

PERFORMANCE PREDICTION OF MESSAGE PASSING

COMMUNICATION IN DISTRIBUTED MEMORY SYSTEMS

A Thesis

Presented to

the Faculty of the Department of Electrical and Computer Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree of

Master of Science

in Computer and Systems Engineering

by

Aparna Mande

May, 2002

1

Abstract

Communication is an important component in determining the overall performance of a

distributed memory parallel computing application. It therefore becomes essential to

predict communication performance of applications on the underlying network hardware

of a target distributed memory system. This thesis concentrates on integrating a cycle

driven k-ary n-cube network simulator to the existing CAL-SIM distributed memory

simulator for evaluating communication performance of message passing applications.

The design and implementation of a suitable network interface required for the

integration is presented. With detailed network simulation the accuracy of predictions

made is very high. The impact on communication performance by varying some of the

network design parameters is studied. Other important aspect of this work is the access to

an evaluation platform for evaluating network design tradeoffs, using real applications as

workload instead of synthetic workloads.

2

Contents

CHAPTER 1 - INTRODUCTION.. 3

1.1 BACKGROUND.. 2
1.2 PROBLEM ADDRESSED... 3

CHAPTER 2 - RELATED WORK .. 5

2.1 MESSAGE PASSING INTERFACE ... 5
2.2 EVALUATION TOOLS.. 7

2.2.1 Simulation of Computation Performance of the Application ... 8
2.2.2 Simulation of Communication Performance of the Application..................................... 9

CHAPTER 3 - DISTRIBUTED MEMORY SIMULATOR COMPONENTS....................... 11

3.1 CAL-SIM... 12
3.2 NETSIM .. 18

3.2.1 Design Space of Router .. 20
3.2.2 Basic Parameter Settings ... 26

CHAPTER 4 - SYSTEM INTEGRATION ... 28

4.1 INTERFACE DESIGN AND IMPLEMENTATION.. 28
4.1.1 Send Side .. 29
4.1.2 Receive Side.. 31

4.2 NETWORK EVENT .. 31
4.3 SCHEDULING THE NETWORK EVENT ... 32
4.4 REDUCING SIMULATION OVERHEAD ... 36
4.5 DESIGN GUIDELINES FOR THE NETWORK MODEL... 37

CHAPTER 5 - SIMULATION RESULTS .. 39

5.1 SIMULATOR PARAMETER SETTINGS .. 39
5.1.1 Linear Delay Model Parameter Settings.. 40
5.1.2 Network Mode Parameter Settings... 40

5.2 RESULTS FOR THE NAS MULTIGRID BENCHMARK.. 41
5.3 RESULTS FOR THE NAS INTEGER SORT BENCHMARK... 45
5.4 RESULTS FOR THE NAS EMBARRASSINGLY PARALLEL BENCHMARK 49
5.5 RESULTS FOR THE FFT BENCHMARK .. 50
5.7 FUNCTIONAL VERIFICATION OF THE SIMULATOR ... 52

CHAPTER 6 - CONCLUSION AND FUTURE WORK.. 55

6.1 CONCLUSION.. 55
6.2 RECOMMENDATIONS FOR FUTURE WORK ... 56

REFERENCES... 58

3

 List of Figures

Figure 1. Steps in profiling a parallel program .. 13
Figure 2. Process execution cycle in execution driven simulation .. 15
Figure 3. Network delay model parameters ... 17
Figure 4. Canonical model for the router switch used in NetSim.. 20
Figure 5. (a) Two Dimensional Torus Network (b) Two Dimensional Mesh....................... 21
Figure 6. Crossbar Switch Architecture (a) N x M crossbar (b) Cascaded crossbar...................... 24
Figure 7. Simulation system design ... 29
Figure 8. Scheduling the network event with look-ahead.. 33
Figure 9. Code format for network event... 37
Figure 10. Avg. message size and total number of messages as a function of machine size......... 42
Figure 11. Predicted average message latency for the MG Class A benchmark 43
Figure 12. Comparison of routing algorithm performance ... 43
Figure 13. Percent computation and communication in MG benchmark 44
Figure 14. Predicted performance for the Multigrid Class A benchmark...................................... 45
Figure 15. Avg. message size and total number of messages as a function of machine size for ... 46
 the IS Class W Benchmark ... 46
Figure 16. Avg. message latency prediction for the IS Class W benchmark................................. 47
Figure 17. Avg. message latency with a variation in routing algorithm .. 47
 for the IS benchmark... 47
Figure 18. Avg. message latency on a 2D mesh for the IS Class W benchmark 48
Figure 19. Percent computation and communication in the IS Class W benchmark 48
Figure 20. Predicted performance for the IS Class W benchmark... 49
Figure 21. Average message latency for the EP Class A benchmark .. 50
Figure 22. Predicted performance for the EP Class A benchmark .. 50
Figure 23. Communication time for FFT benchmark .. 51
Figure 24. Performance of the FFT benchmark... 51
Figure 25. Prediction error for communication performance prediction using.............................. 52
 the linear delay model ... 52
Figure 26. Execution flow for a cluster architecture in simulation.. 57

1

List of Tables

Table 1. Network parameter settings ... 41
Table 2. Benchmark Tests.. 53
Table 3. Functional Verification .. 54

2

Chapter 1 - Introduction

1.1 Background

Parallel computing systems are widely accepted as an effective technology for solving

large, computationally intensive problems in the area of high performance computing.

Based on their memory organization, parallel computing systems fall into two categories:

shared memory systems and distributed memory systems. Of these, the distributed

memory architecture is more scalable and thus preferred for large-scale machines.

The distributed memory system also known as the multicomputer, consists of commodity

processors joined by a suitable interconnection network. Inter-processor communication

proceeds by exchanging messages through the network. Since processor speed is

increasing rapidly, the communication network becomes a limiting factor in the

performance of message-passing applications. Using commodity network components to

connect the processors results in immense slowdown of the application execution speed.

Therefore the design of a high-speed interconnection network becomes critical in

distributed memory architectures.

The cost and engineering effort required in building a high performance distributed

memory system makes it important to predict the performance of the proposed

architectural features. Performance prediction tools provide a low cost means for

predicting application performance on proposed systems. The information made available

by such a tool assists designers in optimizing their system for the highest possible

3

performance. The evaluation tool models several hardware and software characteristics of

a system. By varying these characteristics, the system performance can be predicted for

its intended class of applications.

1.2 Problem Addressed

The need was to provide an accurate and efficient tool for evaluating the performance of

distributed memory systems under realistic workloads. For most message-passing

applications, their communication performance is extremely crucial for achieving higher

performance. Variation in communication network can have a significant impact on the

application performance. It therefore becomes important that the tool facilitate detailed

evaluation of the communication network along with the evaluation of other system

characteristics. Thus the pseudo execution environment provided for applications should

be very much like the specified hardware, delivering accurate results to the users of the

system.

A distributed memory simulator (CAL-SIM) was previously developed as part of our

research [1]. The architectural parameter that can be varied within the simulator is the

number of processors. The simulator makes simplified assumptions of the network when

predicting the communication performance of message passing applications.

An interconnection network simulator (NetSim) for distributed memory systems has also

been independently developed [2]. The simulator allows for modeling of various network

4

designs. Like most other network simulators, it makes use of synthetic workloads to

generate traffic in the network.

The task we address in this thesis is the design of a suitable network interface within

CAL-SIM for integrating the network simulator. The integration of the two evaluation

tools, CAL-SIM and NetSim provides the capability to specify an interconnection

structure for processors within the CAL-SIM simulation system. It provides with a

realistic environment for program execution and more accurate performance

measurements. It also allows for evaluating the impact of network design on

communication performance of applications and in making refinements to the network

model, to suite the application domains requirements.

