
GhostSZ: A Transparent FPGA-Accelerated
Lossy Compression Framework

Qingqing Xiong∗ Rushi Patel∗ Chen Yang∗ Tong Geng∗ Anthony Skjellum† Martin C. Herbordt∗
∗Dept.of Electrical and Computer Engineering, Boston University

†Simcenter & Dept. of Computer Science and Engineering, University of Tennessee at Chattanooga

Abstract—High-performance computing (HPC) applications
often generate enormous amounts of data that must be trans-
ferred for check-pointing, in situ processing, or post-execution
analysis. To reduce the related network traffic and storage
consumption, lossy compression schemes that target scientific
data are often used. SZ compression emerged three years ago
and has gained much attention because of its high compression
ratio. However, performing SZ compression can take half a day
per Terabyte of data; this could be a drawback to adoption.

We propose GhostSZ an FPGA framework for accelerating
tasks in SZ at line rate, and so transparently. The critical
problem to be overcome is the tight data dependence central
to SZ. GhostSZ solves this with a data transfer path having
novel staged hardware. We test our implementation with both
synthetic and real HPC application data and show 9.5×-80× core
versus pipeline speedup over the optimized production version
running on a state-of-the-art CPU and 8.2× per chip. Much of
the variance in performance is due to the FPGA already running
at line rate and so benefiting less from optimizations applicable
to the CPU only on the most favorable data sets. The significance
of this work is the possibility of a major reduction in required
networking and storage in HPC installations. For example, using
GhostSZ, fewer than 10 FPGAs would be sufficient to handle the
entire I/O bandwidth of the top entry on the latest IO-500 list.

Index Terms—Lossy Compression, In-Line Acceleration, FP-
GAs, High-Performance Computing

I. INTRODUCTION

Scientific simulations continue to grow ever larger and
produce increasingly extreme amounts of data: the Community
Earth Simulation Model generates hundreds of TBs of data
in a few tens of seconds [1]. Transferring and storing such
large data sets introduces heavy network traffic and can easily
exceed available storage capacity and network bandwidth.
Compression is central to mitigating this problem.

Traditional deduplication of redundant files and lossless
compression methods (e.g., LZ77 of Gzip [2]) guarantee
complete data recovery, but can provide a poor compression
ratio on scientific data that are usually single/double precision
floating point. In recent years lossy compression methods have
been explored to provide a higher compression ratio, especially
for such scientific data; adoption in check-pointing, in situ
processing, and post-execution data analysis is a growing
trend. A fundamental assumption is that the introduction of

This work was supported in part by the NSF through awards CNS-
1405695, CCF-1618303, and CCF-1821431; by the NIH through award
1R41GM128533; by a grant from Red Hat; and by Intel through donated
FPGAs, tools, and IP.

small errors into simulated reality is generally worth the
massive compression ratio that lossy compression enables.

The state-of-the-art lossy compression tool for HPC scien-
tific simulations is perhaps SZ, which produces compression
ratios 2×-10× higher than the next best method [3]. SZ
exploits two characteristics of scientific data. The first is that
adjacent physical data, e.g., in an electrostatic or climate
model, are likely to be correlated. The second is that many
values in the IEEE 754 floating point (FP) format need few
bits, especially when close to zero. SZ is thus a multistage
framework with the first being curve fitting, the next an FP-
specific transform, and the final being a pass of lossless
compression. These operations are very costly, however; in
one application it takes one CPU one hour to generate one
TB of data, but more than half a day to compress it, and
several hours to decompress [3]. One key reason for the slow
performance is simply the large number of flops required, but
data dependencies during curve-fitting are also a problem as
they inhibit vectorization.

Ideally the data would be compressed in-line at the point
of generation and decompressed at the point of use. In the
last few years FPGAs have become ubiquitous in large data
centers to deal with just such problems. Both Smart-NIC [4]
and Bump-in-the-Wire [5], [6] models are appropriate here.
Besides configurability and high performance, other FPGA
advantages include external connectivity and tight coupling of
application logic with the communication data plane [7]–[10].

In this paper, we propose GhostSZ, a framework that
contains a novel hardware design based on SZ. GhostSZ
is a five-step framework that contains: offline configuration,
linearization, curve-fitting, quantization, and Gzip. Of these,
all but offline configuration can be part of SZ. One other
change is replacing the binary representation in the original
SZ with the quantization method found in later versions of
SZ; we find that this best exploits FPGAs’ attributes.

Our primary contributions are, first, the GhostSZ system,
which contains novel design features and is the first imple-
mentation following SZ compression on FPGAs; and second,
the improvement in performance over the newest software
version of SZ (SZ-2.0.2.0) by 10×-85× (core versus pipeline)
and 8.2× per chip with a similar peak signal-to-noise ratio
(PSNR) and 25% higher compression ratio on average. The
significance is that GhostSZ is able to compress data with
nearly no impact on time-of-flight and with modest hardware
cost. This could substantially reduce requirements for network

bandwidth and storage consumption for scientific computing.
The remainder of this paper is organized as follows: We

cover related work in § II. Next, we give the background on
SZ compression in § III. In § IV we present our hardware
design and the corresponding optimizations. We then describe
our testbed, the input data sets used, and the baselines in § V.
We follow up in § VI with results and analysis. Lastly, we
offer conclusions and future work in § VII.

II. RELATED WORK AND OVERVIEW

There has been little previous work on FPGA implemen-
tation of lossy compression, and what there is has been for
methods related to image processing and not for scientific
computing [11]–[15]. Santos et al. [13] implement the LCE
algorithm (lossy compression for Exomars) that has similar
procedures as SZ. LCE contains a 2D predictor and a quanti-
zation module; however, it is designed for image data thus does
not require long-latency floating point arithmetic operations.
Also, LCE uses a simple predictor that takes the mean-value
of two neighboring points.

