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Abstract 

Communication is an important component in determining the overall performance of a 

distributed memory parallel computing application. It therefore becomes essential to 

predict communication performance of applications on the underlying network hardware 

of a target distributed memory system. This thesis concentrates on integrating a cycle 

driven k-ary n-cube network simulator to the existing CAL-SIM distributed memory 

simulator for evaluating communication performance of message passing applications. 

The design and implementation of a suitable network interface required for the 

integration is presented. With detailed network simulation the accuracy of predictions 

made is very high. The impact on communication performance by varying some of the 

network design parameters is studied. Other important aspect of this work is the access to 

an evaluation platform for evaluating network design tradeoffs, using real applications as 

workload instead of synthetic workloads.    
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Chapter 1 - Introduction 

1.1 Background 

Parallel computing systems are widely accepted as an effective technology for solving 

large, computationally intensive problems in the area of high performance computing. 

Based on their memory organization, parallel computing systems fall into two categories: 

shared memory systems and distributed memory systems. Of these, the distributed 

memory architecture is more scalable and thus preferred for large-scale machines.  

The distributed memory system also known as the multicomputer, consists of commodity 

processors joined by a suitable interconnection network. Inter-processor communication 

proceeds by exchanging messages through the network. Since processor speed is 

increasing rapidly, the communication network becomes a limiting factor in the 

performance of message-passing applications. Using commodity network components to 

connect the processors results in immense slowdown of the application execution speed. 

Therefore the design of a high-speed interconnection network becomes critical in 

distributed memory architectures.  

The cost and engineering effort required in building a high performance distributed 

memory system makes it important to predict the performance of the proposed 

architectural features. Performance prediction tools provide a low cost means for 

predicting application performance on proposed systems. The information made available 

by such a tool assists designers in optimizing their system for the highest possible 
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performance. The evaluation tool models several hardware and software characteristics of 

a system. By varying these characteristics, the system performance can be predicted for 

its intended class of applications.  

1.2 Problem Addressed  

The need was to provide an accurate and efficient tool for evaluating the performance of 

distributed memory systems under realistic workloads. For most message-passing 

applications, their communication performance is extremely crucial for achieving higher 

performance. Variation in communication network can have a significant impact on the 

application performance. It therefore becomes important that the tool facilitate detailed 

evaluation of the communication network along with the evaluation of other system 

characteristics. Thus the pseudo execution environment provided for applications should 

be very much like the specified hardware, delivering accurate results to the users of the 

system.  

A distributed memory simulator (CAL-SIM) was previously developed as part of our 

research [1]. The architectural parameter that can be varied within the simulator is the 

number of processors. The simulator makes simplified assumptions of the network when 

predicting the communication performance of message passing applications. 

An interconnection network simulator (NetSim) for distributed memory systems has also 

been independently developed [2]. The simulator allows for modeling of various network 
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designs. Like most other network simulators, it makes use of synthetic workloads to 

generate traffic in the network. 

The task we address in this thesis is the design of a suitable network interface within 

CAL-SIM for integrating the network simulator. The integration of the two evaluation 

tools, CAL-SIM and NetSim provides the capability to specify an interconnection 

structure for processors within the CAL-SIM simulation system. It provides with a 

realistic environment for program execution and more accurate performance 

measurements. It also allows for evaluating the impact of network design on 

communication performance of applications and in making refinements to the network 

model, to suite the application domains requirements. 

The other important aspect of this integration work is the access to an evaluation platform 

for evaluating candidate interconnection networks using real application workload. Most 

of the existing interconnection network simulators make use of synthetic workloads for 

performance evaluation. Firstly, these synthetic (dummy) workloads have to be generated 

by examining the communication behavior of real applications themselves. Secondly, 

they may not necessarily capture the communication behavior very accurately and often 

make simplifying assumptions about the workload characteristics, which may be 

inappropriate and may lead to inaccurate performance predictions. So the best case would 

be to have real world applications to test the network performance instead of the synthetic 

workloads. 
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Chapter 2 - Related Work 

Simulation is a very effective technique for the evaluation of parallel systems before 

incurring the hardware cost. Various simulation techniques have been developed for 

evaluating the performance of parallel systems as well as for their interconnection 

networks. In this chapter, we describe some of the major simulation techniques and 

indicate which technique best matches our requirements. The message passing interface 

standard adopted by the benchmark applications used in this research is also discussed in 

brief. 

