
Enabling VirtIO Driver Support on FPGAs
Sahan Bandara* Ahmed Sanaullah** Zaid Tahir* Ulrich Drepper** Martin Herbordt*

*CAAD Lab, ECE Department, Boston University **Red Hat Inc.

Abstract—Host-FPGA connectivity is critical for enabling a
vast number of FPGA use cases in data centers, edge, and IoT.
This interface must be reliable, robust, and uniform, whilst sup-
porting necessary protocols and functionality. However, existing
support for host-FPGA connectivity has several drawbacks on
both the host and the device. This includes a lack of portability
and poor upstream support, both of which can make it difficult
for CPUs to easily and effectively leverage FPGAs. Native VirtIO
drivers in the host operating system can help address some of
these limitations, especially on the host side, but implementing
device-side support for the VirtIO specification is a challenge due
to the substantial hardware complexity involved.

In this work, we present a framework for enabling FPGAs to
interface native operating system VirtIO drivers on the host. To
reduce the implementation overhead and improve portability,
this framework uses both generic RTL blocks and modified,
chip/device specific PCIe IP blocks. Moreover, this approach
implements all the necessary data structures and functionality
needed to meet the VirtIO specification requirements. We test
the framework using the Xilinx DMA/Bridge Subsystem for PCI
Express (XDMA) IP, implemented on an Alinx AX7A200 FPGA
board (with a Xilinx XC7A200TFBG484-2 FPGA chip), and a
host machine running the Fedora operating system. Our results
show that the FPGA can be successfully enumerated as a VirtIO
device, and interfaced using only native Linux VirtIO drivers.

Index Terms—FPGA, PCIe, VirtIO

I. INTRODUCTION

The flexibility of FPGAs enables them to be important
complexity offload devices for the CPU. They can be used to
accelerate user and system applications, implement networking
functions to process data at line rates, perform system admin-
istration, provide secure enclaves with hardware isolation, and
a number of other tasks [1]–[8]. In order to support these
vast number of use cases, the host-FPGA connectivity must
implement a required set of features and protocols, as well as
provide a reliable, robust and uniform interface.

Despite the critical nature of host-FPGA connectivity, there
are a number of limitations of existing PCIe [9] interfaces that
support this communication. On the device side, the major
limitation is portability. The IP blocks used to implement host
interfaces are typically vendor specific, both in terms of chip
and board, and can have inconsistencies in the features they
support and the APIs they expose to the user logic. This is
due to the implementation complexity of the communication
stack, differences in resource types/amounts across chips, and
the virtually impossible task of building a completely generic
hardware stack due to use of essential ASIC blocks organized
in chip-specific IO Bank structures, e.g., SERDES units.

On the host side, the major limitations are portability
and poor maintenance. From a portability perspective, the
differences in capabilities/functionality of the device can lead

to compatibility issues if the driver attempts to use nonexistent
functionality. This is especially important in FPGAs given
their flexibility and that there is no standard set of supported
features. Moreover, similar to the hardware side, APIs exposed
to user applications by vendor drivers can also be inconsis-
tent. From a maintenance perspective, deprecated software
dependencies, especially as the host kernel is updated, and
a changing set of features supported by IP blocks, means that
the device drivers need to be patched frequently. Unfortunately
there is often poor upstream support: most of the work on
drivers is done downstream, i.e., by developers modifying the
drivers themselves.

VirtIO [10] is an industry standard for I/O virtualization
and is one possible solution to the challenges posed by the
use of vendor-provided device drivers. There is native support
for VirtIO in the host operating systems, such as the Linux
kernel, which means that no additional driver needs to be
written/maintained, and APIs are relatively consistent. VirtIO
also supports feature negotiation, i.e., device and driver can use
feature bits to determine the subset of supported features to
ensure compatibility. Moreover, there are additional benefits to
virtualized environments, such as faster guest-device commu-
nication. Exposing the FPGA to the host as a VirtIO device can
reduce data copies and latency through direct communication
between the guest user space and host device driver.

While VirtIO can help address limitations of the host-device
interfaces on the host side, there are two major challenges
involved with implementing native VirtIO support on the
device. First, the FPGA hardware stack must meet the VirtIO
specification, which means that appropriate data structures and
state machines must be implemented. This is in contrast to
existing approaches to VirtIO support, which build a hardware
stack that does not fully meet the VirtIO specification and
thus require custom VirtIO drivers to interface with it; these
have the disadvantages similar to the typical FPGA drivers
discussed above. The second challenge is that the hardware
side is still chip/device specific and existing IP blocks may
not support all required functionality. Building up the entire
hardware stack from scratch is also not feasible due to the
complexity of implementing the required IP blocks.

In this work, we address the above challenges by developing
a framework that allows VirtIO support to be added to the
FPGA hardware stack by: i) building a subset of the required
hardware blocks from scratch using generic RTL, and ii)
leveraging existing PCIe IP blocks for chip/device specific
parts of the implementation. To achieve this, we first identify
the interface that an FPGA should expose to the host to meet
the VirtIO specification. Next, we instantiate the vendor IP by

specifying appropriate parameter values based on the interface
requirements. Then, we modify the IP RTL to add/modify
critical functionality that was either not available in the IP,
or was not exposed to the developer when instantiating the
IP. Finally, we add a VirtIO controller block between the IP
and user logic; this controller is responsible for implementing
additional requirements of the VirtIO specification, such as
data structures, arbitration logic, queue support and other state
machines. We test our methodology by implementing a VirtIO
console device using the Xilinx DMA/Bridge Subsystem for
PCI Express IP on the Alinx AX7A200 FPGA board (with a
Xilinx XC7A200TFBG484-2 FPGA chip), and a host machine
running the Fedora 35 operating system. Xilinx Vivado tool
flow is used for this implementation.