The other important aspect of this integration work is the access to an evaluation platform

for evaluating candidate interconnection networks using real application workload. Most

of the existing interconnection network simulators make use of synthetic workloads for

performance evaluation. Firstly, these synthetic (dummy) workloads have to be generated

by examining the communication behavior of real applications themselves. Secondly,

they may not necessarily capture the communication behavior very accurately and often

make simplifying assumptions about the workload characteristics, which may be

inappropriate and may lead to inaccurate performance predictions. So the best case would

be to have real world applications to test the network performance instead of the synthetic

workloads.

5

Chapter 2 - Related Work

Simulation is a very effective technique for the evaluation of parallel systems before

incurring the hardware cost. Various simulation techniques have been developed for

evaluating the performance of parallel systems as well as for their interconnection

networks. In this chapter, we describe some of the major simulation techniques and

indicate which technique best matches our requirements. The message passing interface

standard adopted by the benchmark applications used in this research is also discussed in

brief.

2.1 Message Passing Interface

Message Passing Interface (MPI) [3], has become an accepted standard in implementing

communication functions for message based parallel programs in distributed memory

systems. The major goal of this standard is to provide for portable and easy to use

communication library functions without affecting performance. Amongst the many

programming features, the standard provides several mechanisms to perform point-to-

point and collective communications.

With point-to-point communication mechanism, communication proceeds between a pair

of processes. The basic point-to-point operations are the send and receive operations. The

communication semantics for these operations can be either blocking or non-blocking.

With the blocking type, the send function call does not return until resources such as the

user buffer can be safely reused or the data transfer to the network interface has been

6

completed. But with the non-blocking semantics, the send operation can return right after

the communication has been initiated and does not wait to see if the buffer is safe to

reuse. The non-blocking semantics is provided for performance reason so that the

communication can be overlapped with computation. The sender however has to later

issue a send complete call to verify if the data transfer has been completed. With either of

the semantics, the operations use one of the following communication modes: standard,

buffered, synchronous and ready.

In the standard mode, the MPI implementation can choose to wait for a matching receive

to be posted before starting data transfer or can choose to buffer the message in a

temporary system buffer and return immediately. In the buffered mode, an outgoing

message always gets buffered and the operation will complete whether or not a matching

receive has been posted. With the synchronous mode, the MPI implementation ensures

that the receiver has started to receive the message and that the send buffer can be safely

reused. In this mode, a send can start immediately but can complete only if a matching

receive has been posted. In the ready mode, the send call proceeds only if the matching

receive is already posted.

The other communication mechanism provided is for collective operations. In a collective

operation, a group of processes participate in the communication. Typical collective

operations are the barrier synchronization, broadcast, gather, scatter, reduce and all to all

exchange. In barrier synchronization, each process is blocked until all other processes in

the group have executed the barrier call. A broadcast message involves the root process

7

sending a message to all processes in the group including itself. A gather operation is the

reverse of broadcast. The root process now waits to receive a message from every process

in the group. In a scatter operation, the message sent by the root process is split into n

equal parts and each of the respective parts is sent to the n processes in the group. In a

reduce operation each process combines the elements provided in its input buffer using a

common specified operation and returns the result for the combined elements to the root

process. With an all to all exchange, each process sends distinct data to each of the other

processes.

 Apart from the point-to-point and collective operations, the MPI standard includes

several more features such as process groups, process topologies, communication

contexts and derived data types. In this thesis the implementations of only point-to-point

and collective communications, which require the use of communication network are

considered. These are also the most frequently used MPI functions and are supported by

the MPI library within our simulation system.

2.2 Evaluation Tools

Message passing applications include two important components namely, computation

and communication. The time spent by the application in computation and in

communication needs to be simulated for accurate predictions. The simulation techniques

for predicting both the components are discussed below.

8

2.2.1 Simulation of Computation Performance of the Application

Some of the available techniques for simulating this component of application

performance are trace driven simulation, instruction level simulation and execution

driven simulation.

Trace Driven Simulation: In this method, a program is instrumented to generate a trace

of its execution events, which need to be simulated. The trace can then be used for

simulation of the target machine. The method can be accurate while studying

cache/memory behavior or study application performance on a uniprocessor system. But

trace driven simulation can prove very difficult while studying multiprocessor systems.

The execution being multithreaded, the generation of a representative trace is a problem.

This method is thus rarely used for simulation of parallel systems.

Instruction level Simulation: Unlike trace driven simulation, instruction level

simulation does not involve collecting a trace. This simulation model takes in each

instruction of the application program and emulates the behavior of the corresponding

instruction for the target architecture. Due to emulation of each target instruction, the

number of simulator instructions executed per host instruction is usually greater than

hundred. This results in significant slowdown of the simulator operation although the

accuracy of prediction is very high for such a technique.

Execution Driven Simulation: This technique is relatively new and most commonly

used today. With this technique the execution of the program and the simulation model

for the architecture are interleaved. The assembly language code for the application is

9

parsed for basic blocks and the timing information is inserted only at the start of each

basic block. Unlike instruction level simulation that emulates every single instruction,

this technique executes an entire basic block instead. So there is significant reduction of

simulation overhead in execution driven simulation as compared to instruction level

simulation, thereby making it the preferred technique.

The distributed memory simulator, CAL-SIM used in this research utilizes the execution

driven simulation technique to predict the compute performance of applications. It

enables efficient simulation while providing accurate performance predictions.

2.2.2 Simulation of Communication Performance of the Application

For message passing architectures, the communication performance of applications can

be determined from the time spent in communication routines as well as in the network

hardware. The latency for a message to reach its destination eventually adds up to the

execution time of the application, if the receiver of the message has been waiting on it.

The major components of message latency are the messaging layer latency, which

involves preparing the message for data transmission and the network hardware latency.

Although the overhead of messaging layer is significant, for long messages, the network

hardware latency dominates the communication latency. So in this research the latency

introduced by the networking hardware is considered and the following simulation

techniques are discussed with respect to the network hardware.

10

Analytical Model: Analytical models provide a quick estimate of the message latency

from some of the network parameters. However these models lack sufficient accuracy for

complex networks that incorporate several design tradeoffs.

Cycle Driven Simulation: This is a commonly adopted technique for evaluating

networks because of the number of details that can be incorporated in the simulation.

With this approach, the network is made to run as if there were a clock signal driving it

and the activities advance every clock cycle, in a way these would proceed in a real

network. Accurate results can be obtained as the simulation can model hot spots and

contentions in the network, which add to the message latency. However detailed cycle

driven simulation tends to slowdown the simulation process.

Event Driven Simulation: With event driven simulation a queue of events maintained in

a time order drives the simulation. Simulation time gets updated to the timestamp of an

event when it is selected for running from the head of the queue. The technique allows

for accurate simulation. However when there are a large number of network parameters,

which manipulate the event queue every simulation cycle, the simulation tends to be

extremely slow. Cycle driven simulation is preferred in this case.

The network simulator, NetSim used in this research, utilizes the cycle driven simulation

technique. The cycle-by-cycle network model is also appropriate for integration with the

execution driven distributed memory simulation system, as it provides easier control over

network run time in simulation.

11

Chapter 3 - Distributed Memory Simulator Components

This chapter describes the tools that make up the distributed memory simulation system.

The simulation system is designed to run on a uniprocessor host machine.

A parallel architecture is simulated on a uniprocessor machine by creating threads to

represent the different processors in the architecture model. Each thread holds a copy of

the application program and executes its part of the code. The threads communicate by

sending messages to each other during their lifetime. The application program itself can

be made transparent to the details of setting up communication and having the messages

sent or received by simply making high level function calls, with these functions

implemented as part of the system software library. The desired feature would be to use

the MPI standard communication calls within the application. This means a run time

library implementing the MPI communication routines is required of the simulation tool.