2.1 Message Passing Interface  

Message Passing Interface (MPI) [3], has become an accepted standard in implementing 

communication functions for message based parallel programs in distributed memory 

systems. The major goal of this standard is to provide for portable and easy to use 

communication library functions without affecting performance. Amongst the many 

programming features, the standard provides several mechanisms to perform point-to-

point and collective communications.    

With point-to-point communication mechanism, communication proceeds between a pair 

of processes. The basic point-to-point operations are the send and receive operations. The 

communication semantics for these operations can be either blocking or non-blocking. 

With the blocking type, the send function call does not return until resources such as the 

user buffer can be safely reused or the data transfer to the network interface has been 
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completed. But with the non-blocking semantics, the send operation can return right after 

the communication has been initiated and does not wait to see if the buffer is safe to 

reuse. The non-blocking semantics is provided for performance reason so that the 

communication can be overlapped with computation. The sender however has to later 

issue a send complete call to verify if the data transfer has been completed. With either of 

the semantics, the operations use one of the following communication modes: standard, 

buffered, synchronous and ready.  

In the standard mode, the MPI implementation can choose to wait for a matching receive 

to be posted before starting data transfer or can choose to buffer the message in a 

temporary system buffer and return immediately. In the buffered mode, an outgoing 

message always gets buffered and the operation will complete whether or not a matching 

receive has been posted. With the synchronous mode, the MPI implementation ensures 

that the receiver has started to receive the message and that the send buffer can be safely 

reused. In this mode, a send can start immediately but can complete only if a matching 

receive has been posted. In the ready mode, the send call proceeds only if the matching 

receive is already posted. 

The other communication mechanism provided is for collective operations. In a collective 

operation, a group of processes participate in the communication. Typical collective 

operations are the barrier synchronization, broadcast, gather, scatter, reduce and all to all 

exchange. In barrier synchronization, each process is blocked until all other processes in 

the group have executed the barrier call. A broadcast message involves the root process 
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sending a message to all processes in the group including itself. A gather operation is the 

reverse of broadcast. The root process now waits to receive a message from every process 

in the group. In a scatter operation, the message sent by the root process is split into n 

equal parts and each of the respective parts is sent to the n processes in the group. In a 

reduce operation each process combines the elements provided in its input buffer using a 

common specified operation and returns the result for the combined elements to the root 

process. With an all to all exchange, each process sends distinct data to each of the other 

processes. 

 Apart from the point-to-point and collective operations, the MPI standard includes 

several more features such as process groups, process topologies, communication 

contexts and derived data types. In this thesis the implementations of only point-to-point 

and collective communications, which require the use of communication network are 

considered. These are also the most frequently used MPI functions and are supported by 

the MPI library within our simulation system. 

2.2 Evaluation Tools 

Message passing applications include two important components namely, computation 

and communication. The time spent by the application in computation and in 

communication needs to be simulated for accurate predictions. The simulation techniques 

for predicting both the components are discussed below. 
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2.2.1 Simulation of Computation Performance of the Application 

Some of the available techniques for simulating this component of application 

performance are trace driven simulation, instruction level simulation and execution 

driven simulation. 

Trace Driven Simulation: In this method, a program is instrumented to generate a trace 

of its execution events, which need to be simulated. The trace can then be used for 

simulation of the target machine. The method can be accurate while studying 

cache/memory behavior or study application performance on a uniprocessor system. But 

trace driven simulation can prove very difficult while studying multiprocessor systems. 

The execution being multithreaded, the generation of a representative trace is a problem. 

This method is thus rarely used for simulation of parallel systems. 

Instruction level Simulation: Unlike trace driven simulation, instruction level 

simulation does not involve collecting a trace. This simulation model takes in each 

instruction of the application program and emulates the behavior of the corresponding 

instruction for the target architecture. Due to emulation of each target instruction, the 

number of simulator instructions executed per host instruction is usually greater than 

hundred. This results in significant slowdown of the simulator operation although the 

accuracy of prediction is very high for such a technique. 

Execution Driven Simulation: This technique is relatively new and most commonly 

used today. With this technique the execution of the program and the simulation model 

for the architecture are interleaved. The assembly language code for the application is 
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parsed for basic blocks and the timing information is inserted only at the start of each 

basic block. Unlike instruction level simulation that emulates every single instruction, 

this technique executes an entire basic block instead. So there is significant reduction of 

simulation overhead in execution driven simulation as compared to instruction level 

simulation, thereby making it the preferred technique.  