The specific contributions of this work are:
• Enabling FPGAs to leverage native VirtIO drivers in the

host operating system for host-device communication;
• Identifying and implementing the device requirements for

VirtIO, such as data structures, arbitration logic, queue
support and other state machines;

• Improving portability and reducing implementation com-
plexity of the hardware stack by building required hard-
ware blocks using both generic RTL, and modifying
existing PCIe IP blocks to implement chip/device specific
blocks; and

• Demonstrating the effectiveness of our approach by mod-
ifying the Xilinx XDMA IP to enable enumeration and
communication as a VirtIO console device in Fedora 35.

The rest of the paper is organized as follows. Section II
gives the background of our work, as well as relevant existing
efforts. Section III presents our framework for adding VirtIO
support to PCIe based FPGAs. Section IV gives the results
of our implementation of a VirtIO interface between a Xilinx
FPGA and a Fedora operating system.

II. BACKGROUND

A. Typical Use Model for PCIe FPGAs

Most high-end FPGAs, and even some low-cost FPGAs
such as [11], currently support PCIe connectivity. This makes
PCIe a popular host-device communication mechanism for
FPGAs because of high data rates, etc. The host-FPGA com-
munication is typically carried out with the assistance of a
device driver either provided by the FPGA vendor or written
by the user. In either case, the driver is specific to the given
device. This is unavoidable because of different capabilities
and PCIe IP core availability across different FPGA families.
This results in the user having to maintain different drivers
for different device families, and even for the same device,
depending on the PCIe IPs used. There are opensource PCIe
IPs and drivers provided by third parties such as [12], and [13].
These have similar limitations such as being specific to a
device or possibly a particular board, and the user having to
rely on a third party to maintain the drivers.

More recently, FPGA vendors have been providing runtime
libraries, such as Xilinx runtime library (XRT) [14] and

Open Programmable Acceleration Engine (OPAE) [15], which
provide the user with simple APIs for programming, data
movement, and controlling the FPGA. These typically provide
a user space library, kernel space device drivers, and an FPGA
shell that takes up a fixed portion of the FPGA fabric to
implement the communication infrastructure such as PCIe and
Ethernet controllers, DMA engines, memory interfaces, and
any other peripherals. The kernel drivers are designed to match
the IP blocks used to build this shell. The user application
kernel is typically instantiated inside the shell by using partial
reconfiguration. Some of these runtime libraries are even made
open source. However, the drivers themselves are still device-
specific and these frameworks do not support all the FPGA
devices, even from the same vendor.

There exists the requirement for a more general use-model
for communication with FPGAs over PCIe. Ideally, the drivers
should be agnostic of the device being used, and the user
should not have to maintain the device drivers by updating
them whenever the kernel is updated. A possible solution that
satisfies these requirements is use of the VirtIO drivers that
are part of the Linux standard release.

B. VirtIO

VirtIO devices are virtual devices found in virtual environ-
ments, yet, by design, they look like physical devices to a
guest within a virtual machine [10]. VirtIO devices can use
normal bus mechanisms for device discovery, interrupts, and
DMA. VirtIO drivers follow suit. This gives the opportunity
to use VirtIO drivers to communicate with physical devices as
well. The device in question only needs to present a VirtIO
compliant interface to the driver and the driver is agnostic to
the fact that it is communicating with a physical device.

1) VirtIO use cases: The VirtIO architecture consists of
three key components; front-end drivers, back-end devices, and
the queues used for all communication between the front- and
back-end components called ‘virtqueues’. VirtIO drivers are
the front-end component used by guest applications running
in a virtual machine. These communicate with the back-end
VirtIO devices that are emulated by the host machine. There
is a multitude of different combinations for the placement of
these components in guest and host user versus kernel space.
A detailed description is available in [16].

An interesting use-case is the para-virtualization in which
there is a physical device attached to the host machine and
access to it is virtualized by the VirtIO layer. Figure 1 depicts
an abstract view of this use model. The requests from the
VirtIO back-end device are sent to the physical device via
the legacy device driver running in the host kernel space, and
possibly a bridge device which converts the transactions to a
format understood by the legacy driver.

If the physical device exposes a VirtIO compliant interface
however, the intermediate layers can be bypassed to improve
performance. In this scenario, a VirtIO driver running on the
guest kernel space and one running in host kernel space see
the same interface to the physical device. Figure 2 illustrates
two use models that such a VirtIO compliant physical device

will enable. In Figure 2(A), the user space application is
interacting with the VirtIO driver running in the guest kernel
space. The physical PCIe device is exposed to the guest
VM with passthrough, which allows the VirtIO driver to
directly communicate with the physical device. In Figure 2(B),
the VirtIO driver is running in the host kernel space and
communicating with the physical device. The guest application
directly accesses the host VirtIO driver when it needs to use
the physical device.