In the domain of scientific computing, previous lossy com-
pressors [16]–[18] appear to have been superseded by SZ [19],
so that is our focus. Since the original publication [3], the SZ
group has provided many optimizations [20]–[25] such as for
increasing fidelity (reducing the compression error), increasing
the compression ratio, supporting users’ diverse error-bounds,
and improving performance.

In this first study we have two goals. The first is to provide
a framework for current and future modules. The second
is to implement the most important of these modules. For
experimental comparisons, we always use the latest SZ (SZ-
2.0.2.0) which includes all the optimizations mentioned above,
some of which are available by specifying configurations.

III. INTRODUCTION TO SZ COMPRESSION

SZ compression is a lossy compression tool initially target-
ing scientific data, where a high compression-ratio is hard to
achieve with state-of-art compression tools. SZ adopts domain
knowledge for compression and allows users to define an error-
bound based on allowable data variation. It contains four major
steps [26]: 1) linearizing the data; 2) using a best-fit curve
fitting model to predict data points based on preceding points;
3) compressing unpredicted data by analyzing their binary
representation; and 4) further compression using Gzip.

Along with these four steps, SZ also contains various
performance/accuracy optimization methods (implemented in
different tool versions). In this paper, we maintain the four step
arrangement and keep the first two and the last steps mostly
as they are, but we strategically select the quantization method
as the third step for best exploiting FPGA capabilities.

A. Linearization of Multidimensional Arrays

SZ targets scientific data where the data are typically stored
as multidimensional arrays, for instance, temperature data for
each point in 3D space. The second step of the SZ sequence,
linearization, requires serialized input and ideally uses the

i 3 i 2 i 1 i
1-D array

Da
ta

 v
al

ue

quadratic
linear
neighbor

Decompressed Value
Predicted Value
Original Data Value

Fig. 1. Illustration of best-fit curve-fitting model. The decompressed values
are used as the proceeding values for fitting. In this figure, the quadratic fitting
result is within the error bound and is the best fit.

intrinsic memory sequence of the data array as the input to
the curve-fitting model.

B. Best-Fit Curve Fitting

As the data enter one by one, the curve fitting model tries
to predict the next data point from the preceding neighbors’
values; if successful, it can then represent the data point as
an encoding of the fitting model. SZ mainly uses three fitting
models, corresponding to 0th, first, and second orders. The
first model predicts the current point as the preceding neigh-
bor’s predicted value. The second uses linear interpolation; it
predicts the current point i from the two preceding values,
following Xi = 2Xi−1 − Xi−2 (X denotes the predicted
value). The third uses quadratic interpolation using the three
preceding values, following Xi = 3Xi−1 − 3Xi−2 + Xi−3.
The fitting models are illustrated in Fig. 1.

In this scheme, the entire stream can be compressed simply
as the first value followed by a record of the interpolation order
that best represents each following point. Assuming that the
fitting model type can be represented with 2 or 3 bits, the data
is compressed from 32-64 bits to 2-3 bits. If the predicted value
cannot meet the error bound requirement, then the fitting fails,
the data point is encoded as unpredicted, and the procedure
goes to the next compression step.

C. Floating-point Data Binary Representation Analysis

For the unpredicted data points, SZ analyzes the IEEE 754
representations and reduces the number of bits. This is possible
because the closer the data is to zero, the fewer mantissa bits
it requires for representing the data within the error bound.
SZ first normalizes the unpredicted data to the middle-value
(12 (min+max)) for making them closer to zero, then removes
the insignificant bits in the mantissa, and finally uses an XOR-
leading-zero-based floating point compression method.

D. Adaptive Error-Based Quantization

Alongside the binary representation method just described,
new versions of SZ compression [22] provide an error-based
quantization method for compressing the unpredicted data.
During the first phase of curve-fitting, if the predicted result
exceeds the error bound, SZ shifts the result by a multiple

Fig. 2. Error-bound quantization illustration.

of 2∗error-bound. When this result is used, the number of
error bounds shifted up or down is stored along with the
fitting model (m bits represent 2m different shift amounts, see
Fig. 2). Therefore some unpredicted points in Step 2 can now
be predicted with the use of added intervals. The size of m
must be chosen with care: the bigger m is, the more types of
shifts this method provides; but the more storage is consumed
for storing m. SZ uses an adaptive method to decide how big
m should be by evaluating the prediction hit rate and giving
the user suggestions as to a preferred size.

E. Further Compression with Gzip

SZ further compresses the data by using the lossless com-
pressor Gzip on the compressed byte stream produced from
the previous steps. The results from previous steps are 2-bit
encodings, m-bit quantization codes and the unpredicted data;
these usually result in a high repetition count for each type of
code, which Gzip handles well (LZ77 algorithm [2]).

F. Error-Bound Support

Lossy compressors generally use error-bounds to control
data distortion. It indicates the biggest allowed difference
between the original and decompressed values. There are many
types of error-bounds such as absolute, relative, and point-
wise. SZ currently supports all three.

IV. DESIGN AND IMPLEMENTATION

In this section, we describe the design and implementation
of the GhostSZ compression method. A goal was to make
minimal changes when introducing FPGA acceleration. The
linearization step is unchanged as it exploits data locality and
it avoids extra performance overhead from the linearization
algorithm. We currently support absolute error-bounds when
implementing multiple GhostSZ pipelines on the FPGA. A
single GhostSZ pipeline can be configured with one absolute
value as the error-bound but can be adapted to use a “regional”
error-bound.