The distributed memory simulator, CAL-SIM used in this research utilizes the execution 

driven simulation technique to predict the compute performance of applications. It 

enables efficient simulation while providing accurate performance predictions. 

2.2.2 Simulation of Communication Performance of the Application 

For message passing architectures, the communication performance of applications can 

be determined from the time spent in communication routines as well as in the network 

hardware. The latency for a message to reach its destination eventually adds up to the 

execution time of the application, if the receiver of the message has been waiting on it. 

The major components of message latency are the messaging layer latency, which 

involves preparing the message for data transmission and the network hardware latency. 

Although the overhead of messaging layer is significant, for long messages, the network 

hardware latency dominates the communication latency. So in this research the latency 

introduced by the networking hardware is considered and the following simulation 

techniques are discussed with respect to the network hardware.  
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Analytical Model: Analytical models provide a quick estimate of the message latency 

from some of the network parameters. However these models lack sufficient accuracy for 

complex networks that incorporate several design tradeoffs. 

Cycle Driven Simulation: This is a commonly adopted technique for evaluating 

networks because of the number of details that can be incorporated in the simulation. 

With this approach, the network is made to run as if there were a clock signal driving it 

and the activities advance every clock cycle, in a way these would proceed in a real 

network. Accurate results can be obtained as the simulation can model hot spots and 

contentions in the network, which add to the message latency. However detailed cycle 

driven simulation tends to slowdown the simulation process. 

Event Driven Simulation: With event driven simulation a queue of events maintained in 

a time order drives the simulation. Simulation time gets updated to the timestamp of an 

event when it is selected for running from the head of the queue. The technique allows 

for accurate simulation. However when there are a large number of network parameters, 

which manipulate the event queue every simulation cycle, the simulation tends to be 

extremely slow. Cycle driven simulation is preferred in this case. 

The network simulator, NetSim used in this research, utilizes the cycle driven simulation 

technique. The cycle-by-cycle network model is also appropriate for integration with the 

execution driven distributed memory simulation system, as it provides easier control over 

network run time in simulation.  
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Chapter 3 - Distributed Memory Simulator Components 

This chapter describes the tools that make up the distributed memory simulation system. 

The simulation system is designed to run on a uniprocessor host machine. 

A parallel architecture is simulated on a uniprocessor machine by creating threads to 

represent the different processors in the architecture model. Each thread holds a copy of 

the application program and executes its part of the code. The threads communicate by 

sending messages to each other during their lifetime. The application program itself can 

be made transparent to the details of setting up communication and having the messages 

sent or received by simply making high level function calls, with these functions 

implemented as part of the system software library. The desired feature would be to use 

the MPI standard communication calls within the application. This means a run time 

library implementing the MPI communication routines is required of the simulation tool. 

CAL-SIM supports simulation of MPI based parallel programs and is described in section 

3.1. More details of the simulator can be found in [1].  

To simulate the communication behavior of the parallel application, a network simulator 

configured with the distributed memory simulator is also required. NetSim, a cycle level 

network simulator is suitable for integration with CAL-SIM and is described in section 

3.2. More information on this tool can be found in [2].  
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3.1 CAL-SIM 

CAL-SIM is an execution driven, distributed memory simulator running message passing 

applications. The tool accepts an MPI application and predicts its execution time on the 

target architecture in terms of number of cycles. Simulation is carried out on a 

uniprocessor host while the simulator itself provides for the multithread framework. The 

CAL-SIM simulator library is made up of several components such as the simulation 

core, basic network model, MPI library, application profiling tools, timing analyzer etc. 

With the execution driven technique, the execution of the application is interleaved with 

the simulation process. Execution driven technique is presented in [4], [5]. The profiling 

tool within the simulator parses the assembly level code of the application, identifying 

basic blocks and inserts timing information code for each basic block. The instrumented 

code is then compiled and linked with the simulation library to provide the executable. 