VirtIO
DriverUsedAvail

Descs

Guest
User Space

Guest
Kernel

Host
User Space

KVM
Host

Kernel
 Space

Physical Device

VirtIO
DeviceUsedAvail

Descs
QEMU

Process

Legacy
Device Driver

Fig. 1. VirtIO para-virtualization.

VirtIO
DriverUsedAvail

Descs

Guest
User Space

Guest
Kernel
Space

Host
User

Space

KVM
VirtIO
DriverUsedAvail

Descs

Guest
User Space

Guest
Kernel Space

Host
User

Space

KVM

Host
Kernel
 Space

Host
Kernel
 Space

UsedAvail

Descs

UsedAvail

Descs

Application Application

(A) (B)
Physical Device Physical Device

Fig. 2. Physical VirtIO device use models.

C. Related Work

To the best of our knowledge, there is no published work
on enabling VirtIO PCIe support on FPGAs. However, there is
an FPGA IPU NIC based on an Intel Stratix 10 FPGA which
supports virtio-net and virtio-blk over PCIe [17]. According to
the product specifications, this can work as a VirtIO network or
storage accelerator with stock VirtIO drivers. No information
is available on whether the implementation is based on custom
IP cores or vendor provided ones. Hardware support for VirtIO
is implemented on a FPGA PCIe endpoint in [18]. However,
this is achieved by designing a custom IP core.

VirtIO is used as the front-end driver in [19], where the
authors focus on deploying multi-tenant FPGAs in Linux-
based cloud infrastructure. While this work relies on VirtIO
to decrease communication latency between software and

hardware domains, the VirtIO drivers are not directly commu-
nicating with the FPGAs. At the host level, a legacy driver
is still used to communicate with the FPGA. Other work
focused on FPGA virtualization, such as [20] use a similar
configuration where the VirtIO drivers only act as the front-
end drivers. What we can infer from these studies is that VirtIO
provides a good front-end for FPGA virtualization and multi-
tenancy on cloud environments. By enabling the VirtIO drivers
to directly communicate with the FPGAs, we can potentially
improve the efficiency of the above schemes by eliminating
multiple data copy operations among the intermediate layers
in the communication stack.

III. METHODOLOGY

To enable VirtIO drivers to communicate with an FPGA
over PCIe, the FPGA should expose an interface that meets
the requirements of the the VirtIO specification [10]. These
requirements can be divided into three different operating
phases: device identification, device initialization, and data
movement. The methods used to implement a VirtIO compliant
interface are described below in relation to the Xilinx FPGA
and IP cores used in our implementation. The same methods
are applicable to most Xilinx IP cores. We believe similar
capabilities are available in FPGA devices and IPs from other
vendors as well, but have not yet verified this fact.

A. Device Identification

A VirtIO enabled FPGA should announce the correct vendor
and device IDs at the time of PCI bus enumeration, at which
the devices on the PCI bus get identified and initialized by
the host. The PCI vendor ID should be 0x1AF4. The PCI
device ID is determined depending on the type of VirtIO
device implemented on the FPGA. For instance, an FPGA-
based smartNIC can use the device ID 0x1041 which is
the device ID for a VirtIO network device. This is perhaps
the simplest requirement in terms of the work necessary to
achieve in an FPGA implementation. The IP generation tool
flow generally allows the user to configure the PCI vendor and
device IDs within the GUI when generating the PCIe IP core.
Some Xilinx IPs provide the ability to change the PCI IDs at
runtime as well. However, this is unnecessary as we only need
the device to be recognized as a VirtIO device.

B. Device Initialization

The VirtIO specification specifies five PCI capabilities that
must be added to the PCI capability list for the device to be
initialized and operate as a VirtIO device. These are: Com-
mon configuration, Notification, ISR status, Device specific
configuration, and PCI configuration access. The first four of
the above capabilities inform the VirtIO driver where to find
a corresponding data structure that is used in initialization
and regular operation of the device. The PCI configuration
access capability provides the driver with an alternative access
method to the data structures pointed by the other capabilities.
For legacy VirtIO devices, the driver expects the data structures
to be in the memory or IO region corresponding to base

address register [9] (BAR) 0. However, for modern VirtIO
devices, the data structure could be mapped to any of the BARs
and the VirtIO capabilities in the capability list are essential
to locating those.

Adding new capabilities to the PCI capability list turned out
to be more challenging compared to setting the correct PCI
vendor and device IDs. We used a Xilinx Artix-7 FPGA for our
proof of concept implementation. This is one of the cheapest
FPGAs with PCI capability. The reasoning behind the selection
is that, if the capabilities provided by a cheaper FPGA family
is sufficient to successfully implement an interface compliant
with the VirtIO specification, the same should be possible with
more expensive device families. Our assumption is that the
integrated blocks and IP cores for the more expensive device
families will provide similar or better capabilities than what
is available for the device family we used.

