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ABSTRACT
MPI collective operations can often be performance killers in

HPC applications; we seek to solve this bottleneck by offloading
them to hardware within the switch itself. We have seen from previ-
ous work that moving collectives into the network offers significant
performance benefits. However, there has been little advancement
in providing support for sub-communicator collectives. We intro-
duce a novel mechanism that enables the hardware to support a
large number of communicators of arbitrary shape that is scal-
able to very large systems. We have integrated this support into
an in-switch hardware accelerator to implement support for MPI
communicators and full offload of MPI collectives. While this mech-
anism is universally applicable, we implement it in an FPGA cluster;
FPGAs provide the ability to couple communication and computa-
tion and so provide an ideal testbed. Preliminary results show that
we can achieve substantial performance improvement at acceptable
hardware cost, including a 10× speedup over conventional clusters
for short message collectives over irregular intra-communicators.
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1 INTRODUCTION
High performance computing (HPC) applications often rely on

collective communication for performing operations that require
interaction among multiple processes. Simple examples of collec-
tives are the broadcast of data from one process to many, or the
gathering of data from many processes into one, usually combined
(reduced) with an operator such as add or max. As collectives are
integral to HPC programming, they are necessarily a key part of
the Message Passing Interface (MPI) [3]. Collectives may bottle-
neck application performance [12]. Since implementations such as
MPICH [7] consist of point-to-point messages with computations in
between, an abundance of support has been added at the software
level [2, 12, 21]. This includes new algorithms that can improve
the performance of collectives by optimizing them either for low
latency with small data sets or for high throughput when dealing
with large arrays [21]. However, these algorithms have increasingly
complicated the software stack.
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In this work we seek to offload the execution of MPI collectives
into hardware; in particular, into the communication switches. This
has at least five benefits. First, it removes those extra layers of
software; second, the hardware implementations are generally at
least an order-of-magnitude faster than the software; third, it frees
up the processor for other work; fourth, it distributes the execution
of collective computation throughout the network, rather than
forcing it into source (for broadcast) or destination (for reduction);
and fifth, it reduces network load as messages generally only travel
a single hop before being merged or duplicated.

Previous work in offloading collective support into hardware has
been mostly limited to processing in the NIC [1, 10, 11, 15]. While
valuable, the NIC-only approach still leaves much performance
benefit on the table, in particular, the fourth and fifth benefits just
described. Most obviously, the NIC is an end-point and subject to
serialized processing of packets as they arrive, rather than being
able to distribute the processing across the network as is possible
with in-switch processing. There is one known work on offloading
parts of collectives into the switch by BlueGene/Q [9]. It offloads
mainly the arithmetic operation in collectives to in-switch hardware
accelerators; there are limitations on the number of communicators
one node can be in [5].

A critical capability of MPI is the concept of the communicator;
these are used to define a safe communication context for message
passing within a specific group of processes. They are primarily
used for performing collective operations over a subset of processes
in the network. However, handling sub-communicator collectives
in hardware does not come without its share of complications. Com-
municators unfortunately have significant scalability issues that
were explored in [8], meaning we cannot implement them in hard-
ware with the same methods used for managing communicators in
software. As we approach exascale computing, the added latency
and memory costs of managing communicators would become
far too expensive for the switch, exceeding any realistic hardware
constraints, and preclude in-switch processing of collectives.

In this work we introduce an in-switch architecture capable of
efficiently supporting communicators and the collectives that run
on them. We are able to achieve this with a new Communicator
Table design, which provides communicator support while consum-
ing minimal memory resources. Since the resources are guaranteed
to grow no faster than the log of the number of nodes, this solution
is likely to remain relevant far beyond exascale. This project builds
off our previous work where we moved MPI_Reduce into the net-
work [20], and we have since expanded our design to now include
support for the following collectives: Allreduce, Allgather, Gather,
Broadcast, and Scatter. While our focus is on intra-communicators
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(due to their popularity and simplicity), extending this solution
to inter-communicators is straightforward and does not require
substantial additional resources.

Since this solution works best if the internal switch hardware
is augmented, we use FPGAs to demonstrate and test its viability.
This has the added benefit of being useful immediately on clusters
with FPGAs interconnected directly through a secondary network
[4, 13]. In such clusters, the network has a direct topology, such
as used by the BlueGene series of computers, with switches being
associated with nodes. But the solution also works with indirect
topologies used in most current high end systems.