CAL-SIM supports simulation of MPI based parallel programs and is described in section

3.1. More details of the simulator can be found in [1].

To simulate the communication behavior of the parallel application, a network simulator

configured with the distributed memory simulator is also required. NetSim, a cycle level

network simulator is suitable for integration with CAL-SIM and is described in section

3.2. More information on this tool can be found in [2].

12

3.1 CAL-SIM

CAL-SIM is an execution driven, distributed memory simulator running message passing

applications. The tool accepts an MPI application and predicts its execution time on the

target architecture in terms of number of cycles. Simulation is carried out on a

uniprocessor host while the simulator itself provides for the multithread framework. The

CAL-SIM simulator library is made up of several components such as the simulation

core, basic network model, MPI library, application profiling tools, timing analyzer etc.

With the execution driven technique, the execution of the application is interleaved with

the simulation process. Execution driven technique is presented in [4], [5]. The profiling

tool within the simulator parses the assembly level code of the application, identifying

basic blocks and inserts timing information code for each basic block. The instrumented

code is then compiled and linked with the simulation library to provide the executable.

This technique is depicted in Figure 1.

13

 Figure 1. Steps in profiling a parallel program

The instrumented code now has the instructions for updating the time counter executed as

the application is being executed. The simulation core begins execution by creating

Message Passing
 Program

 C-Assembly
 Compiler

Host/Target
assembly program

Code analyzed for
basic blocks and
instrumented with
timing information

Instrumented assembly
 code

Final Compilation
 and linking

 Final Executable

Simulation Library

14

threads equal to the number of nodes being simulated and each thread now holds a copy

of the profiled application. With multiple threads executing, the access to global data

structures within the simulator such as the time counter needs to be maintained in the

correct sequence. The threads would require synchronizing every time there is a need to

update one of the global variables. With a large amount of synchronization activity, the

slowdown in the simulation speed is significant. Therefore to avoid the high overhead of

synchronization, global variables are maintained as one-dimensional array per variable

and each thread uses its own copy of the variable indexed by the processor number or

thread number. The time counter for example will now be maintained as time

counter[NPROCS] and the instructions for updating the processor thread’s time will

update the array element of the time counter, which is indexed by the thread number.

Synchronization routines are used only for access to a processor’s message queue.

Once the threads get created and initialized, the simulator core schedules these threads for

execution. Note that the execution of threads is serialized on a uniprocessor host. A

context switch occurs when the currently running thread performs a communication call.

A new thread is then picked up for execution by the simulator core and this process

continues until all the threads have executed. The simulation time gets updated to the

schedule time of various activities, which are maintained in time order as in event driven

simulation. This type of scheduling which is part of the execution driven technique is

depicted in Figure 2.

15

 Figure 2. Process execution cycle in execution driven simulation

The above scheduling technique ensures that communication schedules within the

processor thread occur at the correct cycle of execution. The communication calls require

Select a thread for execution

Set the cycle time counter to
0 for the thread

Increment cycle time counter
by number of cycles to execute
current basic block

Execute current basic block

Communication
Required with
another thread

Delay the thread execution for a
time equal to the accumulated
cycle time counter

Select the next thread in the
activity queue for execution

16

for a thread to either exchange data with a process running on another processor (another

thread in simulation) or participate in a collective operation by all threads on the global

data or participate in a synchronization activity. The MPI library implementation for the

communication calls is responsible for the setup to have messages transferred to their

destination. Message queues are maintained to hold the outgoing and incoming messages

for a thread. In a simulated send operation, a message is time stamped with the send time,

which is the current time of simulation and with the receive time which is the send time

plus the predicted message latency. An event which places the message in the destination

thread’s message queue is then scheduled to occur at the receive time stamp. In a

simulated receive operation the destination thread simply checks its message queue to see

if the message has arrived.

The time at which a destination thread receives its message is computed using simple

delay functions. The network hardware latency is computed using a linear message

latency model, where the latency is proportional to the length of the message and to the

distance between the source and destination nodes. This is essentially the ideal latency

experienced by a message in the network to get transferred to the destination processor.

In addition to the network latency, delay models for overhead at the sender side (e.g.,

creation of message packets) and at the receiver side (e.g., transfer of message from the

network to receiver memory) are provided. So the total message latency is the sum of the

three basic parameters shown in figure 3. An event is scheduled at the message arrival

time which puts the message into the destination thread’s receive queue and signals a

receive semaphore. The destination thread executing its receive call, checks the receive

17

queue for its intended message. If the message has arrived, it copies the message in the

user level buffer specified by the receive operation and returns successfully. If the

message has not yet arrived, then the semantics of the receive operation determines

further action. If the receive is non-blocking, the receive call simply returns. The thread

has to execute a wait routine at a later point in execution to check if the request had been

processed and it will now wait for the message to arrive in the wait routine. If the receive

is blocking then the receiving thread blocks itself on the receive semaphore. On a

semaphore signal, the receiver checks the arrived message. If this message is the

expected one, the receiver copies it to the user buffer else puts it in a checked message

queue and again waits on the receive semaphore for the next signal.

 Figure 3. Network delay model parameters

This mode of the simulator that does not support simulation of network activity has been

provided if the user of the simulator is interested in predicting application runtime

without worrying about the details of the network, requiring knowledge only about the

 P
NI

P
NI

 NETWORK

Network latency

Sender transmit latency Receiver transmit latency

18

behavior of parallel application and its compute efficiency. The use of simple delay

equations in such a case enables faster simulation. This mode within the simulator is

however flexible enough to let users of the system use their own delay models for the

network parameters of figure 3. If a user does not provide the delay models, then the

default models in the system will be used.

A separate mode of operation is required within the simulator for situations in which a

parallel application needs to be evaluated for its communication performance. The

accuracy of event timing for the send and receive operations becomes very important in

this case. The message arrival time obtained from simulation of network activities needs

to be used rather than the time predicted by a simple latency model. This is because

simple latency expressions cannot account for factors such as network contention, traffic

patterns and complex design of messaging algorithms, which can have a significant

impact on the message latency. A network simulator thus needs to be connected with

CAL-SIM in this mode. The first task now would be to have a suitable interconnection

network simulator. NetSim described in section 3.2 is used for the purpose. The next task

would be to develop a network interface in CAL-SIM, to have the tools work together

and provide for a comprehensive distributed memory simulation system.

3.2 NetSim

For integrating a network simulator with CAL-SIM, a choice has to be made as to which

would be the appropriate model: event driven or cycle driven. CAL-SIM being an event

driven simulator, having another event driven simulation combined with it would be

19

rather complicated and make it very difficult to ensure that the messages are sent into the

network at the correct simulation time. Also the time when the network needs to halt and

let other threads continue would be difficult to control. With cycle driven simulation it

would be much easier to control the number of cycles to run the network simulator.

Moreover the network can be scheduled as an independent event within the event driven

simulator. The use of a cycle driven network simulator for integration with an event

driven simulator is thus the preferred choice. NetSim [2] is a cycle driven network

simulator that models the behavior of multi-computer networks and switches. This

network simulator has been used for integration with CAL-SIM and is described in this

section.

The main component within NetSim is a router, which handles message communication

for the node. A router is connected directly to the routers of the neighboring nodes in a

direct network. The router is designed using the canonical model shown in figure 4.

20

 Figure 4. Canonical model for the router switch used in NetSim

With the router design model of figure 4, the flexibility to vary network design

parameters is large. The model also provides a common environment for a fair evaluation

of the design tradeoffs. The design space of this canonical router in NetSim is discussed

below.

3.2.1 Design Space of Router

 Network topology

As with most direct networks, k-ary n-cube mesh and torus networks are modeled. For

the n-dimensional mesh, the number of nodes k (or the radix) in each dimension is the

same, with each node having n to 2n neighbors based on the nodes location in the mesh.