At this point it is worthwhile to provide a brief description
of the PCIe integrated block and the IP core used in this
implementation. A Xilinx XC7A200TFBG484-2 device was
used in this work. This device offers the 7-series integrated
block for PCI express found in Xilinx 7-series devices. The
Artix FPGA uses the second generation (Gen2) integrated
block which has lesser capabilities than the more recent
iteration of the integrated block (Gen3) used in higher end
device families such as Virtex. The PCIe IP cores internally
instantiate the integrated block and use the transaction (TRN)
interface of the block to send and receive PCIe transaction
layer packets [9] (TLP). We use the Xilinx DMA/Bridge
Subsystem for PCIe Express (XDMA) IP core [21] for our
experiments. In order to modify the PCI configuration space
with new capabilities, we first need to understand how the PCI
configuration space accesses by the host are handled by the IP
core/integrated block, and the interfaces exposed to change the
contents of the PCI configuration space. For the device used
in this work, the PCI configuration space is implemented as
part of the integrated block itself. Under default configuration,
the integrated block responds to configuration space accesses
from the host and the configuration space read and write
access TLPs do not leave the integrated block via the TRN
interface. We have discovered that the integrated block/IP core
combination used in our implementation provides two different
mechanisms to change the contents of the PCI configuration
space. Since we used a lower end device, we can expect
the higher end devices and corresponding IPs to provide
similar or more flexible interfaces. For instance the 7-series
Gen3 integrated block for PCIe provides a more feature rich
configuration management interface compared to the interface
available in the Gen2 block.

Adding new capabilities to the PCI capability list involves
two tasks. First is to add the capability entries to the configu-
ration space. The second task is forming the capability list by
correctly setting the next pointer fields of the capabilities.

1) Updating configuration space contents:
a) Configuration Management Interface: The first mech-

anism to change the contents of the PCI configuration space
is the Configuration Management Interface. Specifically, the

signal group referred to as the Management Interface Ports
allow user logic to read and write to the PCI configuration
space. This interface has two shortcomings that make it
unsuitable for our requirement. First, as we discovered through
our testing, the integrated block for PCIe does not implement
the full PCI configuration space as write-enabled registers. It
seems that only specific portions of the configuration space
are implemented as writable registers and the rest of the
configuration space is read-only. This makes it unsuitable for
adding capabilities to the configuration space. Even if the
whole configuration space was writable by the user logic,
this method is still not ideal because the configuration space
modifications have to be done after the user logic has started
operations. This means that the new capabilities may not
be visible to the host when enumerating the device. This is
especially true when using Tandem configuration [22]. PCI
devices have a strict time limit around 100ms from reset, under
which they should be ready for enumeration and if not the
device will not be enumerated. When it takes longer than the
above time limit to read a bitstream from flash memory and
fully program an FPGA, Xilinx devices use a technique called
Tandem Configuration, where the bitstream is built in two parts
of which the first part contains only the bare necessities for PCI
enumeration and the second part contains user logic. We wish
the VirtIO enabled FPGAs to behave as any other PCIe device
and to be enumerated at system boot up without requiring an
additional PCI bus rescan after boot up.

b) Configuration Space Access Forwarding: The second
method is forwarding the configuration space accesses to
the user space over the TRN interface. While the 7-series
integrated block for PCIe supports this feature, this is disabled
in the XDMA IP core because the IP is not designed to handle
configuration space read and write TLPs. Therefore, we have
to make changes to the XDMA IP itself. There are two distinct
ways the same outcome can be achieved.

RTL modification: The first method is to modify the source
files for the IP core manually. We have to modify the source
file which instantiates the PCIe integrated block. The con-
figuration space access forwarding can be enabled by setting
the attribute named EXT CFG CAP PTR to an appropriate
double-word address. All configuration space accesses for
addresses above the specified address are forwarded to the user
logic. Before modifying the RTL, the IS LOCKED property
for the IP should be set. Otherwise, Vivado compilation flow
resets any modifications made to the RTL when recompiling
the IP core. After setting the locked property, and modifying
the source code, the IP is recompiled as an out-of-context
module synthesis run. Out-of-context synthesis is where the
IP is compiled independently of the rest of the design.

The XDMA IP used in this work exposes an interface
named Dynamic Reconfiguration Port (DRP) that allows the
user logic to dynamically control attributes of the PCIe hard
block. The EXT CFG CAP PTR attribute can be set using
the DRP interface. However, it has the same limitation as
the configuration management interface described above as the
user logic has to be operational and finish a write operation

over the DRP interface before the device enumeration for this
method to work correctly.

Modifying the XML file describing the IP components:
The XDMA IP internally instantiates another IP which cor-
responds to the actual PCIe integrated block and surrounding
logic. We can separately generate this IP with configuration
space access forwarding enabled, and add it to the XDMA IP.
Xilinx IPs use an XML file to describe their sub-components.
The second method is to update this XML file of the XDMA
IP core, and to force the tool chain to use the sub-IP we
previously generated instead of the one generated by Vivado
tool flow as part of the XDMA IP. Similar to the first method,
we still have to lock the IP and recompile as an out-of-context
synthesis run after updating the XML file.

It should be noted that the PCIe IP for the FPGA we used in
this work is free and the source files are not encrypted. If the IP
is provided by the vendor in an encrypted format, a user may
not be able to use the methods described here to implement a
VirtIO compliant interface. However, we believe that this work
still acts as a confirmation that it is possible to implement
an interface fully compliant with the VirtIO specification and
unmodified VirtIO drivers can be used to communicate with
FPGAs. There is no limitation in hardware preventing such an
implementation but artificial restrictions imposed by the FPGA
vendor through the tool chain and encrypted source files.