The major contribution of this work is the finding that all col-
lective routing decisions–including those with arbitrarily complex
communicators–can be made using only a small amount local in-
formation. We demonstrate the benefit of this solution: it can be
used for a complete offload of MPI collectives. It outperforms con-
ventional networks, while at the same time frees the CPU from
having to do any heavy computation for the collective. Our simula-
tions show that we can achieve 10× speedups for MPI collectives
over OSU benchmarks for smaller messages, and that we can run
these collectives over sub-communicators without sacrificing per-
formance. These results should remain useful far beyond exascale.

2 CONCEPTS
In this section we examine the MPI software stack to identify

opportunities for, and the benefits of, offloading collectives. We then
cover MPI communicators and the difficulties that they create for a
hardware implementation. We explain how placing communicator
support in the network would normally exceed the limits of the
hardware constraints, thus motivating a novel in-switch design.

2.1 MPI Software Stack
As previously mentioned, MPI collectives force processes into

executing long sequences of point-to-point messaging and computa-
tion. This is because the new collective algorithms being developed
and implemented in MPI are designed to reduce the number of pack-
ets that have to traverse the network and avoid congestion. This
translates to more work in software for figuring out which chunks
of data to send and receive, and which processes with which to
communicate. For example, a trivial implementation of MPI_Reduce
has every process send data directly to the root, leading to serious
congestion in a large network. With a binomial tree algorithm, as
seen in Figure 1a, each process is either a leaf, an intermediate
node, or the root. Leaf processes simply send data to their parent,
but intermediate nodes must compute who all of their children are,
receive the data from them, and perform the reduction operation
on the received data. They then compute who their parent is in
order to then send their intermediate result. The algorithm lessens
the number of packets in the network and unclogs the root, but it
forces additional work in software. Other algorithms that are com-
monly used in collectives, such as recursive halving and recursive
doubling, can improve the performance of the collective, but they
again require that each process perform extra work to determine
where to send the data.
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Figure 1: Algorithms used for MPICH Collectives

MPI_FPGA Software Support. Our design, which we call
MPI_FPGA, aims to remove all of this software from the responsi-
bility of the CPU and pass the functionality onto the FPGA switch.
MPI_FPGA assumes complete transparency with MPI middleware,
making it completely portable: it can be integrated into HPC appli-
cations without requiring the programmer to have any knowledge
of the underlying hardware. Instead, constructs automatically ac-
cess MPI_FPGA capabilities through enhanced middleware. The
design also makes no assumptions about the types of end systems
being used, as it is only affects data as it is routed through the
FPGAs in the network. We create new functions for each collective
that we offload (e.g., MPI_FPGA_Reduce, MPI_FPGA_Scatter), and
we place these underneath existing MPI collective functions. If the
hardware supports the offload of a particular collective, then the
MPI_FPGA replacement functions are used. They take all of the
software work for a collective and replace it with a single message
to be sent to the FPGA. If a collective does not have offload support,
then it is performed normally by the software. All of this is hidden
from the application layer, meaning that no changes need to be
made to MPI programs.

Upon receiving this message, the FPGA begins the collective
operation and perform all of the necessary steps to complete it.
If an MPI process is not required to receive the final data, such
as the root process in a broadcast operation, then it can return
to the application and continue doing work. If the calling process
does need to receive results, such as any process in an AllGather
operation, then the process can still continue doing other work,
but will be interrupted when the final collective operation results
have been received and passed up to the CPU from the network. In
terms of the MPICH implementation of MPI middleware [7], all of
the functionality of the ADI is maintained. We are currently using
MPICH-3.2 to design MPI_FPGA [6]; tasks such as packing and
computing predefined reduction operations are performed identi-
cally in our design. At the channel interface of MPICH we add-in
the FPGA communication code that transfers data into the FPGA
network, with the actual FPGA hardware sitting below the channel
interface (see Figure 2).
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Figure 2: Top-down approach to the MPI_FPGA software
stack

Hardware Model. The collective execution logic is placed adja-
cent to the routing logic so that it can perform computations on
data as it passes through the network. As shown in Figure 3, the
accelerator logic is broken up into two components: the Collective
Control Module and the Reduction Unit (details are given in the Im-
plementation section). By placing the accelerator around the switch
rather than integrating it into the switch, we keep the two separate
and allow the accelerator to be portable to any type of network
switch. When the Collective Control Module receives packets, it
operates on the packets if necessary. Otherwise, it simply passes
the packet into the switch without modification. The Reduction
Unit on the other side of the switch again only operates on packets
if they are a part of a reduction operation. If not, the packet is just
sent back out into the network. Again, although we have imple-
mented our design on an FPGA, its portability ensures that it is not
only independent of the type of switch used, but also the type of
hardware used.