A. Five-step GhostSZ Compression Framework

When mapping software algorithms to FPGA hardware
designs, their modularity and synchronization properties are
significant to the success of the design. We describe the five
steps of the GhostSZ FPGA framework:

I Offline configuration: The user selects parameters for the
to-be-compressed data file: grid data dimension size, data
type (float/double), error-bound, and optionally how many
pipelines to use. This step is essential for GhostSZ to
configure the hardware design (e.g., width of each data
file, FIFO depth required).

Fig. 3. Curve-fitting pipelines. Arithmetic operations are floating point.

II Linearization moves the to-be-compressed data to the
FPGA designs based on the data location in memory. With
the partitioning or blocking methods enabled, GhostSZ
linearizes data in parallel to multiple pipelines by con-
catenating the read data from several blocks and sending
them to different hardware pipelines.

III Curve-fitting: After the to-be-compressed data arrives
at the hardware, it first goes through the curve-fitting
pipeline, which tries to predict the original data with
3 fitting models. If successful, the output is a 2-bit
encoding. If the prediction cannot meet the error bound,
then information about the current data, e.g. the error, gets
passed to the next step.

IV Error-bound Quantization takes the error calculated from
the previous stage and calculates the quantization code
as the output. If the error cannot be quantized, then the
(all-zero) quantization code and the original data value
are stored.

V Gzip hardware (IP) losslessly compresses all data.
These steps contain many design details which are described
in the following subsections.

B. Hardware Design of Best-fit Curve-Fitting

The best-fit curve-fitting algorithm includes three fitting
models which are implemented as three hardware pipelines
as shown in Fig. 3. Each pipeline contains various floating
point IPs for arithmetic operations.

1) Challenges: Mapping the fitting models to hardware
encounters two major challenges: synchronization between
pipelines and the introduction of pipeline bubbles by the
feedback loop. To deal with the synchronization issue we insert
parameterized shift registers. For instance, in the linear model
shown in Fig. 3, the original data needs to wait for the output
of the first subtractor for 14 cycles; this waiting is done by
adding a shift register for the original data.

Pipeline bubbles are due to data dependencies between
processing of successive data points. Data arrive on every
cycle, but the longest fitting-pipeline takes 50 cycles (for
generating the prediction and the 2-bit encoding). To fit the
next data point, the previous prediction result is required; this

Fig. 4. Reorder fitting design. We fit orthogonal to the data streaming direction. The preceding values P are stored in the line buffers. Here, dim x means x
direction’s size, and D denotes the original value. Data streams in from x direction, and the fitting window also moves along x direction.

results in a 50-cycle pipeline bubble. This is far too long to
be overcome through simple data forwarding.

2) Reorder Fitting: To solve the pipeline bubble problem
we take advantage of the multiple dimensions in the data;
rather than fit the data in the streaming direction, we fit in an
orthogonal dimension with a reorder fitting method (shown
in Fig. 4). SZ works under the assumption that the grid’s
dimensions and types are known, and that neighboring points
are correlated. Assuming data have similarly strong correlation
in all dimensions, we can fit in any direction. If one dimension
is strongly preferred, then a corner turning operation can be
added.

In the reorder fitting design, a shift register array is used
(similar to the line buffers in image processing) where each
shift register stores 3 preceding values; the fitting window
moves in the array among the critical cycle regions (CCR),
following round-robin order. We give an example here with
Fig. 4. In Cycle50, the fitter generates one result from 50
cycles ago for D[0][0] (D denotes the original value) and the
corresponding shift register shifts to store the result as the
new preceding value P[0][2]. Meanwhile, the fitting window
takes the new proceeding values P[0] and tries fitting D[1][0].
The fitting window is designed as three staged-multiplexers
for selecting the correct preceding values; this adds four extra
stages to the critical loop length (CL).

3) Data Correlation: For exploiting the correlation between
data in one direction (e.g. y), it is necessary to guarantee that
the preceding data and the current data points are neighbors in
the grid. It is possible to parameterize the pipeline length (the
number of shift registers in the array) as the x dimension’s
size (dim x) to guarantee the correlation. When dim x is
smaller than the CL, to maintain the data correlation, we can
either rearrange the data or reduce the CL by choosing a
lower-frequency configuration for the floating point IPs. When
dim x is bigger than the CL, we extend the line buffers and
the CL to be dim x; thus extra resources are required for: the
line buffer, the buffer for extending the three fitting models,
and the bigger multiplexer for moving the fitting window. It
is also possible to prevent the overhead and also maintain
the correlation via partitioning the data in the x direction.
In this case, the fitting pipeline keeps the original CL as the
line buffer’s size; this might introduce overhead in reordering

Fig. 5. Parameterizable error-bound quantization (PEBQ) module pipelines.
The m is parameterizable by users.

the data in memory or more read/write cache misses. Since
the data access patterns are regular-strided after partitioning,
this overhead might be negligible with CPU prefetching.
Partitioning also potentially brings performance benefits when
combined with blocking; details of the benefits are in § IV-E.

C. Parameterizable Error-bound Quantization

For data points that cannot be predicted using the fitting
models, SZ provides an adaptive error-bound quantization
approach to compress those data points. For instance, if the
distance between the prediction and the original data is about
n times of the error-bound, SZ uses m bits to represent
the distance and keeps the prediction result. How big m
should be is decided adaptively in SZ. GhostSZ provides
a parameterizable error-bound quantization (PEBQ shown in
Fig. 5) approach that is similar to SZ’s adaptive approach. In
the PEBQ, m is set to a default value and can be changed by
the user.