This technique is depicted in Figure 1. 
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                                    Figure 1. Steps in profiling a parallel program  

The instrumented code now has the instructions for updating the time counter executed as 
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threads equal to the number of nodes being simulated and each thread now holds a copy 

of the profiled application. With multiple threads executing, the access to global data 

structures within the simulator such as the time counter needs to be maintained in the 

correct sequence. The threads would require synchronizing every time there is a need to 

update one of the global variables. With a large amount of synchronization activity, the 

slowdown in the simulation speed is significant. Therefore to avoid the high overhead of 

synchronization, global variables are maintained as one-dimensional array per variable 

and each thread uses its own copy of the variable indexed by the processor number or 

thread number. The time counter for example will now be maintained as time 

counter[NPROCS] and the instructions for updating the processor thread’s time will 

update the array element of the time counter, which is indexed by the thread number. 

Synchronization routines are used only for access to a processor’s message queue.  

Once the threads get created and initialized, the simulator core schedules these threads for 

execution. Note that the execution of threads is serialized on a uniprocessor host. A 

context switch occurs when the currently running thread performs a communication call. 

A new thread is then picked up for execution by the simulator core and this process 

continues until all the threads have executed. The simulation time gets updated to the 

schedule time of various activities, which are maintained in time order as in event driven 

simulation. This type of scheduling which is part of the execution driven technique is 

depicted in Figure 2. 
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                    Figure 2. Process execution cycle in execution driven simulation 
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for a thread to either exchange data with a process running on another processor (another 

thread in simulation) or participate in a collective operation by all threads on the global 

data or participate in a synchronization activity. The MPI library implementation for the 

communication calls is responsible for the setup to have messages transferred to their 

destination. Message queues are maintained to hold the outgoing and incoming messages 

for a thread. In a simulated send operation, a message is time stamped with the send time, 

which is the current time of simulation and with the receive time which is the send time 

plus the predicted message latency. An event which places the message in the destination 

thread’s message queue is then scheduled to occur at the receive time stamp. In a 

simulated receive operation the destination thread simply checks its message queue to see 

if the message has arrived. 

The time at which a destination thread receives its message is computed using simple 

delay functions. The network hardware latency is computed using a linear message 

latency model, where the latency is proportional to the length of the message and to the 

distance between the source and destination nodes. This is essentially the ideal latency 

experienced by a message in the network to get transferred to the destination processor. 

In addition to the network latency, delay models for overhead at the sender side (e.g., 

creation of message packets) and at the receiver side (e.g., transfer of message from the 

network to receiver memory) are provided. So the total message latency is the sum of the 

three basic parameters shown in figure 3. An event is scheduled at the message arrival 

time which puts the message into the destination thread’s receive queue and signals a 

receive semaphore. The destination thread executing its receive call, checks the receive 
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queue for its intended message. If the message has arrived, it copies the message in the 

user level buffer specified by the receive operation and returns successfully. If the 

message has not yet arrived, then the semantics of the receive operation determines 

further action. If the receive is non-blocking, the receive call simply returns. The thread 

has to execute a wait routine at a later point in execution to check if the request had been 

processed and it will now wait for the message to arrive in the wait routine. If the receive 

is blocking then the receiving thread blocks itself on the receive semaphore. On a 

semaphore signal, the receiver checks the arrived message. If this message is the 

expected one, the receiver copies it to the user buffer else puts it in a checked message 

queue and again waits on the receive semaphore for the next signal. 

 

 

 

 

 

 

 

 

                                      Figure 3. Network delay model parameters 
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behavior of parallel application and its compute efficiency. The use of simple delay 

equations in such a case enables faster simulation. This mode within the simulator is 

however flexible enough to let users of the system use their own delay models for the 

network parameters of figure 3. If a user does not provide the delay models, then the 

default models in the system will be used. 

A separate mode of operation is required within the simulator for situations in which a 

parallel application needs to be evaluated for its communication performance. The 

accuracy of event timing for the send and receive operations becomes very important in 

this case. The message arrival time obtained from simulation of network activities needs 

to be used rather than the time predicted by a simple latency model. This is because 

simple latency expressions cannot account for factors such as network contention, traffic 

patterns and complex design of messaging algorithms, which can have a significant 

impact on the message latency. A network simulator thus needs to be connected with 

CAL-SIM in this mode. The first task now would be to have a suitable interconnection 

network simulator. NetSim described in section 3.2 is used for the purpose. The next task 

would be to develop a network interface in CAL-SIM, to have the tools work together 

and provide for a comprehensive distributed memory simulation system.  