2.2 Communicators
Communicator support is absolutely essential in performing

collectives in the network, yet little work on collective offload into
the network addresses it. It is generally assumed that the only
communicator is MPI_COMM_WORLD, meaning the number of
ranks involved in any collective operation is the same throughout a
program. This was one of our assumptions in our previous work on
accelerating MPI_Reduce, but many MPI programs involve multiple
communicators, and, in any case, communicators are a central
MPI capability and must be supported. A common example of
using sub-communicators is when partitioning workload among a
matrix of MPI processes and needing to perform collectives on an
entire row of column of processes. The most feasible way to do so
would be to call a function like MPI_Comm_Split, one of the many
functions MPI offers for creating communicators, to divide up the
global communicator into sub-communicators. Another motivation

Figure 3: MPI_FPGA Hardware Model

for using multiple communicators is dividing MPI processes into
masters and slaves, and then performing collectives on these groups
separately.

All communicators are composed of a context id, identifying
the communicator, and a process group that contains the list of
processes in that communicator. When a new communicator is cre-
ated, a new process group is created and stored in memory. In large
systems, with correspondingly large communicators, the memory
consumption of these process groups can lead to scaling issues [8].
To have an entire process group in FPGA memory would require
the storing of the list of all ranks included in the communicator. The
number of bits required would beCOMM_SIZE×BITS_PER_RANK,
meaning that the resource utilization would grow linearly with the
communicator size. For a system with millions of nodes, it would
require millions of bits in FPGA for each communicator. Having
replicated storage of these entire process groups in the network
would quickly use up memory resources and slow down the FPGA,
so we must only store the minimum amount of information that is
needed by the FPGA to complete the collectives.

2.3 Related Work
Previous work has shown that significant performance speedups

can be achieved by offloading collectives onto hardware. These gen-
erally assume that the hardware is located in the NIC [1, 10, 11, 15],
tightly connected with the host CPU via interconnects such as PCI,
whereas we add hardware support in the switch. For instance, Arap,
et al. [1] offload collectives onto an FPGA cluster; however, they
do not mention any communicator support, nor do they integrate
into a switch. Their reduction unit also differs from ours as theirs
waits until all reduction data is received before performing the re-
duction, whereas ours begins reductions as soon as data is received.
Schimidt, et al. [15] implement MPI_Reduce in an FPGA cluster for
the AIREN network. Their reduction core consists of floating point
units and the output can be looped back as the inputs for further
accumulations. This architecture is simple, but lacks flexibility in
its reduction capabilities; it can only support one reduction at a
time, while our design can support multiple reductions occurring
simultaneously. There are several other hardware offload designs
implemented on FPGAs; they also lack communicator support, and
their collective hardware, e.g., the reduce unit, can only handle one
operation at a time [11, 14].
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A general solution was provided by Voltaire [22] which included
processing support in the router for collectives; this work differs
from ours in that the offload is to an in-router CPU rather than a
hardware augmentation of the switch.

Among all previous work, the IBM BlueGene project [9] is the
most relevant since it offloads collectives in the network router
and also takes communicators into account. For instance, Blue-
Gene/Q [5] provides a summing unit for accelerating collective
operations, which is available for subcommunicators. BlueGene/Q
requires class routes for collective operations. However, there are
only 13 class routes available, so that a node can only be in 13 com-
municators before hardware acceleration for collectives becomes
unavailable. More importantly, it does not support packet process-
ing in the network where the accelerator must maintain its own
memory [9].

Overall, the BlueGene solutions show the difficulties in imple-
menting in-switch collective support in fixed logic. While high
wire utilization is achieved, there are many limitations. Collectives
are supported in a separate network and not integrated into the
primary router; this may be difficult to replicate. The number of
communicators is bounded. The collectives and the operations on
those collectives are a fixed subset. And the type of communicators
are limited to be either the whole network or a rectangular subset.