With a torus network, variable number of nodes k (variable radix) for each dimension is

possible. In a bi-directional torus, all nodes have the same number of neighbors, 2n

Crossbar
Arbiter
 And
Routing
 Logic

M
U
X

M
U
X

M
U
X

M
U
X

Physical Channel
to other node

VC0

VCk

Input FIFOs Output FIFOs
VC0

VCk

To network
interface ejector

Physical Channel
from other node

From network
interface injector

21

because of the wraparound channels. For simplicity the simulator models equal number

of nodes in each dimension or the radix k is the same for each dimension in a bi-

directional torus.

 Figure 5. (a) Two Dimensional Torus Network (b) Two Dimensional Mesh

 Network Size

With a k-ary n-cube network configuration having k nodes in each of the n dimensions,

the size of the network becomes k ^ n. Varying network size in simulation can enable

finding the scalability of the proposed network for a large network size.

 Switching Technique

The switching technique determines the path establishment between the source and

destination nodes and also how a packet uses the buffer resources. Store and forward

packet switching was traditionally used in which each individual packet is routed from

22

source to destination. This required buffering the entire packet at an intermediate node

before it could be forwarded to the next node. But more recent switching techniques such

as virtual cut through and wormhole switching are more popular for multicomputer

networks as they attempt to forward an incoming packet as soon as the header

information of the packet has arrived. Subsequent bytes of the message follow on the

path established for the header previously and the message transfer is essentially

pipelined through the network. These switching techniques result in low latency for

message transfer than packet switching. The unit of information transfer for these

techniques is a flit and a packet is comprised of flits. Virtual cut through and wormhole

routing differ in their buffering mechanism. With virtual cut through, if the packet header

is blocked for an output channel, the entire packet must be buffered along with the header

at that node. Virtual cut through thus requires that every router have buffer space to

buffer at least one packet entirely. Wormhole routing has more relaxed buffer

requirements than cut through. The buffer at each router can be large enough just to hold

a few flits. With the header of a packet blocked on an output channel, the packets flits

occupy buffer space in several routers. In the absence of blocking, the packet transfer is

pipelined through the network just as in cut through. Both unidirectional and bi-

directional wormhole and virtual cut through switching techniques have been

implemented within the canonical model.

 Virtual Channels

A physical channel may hold several virtual channels that are multiplexed across the

physical channel. Each virtual channel can in turn hold buffer space to buffer flits of

23

blocked packets. Use of virtual channels greatly improves latency and throughput of the

network. Deadlock prevention in wormhole switched networks is another reason for the

introduction of virtual channels in the model. Arbitration is required to decide which

virtual channel can get hold of the physical channel, if there are colliding requests among

them. Arbitration is either random, first in first out or round robin based in the model.

 Buffering Scheme

A very important network parameter is the size and position of buffers in the router. Each

virtual lane can have sufficient space to buffer away a few flits. The buffer size is critical

to both wormhole and cut through switching but especially more for cut through as it has

to guarantee space for at least one packet. The buffers are FIFO buffers and routers can

have these buffers per physical channel, per virtual channel or per lane within the virtual

channels. The position of the buffer is also a design tradeoff. Buffering may be done only

at the inputs (input buffering) or only at the output (output buffering) or at both the input

and output side. Buffer size is modeled as a per node parameter in the NetSim router

model.

 Crossbar Switch

A crossbar is used for connecting the inputs to the outputs. The crossbar switch having N

inputs and M outputs allows up to min{N,M} one to one connections when no contention

occurs. The two common crossbar configurations are the single crossbar with direct

connection between lanes and the cascaded crossbars in which the output of the X

24

crossbar is fed to the input of the Y crossbar. Both are modeled inside NetSim. The

crossbar model has ports for all the virtual channels and the lanes within them.

 (a) (b)

 Figure 6. Crossbar Switch Architecture (a) N x M crossbar (b) Cascaded crossbar

 Arbitration Unit

When multiple sources request for the same output virtual channel at the same time,

arbitration is essential to choose only one amongst the conflicting requests. The selection

of the input channel can be done either using the first come first served scheme or

randomly or in a round robin fashion. Fast arbitration is crucial to maintain low latency of

the switch especially for large network or switch design using full connectivity.

 n x n
 Xbar 2

 n x n
 Xbar 1

 M outputs

N inputs

2n-1
Inputs

2n-1
Outputs

25

 Routing Unit

The routing unit implements the routing algorithm, which selects an output channel for

the incoming request and sets the crossbar switch accordingly. Several routing algorithms

have been proposed for wormhole and cut through switched networks and each of these is

aimed at providing better and faster connectivity from source to destination node. With

wormhole switching, cyclic dependencies occur which lead to a deadlock. Routing

algorithms must thus be designed to be deadlock free. Also it would be preferred if

routing adapts itself to the current network state and selects an alternative route for the

incoming packet if the current selected route is busy, so that the packet does not get

blocked. Thus the implementation classes of the routing algorithms are deterministic,

adaptive and partially adaptive.

With deterministic routing the route selected between a source and destination pair is

always the same. Dimension order routing is a deterministic routing algorithm that routes

packets by crossing dimensions in a strictly increasing (or decreasing) order. For an n

dimensional mesh and hypercube, this routing is deadlock free but for a k-ary n-cube tori

network it introduces cycles and thus a possibility of a deadlock. A deadlock free design

of the routing algorithm is presented in [8] for the torus network.

Adaptive algorithms on the other hand try to make use of the network state while making

a decision on the output path to be selected. This type of routing is preferred because the

possibility of a packet holding any buffer space or being blocked is reduced as the packet

can now take an alternate route. This adaptivity can be allowed either for a subset of the

26

output physical paths possible (known as partially adaptive routing) or can utilize any of

the output physical paths with no restriction at all(known as fully adaptive routing).

More adaptivity improves performance. However increase in adaptivity increases the

complexity of the router and can affect its operating frequency. Partially adaptive routing

algorithms are thus designed as a tradeoff between speed and cost.

Several fully adaptive routing algorithms have been proposed. Many of them make use of

a large number of virtual channels and this tends to slow down the router speed while

increasing the chip area. Some of the practical fully adaptive algorithms that use

reasonable number of virtual channels have been modeled in the router. These are also

designed to be deadlock free.

3.2.2 Basic Parameter Settings

Some parameters are fixed within the simulator and are not programmable by the user.

These parameters settings are based upon reasonable assumptions for network simulation

and are listed below

• The width of the physical channel is assumed to be one flit.

• There is only one injector port and one ejector port for the processor interface.

• The number of virtual channels is specific to the routing algorithm selected and is

computed within the simulator.

• The network is tightly coupled. So the wiring delay is not critical and the transfer

from an output channel to a downstream input channel takes one cycle.

27

• The transmission of flits is pipelined.

• A flit takes one cycle to be transferred from the input buffer to the output buffer

within the router or from the output buffer to the input buffer of the next router if

there is no congestion along the path. A header flit injected into an empty buffer

would take an extra cycle to be routed. The routing for the header flit following the

tail flit of another packet will be done in parallel with the transmission of this tail flit.

28

Chapter 4 - System Integration

In this chapter, the design and implementation of the network interface required for

integrating CAL-SIM and NetSim is presented. We focus on how the network

synchronizes itself with the processor nodes in simulation.

4.1 Interface Design and Implementation

Within the interface, the function of a network interface card for each node is

implemented. This network interface card resides between a processor and the network. It

performs the task of processing a message into packets that are to be sent into the

network and also informs the processor when a message has been received in its entirety.

The network interface thus allows the processor to continue with its job as the message

transmission is being done in parallel.

The interface also provides a set of functions for interacting with the network simulator.

Its simple design allows users to replace the network simulator with their own version if

required. That is, the software interface to the network simulator is not very specific to

the implementation details within the network simulator. This flexibility is essential

because a large number of network models exist and it is difficult to support all of them

in our network simulator. However the user network simulator must adhere to certain

design guidelines to work successfully with the simulation system. These design

guidelines will be mentioned in this chapter.

