussion, the term 
“processing element” and the same formalisms address 
arrays of memory elements, computing elements, and 
combinations. The goal of the discussion is to characterize 
repeatable arrays of computing resources, whatever the 
resource may be. 
 Figure 1 suggests growth laws for several kinds of 
computation array. Figure 1A, a linear array, is the 
simplest. It allows an array of size N for any positive 

integer value of the structural parameter N. If, as in 
Figure 1B, an array has arbitrary rectangular shape, then 
there are two different structural parameters, N1 and N2, 
giving the dimensions of the array. Of course, an 
accelerator family may have any number of structural 
parameters. Figure1D demonstrates an exponential rather 
than polynomial growth law, as just one example of growth 
laws of arbitrary complexity. For example, [14] uses a bus 
structure based on combinatorial Steiner systems.  In that 
example, a term in the growth law involves an expression 
of the form N!/(N-K)!K!, for structural parameter N and 
application parameter K. 
 Figure 1C illustrates multiple coupled structures, 
possibly representing a cubical computation array, a square 
array of row reductions, and a linear array of column 
reductions, where the sizes of the structures are locked to 
each other. Each structure is assumed to have a different 
unit cell with different resource requirements. The growth 
law is represented by a polynomial with separate terms for 
each of the inter-related structures: k1N+k2N2+k3N3. 
Figure 1E shows a linear structure like that in 1A, but with 
the added complication of consuming two different FPGA 
resources: logic and RAM. Depending on the specific 
FPGA’s resource availability and the specific application’s 
resource consumption, either of the two resources could be 
the one that limits the size of the array. 
 Of course, all of these features can occur in the growth 
law for any one system. One computing array can involve 
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multiple structural parameters describing nonlinear 
relationships between coupled structures, with interlocking 
terms for different types of FPGA resource. 

3.4. Array growth – not just loop unrolling. 

Loop unrolling is a standard compilation technique, both in 
software compilation and in synthesis from high level 
languages [1]. It could, in principle, be one approach to 
expanding a linear structure up to the capacity of the FPGA.  
 The factors illustrated in Figure 1 show some of the 
reasons why loop unrolling is problematic at best and 
impossible in the general case. The first problem is that 
linear techniques for loop unrolling poorly represent non-
linear computing structures such as cubes or trees. The 
second problem, suggested by Figure 1B, occurs when 
multiple loops are candidates for unrolling, with no clear 
way to decide how much unrolling should be performed 
along each axis.  
 A third problem is illustrated in Figure 1C. Typical 
design decomposition will break the compound structure 
into multiple communicating components, in any over 
several meaningful ways. One designer might separate the 
three substructures into separate components; another 
designer might group a plane of the cube with a column of 
the 2D array and a cell of the linear array. In either case, the 
structural parameter creates a coupling between multiple 
design components. Typical loop analysis operates locally, 
within a single component. Total resource allocation, 
however, depends on global analysis of multiple, coupled 
design components. 

3.5. Optimizing the computation array 

Equation (2) summarizes the problem of optimizing the 
computing array for a given member of some application 
family, subject to the constraints of a specified FPGA.  

Symbols in Equation (2) have the following meanings, 
defined by the FPGA, the application family, or the specific 
member of the application family being instantiated: 
 N = (n1, n2, …nI) The set of structural parameters that 
define an accelerator configuration, normally a tuple of 
non-negative integer values. These parameters and their 
meanings are defined by the application family. It is worth 
noting that this approach inverts the usual sense of the 
structural parameters. Normally, they are design inputs; in 
this usage, they are consequences of other design decisions.  
 Nopt defines the most desirable configuration possible, or 
one of the configurations tied for most desirable 
 V(N) This predicate determines whether structural 
parameters (n1, n2, …nI) meet architectural validity criteria. 
Validity constraints on structural parameters apply not only 

individual parameters in N, but to arbitrary relationships 
between sets of parameters It expresses the idea that, in 
some application families, particular combinations of 
structural parameter values may be disallowed, without 
respect to the specific member of the application family or 
capacity of the particular FPGA in use. 
 B = (b1, b2, … bK) These application-specific values 
represent the resource utilization for each element of the 
application accelerator. Although the set of structural 
parameters is specific to an application family, the actual 
values of each parameter depend only on the details of the 
family member. It is assumed, for now, that the values 
describing resource utilization are independent of the FPGA 
platform. 
 RF = (r1