In distinction from the previous work, we are the first one to
offload both communicator tables and the processing of an entire
collective operation on hardware, supporting irregular communi-
cators and providing hardware acceleration of collective packets’
processing. Comparingwith theNIC offload solutions, our in-switch
solution is able tomake the shortest collective routes with the ability
to process and distribute packets across the network. In our previous
work, we implemented MPI_Reduce across MPI_COMM_WORLD
without any additional communicator support. In this new paper,
we continue using the same hardware model as in [20], but we have
obviously implemented new features such as support for 5 new
collectives and irregular communicators.

3 DESIGN
In this section we introduce the Communicator Table design,

which extends our previous work of collective implementation by
now enabling us to implement these collectives across any type of
intra-communicator. This design takes advantage of the existing
algorithms used to implement MPI collectives in order to minimize
resource utilization and latency.

3.1 Communicator Table
The purpose of the Communicator Table is to manage communi-

cator information that is needed for the Collective Control Module
to make packet forwarding decisions. To minimize the resources
required, the table only holds the local data that is necessary to
complete the implemented collectives. This means that each switch
needs a way of obtaining this local data, which is a list of the other
ranks with which it must communicate to perform each collec-
tive. The contents of this list, for a given communicator, can be
determined immediately after its creation in software.

In Table 1, we show the different algorithms that are used in the
MPICH-3.2 implementations of 6 popular collectives. We see that

Table 1:MPICH-3.2CollectiveAlgorithms for short and long
messages

MPI Collective Algorithms
Short Messages Long Messages

Reduce Binomial Tree Recursive Halving and
Recursive Doubling

Allreduce Recursive Doubling Recursive Halving and
Recursive Doubling

Broadcast Binomial Tree Binomial Tree and Ring
Scatter Binomial Tree Binomial Tree
Gather Binomial Tree Binomial Tree
Allgather Recursive Doubling Ring

the 3 most used algorithms are binomial tree, recursive halving, and
recursive doubling. The ring algorithm is also sometimes used, but
its implementation is trivial so we focus on the others for now. By
being able to implement these 3 algorithms, we can perform all of
the collectives that use them. Looking back at Figure 1 (where we
show the structure of these algorithms), for each rank, we see that
we can identify the subset that the given rank must communicate
with. For example, rank 0 must communicate with the following set
in all 3 algorithms: 1, 2, 4. For rank 5, although it only communicates
with rank 4 in the binomial tree algorithm, its communicating set
for all algorithms is 4, 7, 1. This means that, for each rank, we can
identify a subset of processes to communicate with, and this subset
will meet the communication needs of all collectives that use these
algorithms.

Storing this subset in FPGA memory is much more efficient
than storing an entire process group: it is equal to the log of the
communicator size. We can prove this directly from the properties
of binomial trees. In a binomial tree, the node that communicates
with the most other nodes is the root. If we can determine the
maximum number of root children of a given binomial tree, then
we can translate this to the number of ranks that can be stored in
one of these rank subsets. In a binomial tree of orderm, the root
hasm children, and the total amount of nodes in the tree is 2m . For
m = 0, we have a binomial tree that is 20 = 1 node in size. The
root has 0 children, thus making the number of other ranks for it to
communicate with during a collective equal to lg(1) = 0. If we have
a binomial tree of orderm + 1, we know from the basic property of
binomial trees that this tree is composed of 2 binomial trees each
of orderm. The root will havem + 1 children, making the size of its
communicating subset equal tom+1. We can also determine this by
calculating that the number of nodes in the tree is 2 × 2m = 2m+1.
If we apply our previous formula to calculate the size of the subset,
we get lg(2m+1) =m + 1. This proves that for any communicator,
the subset size will be equal to lg(COMM_SIZE).

Once the FPGA obtains this subset of ranks for a communicator
(we discuss later how this is done), it stores the addresses of these
ranks in a table along with the subsets from other communicators.
As shown in Figure 4, the Communicator Table holds a row for
each communicator that the current FPGA is a member of. In each
row, we store a small amount of meta-information such as the
communicator size and the rank within the communicator that
the current FPGA is associated with, followed by the subset of
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Valid Context
ID

Comm Size Local 
Rank

First
Address

Second 
Address

Third 
Address

1 0 8 0 1 2 4

1 1 4 0 1 2 NULL

Figure 4: Communicator Table Structure

processes that the FPGA will be communicating with for collective
operations. Each communicator entry is indexed into the table using
its context id. This makes it easy to look up the communicator that
an incoming packet is from, because the context id is sent within
the packet header.