29

The overall simulator design is shown in figure 7. CAL-SIM simulation system includes

the MPI library, simulator core, which is responsible for thread scheduling and the

network interface, which is used to integrate the network simulator. The network

simulator, NetSim includes the network setup, which configures the network parameters

for simulation and the network core, which simulates a single cycle of network execution.

The network interface now has to coordinate the running of the network core with the

processor threads every time a MPI communication routine gets called. It must also

interact with the network simulator to have a message sent or received from the network.

 Figure 7. Simulation system design

4.1.1 Send Side

When a message is to be sent, the processor signals the network interface using an

interface routine. The network interface further performs the tasks of transferring the

message from processor’s memory to the interface memory, creating message packets

and transmitting the packets to the node router.

Network
Interface

MPI
Library

Simulation Core

Application

Architecture
Specification

Network
Parameters

Network
Core

Network
Setup

 CAL-SIM NetSim

30

For the transfer of a message from the processor’s memory to the network interface

memory, a memory-mapped device or a DMA within the interface is assumed. In

simulation this data transfer can be done by creating a copy of the message within the

interface and releasing the sender data buffer. The send function call can now return, as

the user buffer is safe to reuse. The overhead for initiating the message transfer is

computed using a delay model. The first packet of the message is thus created at a time

equal to the current simulation time plus the sender transmit time, where sender transmit

time is the initial setup time to transfer data to the interface memory.

The network interface then computes the number of message packets from the message

size and the flit size. Packet creation involves creating the header flit that contains routing

information for the packet and its following data flits. The header is assumed to be one

flit and a single packet creation takes one cycle. The interface maintains a packet queue

to hold the outgoing message packets. The size of the packet queue is set to a default

value and can be reset by the user. This feature enables to see the effect of queuing

latency when the network is saturated, which results in packets holding buffer space

within the interface memory and preventing any further packet creation.

Within the network interface, flit injection for a previous packet proceeds in parallel with

the creation of a new packet. To inject a flit into the router injection channel buffer, the

network interface calls the injector routine of the network simulator.

31

4.1.2 Receive Side

A global message list is maintained by the interface to keep track of the messages being

sent into the network. When the network simulator notifies the interface about the arrival

of a message packet, the message list is looked up by an interface function to check

which message the packet belongs to and if this is the last packet for the message. If all

the packets for the message have been received, the network interface schedules a

message arrival event at a time equal to the current simulation plus receiver transfer time.

The receiver transfer time represents the time to transfer a message from the interface to

the processor memory. The message arrival event places the message in the receive queue

of the destination processor and signals a receive semaphore.

A processor thread waiting for a message on the receive semaphore, is triggered by the

semaphore signal. The receiver checks to see if the intended message has arrived and if

so, copies it into the user buffer and returns. If the expected message has not yet arrived,

then the receiver simply waits for another signal from the receive semaphore.

4.2 Network Event

The simulation library within CAL-SIM consists of two simulation activities, processes

and events. The main difference between these two entities is that a process can

temporarily suspend execution while an event must execute till completion. Once the

body of an event terminates, the event thread is destroyed. The only way to have an event

schedule itself multiple times (reschedule itself) is to have the event as a non-deleting

entity.

32

The interface to the network and the network simulator together form a network event,

which is designated as a non-deleting event. An event is chosen over a process to avoid

the overhead for a process when a context switch occurs from the network thread to some

other ready thread. Moreover an event does not affect simulation time; it takes 0-

simulation time to execute an event.

4.3 Scheduling the Network Event

The interface to the network simulator is responsible for synchronizing the network

thread with the running processor threads. The network event should schedule itself at the

correct simulation time and keep its simulation time synchronized with that of other

running threads. This is essential so that message packets are injected into the network at

the correct simulation time and also received at the correct time. Two important issues

need to be considered here. Firstly, all the processor threads must have run before the

network thread can run. This way all the messages for the current simulation time get

inserted in the message queue. Secondly, there needs to be a way of knowing how long

the network simulator can run. It may happen that if the network simulator is run till a

message has reached, the cycle count would advance and a processor thread that has not

been able to catch up to that time, will send messages meant to be sent at an earlier

simulation time. This will lead to incorrect network simulation. There needs to be a way

to get around both the problems for accurate network simulation.

To start with, all the threads get scheduled at simulation time 0. When the network thread

enters execution, its first task is to check if any other activity is scheduled for the same

33

time as itself. This is possible using a simulator core function that allows performing a

look-ahead into the activity schedule queue. This queue is ordered by the activity

schedule times and allows for insertion of activities in the queue dynamically, as these

get scheduled from the current simulation time. The look-ahead function returns the

schedule time of the next activity and the interface routine checks to see if this time is

equal to the current simulation time. It then lets this activity proceed first by rescheduling

itself at the current simulation time. This adds the network event back to the activity

queue without its further execution. When the current activity is finished, the network

event is again activated and if no other thread is still scheduled, the interface proceeds to

execute the network code. This way all the processor threads have had a chance to run

and put their messages in their respective message queues before the network thread can

run. Figure 8 depicts the rescheduling of the network event by performing a look-ahead

into the activity queue.

 Figure 8. Scheduling the network event with look-ahead

Time = 0 (T)

Proc 1 10

Proc 2 10

Net Event 10

Proc 3 20

Proc 4 20

Time=10 (T)

Net Event 10

Proc 1 10

Proc 2 10

Proc 3 20

Proc 4 20

Time=10 (T)

Proc 1 10

Proc 2 10

Net Event 10

Proc 3 20

Proc 4 20

Time=10 (T)

Net Event 10

Proc 3 20

Proc 4 20

Proc 1 40

Proc 2 55

34

The other situation where the difficulty in scheduling the network event arises is when all

the processors are waiting for their messages on their message receive semaphore. Such a

situation frequently arises during execution, as the receiving processor enters its receive

routine even before the sender has had a chance to enter its send routine. The receiver, if

it is in a blocking receive mode or is performing a wait operation to have the data buffer

filled, simply suspends itself on the receive semaphore. Only when the network interface

puts the message into the receiver’s message queue does the receiver get awakened and

start further execution. In the meantime, the sender after sending the message can itself

perform a receive operation waiting for a message from the receiver of its message. So

both the sender and receiver are now blocked on their respective semaphores and the time

of their further activity is unknown. Activities waiting on a semaphore do not get added

to the activity schedule list but instead are added to the semaphore list of the receive

semaphore.

With all the processor threads waiting on their respective semaphores, the look-ahead

method mentioned above fails. This is because the interface checks for the next event

time and the look-ahead function not finding any activities in the queue returns a negative

value upon which the network event may delete itself thinking all other processes have

terminated. The way to get around this problem is to have the network event check for

two conditions.

1. To check for the next event time using look-ahead

2. If the look-ahead returns a negative value then check to see if there are processors

waiting on their semaphores.

35

The second condition can be checked using another simulator core function. In such a

situation the network event has to keep running until at least one of the processors is

awakened for the look-ahead to work again. However, if both the look-ahead and the

check for semaphore wait return negative results, it means that all the processor threads

have terminated and it is now safe for the network event to exit.

Once the network event is scheduled, the next question is how long should the network

run. This is also an important issue here, as the network has to run only for certain cycles

so that the processor threads can catch up and the simulation of network activities occurs

at the correct simulation cycle. The network running for a time to have an entire message

delivered to its destination may result in the network cycle count exceeding the

processors simulation time. Any further insertion of packets in the network by the

processor will be at the incorrect cycle for the network, leading to inaccurate simulation

results. The best way to avoid this is to have the network run for a time less than the

schedule time of the next activity. The look-ahead function is used here again. The

network can run for a time frame between current simulation time and the next event’s

time that is returned by the look-ahead function. So lets say the network event is

scheduled at time 0 and the next event time is 10, the network simulator is run from time

t = 0 to t = 9.