To fit the calculation of the quantization code into the
design, we evaluate the representation of the quantization code
and pick the one with the least resource/latency overhead.
SZ’s original quantization code, shown in Fig. 2, might
result in extra computation on FPGAs for conversion when
decompressing from the quantization code. Instead, we design

the calculation based on

Quantization code = toint

(
error

2× Error-bound

)
. (1)

The resulting quantization code is in two’s complement. A
positive quantization code indicates that the first-phase pre-
dicted value is bigger than the original value, while negative
code indicates that it is smaller.

In the PEBQ hardware design, shown in Fig. 5, we max-
imally overlap the curve fitting pipeline with the PEBQ. We
input the error result of each fitting model to PEBQ, and
design three identical pipelines for calculating the quantization
codes. In each pipeline, we use floating point IP to convert
the division result to a variable-length integer (which can be
parameterized, the default is set to 8 bits). From the IP, we
output overflow and underflow signals for indicating the case
that m bits cannot represent the error. The selection of the
quantization codes from three pipelines is based on the best-
fit result encoding from the first phase.

To provide an adaptive design, we feed back the hit rate
of the PEBQ to the user. We use a register to record the hit
count (when the quantization code is non-zero). We calculate
the hit ratio with the hit count and the unpredicted data
count. In the FPGA design, the change of m is translated to
a new PEBQ configuration with an updated m value. Note
that quantization of each unpredicted data point results in
m + 2 bits; the leading 2 bits store the best-fitting model’s
encoding (2b00 for the first fitting phase, but the closest
model’s encoding for the second quantization phase). Since
the PEBQ can be detached from the reorder-fitting model,
it is possible to support partial reconfiguration of the PEBQ
and keep the reorder-fitting model. This trade-off needs to be
investigated further.

D. Gzip

There are many FPGA Gzip products on the market [27],
[28]; we use an approachable design example [28] written
in C++. We use Xilinx Vivado High-Level Synthesis [29] to
generate the hardware design and adapt it to our Intel FPGA.
The FPGA design includes most of the major components
of the Gzip design including LZ77 and Huffman Encoding.
We are aware that there has been much research about Gzip
hardware designs, e.g., [30], [31]. The Gzip hardware can be
easily replaced for further optimization.

E. Performance Optimization Method: Blocking

A method of blocking the input data is used to provide
further performance improvement over the reorder-fitting de-
sign. Blocking the input data is an obvious optimization but
requires additional logic. The first new component is to support
streaming multiple blocks at the same time. The second
supports the ability to stream into multiple blocks of output
values and concatenate the blocks together. Since SZ takes
domain knowledge of the data as an input for compression, it
is reasonable to put the blocking component in the CPU; SZ
gives users an option to set the blocking number.

Fig. 6. Example system architecture with GhostSZ. MGTs are the multi-
gigabit transceivers. Fit is the curve-fitting and Quant is quantization module.

How to block the data is a challenging problem. We mention
the necessity of data partitioning in § IV-B2 when attempting
to reduce FIFO overhead; this happens in the x dimension
in our example (Fig. 4). Blocking can be implemented in
all directions, preferably the highest dimension (z in the
example) to reduce cache misses when splitting or writing
back data. However it is also possible to block along the same
direction, as partitioning requires a single solution for both
issues/demands.

F. Decompression

Decompression is a significant component for the comple-
tion of a compressor. Many compression papers [3], [19], [31]
mention little about decompression, since decompression usu-
ally follows the exact opposite flow of compression; this is also
mostly true for GhostSZ. The only exception is that GhostSZ’s
hardware design of the decompressor has different input and
output entities and contains a few different hardware arithmetic
units. For instance, in the decompressor, the necessary outputs
from the three models are three fitting results instead of the
absolute value of the error. Also, the quantization module uses
a multiplication operation to calculate the exact shifts recorded
(instead of the division in Fig. 5). The exact shift is then
accumulated to the selected output of the fitting models as
the decompressed value.

G. System Design

The system design is shown in Fig. 6. Steps I and II are
on the host CPU side, and the hardware designs of Steps
III-V are on the FPGA. The host CPU has the interface for
using GhostSZ framework. When the data to be compressed
are transferred to the FPGA, the compression happens in
the FPGA hardware design. The FPGA is configured with
the PCIe hardware design for communicating with the Host
CPU. In real-life use cases, the compressed data needs to
be transferred to other devices such as storage or another
CPU. FPGAs have high-throughput multi-gigabit transceivers
(MGTs), which enable fast data transfer to other devices.
In this paper, we demonstrate the use case of data being
transferred/compressed via FPGA and then looped back to the
CPU. Other use cases are discussed below.

V. EXPERIMENTAL SETUP

In this section, we describe the experimental setup including
the testbed, baselines, input data, and evaluation metrics.

A. Testbed

Our testbed consists of two systems. The first contains one
CPU node on the Boston University Shared Computing Cluster
(SCC) [32]. The CPU is an Intel Xeon E7-8867 v4 running
at 2.40GHz. The second system is an Intel Xeon E5-2620 v2
@ 2.10GHz connected to an Intel Arria10ax115 20nm FPGA
via PCIe-gen3 (8 lanes). Software designs are compiled using
gcc-7.2.0 -O3.

GhostSZ was developed with Intel Quartus Prime Pro
18.1 [33]. We use Intel floating point IPs for floating point
arithmetic, and the IP configuration is set, when possible, for
the highest frequency. We configure the number of quanti-
zation bits to 14 which allows PEBQ to quantize most of
the unpredicted data (based on our tests). We vary the fitting
pipeline’s depth (the CL) to match the size of the x dimension
of each input.