After configuring the integrated block to forward the con-
figuration space accesses to the TRN interface, we need to im-
plement the configuration space registers with the new VirtIO
capabilities, and the control logic to respond to configuration
space read and write TLPs. The TLP header field is used
to differentiate the configuration space access TLPs from the
other TLP types on the TRN interface. Because the transaction
interface is converted to an AXI interface by the XDMA IP,
the TLP header information is not accessible from user logic.
Therefore, the configuration space registers and the logic to
build correct response TLPs are implemented within the IP
itself by modifying the IP source files.

2) Forming the capability list: The next challenge is cor-
rectly forming the PCI capability list with the new VirtIO
capabilities. The capability list is traversed by following the
“next” pointer of each capability entry. Since the PCIe inte-
grated block implements power management, PCIe, Message
Signaled Interrupts (MSI), and MSIx capabilities, the next
pointer of the last of those capabilities should be set to
point to the first VirtIO capability. Surprisingly, the Vivado
IP flow does not expose this option to the user even though
configuration space access forwarding is exposed. We noticed
that there are potentially multiple ways to set this pointer, but
later discovered that not all methods satisfy our requirements.

a) Using the DRP Interface: Depending on the capabili-
ties chosen when generating the IP core, one of the attributes,
MSIX CAP NEXTPTR, or PCIE CAP NEXTPTR should be
set to point to the first VirtIO capability using the DRP
interface. However, this method is limited by the fact that
user logic may not be operational in time to make this change
visible at the time of device enumeration.

b) RTL modification: It is also possible to modify the IP
source code directly to set the above attributes as parameters
when instantiating the PCIe integrated block. Since we expect
the FPGA to be correctly enumerated at system boot up, this
is our preferred option to set the capability list next pointers.

C. VirtIO structures

The VirtIO structures pointed to by the newly added PCI
capabilities are used in both device initialization and regular
operation. We briefly describe our implementation here. As
we have successfully added VirtIO capabilities to the PCI
capability list, we are free to place the VirtIO data structures
on any of the BARs. since the XDMA IP core provides an
AXI lite master interface with the user logic that is mapped
to BAR0, we place all the VirtIO structures on BAR0 at
different offsets. Each of the VirtIO capabilities inform the
driver of both the BAR and the offset the corresponding
data structure is located at. The VirtIO driver will perform
read and write accesses to BAR0 in order to access the
common configuration, notification, ISR status, and device
specific configuration structures. The PCI configuration access
capability does not point to a different structure on a memory
or I/O region. Instead the driver can access other VirtIO
structures by reading/writing configuration space addresses
corresponding to this capability.

1) Common Configuration Structure: Common configura-
tion structure perhaps is the most important out of the VirtIO
structures. First, it informs the driver of device attributes such
as the features offered, number of queues supported, size
of each queue, etc. The driver writes information such as
addresses for different virtqueue regions, MSIx vectors for
each queue, etc. to the common configuration structure. The
device, and driver feature fields are used in feature negotiation
between the device and the driver. The device status field has
bits indicating different stages of device initialization.

Some fields in the common configuration structure represent
a group of replicated fields. For instance, all fields referring to
individual queues are replicated to match the number of queues
supported. The ‘queue select’ field determines which register
is currently getting read/written to. The common configuration
structure implementation should include the necessary logic to
support this behavior.

2) Notification Structure: The driver writes to the notifica-
tion structure in order to notify the device when there are new
buffers added to the queues. Because the driver never reads
the notification structure, it is not implemented as registers.
Instead only the logic necessary to respond to write requests is
implemented. The controller FSMs for virtqueues monitor the
writes to addresses corresponding to the notification structure
and initiate data movement between host and the device as
necessary. Depending on the features negotiated, the driver
may either write to the same address or write to a different ad-
dress within the notification structure that corresponds to each
queue. The data written include which queue the notification
is for. Therefore, the virtqueue control logic can differentiate
notifications for each queue.

D. ISA status field

ISR status field is used by the driver to differentiate be-
tween queue and device configuration interrupts. This field is
only useful when using legacy INTx interrupts. This field is
implemented as a register which gets cleared on read.

E. PCI Configuration Access Capability

The driver should be provided with an alternative access
mechanism to the common configuration notification, ISR
status, and device specific configuration structures through
this capability. We achieved this is by further modifying the
logic described in III-B1 which implements the modified
PCI capability list. A new state machine is added to cap-
ture configuration space read/write TLPs intended for PCI
Configuration Access Capability, and issue a read or write
request as necessary to the module which implements the
VirtIO structures. The portion of the PCI configuration space
that corresponds to the PCI Configuration Access Capability
is generally readable and writable by the host. Reads/writes
to the ‘pci cfg data’ field of the capability are what trigger
this special behavior. Rest of the capability fields at a given
time determines which other structure is accessed via this
alternative mechanism.