Once the FPGA has a table entry for a given communicator, it
can use that data to perform any collective that uses a binomial
tree, recursive halving, or recursive doubling. The reason that we
can use this table is that for any collective algorithm in a com-
municator, each rank will communicate with the same subset of
ranks regardless of how many times the collective is called. This is
what allows us to store this communicator information in the table
whenever the communicator is created, because these subsets do
not change. This means that once a valid entry is loaded into the
table, no updates on that entry are ever required until the communi-
cator is freed. The Collective Control Module (see next section) uses
the Communicator Table along with packet header information to
decide how to deal with packets in a collective operation.

3.2 Communicator Table Entry Creation
When a new communicator is created in software, the FPGA

needs a way of obtaining the Communicator Table entry from the
host CPU. If an MPI process is a member of a newly created commu-
nicator, then the software generates a special message containing
the Communicator Table entry data and sends it to the FPGA. This
requires that, for each communicator creation function, the CPU
calculates and retrieves from memory the physical addresses of the
subset of ranks that will be stored in the table entry. Once the new
entry is filled in, the FPGA can handle new collectives occurring
within this communicator.

In order for the CPU to obtain the necessary addresses, we have
written a hook function and inserted it at the end of MPICH com-
municator creation functions. This hook function checks whether
an MPI process is a member of a new communicator, and if so,
calculates the subset of ranks for it to communicate with. Then,
for each rank in the subset, it obtains the rank’s connection string
from the key-value space in memory which is used to hold virtual
connections. From this connection string, the physical address is
extracted and packaged alongside communicator meta-data into
a message to be sent to the FPGA. Although this operation does
lead to a small amount of overhead in creating communicators, this
overhead is only paid for once during communicator creation. The
MPI application can then perform any number of collectives on
the communicator at no additional cost, making the cost of com-
municator creation negligible when compared to the cost of later
performing large collectives on these communicators.

The hook function is designed so that it is first run afterMPI_Init();
this allows the first entry in the Communicator Table to be filled

CCM

CCM

RU

RU

Figure 5: Dynamic router combined with MPI collective of-
fload support: Collective Control Module and Reduction
Unit

with communicator information for MPI_COMM_WORLD. With
the creation of all other communicators, the CPU will only call this
hook function if it is a member of the new communicator. This
means that the Communicator Table in the FPGA will only contain
information on communicators that it is a member of, and the cre-
ation of all other communicators will be ignored. We include a valid
bit with each table entry; these are initialized to invalid. Whenever
a new communicator packet is received from the CPU, the valid bit
is set so that the table entry can be used for packet processing of
future collective packets from that communicator.

4 IMPLEMENTATION
4.1 Overview

This section describes the different components of the hardware
architecture, which are displayed in Figure 5. The base of our design
is a virtual-channel dynamic router that was previously built by
our group, implemented in programmable logic, and used for inter-
FPGA communication [16–19]. The router is designed to be used
in an FPGA cluster interconnected in a 3D torus and has 6 input
and 6 output ports. These ports are connected to Multi-Gigabit
Transceivers (MGTs), which allows FPGAs to be directly connected
to each other. The router normally has a 4 stage pipeline: route com-
putation, virtual channel allocation, switch allocation, and switch
traversal. To be clear, the route computation stage is responsible for
determining a packet’s output port based off the destination field in
its header, but it does not have any effect on the packet’s destination
address. As seen in Figure 5, with the added MPI support, we have
extended the pipeline to six stages.

The MPI offload support was designed around the router in order
to keep the overall design modular: the accelerator architecture
is portable to any other standard router. The MPI support is di-
vided into 2 modules, the Collective Control Module (CCM) and
the Reduction Unit (RU). The former is responsible for calculating
new forwarding and multicast destinations for collective packets;
it contains the communicator support. The module is placed before
the router so that the output port of the packet can be calculated in
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the route computation stage after it is assigned a new destination.
The Reduction Unit sits on the output end of the router and is used
for performing MPI_Reduce and MPI_Allreduce computations. It
maintains a reduction table of buffers that store temporary reduc-
tion results. Once all of the necessary packets for a reduction are
received, the resulting packet is released to its output port. This
unit is placed after the switch due to the fact that all packets going
into any particular reduction unit will exit using the same output
port. This prevents the reduction unit from having to manage the
output ports of each packet.