B. Baseline Codes

We have two comparison baselines: the most recent release
of SZ (SZ-2.0.2.0) and our tailored implementation of the SZ
algorithms, i.e., software versions of the selections of SZ we
use in GhostSZ.

SZ-2.0.2.0 includes various optimization methods, such as
2D fitting as opposed to 1D fitting [22], binary representation
analysis [3], and a linear regression-based predictor [24].
Each optimization might impact performance and compression
ratio; therefore, comparing our hardware design only with SZ-
2.0.2.0 is insufficient.

Tailored SZ contains the parts of the SZ algorithm used on
GhostSZ and coded to match the hardware implementation.
It is written in C++ and contains linearization, 1D fitting
(in-order fitting as opposed to GhostSZ’s reorder fitting),
quantization with 14 bits, and a Gzip function call.

Parallel compression is enabled in two ways in SZ: 1) SZ is
called independently by multiple processes and used to com-
press multiple files (batch-mode); and 2) Using OpenMP [34]
in SZ for achieving parallelism. We experimented with the
second case; the first is discussed in the results section.

C. Input Data

We tested our design with both synthetic data (SZ Testdata)
and real scientific/scientific simulation data from sev-
eral domains, including the Eddy hydrodynamics simulator
(HD) [35], climate simulations CICE-Month and CICE-Snow
(CLI) [1], and astrophysics simulations Sky and Atlas (AS-
TRO) [36]. The data sources are in binary. Details are in
Table I.

We ran Eddy and generated results for 2D grids with
128×128 points containing velocity, pressure, and coordinates.
We gathered 10 iterations’ data for 10 files in total. We
downloaded the other data directly online. CICE-Month and
CICE-Snow have 2D data with x dimension size of 384, but
various y sizes. Sky is 2D with 256 points in the x direction;
Atlas is also 2D with 104 points in the x direction. For
testing parallel compression, we blocked Atlas evenly in the

y direction; SZ-2.0.2.0 code blocked the data on both x and
y directions (x direction only for 2 threads).

We use 10−4 as the error-bound for all input data; this is
the default error-bound in the SZ configuration file.

Scientific data might be stored in various formats such as
netCDF, HDF5, and some application-specific formats; pro-
cessing these formats might need extra support. For example,
CCSM data is stored in netCDF format; SZ recommends users
to use the netCDF reader’s library for reading this format and
then calling SZ to compress the data. We preprocessed the
input data formats from applications, and input the same data
to two baselines and GhostSZ. Note that for almost any format,
creating an in-line FPGA pre-processor is trivial.

D. Evaluation Metrics

GhostSZ was evaluated with respect to latency, compression
ratio, and compression quality (errors). We also measured
FPGA properties such as resource consumption and operating
frequency.

1) Latency: For a fair comparison, we did not take the file
reading/writing time into account to guarantee that time is not
spent on disk I/O; rather that the entire latency is for doing the
compression. Specifically, the latency measured for GhostSZ
is the time between sending the first data from the host to
receiving the last compressed result from the FPGA. For the
two software baselines, the method is analogous.

2) Compression Ratio: is usually evaluated as ρ = So/Sc,
where So is the original data size and Sc is the compressed
data size.

3) Average Error in Compression: There are many ways
to measure the error in compression, including the cumulative
distribution of the error [3], the normalized root mean square
of the error (NRMSE), and the peak signal-to-noise ratio
(PSNR) [16], [22]. We used both NRMSE and PSNR. First,
we calculated the root mean squared error (RMSE) with
equation 2:

rmse =

√√√√ 1

n

n∑
i=1

(abs errori) (2)

where n represents the total number of data points and
abs errori denotes the absolute error value of data point i.
Then nrmse = rmse

Rx (Rx denotes the values’ range of the
original data). The PSNR was calculated with equation 3:

psnr = 20× log10(
RX

rmse
) (3)

where PSNR represents the size of the RMSE relative to the
peak size of the signal. In the compression error results, the
smaller the NRMSE is, and the bigger the PSNR is, the higher
the quality of the reconstructed data.

VI. RESULTS AND ANALYSIS

Throughput performance, FPGA resource and clock fre-
quency, and two metrics related to compression quality results
are shown. We then discuss possible use-case scenarios and
the performance scalability of GhostSZ.

TABLE I
INPUT DATA INFORMATION.

Domain Name Source Description Total Size
Synthetic SZ Testdata Unkown Test floating point grid data in SZ-2.0.2.0 source code. 32.8KB

HD Eddy Nek5000 [35] 2D solution to Navier-Stokes equations. 1.97MB

CLI CICE-Snow CESM [1] Community sea-ice simulation based on Community Earth System Model (CESM). 4.91MB
CICE-Month 374MB

ASTRO Sky SDSS [36] Data taken by the fourth phase of the Sloan Digital Sky Survey (SDSS) from 2014-2017. 305MB
Atlas 2.67GB

TABLE II
COMPRESSION THROUGHPUT AND LATENCY FOR DIFFERENT INPUT DATA.

Throughtput (MB/s) / Latency
Input Data SZ-2.0.2.0 Tailored SZ GhostSZ
Eddy 16.7 / 118ms 39.8 / 49.5ms 808.9 / 2.5ms
CICE-Snow 10.3 / 475ms 55.4 / 88.7ms 821.9 / 6.0ms
CICE-Month 87.2 / 4.29s 85 / 4.4s 824.4 / 449ms
Sky 63.8 / 4.78s 35.5 / 8.6s 820.5 / 336ms
Atlas 83.7 / 31.9s 44.9 / 59.4s 833.9 / 3.2s

A. Performance results

In this section, we first show the results for a “per core”
scenario: we use only one CPU core to run software SZ
and one FPGA pipeline to run GhostSZ. We then show the
on-chip parallel scenario: SZ enables OpenMP where up to
16 threads run concurrently and GhostSZ utilizes up to 8
hardware pipelines (with the current Arria-10 FPGA board,
the practical limit is much higher).