The additional case where the time for the network simulator run needs to be decided is

when processors are waiting on their message semaphore as mentioned above. In this

case as look-ahead fails, some other approach needs to be taken to decide how long the

36

network simulator can run. We know that when the final packet for a message gets

ejected, the network interface signals the destination processor about the message arrival.

This wakes up the destination processor and adds it back to the activity schedule queue.

With at least one other activity besides the network event in the activity queue, the look-

ahead method will start functioning again. So the method adopted here is to let the

network run till at least one message reaches its destination. The network event can then

reschedule itself at the message arrival time letting the awakened processor thread resume

its execution.

4.4 Reducing Simulation Overhead

Detailed cycle-by-cycle simulation of the network tends to be slow for a large network

size and for a large number of messages through the network. It would thus be essential

to reduce as far as possible the overhead introduced by detailed simulation. Unnecessary

network simulation, for example when there are no packets in the network can be skipped

by the network event. If the network event is to run from the current simulation time to

the time of the next activity which may be tens of thousands of cycle away, the number of

packets injected into the network can be checked. If all the packets have reached their

destination, further simulation till the next event time is a large overhead and so the

network cycle is simply made to advance to the next event time. The basic code frame for

the network event is shown below.

37

 Figure 9. Code format for network event

4.5 Design Guidelines for the Network Model

The network interface provides for easy integration of different network simulators with

the simulation system. The interface interacts with the network simulator through a set of

functions. This way unnecessary details of CAL-SIM implementation are hidden to the

network simulator and vice versa. The network simulator however has to follow certain

design rules to ensure its correct working with the system. These are listed below.

• The network simulator must be cycle driven

• The network simulator code must be organized in two parts; an initialization part

which sets up the network configuration using a wrapper function called NS_Init()

and a single cycle execution part, which simulates the activities in the network for a

single cycle in a wrapper function called NS_SimCycle().

 Network_Event() {
 next_event_time = time_of_next_activity_in_queue
 if(next_event_time != -1) { // look-ahead succeeds
 if(cur_time == next_event_time)
 Reschedule_Network_Event
 else
 while(cur_time < next_event_time) {
 if(! injected_pkts)
 network_cycle = next_event_time
 break
 else
 simulate_a_network_cycle
 }
 }
 else if any processors waiting on message semaphore {
 while (! msg_arrived)
 simulate_a_network_cycle
 Reschedule Network_Event at network_cycle – cur_time
 }
 else terminate Network _Event

38

• A global data structure called Net and a pointer to it need to be maintained within the

network simulator. The elements of this data structure required for integration are the

PacketArray and the cycle counter variable called global_cycle. PacketArray must

contain variables called pkt_cylcreated (the cycle at which the packet got injected into

the router), pkt_cylarrived (the cycle at which the packet is ejected through the ejector

port of the router), pktid (the id of the packet ejected) and msgnum (the message

number to which this packet belongs). These fields are required by the interface when

a packet gets ejected, to maintain a check of when a message arrives in its entirety.

• The global_cycle variable is the network cycle counter, it is incremented for every

simulated cycle of the network. But control of this variable is also required by the

interface.

• A function NS_QuePkt() must be provided which creates a packet in the PacketArray

and returns a positive value if the packet could be successfully created.

• When the tail flit of a packet gets ejected through the ejector port, a wrapper function

called NS_Eject() must be called, which informs the interface of the incoming

packet.

39

Chapter 5 - Simulation Results

In this chapter simulation results from the integration of CAL-SIM and NetSim are

presented which demonstrate the working of the two tools together. We examine the

communication performance of MPI benchmark applications on target systems and report

on system performance parameters such as message latency. We also compare the

message latencies predicted by a linear message delay model and by detailed network

simulation for the benchmarks.

All the simulations were carried out on a 360MHz Sun UltraSparcII, solaris2.7 system.

Simulation results are presented for the NAS 2.3 Integer Sort Class W benchmark,

Multigrid and Embarassingly Parallel Class A benchmarks and for the Fast Fourier

Transform application. NAS benchmarks (except IS) are in fortran77 and as the simulator

can run C/MPI applications, the benchmarks are converted to C using the F2C tool.

5.1 Simulator Parameter Settings

A two-dimensional torus network is assumed in the simulations for comparing the

message latency predicted by the simple mode of the simulator using linear message

delay and the network mode involving network simulation. The network sizes used are 4

x 4, 8 x 8 and 16 x 16. Thus the number of nodes simulated is 16, 64 and 256.

40

5.1.1 Linear Delay Model Parameter Settings

The ideal message latency, which does not take into account network traffic and

contention, is presented in [7]. This delay model is used in the simple mode of the

simulator. Message latency is this case is given by

 Message Latency = D * (Tr + Ts + Tw) + Ts(L/W) (1)

where D – average distance,

 Tr – router delay, Ts – Switching delay, Tw – Wire delay,

 L – Message Length in flits, and W – Physical Channel Width in flits

The average distance in a two-dimensional torus is 2*K/4, where K is the number of

nodes in a dimension. This is true when K is even. The parameters Tr, Ts, Tw are set

according to the way the network simulator has modeled them to provide fairness of

comparison. Our evaluations are for tightly coupled networks, where the wiring delay is

not critical and so Tw is set to one cycle. The routing delay and the switch delay are also

set to be one cycle each. The width of the physical channel is equal to one flit, which is

equal to one 64-bit word. The message latency equation can thus be re-written as

 Message Latency = (2 * K / 4) * (1 + 1 +1) + (1) * (L / 1) (2)

5.1.2 Network Mode Parameter Settings

The detailed network simulation mode allows for setting of more communication

network parameters than the simple delay model presented above and is an advantage

associated with network simulation. The following network parameters are assumed in

network simulation:

41

 Table 1. Network parameter settings

 Topology 2D Torus

 Width (Radix K) 4, 8, 16

 Wiring Bidirectional Wormhole

 FIFO size per node 108 flits

 Packet Size in Flits 8

 Flit size in bits 64

 Routing Algorithm Deterministic TRC

5.2 Results for the NAS Multigrid Benchmark

The benchmark under evaluation here is the NAS MultiGrid (MG) Class A benchmark.

The benchmark solves a 3D Poisson partial differential equation. The code has a good

mix of short and long distance communication. The dominant communication type here

is point-to-point with blocking sends and non-blocking receives.

It has been shown [9] for the NAS benchmarks that with increasing machine size, the size

of a message usually decreases. However the number of messages is likely increased. The

results in figure 10 say the same. Only the messages sent over the communication

network are considered. With increased number of nodes, the communication is of finer

granularity leading to a decrease in the average message size. However the

communication pattern now requires interaction with more number of nodes increasing

the total number of messages.

42

 Figure 10. Avg. message size and total number of messages as a function of machine size

With smaller message size, the average message latency experienced by a message would

be expected to reduce. This can be observed in figure 11. However the network mode for

256 processors shows an increase in the average message latency. As the number of

nodes is increased beyond 64, the communication pattern for the benchmark changes

rapidly.

0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04

1.2E+04

16 64 256

Number of Processors

A
vg

. M
es

sa
ge

 S
iz

e
(B

yt
es

)

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

16 64 256

Number of Processors

To
ta

l N
um

be
r o

f M
es

sa
ge

s

43

 Figure 11. Predicted average message latency for the MG Class A benchmark

To observe the impact of the routing algorithm in such a case where the static routing

scheme performance degrades, the algorithms are varied to be partially and fully

adaptive. Figure 12 shows the average message latency change with a change in the

routing algorithm. The adaptive algorithms under test here are Duatos partial and fully

adaptive and the fully adaptive T3D-like.