4.2 Collective Control Module
The Collective Control Module (Figure 6) is responsible for

performing all of the algorithmic work found in the software of
MPI_Reduce, MPI_Allreduce, MPI_Bcast, MPI_Scatter, MPI_Gather,
MPI_Allgather, and any other collectives implemented in the fu-
ture. By moving all of the software functionality into hardware, we
avoid the large costs of software and free the CPU from having to
switch back and forth between computation and communication.
This allows the host CPU to start a collective by sending a single
message to the FPGA and then return to the MPI program. If the
CPU needs the results of the collective, it will receive them from
the FPGA.

When packets enter the router from the input MGTs, they first
go through the Collective Control Module. If they are not part of
collective operation or are not destined for the current FPGA, then
they simply pass through unchanged. If they are part of an offloaded
collective and the destination address in the packet header matches
that of the current FPGA, then the module uses the Communicator
Table to determine new destinations for the packet.

In order for the Collective Control Module to determine which
collective a packet is a part of, we added a collective opcode field to
the packet header. With this, we can perform work for each collec-
tive algorithm in parallel and then use the opcode to decide which
algorithmic results to use for the packet. In Figure 6, we display
the parallel architecture. Within each of these algorithm blocks,
we perform computations using input from the packet header and
Communicator Table entry. For a reduction, we might have to cal-
culate the parent node to send the packet to, or for a broadcast, all
of the children nodes to multicast the packet to.

The communicator table also eases the computation required to
calculate these destinations. In the previous design, destinations
had to be determined on-the-fly, but now the problem has been
simplified to calculating table entry indexes on the fly. In the case
that a packet needs to be sent to multiple destinations, these des-
tinations are also adjacent in the table entry. A bit vector is used
for keeping track of these destinations for multicast, which results
in much less work than if destinations were repeatedly calculated
on-the-fly. Once a packet passes through the Collective Control
Module, it is passed to the route computation stage (in the routing
pipeline) where its output port is calculated.

The implementation also supports multiple algorithms for the
same collective operations, which is also how MPICH-3.2 works.
This requires the packet header opcode field to include an additional
bit about whether the collective message is classified as short or
long, but it allows the Collective Control Module to use the optimal

Communicator Table

Incoming Packet

Upward 
Binomial Tree

Downward 
Binomial Tree

Recursive Doubling

Recursive Halving

Output PacketMUX

Figure 6: Collective Control Module

algorithm for a collective. We show the algorithms used for short
and long messages in Table 1, and we see that the same set of
algorithms is used for both large and short message collectives.
This means that if we can implement long message collectives
for free, because we are already performing same the algorithmic
computations for the small message collectives.

4.3 Reduction Unit
The Reduction Unit is used for performing the reduction com-

putations necessary for MPI_Reduce and MPI_Allreduce. Once
packets pass the switch traversal stage of the router pipeline, if they
are identified as part of one of these collectives by their opcode field
in the packet header, then they are transferred to the Reduction
Unit. This unit performs and manages all reduction computations,
thus freeing the host CPU from having to do so. The unit consists
of a reduction table, which is indexed and capable of supporting
multiple reductions simultaneously. Once a reduction packet en-
ters from the switch output, the unit’s control logic examines the
packet header and places the data in the appropriate table slot. If
the reduction table slot for an incoming packet is empty, then the
packet is simply copied into the reduction table slot. If the table slot
is not empty, it means that the reduction has already begun. In this
case, the data payload of the incoming packet and the data already
contained in the reduction table are combined, with the result later
being fed back into the reduction table entry (see Figure 7).

The arithmetic unit is constructed from using standard methods
including use of vendor IP. The default design supports addition,
multiplication, maximum, minimum, but is trivially extendable for
other operations; eventually we will extend this design to include
user specified functions. All functions are run in parallel, both
pipeline and superscalar. The reduction opcode in the packet header
is used to select which output is to be stored back in the reduction
table.