1) Single-Core VS. Single-Pipeline: The compression laten-
cies and throughputs for SZ, GhostSZ, and our reference code
are shown in Table II. We observe that Tailored SZ, although
it implements fewer functions than SZ, is usually slower. This
is due to extra time spent in Gzip for Tailored SZ; it mostly
requires quantization for each prediction result, it therefore
leads to a larger input size to Gzip. We pick the faster of the
two, SZ-2.0.2.0, for performance comparison. We observe the
following.
• GhostSZ’s throughput is 9.5×-80× of SZ-2.0.2.0.
• GhostSZ’s latency is always proportional to the input

data size; this demonstrates that the pipeline has no
bubbles. The software versions do not show the same
proportionality because compression time also depends
on other factors such as correlation between neighboring
points in the source data (e.g., the fraction of data points
that can be fitted do not need the quantization step).

• The measured average throughput of Tailored SZ
and SZ-2.0.2.0 is 52MB/s, which is a small fraction
of a solid-state drive’s (SSD) maximum bandwidth
(around 700MB/s [37]). GhostSZ’s average throughput
is 821MB/s and exceeds the bandwidth of one SSD.
However, in parallel network file systems where the
bandwidth is much higher (up to 0.5TB/s [38]), all three
designs can benefit from parallel compression to provide
a higher throughput.

2) On-Chip Parallel Compression: SZ-2.0.2.0 supports par-
allel compression with OpenMP (OMP) for power-of-two
thread counts; we varied the OMP thread count from 1 to 32
and measured the performance. For GhostSZ, we blocked the
input data on y dimension according to the parallelism count,

Fig. 7. Compressing Atlas data. Parallel compression time comparison
between SZ-2.0.2.0 and GhostSZ. Parallelism # indicates the number of
OpenMP threads used for SZ-2.0.2.0 and the number of GhostSZ hardware
pipelines implemented.

from 1 to 8 due to our 8-lane PCIe’s bandwidth limitation.
We ran two designs with Atlas, which is the largest data set
we have, and which also gets a relatively high compression
throughput from SZ. We show the parallel compression per-
formance of Atlas data in Fig. 7.

From Fig. 7, we observe four major points: 1) GhostSZ’s
performance scales linearly with the pipeline count. The result
is an aggregate throughput of 50gbps for eight pipelines.
2) SZ-2.0.2.0’s performance does not scale linearly with the
thread count; the reasons are most likely due to memory con-
tention, but this needs to be examined further. 3) As a result,
the advantage that GhostSZ has over SZ-2.0.2.0 increases from
around 9× to 16× when both have 8× parallelism. 4) When
using 32 cores on the Xeon E7-8867 v4 CPU, 8-pipeline
GhostSZ on an Arria10 FPGA still outperforms SZ-2.0.2.0
by 8.2×; this “per socket” improvement can be larger with
a 16-lane PCIe and with another data set (e.g., Sky; it has a
lower software SZ compression throughput than Atlas based
on the single-core result).

B. Resource and Frequency Results

We present the FPGA resource consumption when imple-
menting the GhostSZ with 104 as the line buffer width (for
Atlas). The results are shown in Table III. The Gzip design
consumes similar on-chip logic as one GhostSZ pipeline
without Gzip. Scaling is limited by BRAM (RAM blocks)
consumption by Gzip and the PCIe-gen3 communication band-
width (8-lane). We measure a running frequency of 228 MHz
with some degradation when using multiple pipelines (still
around 200MHz).

TABLE III
RESOURCE UTILIZATION RESULTS. OTHERS INLCUDE MGTS, PCIE.

GhostSZ
(No Gzip) Gzip Others Total % Total for

8 pipelines %
ALMs 9062 10726 15791 8% 42%
DSP 10 0 0 <1% 5%
BRAM 1 234 219 16% 76%
RX+TX 0 0 8 36% 36%

TABLE IV
COMPRESSION RATIO RESULTS COMPARISON. GHOSTSZ PERFORMS

SIMILAR TO SZ-2.0.2.0.
SZ 2.0.2.0 GhostSZ

SZ Testdata 20.71 35.93
Eddy 2.43 3.61
CICE-Snow 11.03 12.48
CICE 6.94 9.16
Sky 2.09 1.81
Atlas 3.39 3.20

C. Compression Ratio and Compression Error Results

Compression ratio results are shown in Table IV.
SZ Testdata has a high compression ratio in general; this is
due to a large number of repetitions and that neighboring
points are highly correlated. Overall in this data set, GhostSZ
is able to provide an average 25% higher compression ratio
than SZ-2.0.2.0.

Compression error results for four data sets are shown in
Table V. In the results shown, the bigger the PSNR, the
lower the NRMSE, and the better the compression quality. On
average, GhostSZ’s PSNR and NRMSE are both very similar
to SZ-2.0.2.0’s. Both GhostSZ and SZ-2.0.2.0 meet the error
bound requirement of 10−4.