The connectivity between different modules is shown in
Figure 3. Here, the UDMA module is a sub-IP which im-
plements the DMA functionality. The source code for this
module is not visible to the user. All the AXI interfaces going
to user logic originates from this module. Please note that the
block named TRN↔AXI−S is not an actual sub-module
of the XDMA IP. Rather it represents the functionality of
multiple modules that sit between the PCIe integrated block
and the UDMA module and perform conversions between
the transaction interface signals of the integrated block and
the AXI stream interface connected to the UDMA module.
Similarly, the block named ‘ext cfg’ represents modifications
made to multiple modules of the IP core in order to implement
part of the PCI configuration space external to the PCIe
integrated block. We may refer to ‘ext cfg’ as a single module
from now on for simplicity.

When a configuration space access is forwarded from the
PCIe integrated block, the ‘ext cfg’ logic intercepts the TLP
and responds to the request. The modified PCI configuration
space registers with VirtIO capabilities are part of ‘ext cfg.’
Memory read and write TLPs are not intercepted and instead
sent directly to the UDMA module. When a configuration
space read/write TLP intended for the PCI Configuration Ac-
cess Capability is received, the ‘ext cfg’ logic still intercepts
the TLP. But, instead of immediately responding, it converts
the TLP to a memory read/write TLP and sends it to the
UDMA module as any other memory access TLP. The fields
of PCI Configuration Access Capability are used to modify
the fields of the TLP. It also indicates to the UDMA module
that BAR0 was hit. This results in the UDMA module sending
a read/write request to the ‘virtio controller’ module which is
connected to the AXI-lite interface and includes the VirtIO

data structures. The response from the ‘virtio controller’ is
sent to the host.

FPGA
XDMA IP

User
Logic

PC
Ie

 In
te

gr
at

ed
 B

lo
ck

AXI-MM

U
D

M
A

virtio_controller

ext_cfg

virtqueue
controller

virtqueue
controller

virtqueue
controller

Ar
bi

te
r

AXI-lite VirtIO
structures

TRN

AXI-
S

Fig. 3. VirtIO implementation.

F. Data Movement
Data movement between the host and a VirtIO device is

done using virtqueues. While the VirtIO specification describes
two different virtqueue formats, we have opted to implement
the simpler split virtqueue definition. It should be noted that
there are no limitations from the FPGA for a packed virtqueue
implementation. We have made our selection purely based on
simplicity of the split virtqueue functionality.

A split virtqueue consists of three regions. These are re-
ferred to as available ring, used ring and descriptor table. The
starting addresses for each of these regions, for each of the
queues are written to the common configuration structure at
device initialization. Therefore, when a notification is received
for a given queue, the virtqueue controller modules can start
data movement without further interventions from the host.
We have opted to implement individual controllers for every
queue supported by the device. The interface to control the
DMA engine is shared between all the virtqueue controllers
as shown in Figure 3. Our proof of concept implementation
includes one RX and one TX virtqueue.

When data is available to be moved to from host to the
device, the VirtIO driver places data in a buffer, updates entries
in the available ring and descriptor table of the TX virtqueue,
and notifies the device by writing to the notification structure.
The virtqueue controller takes over the data movement respon-
sibility at this point. It first accesses the header of the available
ring to figure out how many ring entries are created by the
driver. The valid entries are traversed one by one while doing
the following; (i) Read available ring entry to determine the
corresponding descriptor table entry. (ii) Read the descriptor
from descriptor table. (iii) Use the descriptor to access the
buffer and move data to the device. (iv) Create an entry in
the used ring to indicate that an entry from the available ring
was completed. (v) Update the header fields of used ring to
resemble the new number of entries in the used ring. (vi)
Notify the driver via an interrupt.

Each of the first five steps corresponds to the virtqueue
controller programming the DMA engine to perform a data
movement. The interrupt could be either a legacy interrupt or
an MSIx interrupt. We have opted to use MSIx interrupts in
our implementation. If sufficient MSIx vectors are enabled,

the driver chooses to assign different vectors for each queue
and one vector for configuration changes. The virtqueue con-
trollers are responsible for selecting the correct MSIx vector.
The vector number corresponding to each queue is written
to ‘queue msix vector’ field of the common configuration
structure at device initialization.

The VirtIO driver allocates buffers for the RX queue as well
and notifies the device immediately after the device initializa-
tion. However, these are not used until the user logic asserts
an input signal to the virtqueue controller corresponding to a
RX queue. The virtqueue controller exposes an interface to
the user logic to indicate the source address to read data from
and the length of the buffer. When the user logic indicates that
data is ready to be moved to the host, the virtqueue controller
follows the same steps as when it received a notification for
the TX queue. The only difference is that instead of moving
data from host to device, it moves the data from device to host
into a buffer previously allocated by the VirtIO driver.

1) Controlling the DMA engine: The use model for most
DMA engines involve a driver running on the host providing
the address where the descriptors are stored and the DMA
engine first fetching the descriptors and then performing the
data movement. The descriptor layout is specific to the DMA
engine. Since the VirtIO drivers do not target a specific
device, the descriptors in the descriptor table do not match the
layout required by the DMA engine of the XDMA IP core.
Furthermore, the VirtIO driver do not attempt to program the
DMA engine at all. Instead, it provides the device the starting
addresses of different regions of the virtqueues. The device
has to use these and the information on the size of ring and
descriptor table entries available in the VirtIO specification to
control the DMA engine and perform data movement.