Each reduction table entry slot also keeps track of the number of
child nodes for any given reduction. Whenever an incoming packet
enters the unit, the reduction table slot records how many child
nodes are required for that particular reduction and keeps track of
the number of child nodes remain as the reduction continues. When
a reduction table entry has received packets from all child nodes,
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Figure 7: Flow of packets through the inner components of
the reduction computation unit

and the reduction has been completed, a new packet is built and
sent back to the router. The router is then notified that a reduction
has been completed and gives the result to the proper output port.

By designing the reduction table to have multiple entry slots, we
can support multiple reductions taking place at the same time. If the
reduction is of a large data set and needs to be divided into smaller
reductions, each occupies a different slot of the reduction table. By
pipelining the floating point units, these multiple reductions can all
be completed one after another. This unit can also support separate
unrelated reductions, and is flexible enough to allow any order of
reductions occurring throughout the reduction table. If the reduc-
tion table has 100 entry slots, then this module can support up to
100 different reductions occurring together, all possibly performing
different types of reduction operations. To handle the case of the
reduction table filling up due to a reduction of a large enough array,
a local control unit keeps track of the capacity of the reduction
table and buffers incoming reduction packets until the reduction
table has open slots.

5 EVALUATION
We evaluate the design on a cluster with FPGAs in the network

datapath (e.g., the Microsoft Catapult I [13] and the BU/UFlorida
Novo-G# [4]). We use Quartus II on a ProceV FPGA board from
Gidel with an Altera Stratix V 5GSMD8. On the FPGA, we put a
local unit connected to our new router design as shown in Figure 5.
Both the Collective Control Module and Reduction Unit have been
inserted into the router datapath. The FPGA is run at 150 MHz,
which could be doubled with normal optimization and increased
much further if the switch were to be implemented on an ASIC.
For inter-FPGA communication, we use Multi-Gigabit Transceivers,
which provide a bandwidth of 40Gbps and latency of 200ns.

5.1 MPI Collectives
In order to get the performance of our accelerator, we simu-

lated 4-, 8-, 16-, 32-, 64-, and 128-node systems in ModelSim. We

included the inter-FPGA communication delays of the MGTs and
performed all collectives using double precision floating point types.
For each of these different network sizes, we simulated our acceler-
ated MPI_FPGA_Reduce, Allreduce, Broadcast, Scatter, Gather, and
Allgather. We then compared these results to their respective OSU
benchmarks, which is a well-known set of MPI benchmarks. The
benchmarks were run on the Boston University Shared Computing
Cluster (SCC) using 28 core 2.4 GHz Intel Xeon E5s connected by
EDR Infiniband. We were limited to only being able to allocate 16
nodes at a time. To get around this and retrieve benchmark results
for 32-, 64-, and 128- node clusters, we measured the difference in
performing collectives on different cores in a single node versus on
different nodes with one core on each node. We then used this delay
to estimate the results for the 32-, 64- , and 128-node benchmarks.
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Figure 8: MPI_FPGA_Reduce vs MPI_Reduce
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Figure 9: MPI_FPGA_Allreduce vs MPI_Allreduce
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Figure 10: MPI_FPGA_Bcast vs MPI_Bcast
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Figure 11: MPI_FPGA_Scatter vs MPI_Scatter
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Overall Collective Latency. In Figures 8-13, we show the sim-
ulation results of MPI_FPGA collectives for small to medium array
sizes on the 32-node, 64-node, and 128-node systems and compare
our results against those of the OSU benchmarks. This graphed
data represents the time that it took for the last process in a collec-
tive to complete the operation. We see that for small array sizes,
MPI_FPGA achieves much better performance over the OSU bench-
marks. We also see that the MPI_FPGA speedup over the OSU
benchmark is maintained as the network grows, thus indicating the
scalability of MPI_FPGA. As the array size grows, the MPI_FPGA
speedup begins to diminish to about 2×. This is expected because
of the low clock rate of FPGAs. The obvious and simple solution
is add more parallelism, which translates to more resource usage.
To view the results through a different perspective, in Table 2 we
provide a table specifying the speedups that we achieve for each of
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Figure 12: MPI_FPGA_Gather vs MPI_Gather
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Figure 13: MPI_FPGA_Allgather vs MPI_Allgather
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Table 2: MPI_FPGA Speedups over OSU Benchmarks on BU
SCC (128 byte messages)