D. Scalability Discussion

SZ compression may take hours or even half a day to com-
press 1TB of scientific data. Because GhostSZ’s compression
latency is proportional to the input data size, we are able
to project the 8-pipeline GhostSZ’s throughput (6.1GB/s) on
the same size of data; GhostSZ only takes about 3 minutes.
Since there are no bubbles in GhostSZ’s pipeline, the latency
comes entirely from data transfer. For an Arria 10 with 11
pipelines, GhostSZ has a throughput of 8.4GB/s. However,
current generation FPGAs like the Xilinx Ultrascale+ have
roughly 8× the resources of the Arria 10. Since the pipelines
run independently, this yields a throughput of over 60GB/s.

Perhaps the highest impact deployment scenario is for the
GhostSZ FPGAs to be integrated into large-scale systems

TABLE V
COMPRESSION ERROR RESULTS: NORMALIZED ROOT MEAN SQUARED

ERROR (NRMSE) AND PEAK SIGNAL-TO-NOISE RATIO (PSNR).

NRMSE PSNR (dB)
Application SZ2.0.2.0 GhostSZ SZ2.0.2.0 GhostSZ
SZ Testdata 1.2E-5 1.1E-5 98.47 98.90
Eddy 9E-6 8E-6 101.07 101.45
CICE-Snow 1.0E-4 7.9E-5 79.91 82.02
CICE 9.2E-5 8.1E-5 77.9 79.8
Sky 2.1E-6 1.9E-6 127.83 128.36
Atlas 0 0 167.45 168.32

using MGTs as needed to fill the pipelines. Compression
is likely to happen in parallel with each process running
a part of the simulation and compressing its part of the
data. Supercomputers generally use parallel file systems with
peak bandwidth between tens to hundreds of GB/s [38].
Assuming the whole bandwidth of the top entry on the IO-
500 list (0.5TB/s) is used for writing the compressed data,
the software implementation of SZ needs at least 10k cores–
assuming perfect scalability and each providing a throughput
of 50MB/s–to reach the maximum capability of the storage.
GhostSZ can do this with around 600 pipelines. Taking only
the resource consumption into account (assuming use of 90%
of Arria 10 resources, each Arria10 board fits 40 pipelines not
including Gzip), this means when implementing GhostSZ with
no Gzip hardware, we need only around 15 Arria 10 FPGAs.
When adding Gzip, we need around 50 Arria 10 FPGAs or
fewer than 10 Ultrascale+ FPGAs.

VII. CONCLUSION AND FUTURE WORK

SZ is a state-of-the-art lossy compression framework. How-
ever, due to the complexity of the computations, performing
SZ compression might take half a day per Terabyte of data.
In this paper, we propose GhostSZ, an FPGA framework for
accelerating lossy compression tasks used by SZ at line rate,
and so transparently.

GhostSZ is currently a five-step framework that contains:
offline configuration, linearization, best-fit curve-fitting, quan-
tization, and Gzip. We tested the system with scientific data,
and showed 9.5×-80× speedup per compute unit and 8.2× per
chip for one input data. GhostSZ has an average 25% better
compression ratio and a similar peak signal-to-noise ratio
(PSNR) on average. Note that the FPGA results are limited by
our test set-up that depends on a PCI bus. Higher throughput
is possible by instead using the MGTs. Combining use of
MGTs with mapping to current generation FPGAs increases
throughput to 60GB/s with conservative assumptions.

Since the SZ compressor emerged, there have been many
optimization methods available for supporting users’ diverse
error-bound demands and for increasing fidelity and compres-
sion ratio. As a part of our future work, we plan to selectively
support these optimizations in the GhostSZ framework.

REFERENCES

[1] Community Earth Simulation Model (CESM), https://www.
earthsystemgrid.org/, 2019.

[2] Gzip compression, http://www.gzip.org, 2019.
[3] S. Di and F. Cappello, “Fast Error-Bounded Lossy HPC Data Compres-

sion with SZ,” in Proceedings Int Parallel and Distributed Processing
Symposium, 2016, pp. 730–739.

[4] Mellanox, “Mellanox Introduces Programmable Network
Adapter Product Line with Application Acceleration Engine,”
http://ir.mellanox.com/releasedetail.cfm?ReleaseID=883814 accessed
11/9/2015, 2015.

[5] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,
D. Chiou, and D. Burger, “A cloud-scale acceleration architecture,” in
49th IEEE/ACM Int. Symp. Microarchitecture, 2016, pp. 1–13.

[6] J. Sheng, C. Yang, A. Caulfield, M. Papamichael, and M. Herbordt,
“HPC on FPGA Clouds: 3D FFTs and Implications for Molecular
Dynamics,” in Proc. IEEE Conf. Field Prog. Logic and Applications,
2017.

[7] J. Sheng, B. Humphries, H. Zhang, and M. Herbordt, “Design of
3D FFTs with FPGA Clusters,” in Proc. IEEE High Perf. Extreme
Computing Conf., 2014.

[8] A. George, M. Herbordt, H. Lam, A. Lawande, J. Sheng, and C. Yang,
“Novo-G#: A Community Resource for Exploring Large-Scale Recon-
figurable Computing Through Direct and Programmable Interconnects,”
in Proc. IEEE High Perf. Extreme Computing Conf., 2016.

[9] J. Sheng, Q. Xiong, C. Yang, and M. Herbordt, “Collective Communi-
cation on FPGA Clusters with Static Scheduling,” vol. 44, no. 4, 2016.

[10] J. Sheng, C. Yang, and M. Herbordt, “High Performance Dynamic
Communication on Reconfigurable Clusters,” in Proc. IEEE Conf. Field
Prog. Logic and Applications, 2018.

[11] J. Ritter and P. Molitor, “A Pipelined Architecture for Partitioned DWT
Based Lossy Image Compression Using FPGAs,” in Proc Int Symposium
on Field Programmable Gate Arrays, 2001, pp. 201–206.