F, r2
F, … rJ

 F) These values specify the integer 
amounts of resource j available in FPGA F. This assumes 
that all models of FPGA under consideration support the 
same types of computing resources, independent of any 
other model of FPGA. 
 Sj(N, B) These functions state the consumption of FPGA 
resource j for design parameters N and application-specific 
usage coefficients B. These functions capture the growth 
laws of the application family. For current purposes, these 
functions are assumed independent of the FPGA platform. 
 U(N) The utility function is a scoring function such that 
higher values indicate preferable accelerator configurations. 
If U(N1) = U(N2) ∧ N1 ≠ N2, then configurations 1 and 2 are 
different but equally desirable; either could be chosen. 
Absolute values of the utility function have no significance. 
The ranks of utility values simply establish the ordering of 
more and less desirable accelerator configurations for an 
application family.  
 Equation (2) suggests that the most desirable accelerator 
is the largest one that fits the FPGA-specific resources, 
once the application family growth laws and application-
specific usage demands have been specified. Maximizing 
U(N) for configuration parameters N is, in general, a 
difficult problem, the exact solution of which is beyond 
scope of this discussion. Because realistic parameter sets N 
have modest numbers of structural parameters and modest 
integer ranges, exhaustive search of the configuration space 
defined by V is assumed to be acceptable. 

Nopt = argmax U(N) 
N | V(N) ∧ {∀j : rj

F ≥ Sj(N, B) } (2) 

3.6. Simplifying assumptions 

Without loss of generality, predicate V and functions U and 
Sj are assumed to be monotonic in the following senses. Let 
N and N’ be any tuples of structural parameters, such that 
N’ is identical to N in all positions except one where 
ni < ni’. Predicate V(N) is said to be monotonic if 
¬V(N) ⇒ ¬V(N’). Holding all other nj≠i constant, there is 
some limit for ni below which all configurations are valid 
and above which they are not. 
 It is also assumed that U(N') ≥ U(N), i.e. that the value 
of an accelerator increases with at least weak monotonicity 



in all components (and subsets of components) of N. 
Functions Sj are assumed monotonic in the same sense as U, 
for any given application family member characterized by 
some fixed B. 
 These constraints are not necessary for Equation (2) to 
be valid. There is, however, intuitive appeal in the idea that 
larger ni represent larger computation structures so have 
utility U at least as high.  There is also appeal in the 
intuition that larger structures consume at least as much of 
each FPGA resource according to Sj. The real reason for 
monotonicity is pragmatic, however. Monotonic objective 
functions U(N) are far easier to maximize than non-
monotonic functions. Monotonicity of Sj(N, B) helps in 
limiting the number of configurations examined. Once 
some resource limit is exceeded, it is no longer necessary to 
continue examining configurations with larger values of ni, 
since larger accelerators would consume at least as much of 
any resource j, and would continue to violate resource 
constraints. Also, non-negativity of ni and monotonicity of 
predicate V(N) take the place of some alternative 
mechanism for setting lower and upper bounds on values 
for structural parameters, i.e. for limits to the parameter 
space to be searched.  

4. LAMP IMPLEMENTATION 

Equation 2 provides an analytic model for exploring the 
space of array sizes, but it can not be readily expressed in 
current hardware description languages. Experience 
suggests that function U and predicate V often have 
convenient representation in closed form, but that resource 
estimation functions Sj are relatively complicated and must 
incorporate knowledge of many design components. Values 
B that represent resource utilization of any given family 
member depend on the numbers of bits in the data elements 
and on the complexity of the member’s unique logic 
elements. No existing hardware design languages make 
these values available explicitly. 
 The Logic Architecture by Model Parameterization 
(LAMP) tool set supports parameter search using two basic 
mechanisms: heuristic leaf estimation, and extensions to the 
underlying HDL on which LAMP operates. LAMP tools 
acknowledge that an FPGA based accelerator involves at 
least two developers with different skills, design 
responsibilities, and preferred programming tools: a logic 
designer who creates the communication and pipeline 
structure, and an application specialist who uses the 
accelerated computation. 
 The logic designer uses a standard HDL such as VHDL, 
with XML-based markup language (LAMPML) to 
parameterize the leaf functions and data types in the design. 
Standard hierarchical logic design already creates a tree 
structure. The tree’s root is the outermost design 
component; branches and sub-branches represent instances 
of components and of their inner components. LAMP 