 Figure 12. Comparison of routing algorithm performance

0
200
400
600
800

1000
1200
1400
1600
1800

16 64 256

Number of Processors

La
te

nc
y

(C
yc

le
s)

Deterministic

Partial Adaptive

Fully Adaptive

Fadapt-T3D-like

0
200
400
600
800

1000
1200
1400
1600
1800

16 64 256

Number of Processors

La
te

nc
y

(C
yc

le
s)

Ideal Mode
Network Mode

44

From figure 12, it is seen that the adaptive algorithm scales well with increasing machine

size. Partial adaptive however does not perform any better than deterministic routing for

this particular workload.

Even though the number of messages and message size is significant for the benchmark,

computation still dominates the overall execution time. The total amount of

communication is less than 20% as seen in figure 13. MG benefits from the increased

number of processors. The execution time and change in communication performance

across processors is presented in figure 14. The communication time considered here

includes the time spent by processor threads inside a communication routine waiting for

the intended message. The wait time may be due to imbalance in the send and receive

schedule times and also due to the actual communication network cost.

 Figure 13. Percent computation and communication in MG benchmark

0

20

40

60

80

100

16 64 256
Number of Processors

Pe
ce

nt
 o

f E
xe

cu
tio

n
Ti

m
e

Computation
Communication

45

1.00E+06

5.01E+08

1.00E+09

1.50E+09

2.00E+09

16 64 256

Number of Processors

Ex
ec

ut
io

n
C

yc
le

s
Communication Computation

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

16 64 256

Number of Processors

C
yc

le
s

Communication

 Figure 14. Predicted performance for the Multigrid Class A benchmark

5.3 Results for the NAS Integer Sort Benchmark

The Integer Sort (IS) benchmark tests a sorting operation on primarily integer data type.

The benchmark has a significant amount of communication as compared to most other

NAS benchmarks. Reduction and all to all function calls dominate the communication.

Usually for collective communication routines, the vendor specific MPI library

implementation plays an important role in deciding how many messages get generated.

The routines may be optimized to reduce the volume of traffic to be sent over the

network. The MPI library within the simulator currently has a straightforward and

reasonable implementation of the collective communications that provide functional

support for those found in the NAS benchmarks. Some deviation in the number of

messages generated for such collective communications is therefore expected here. The

average message size and the total number of messages for the benchmark are shown in

46

figure 15. Due to all to all communication the number of messages generated increases

significantly with increase in number of processors especially from machine size of 64 to

256.

 Figure 15. Avg. message size and total number of messages as a function of machine size for
 the IS Class W Benchmark

Figure 16 shows the predicted average message latency in the simple and network mode

of the simulator. The routing algorithm was varied to see the impact on message latency

as in figure 17. The topology was next selected as mesh to observe how much

performance advantage the torus layout offers because of the wraparound channels.

Figure 18 presents the average message latency on a mesh. The torus layout only very

slightly performed better than the mesh and the difference is almost negligible.

Although the computation efficiency of the benchmark increases with machine size, the

communication increase is very large. Communication thus dominates the benchmark

performance at very large machine sizes. Figure 19 shows the communication increase

with the increasing number of processors.

0

1000

2000

3000

4000

5000

6000

7000

16 64 256

Number of Processors

M
es

sa
ge

 S
iz

e
(B

yt
es

)

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

1.20E+06

1.40E+06

1.60E+06

16 64 256

Number of Processors

N
um

be
r o

f M
es

sa
ge

s

47

 Figure 16. Avg. message latency prediction for the IS Class W benchmark

 Figure 17. Avg. message latency with a variation in routing algorithm

 for the IS benchmark

0

500

1000

1500

2000

2500

3000

16 64 256

Number of Processors

A
vg

. M
es

sa
ge

 L
at

en
cy

 (C
yc

le
s)

Network Mode
Ideal Mode

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750

16 64 256

Number of Processors

A
vg

. M
es

sa
ge

 L
at

en
cy

 (C
yc

le
s)

DOR
ParAdapt
DuatosFAdapt
Fadapt-T3D

48

 Figure 18. Avg. message latency on a 2D mesh for the IS Class W benchmark

 Figure 19. Percent computation and communication in the IS Class W benchmark

Figure 20 shows the performance of the benchmark. The code benefits from increased

number of processors up to 256. For communication performance of the application, the

effect of startup latency is not considered. The communication behavior helps in

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750

16 64 256

Number of Processors

A
vg

. M
es

sa
ge

 L
at

en
cy

 (C
yc

le
s)

Adapt(2lanes)
Adapt(1lane)
DOR

0
10
20
30
40
50
60
70
80
90

100

16 64 256

Number of Processors

%
 o

f E
xe

cu
tio

n
Ti

m
e

Computation
Communication

49

understanding the contribution of network cost to the communication time of the

application.

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

16 64 256

Number of Processors

Ex
ec

ut
io

n
C

yc
le

s
Communication Computation

Communication

8.50E+06
9.00E+06
9.50E+06
1.00E+07
1.05E+07
1.10E+07
1.15E+07
1.20E+07

16 64 256

Number of processors

C
yc

le
s

 Figure 20. Predicted performance for the IS Class W benchmark

5.4 Results for the NAS Embarrassingly Parallel Benchmark

The Embarrassingly Parallel benchmark generates a large number of gaussian

pseudorandom numbers. The benchmark has very little communication. Most of this

modest communication that is present, is collective type. One reason the benchmark was

selected for study here was that it has a constant message size across varying machine

size. It allows seeing the network performance for a fixed message size. The average

message latency is seen to increase with increase in number of processors as in Figure 21.

The predicted performance for the benchmark is shown in figure 22.

50

 Figure 21. Average message latency for the EP Class A benchmark

1.00E+07

5.10E+08

1.01E+09

1.51E+09

2.01E+09

2.51E+09

3.01E+09

3.51E+09

16 64 256

Number of Processors

Ex
ec

ut
io

n
C

yc
le

s

Communication Computation Communication

0.00E+00
5.00E+04

1.00E+05
1.50E+05
2.00E+05
2.50E+05

3.00E+05
3.50E+05

16 64 256

Number of Processors

C
yc

le
s

 Figure 22. Predicted performance for the EP Class A benchmark

5.5 Results for the FFT Benchmark

The FFT application solves the partial differential equation using fast fourier transforms

of given N numbers. Each of the P processors computes the FFT of N/P numbers and

0
50

100
150
200
250
300
350
400
450

16 64 256
Number of Processors

A
vg

. M
es

sa
ge

 L
at

en
cy

 (C
yc

le
s)

Ideal Mode

Netw ork Mode

51

communicates with other processors to compute for other remaining elements. The FFT

application does less than 20 percent communication in the code for processors up to 64.

Figure 23 shows the communication time spent by FFT and figure 24 gives the

performance for FFT.

0

20

40

60

80

100

8 16 64

Number of Processors

Pe
rc

en
t o

f E
xe

cu
tio

n
Ti

m
e

Computation Communication

 Figure 23. Communication time for FFT benchmark

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

8 16 64

Number of Processors

Ex
ec

ut
io

n
C

yc
le

s

Communication Computation

Communication

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

1.20E+06

8 16 64

Number of Processors

C
yc

le
s

 Figure 24. Performance of the FFT benchmark

52

5.6 Prediction Error for Simple Mode of the Simulator

Figure 25 shows the difference in the communication performance prediction for the MG

and IS benchmarks by the simple mode of the simulator, which uses a linear delay model

and by the network mode of the simulator, which supports detailed network simulation.

The linear delay model introduces error in the predictions, as it does not account for the

current workload and contention in the communication network.