[12] T. W. Fry and S. A. Hauck, “Spiht image compression on fpgas,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 15,
no. 9, pp. 1138–1147, Sep. 2005.

[13] L. Santos, J. F. Lpez, R. Sarmiento, and R. Vitulli, “Fpga implementation
of a lossy compression algorithm for hyperspectral images with a
high-level synthesis tool,” in 2013 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS-2013), June 2013, pp. 107–114.

[14] H. Sofikitis, K. Roumpou, A. Dollas, and N. Bourbakis, “An architecture
for video compression based on the scan algorithm,” in 13th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM’05), April 2005, pp. 295–296.

[15] Y. Tang and N. Verma, “Energy-efficient pedestrian detection system:
Exploiting statistical error compensation for lossy memory data com-
pression,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 26, no. 7, pp. 1301–1311, July 2018.

[16] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, Dec 2014.

[17] N. Hübbe, A. Wegener, J. M. Kunkel, Y. Ling, and T. Ludwig, “Eval-
uating lossy compression on climate data,” in Supercomputing, J. M.
Kunkel, T. Ludwig, and H. W. Meuer, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 343–356.

[18] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham,
R. Ross, and N. F. Samatova, “Compressing the incompressible with
isabela: In-situ reduction of spatio-temporal data,” in Proceedings of
the 17th International Conference on Parallel Processing - Volume
Part I, ser. Euro-Par’11. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 366–379. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2033345.2033384

[19] S. Di and Y. Robert, “Toward an Optimal Online Checkpoint Solution
under a Two-Level HPC Checkpoint Model,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 1, pp. 244–259, 2017.

[20] D. Tao, S. Di, Z. Chen, and F. Cappello, “In-Depth Exploration of
Single-Snapshot Lossy Compression Techniques for N-Body Simula-
tions,” IEEE Int Conference on Big Data, no. 1, pp. 486–493, 2017.

[21] D. T. B, S. Di, Z. Chen, and F. Cappello, “Exploration of Pattern-
Matching Techniques for Lossy Compression on Cosmology Simulation
Data Sets,” ISC High Performance Workshops, vol. 1, pp. 43–54, 2017.

[22] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly Improving Lossy
Compression for Scientific Data Sets Based on Multidimensional Pre-
diction and Error-Controlled Quantization,” IEEE International Parallel
and Distributed Processing Symposium, 2017.

[23] X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello, “An Efficient
Transformation Scheme for Lossy Data Compression with Point-wise
Relative Error Bound,” Int Conference on Cluster Computing, 2018.

[24] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-Controlled Lossy Compression Optimized for High Compression
Ratios of Scientific Datasets,” IEEE BigData, 2018.

[25] S. Di and F. Cappello, “Optimization of error-bounded lossy compres-
sion for hard-to-compress hpc data,” IEEE Transactions on Parallel and
Distributed Systems, vol. 29, no. 1, pp. 129–143, Jan 2018.

[26] ——, “Optimization of Error-Bounded Lossy Compression for Hard-
to-Compress HPC Data,” IEEE transactions on parallel and distributed
systems, vol. 29, no. 1, pp. 129–143, 2018.

[27] Intel Gzip Compression OpenCL Design Example, https://www.
intel.com/content/www/us/en/programmable/support/support-resources/
design-examples/design-software/opencl/gzip-compression.html, 2019.

[28] Xilinx, “Gzip,” https://github.com/Xilinx/Applications/tree/master/GZip,
2019.

[29] ——, “Introduction to FPGA Design with Vivado High-Level
Synthesis,” https://www.xilinx.com/support/documentation/sw manuals/
ug998-vivado-intro-fpga-design-hls.pdf, 2013.

[30] J. Fowers, J. Kim, D. Burger, and S. Hauck, “A Scalable High-
Bandwidth Architecture for Lossless Compression on FPGAs,” in
International Symposium on Field-Programmable Custom Computing
Machines, May 2015, pp. 52–59.

[31] M. S. Abdelfattah, A. Hagiescu, and D. Singh, “Gzip on a chip:
High performance lossless data compression on fpgas using opencl,”
in Proceedings of the International Workshop on OpenCL 2013 &
2014, ser. IWOCL ’14. New York, NY, USA: ACM, 2014, pp. 4:1–4:9.
[Online]. Available: http://doi.acm.org/10.1145/2664666.2664670

[32] Boston University, “Shared Computing Cluster (SCC),” 2019,
https://www.bu.edu/tech/support/research/computing-resources/scc.

[33] Intel Quartus Prime Software Suite, https://www.intel.com/content/
www/us/en/software/programmable/quartus-prime/overview.html, 2019.

[34] L. Dagum and R. Menon, “Openmp: An industry-standard api for
shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1,
pp. 46–55, Jan. 1998. [Online]. Available: https://doi.org/10.1109/99.
660313

[35] NEK5000: a fast and scalable high-order solver for computational fluid
dynamics, https://nek5000.mcs.anl.gov/, 2019.

[36] D. S. Aguado, R. Ahumada, A. Almeida, S. F. Anderson, B. H. Andrews,
B. Anguiano, E. Aquino Ortiz, A. Aragon-Salamanca et al., “The
Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release
of MaNGA Derived Quantities, Data Visualization Tools and Stellar
Library,” arXiv e-prints, p. arXiv:1812.02759, Dec. 2018.

[37] W1zzard, “Seagate BarraCuda SSD 500 GB Review,” 2019, https:
//www.techpowerup.com/reviews/Seagate/BarraCuda SSD 500 GB/.

[38] IO-500: Virtual institute for IO, https://www.vi4io.org/std/io500/start#
io-500, 2019.