allows the logic designer to overlay the call graphs of 
resource estimation functions onto this design hierarchy. 
The logic designer uses LAMP markup to define functions 
in each component that estimate the usage of each resource 
for a given set of structural parameters. That estimation 
function is defined in terms of estimation functions 
exported by the inner components, numbers of component 
instances, knowledge of the logic structures outside of 
LAMP control, and leaf resource estimates. Each 
component uses only local knowledge of its own structure 
and of symbols exported by its immediate inner 
components, as recommended by the Law of Demeter [9], 
but the recursive structure makes a global resource estimate 
available at the root level.  
 The application specialist defines application-specific 
data types (e.g. the kinds of characters used in string 
comparison) and leaf functions (e.g. the function that rates 
quality of match between characters). These type and 
function definitions are written in a C-like syntax unique to 
LAMP, and coupled to LAMP markup in the HDL portion 
of the accelerator design. Since these definitions are written 
in LAMPML they are accessible to the LAMPML language 
processor, and in particular to LAMP’s resource estimation 
heuristics. 
 LAMPML provides two related primitives for resource 
estimation: 
 (1) n = synthSize(typeName); 
and  
 (2) n = synthSize(fctn, typeName, …); 
The first form of synthSize returns the number of bits 
allocated to the data type named, somewhat the way the C 
language’s sizeof operator works on types or values. The 
second form of synthSize estimates the number of logic 
elements needed to implement function fctn. Since 
LAMPML supports polymorphic function definitions, the 
caller must provide parameter type declarations to 
disambiguate the function implementation. 
 LAMPML provides a second level of polymorphism at 
the level of a HDL design component. A FIFO, for 
example, may be instantiated repeatedly with different data 
types of different widths. The synthSize function works 
with that type parameterization, so that form (1) of 
synthSize returns a value appropriate to the actual type 
bound to symbol typeName in each different instance of 
the component in which it occurs. Also, because LAMPML 
can treat function implementations as parameters, form (2) 
of synthSize returns potentially different values 
according to the bindings of its typeName parameters and 
depending on the local binding of actual function definition 
to symbol fctn.  
 Exact resource utilization figures can only come from 
actual synthesis, so LAMP uses conservative heuristics to 
estimate the numbers of logic elements needed for a 
function. The synthSize function is part of the LAMP 
language tool, but is loosely coupled to other parts of 



LAMP logic. That makes it easy to modify the 
synthSize logic as improved estimation techniques 
become available. The current implementation of LAMP 
supports only estimates of logic utilization, not of RAM, 
block multipliers, or other resources. 
 Additional input to LAMP describes the FPGA itself, 
and provides another place in which resource estimation 
functions may be defined. FPGA-dependent estimation 
functions are especially helpful for estimating block RAM 
utilization, which depends not only on the number of bits to 
be stored but also on the word width. As an example, 
consider a RAM logically organized as 128 words of 128 
bits each. Block RAMs in the Xilinx Virtex family contain 
18Kb, in word widths to 36 bits. Even though one of those 
block RAMs holds enough bits to contain the 128×128 bits, 
it take four Virtex block RAMs to implement the full word 
width. Block RAM sizes and supported word widths are 
different in different models of FPGA, so device-specific 
estimation functions help in retargeting of the application-
specific part of an accelerator without changes to the code 
representing the application logic.  
 Referring to Equation (2), it can be seen that the 
synthSize function fills the role of application-specific 
usage values B, and LAMPML functions embedded in each 
logic component support recursive construction of 
estimation functions Sj. The LAMP input representing 
FPGA specifics is expected to define the constants RF for 
the resources in FPGA F. Validity test V and utility scoring 
function U can be written in LAMPML with the same 
notation used for the other functions described above.  
 Case studies have shown that a modest number of 
structural parameters N describe many useful accelerator 
structures, and that useful values of structural parameters 
tend not to exceed a few hundred or a few thousand. Given 
the simplifying assumptions of section 3.6, exhaustive 
search of the parameter space is a practical approach to 
solving for Nopt, the most desirable accelerator 
configuration, in Equation (2).  
 Thus, LAMP primitives and programming features 
support automated array sizing in terms of the application 
family, details of the application family member, and 
FPGA-specific resources.  

5. CONCLUSION AND FUTURE DIRECTIONS 

Although sizing is very different from traditional DSE, 
there appear to be common low-level components in their 
logic. In particular, DSE typically involves synthesis 
estimation based on heuristics [5] or measurements of 
component synthesis [13]. The initial implementation of 
sizing logic uses only crude synthesis estimation. We look 
forward to improving this phase of the sizing calculations 
using techniques from the DSE literature. 
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