The XDMA IP core provides an interface named Descriptor
Bypass Interface to feed descriptors to the DMA engine
from user logic. The virtqueue controllers use this interface
to program the DMA engine and move data to and from
the FPGA. The DMA status ports are used to monitor the
completion of data movement and advance the states of the
virtqueue controller FSM. While we expect most PCI/DMA
IP cores for different FPGAs to have similar interfaces to
control the DMA engine from user logic, the user might have
to implement their own DMA engine if such an interface is
not available.

IV. EVALUATION
A. Results

Our proof of concept implementation of the FPGA-
based VirtIO console device is implemented using an Alinx
AX7A200 development board. It has been tested on a host
machine running Fedora 35 operating system. We have shown
that with the added hardware support for VirtIO, the device
gets enumerated as a VirtIO console device at system boot
up without requiring additional PCI bus rescans, etc. Also
the VirtIO driver loads completely without any errors and is
agnostic to the fact that it is communicating with a physical
device and not a virtual device. Figures 4, and 5 present the
output of lspci -v on the host machine with the FPGA

programmed with bitstreams for a Xilinx example PCIe DMA
design and the VirtIO console device respectively. The PCI
capability list in Figure 5 shows the VirtIO capabilities added
by modifying the PCIe IP core.

We have observed that the VirtIO PCI configuration access
capability is never used by the virtio-pci driver when the
FPGA is configured as a VirtIO console device. We have not
validate this for other VirtIO device types. However, depending
on the device type, it maybe possible to achieve the same
behavior when interacting with the VirtIO drivers even if the
PCI configuration access capability is not implemented.

While we have not performed detailed testing on perfor-
mance, our limited testing has shown that the data movement
performance is similar to the vendor provided reference driver.
We expect further testing to reveal that the VirtIO configura-
tion to have marginally lower latencies than the legacy driver
because of the steps involved in data movement and the way
the DMA engine is programmed.

1) Host to Card (H2C): To perform a H2C transfer, the
legacy driver programs the DMA engine through multiple
memory read and write accesses over PCIe. When the trans-
fer is complete, the DMA engine interrupts the driver. In
contrast, the VirtIO driver only performs one memory write
to the VirtIO notification structure of the device. While the
‘virtqueue controller’ has to perform multiple reads and writes
to host memory, these are DMA transfers and the DMA engine
is programmed directly from within the FPGA. The DMA
engine can be programmed in a single clock cycle via the
descriptor bypass interface, unless the engine is already busy
moving data. We expect this to have a lower latency compared
to the multiple memory reads and writes necessary for the
legacy driver.

2) Card to Host (C2H): When data is ready to be sent back
to the host and the legacy driver is being used, the FPGA has
to first raise an interrupt to indicate to the driver that data is
ready to be moved. Then the driver will program the DMA
engine similar to the H2C scenario. If the driver has to figure
out the source address on the FPGA by reading a CSR or
a similar mechanism, that adds more memory reads to the
total. When the data movement is complete, the DMA engine
interrupts the driver.

As opposed to this, the operation of the virtqueue is much
more streamlined. When user logic indicates the virtqueue
controller that data is ready to be sent to the host, the controller
determines the buffer location in host memory by reading
available ring and descriptor table of the virtqueue. These
are DMA operations and have lower latency compared to the
memory accesses by the legacy driver. Then the data is moved
to the buffer in host memory, and finally the VirtIO driver
is notified via an interrupt. We expect this to have a lower
latency than the legacy driver operation because of faster DMA
operations and one less interrupt. If legacy INTx interrupts are
used, the VirtIO driver has to perform one more read operation
to the ISR status field. However, it is not necessary if MSIx
interrupts are used because each virtqueue can be assigned a
unique interrupt vector.

Fig. 4. Device enumeration for Xilinx example design.

Fig. 5. Device enumeration for VirtIO console device.

B. Implementation challenges

Here we provide our assessment of the difficulty of imple-
menting VirtIO support on an FPGA by modifying vendor
IP blocks. According to our estimates, over 80% of the
implementation effort was put into figuring out the necessary
features of the vendor IP cores and using those features to add
VirtIO capabilities to the PCI capability list. Implementing the
VirtIO data structures and virtqueue controller logic according
to the VirtIO specification was straightforward and quick. If
the PCIe IP core in question is one used with more than
one device family, the effort to figure out the IP details is
not necessary when implementing VirtIO support on the other
device families. For instance the Xilinx XDMA IP core used
in this work can work with UltraScale+, UltraScale, Virtex-7
XT Gen3 (Endpoint), and 7-series Gen 2 (Endpoint) Integrated
Blocks for PCIe [21]. Therefore, implementing VirtIO support
on those devices can be done with considerably less effort.
Also, the FPGA vendors can enable the necessary capabilities
to make VirtIO support easily achievable.

C. Future directions

This work can be extended by implementing other VirtIO
device types such as virtio-net. It is also possible to define new
VirtIO device types to correctly represent the different FPGA
use cases. As future work, we will also perform a detailed
performance analysis and comparison against legacy drivers
for both host and guest OS VirtIO drivers communicating with
the VirtIO enabled FPGA.