 Figure 25. Prediction error for communication performance prediction using
 the linear delay model

5.7 Functional Verification of the Simulator

To observe if the interface functions correctly two things need to be verified. First if the

number of packets created from the message size and packet size are correct and second

if the packets are being created and inserted in the network at the appropriate cycle. Since

a common clock is assumed for the processor cycles and network cycles, it is pretty

straightforward to observe if the packets are being inserted at the right cycle.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

16 64 256

Number of Processors

Pe
rc

en
t P

re
di

ct
io

n
Er

ro
r

MG
IS

53

A sample code in which each processor sends a message to every other processor and

then waits for the other processor messages was used as the initial test. The number of

processors and the message size was varied. The MPI library was instrumented to see

when the message was created and the instrumented interface code was checked to see if

the packets get created in the following cycles. Information was also collected to see if

the packet flits get injected into the network at the correct cycle count.

The NAS benchmarks perform self-verification to see if the result obtained is equal to the

precomputed result. The simulator has been successfully tested for the following

benchmarks.

 Table 2. Benchmark Tests

Application Class Type Number of Processors

NPB MG W, A 1,2, 4, 8, 16, 32, 64, 256

NPB EP W, A 1,2, 4, 8, 16, 32, 64, 256

NPB IS W 1, 2, 4, 8, 16, 64, 256

FFT 1, 2, 4, 8, 16, 64

Another test for functional verification is to use the ideal delay model given above for a

2D torus and have a single message’s packets travel through the network. This way there

is no contention in the network and the delay predicted by the network mode and the

ideal mode should be close in value. There may be a slight difference in the two values as

the ideal mode uses average distance and the network mode uses the actual distance. But

54

for case of comparison here, an 8 x 8 network size is chosen and the message is sent from

processor 0 to processor 10, with the distance between node 0 and node 10 equal to the

average distance within the simulator. This way same results should be obtained from

both the modes. The results from network simulator verify this as shown in table 3, with

varying message size. The remaining parameters for the network and simple mode are the

same as given in section 5.1.

 Table 3. Functional Verification

Message Size in
 Flits

Message Packets
 Created

Message Latency
In Ideal Mode

Message Latency
In Network
Mode

 64 10 92 92

 128 19 164 164

 256 37 308 308

 512 74 604 604

55

Chapter 6 - Conclusion and Future Work

6.1 Conclusion

In this work, a flexible network interface for supporting network simulation within the

CAL-SIM simulation system is designed and implemented. The following goals have

been achieved with this work:

1. The capability to specify an interconnection structure for the processors in the

simulated architecture model. This allows us to evaluate the impact of network

designs on the communication performance of applications, which are executed

on the system.

2. More accurate performance measurements. Detailed network simulation provides

more accurate event timing for the send and receive operations than the simple

latency model. The event queue within the simulator as a result processes the

events in a more precise order.

3. A platform for evaluating candidate network designs using real applications as

workload instead of synthetic workloads. The traffic pattern generated by the

application directly simulates the network. The effect of traffic burstiness and

bimodal messages through the network can also be captured. These however

cannot be easily modeled with synthetic workloads.

4. The flexible network interface allows easy integration of different network

simulators with the simulation system.

56

6.2 Recommendations for Future Work

Network simulation tends to be slow when a large network with a great amount of

network activity needs to be simulated. Parallelizing the simulation system could help in

reducing the time of simulation.

The current simulator model assumes a single processor per node. But looking at the

current trend in supercomputing most new architectures are designed to be cluster

architectures with more than one processor per node. Within the node shared memory is

used and between nodes a message-passing network is used. Examples of such

architectures include the IBM RS6000 SP, SGI Origin, Compaq AlphaServer. So the next

task in the simulator design extension would be to include support for simulating a cluster

based architecture, by making each node a shared memory multiprocessor.

This task could be simplified by integrating an existing shared memory simulator with

the simulation system. An example of such a publicly available shared memory simulator

that can be used for integration is the Multiprocessor SimpleScalar tool set [14]. A simple

model that can be adopted for the execution of applications on simulated cluster

architectures is presented in Figure 26.

57

 Figure 26. Execution flow for a cluster architecture in simulation

Here the master threads representing each node get created first. Then each master thread

forks new threads, which represent the processors per node. Within a single node, all the

threads communicate using shared memory. But only the master thread of a node can

carry out any communication with a processor thread in some other node. This inter-node

communication proceeds using MPI communication routines. Finally when all the slave

threads for a node exit, the master thread also terminates.

 Parallel Application

 MPI
 thread MPI

 thread
 MPI
 thread

 MPI
 thread

 Node
Threads Node

Threads

 Node
Threads

 Node
Threads

 Exit

58

References

1. Yun Lin, “CAL-SIM: A Distributed Memory MPI Multi-Computer Simulation
System”, Masters Thesis, University of Houston, Spring 2001

2. Jinming Ge, “Cost-Effectiveness Evaluation of a Dynamic-Balanced Adaptive

Wormhole Router”, PHD Thesis, University of Houston, Fall 2001

3. MPI: A Message Passing Interface Standard, Message Passing Interface Forum, June

12, 1995

4. Covington, R.G., Madala, S., Mehta, V., Jump., J.R., Sinclair, J.B., “The Rice Parallel

Processing Testbed”, Proceedings of the 1988 ACM SIGMETRICS Conference on
Measurements and Modeling of Computer Systems, May 1988, pages 4-11

5. Covington, R.G., Dwarkadas, S., Jump, J.R., Sinclair, J.B., Madala, S., “Efficient

Simulation of Parallel Computer Systems”, International Journal in Computer
Simulation, June 1991, Vol 1, pages 31-58

6. Dwarkadas S., Jump, J.R., Sinclair, J.B., “Execution Driven Simulation of

Multiprocessors: Address and Timing Analysis”, Journal of Transactions on
Modeling and Computer Simulation, 1994

7. Herbordt, M.C., Ge, J., Sanikp, S., Olin K., Le H., “Design Trade-Offs of Low Cost

Multicomputer Network Switches”, Proceedings of the 7th Symposium on the
Frontiers of Massively Parallel Computation, 1999, pages 25-34

8. Duato, J., Yalamanchili, S., and Ni, L., “Interconnection networks: An Engineering

Approach”, IEEE Computer Society Press, Los Alamitos, CA, 1997

9. Wong, F.C., Martin, R.P., Arpaci-Dusseau, R.H., Wu, D.T., Culler, D.E.,

“Architectural requirements and scalability of the NAS parallel benchmarks”
Proceedings of Supercomputing’99, 1999

10. Hwang, K., Wang, Choming, Wang, Cho-Li, “Evaluating MPI collective

communication on the SP2, T3D, and Paragon Multicomputers”, Third International
Symposium on High Performance Computer Architecture, Feb 1997, pages 106-115

11. McKinley, P.K., Trefflz, C., “MultiSim: A Simulation Tool for the Study of Large-

Scale Multiprocessors”, Proceedings of the International Workshop on Modeling,
Analysis and Simulation of Computer and Telecommunication Networks,Jan 19993,
pages 57-62

59

12. Cappello, F., Etiemble, D., “MPI versus MPI+OpenMP on the IBM SP for the NAS
Benchmarks”, Proceedings of Supercomputing, 2000

13. Henty, D.S., “Performance of Hybrid Message-Passing and Shared-Memory

Parallelism for Discrete Element Modeling”, Proceedings of Supercomputing, 2000

14. Manjikian, N., “Multiprocessor Enhancements of the SimpleScalar Tool Set”

15. Bailey, D.H., Barszcz, E., Dagum, L., Simon, H., “NAS Parallel Benchmark results”,

Feb 1993

16. Sawyer, W., “FVCCM Parallelization Primer”, Oct 1999

http://www.dao.gsfc.nasa.gov/NASanCAR/primer/

17. Rauber, T., Gudula, R., “Modeling the Runtime of Scientific Programs on Parallel
 Computers”, Proceedings of the International Workshop on Parallel Processing, Aug.
 2000, pages 307-314