MPI_FPGA Speedup Over OSU
32 ranks 64 ranks 128 ranks

Reduce 8.92 10.23 9.98
Allreduce 8.78 9.15 9.74
Bcast 9.23 9.21 9.45
Scatter 13.72 13.72 15.01
Gather 8.37 8.87 7.99
Allgather 5.86 7.34 7.15

these collectives at the message size of 128 bytes. We can achieve
speedups for different collectives ranging from 5× to 15×.
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Average Case Results. We also collected the average case re-
sults, or the average amount of time that it took for a process in
a collective to finish. We found that for Allreduce and Allgather,
the worst-case results and average-case results were nearly iden-
tical. This is because in these types of operations, every process
must wait for data from every other process, so no process can
complete the collective until all processes have at least started it.
For the other collectives, the speedup is much larger for the aver-
age case. This is because if an MPI_FPGA rank does not require
the results of a collective, then it just sends a special message to
the FPGA and returns to the application. For example, in a gather
where only the root cares about the results, every other process
completes its work for the collective by just sending their data to the
FPGA. These processes could then continue doing computational
work for the application. We can achieve 180× and 100× speedups
for MPI_FPGA_Reduce and MPI_FPGA_Gather respectively in a
128-node network.

These results should not be represented as the actual speedup
of a collective, but are nevertheless significant. It is common in
MPI applications to have one process be a master that sends work
to the other slave processes. Whenever a slave process completes
its work, it notifies the master, which will then assign the slave
more work. If the slaves are performing a collective operation such
as a reduction or gather, all of the non-root slaves could return
from the collective immediately after sending the special collective
message to the FPGA. This would then allow slave processes to
complete their work faster and request additional work from the
master process at a higher rate. In this case, and any other example
where an MPI process has work to perform directly following a
collective, the application performance would benefit greatly from
MPI_FPGA.

Resource Usage. The resource consumption of the Communica-
tor Table can vary based on a user parameter that defines howmany
communicators a single MPI process can be a part of. When calculat-
ing our total resource consumption, we limited this to 30, but it can
obviously be changed to the user’s specifications. Let NUM_COMM
be the maximum amount of communicators a process can be in,
let WORLD_SIZE be the number of ranks in MPI_COMM_WORLD,
and let ADDR_LEN be the number of bits is a process’s physical
address. We earlier proved that a Communicator Table entry has
lg(WORLD_SIZE) other ranks that it might need to communicate
with, so the amount of bits used by the Communicator Table (not
included small amount of meta-data) can be calculated as follows:

bits = NUM_COMM ∗ lд(WORLD_SIZE) ∗ADDR_LEN (1)

The MPI_FPGA router consumes 100,768 ALMS, which accounts
for about 38% logic utilization of the Stratix V FPGA. This number
can grow if more IP cores are added to the Reduction Unit, but we
have found that adding a single mathematical IP core increases the
resource usage by less than 1% of the total ALMs. MPICH-3.2 has 12
predefined reduction operations, so for a full implementation, we
would need at most 12 IP cores. Conservatively, this would amount
to no more than 5% of additional ALMs needed. However, a Stratix
10 FPGA has over four times as many logic resources than a Stratix
V, meaning that our new router design would consume about 11%
of the FPGA resources.

6 DISCUSSION AND FUTUREWORK
We present a new method for supporting MPI communicators

and accelerating collectives in the network switch. We begin by
considering the movement towards exascale computing and the
need for offloading collectives and communicator support into hard-
ware. Other groups, including us, have already shown the ability to
implement MPI collectives in the network. However, there has been
a lack of support for collectives occurring over irregular communi-
cators. In our investigation of communicators, we find that a storing
entire process groups in the network is not a scalable solution. We
then introduce our Communicator Table, which takes advantage of
the properties and patterns of collective communication in order
to provide the accelerator hardware with the minimum amount
of communicator information needed to perform collectives. By
supporting a full offload of 6 popular collectives, we remove all of
the collective operation software fromMPI and implement the func-
tionality in the switch. Our hardware support has been integrated
into a reconfigurable VC router, but remains portable enough that it
is independent of the type of router and and system infrastructure.
We compare our network simulations with hardware support to
OSU benchmarks running on a conventional cluster, and we and
find that our in-switch accelerator achieves significant and scalable
speedups over the benchmarks.
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