V. CONCLUSION

In this work we investigate the requirements for enabling
host-FPGA communication using native VirtIO drivers. We
have identified and implemented the data structures, arbitration
logic, queue, and DMA control logic required to create a
VirtIO compliant host interface on an FPGA. We have done so
by using both generic RTL modules and modifying the vendor
provided PCIe IP blocks. Finally, we have demonstrated the ef-
fectiveness of our approach by implementing a VirtIO console

device on a Xilinx 7-series device and showing correct device
enumeration and communication. We believe that this work
will act as a proof-of-concept for using unmodified VirtIO
drivers to communicate with FPGAs. It also demonstrates
that even lower-end FPGAs have the necessary capabilities
to implement a host interface fully compliant with the VirtIO
specification.

ACKNOWLEDGMENTS

This work was supported, in part, by grants from Red Hat
and the NSF through awards CCF-1919130 and CNS-192550.

REFERENCES

[1] A.M. Caulfield, et al., “A cloud-scale acceleration architecture,” in
MICRO, 2016.

[2] Q. Xiong, C. Yang, R. Patel, T. Geng, A. Skjellum, and M. Herbordt,
“GhostSZ: A Transparent SZ Lossy Compression Framework with
FPGAs,” in FCCM, 2019, pp. 258–266.

[3] J. Lant, J. Navaridas, M. Lujan, and J. Goodacre, “Toward FPGA-Based
HPC: Advancing Interconnect Technology,” IEEE Micro, vol. 40, no. 1,
pp. 25–34, 2020.

[4] P. Haghi, T. Geng, A. Guo, T. Wang, and M. Herbordt, “FP-AMG:
FPGA-Based Acceleration Framework for Algebraic Multigrid Solvers,”
in FCCM, 2020.

[5] V. Krishnan, O. Serres, and M. Blocksome, “Configurable Network
Protocol Accelerator (COPA),” IEEE Micro, vol. 41, no. 1, 2021.

[6] C. Bobda, et al., “The Future of FPGA Acceleration in Datacenters
and the Cloud,” ACM Transactions on Reconfigurable Technology and
Systems, vol. 15, no. 3, pp. 1–42, 2022, doi: 10.1145/3506713.

[7] P. Haghi, et al., “Reconfigurable switches for high performance and
flexible MPI collectives,” Concurrency and Computation: Practice and
Experience, vol. 34, no. 2, 2022.

[8] A. Guo, T. Geng, Y. Zhang, P. Haghi, C. Wu, C. Tan, Y. Lin, A. Li, and
M. Herbordt, “A Framework for Neural Network Inference on FPGA-
Centric SmartNICs,” in FPL, 2022.

[9] PCI SIG Org., “PCI Express Base Specification Revision 3.0,” Nov
2010. [Online]. Available: https://pcisig.com/specifications

[10] M. S. Tsirkin and C. Huck, “Virtual I/O device (VIRTIO)
version 1.1,” Dec 2018. [Online]. Available: https://docs.oasis-
open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html

[11] Xilinx, “Artix-7 FPGA family,” 2022. [Online]. Available:
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html

[12] “IP Core Factory.” [Online]. Available: http://xillybus.com/ipfactory/
[13] D. Richmond, A. Prost-Boucle, and J. O’Brien, “RIFFA,” 2022.

[Online]. Available: https://github.com/KastnerRG/riffa
[14] Xilinx, “Xilinx Run Time for FPGA,” 2022. [Online]. Available:

https://github.com/Xilinx/XRT
[15] E. Luebbers, S. Liu, and M. Chu, “Simplify Software

Integration for FPGA Accelerators with OPAE.” [On-
line]. Available: https://01.org/sites/default/files/downloads/opae/open-
programmable-acceleration-engine-paper.pdf

[16] E. Pérez Martı́n, “Virtio devices and drivers overview: Who is who,”
Jun 2020. [Online]. Available: https://www.redhat.com/en/blog/virtio-
devices-and-drivers-overview-headjack-and-phone

[17] Silicom, “Silicom C5010X data center NIC.” [Online]. Available:
https://www.silicom-usa.com/wp-content/uploads/2021/12/PB C5010X-
NIC v1.1 virtio.pdf

[18] RSPwFPGAs, “Virtio-FPGA-Bridge: Virtio front-end and back-
end bridge, implemented with FPGA.” [Online]. Available:
https://github.com/RSPwFPGAs/virtio-fpga-bridge

[19] J. M. Mbongue, D. T. Kwadjo, A. Shuping, and C. Bobda, “Deploying
multi-tenant FPGAs within Linux-based cloud infrastructure,” TRETS,
vol. 15, no. 2, pp. 1–31, 2021.

[20] J. M. Mbongue, F. Hategekimana, D. T. Kwadjo, and C. Bobda, “FPGA
Virtualization in Cloud-based Infrastructures over Virtio,” in ICCD,
2018, pp. 242–245.

[21] Xilinx, “DMA/Bridge Subsystem for PCI Express v4.1,” Jun 2022.
[Online]. Available: https://docs.xilinx.com/r/en-US/pg195-pcie-dma

[22] ——, “7 Series FPGAs Integrated Block for PCI Express v3.3,”
Jul 2020. [Online]. Available: https://docs.xilinx.com/v/u/en-US/pg054-
7series-pcie