3.2 NetSim 

For integrating a network simulator with CAL-SIM, a choice has to be made as to which 

would be the appropriate model: event driven or cycle driven. CAL-SIM being an event 

driven simulator, having another event driven simulation combined with it would be 
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rather complicated and make it very difficult to ensure that the messages are sent into the 

network at the correct simulation time. Also the time when the network needs to halt and 

let other threads continue would be difficult to control. With cycle driven simulation it 

would be much easier to control the number of cycles to run the network simulator. 

Moreover the network can be scheduled as an independent event within the event driven 

simulator. The use of a cycle driven network simulator for integration with an event 

driven simulator is thus the preferred choice. NetSim [2] is a cycle driven network 

simulator that models the behavior of multi-computer networks and switches. This 

network simulator has been used for integration with CAL-SIM and is described in this 

section.  

The main component within NetSim is a router, which handles message communication 

for the node. A router is connected directly to the routers of the neighboring nodes in a 

direct network. The router is designed using the canonical model shown in figure 4. 
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                          Figure 4. Canonical model for the router switch used in NetSim 

 

With the router design model of figure 4, the flexibility to vary network design 

parameters is large. The model also provides a common environment for a fair evaluation 

of the design tradeoffs. The design space of this canonical router in NetSim is discussed 

below. 

3.2.1 Design Space of Router 

 Network topology 

As with most direct networks, k-ary n-cube mesh and torus networks are modeled. For 

the n-dimensional mesh, the number of nodes k (or the radix) in each dimension is the 

same, with each node having n to 2n neighbors based on the nodes location in the mesh. 

With a torus network, variable number of nodes k (variable radix) for each dimension is 

possible. In a bi-directional torus, all nodes have the same number of neighbors, 2n 
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because of the wraparound channels. For simplicity the simulator models equal number 

of nodes in each dimension or the radix k is the same for each dimension in a bi-

directional torus. 

 

                                                                                           

 

 

 

 

 

 

              Figure 5. (a) Two Dimensional Torus Network          (b) Two Dimensional Mesh 
 

 Network Size 

With a k-ary n-cube network configuration having k nodes in each of the n dimensions, 

the size of the network becomes k ^ n. Varying network size in simulation can enable 

finding the scalability of the proposed network for a large network size. 

 Switching Technique 

The switching technique determines the path establishment between the source and 

destination nodes and also how a packet uses the buffer resources. Store and forward 

packet switching was traditionally used in which each individual packet is routed from 
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source to destination. This required buffering the entire packet at an intermediate node 

before it could be forwarded to the next node. But more recent switching techniques such 

as virtual cut through and wormhole switching are more popular for multicomputer 

networks as they attempt to forward an incoming packet as soon as the header 

information of the packet has arrived. Subsequent bytes of the message follow on the 

path established for the header previously and the message transfer is essentially 

pipelined through the network. These switching techniques result in low latency for 

message transfer than packet switching. The unit of information transfer for these 

techniques is a flit and a packet is comprised of flits. Virtual cut through and wormhole 

routing differ in their buffering mechanism. With virtual cut through, if the packet header 

is blocked for an output channel, the entire packet must be buffered along with the header 

at that node. Virtual cut through thus requires that every router have buffer space to 

buffer at least one packet entirely. Wormhole routing has more relaxed buffer 

requirements than cut through. The buffer at each router can be large enough just to hold 

a few flits. With the header of a packet blocked on an output channel, the packets flits 

occupy buffer space in several routers. In the absence of blocking, the packet transfer is 

pipelined through the network just as in cut through. Both unidirectional and bi-

directional wormhole and virtual cut through switching techniques have been 

implemented within the canonical model. 

 Virtual Channels 

A physical channel may hold several virtual channels that are multiplexed across the 

physical channel. Each virtual channel can in turn hold buffer space to buffer flits of 
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blocked packets. Use of virtual channels greatly improves latency and throughput of the 

network. Deadlock prevention in wormhole switched networks is another reason for the 

introduction of virtual channels in the model. Arbitration is required to decide which 

virtual channel can get hold of the physical channel, if there are colliding requests among 

them. Arbitration is either random, first in first out or round robin based in the model. 

 Buffering Scheme 

A very important network parameter is the size and position of buffers in the router. Each 

virtual lane can have sufficient space to buffer away a few flits. The buffer size is critical 

to both wormhole and cut through switching but especially more for cut through as it has 

to guarantee space for at least one packet. The buffers are FIFO buffers and routers can 

have these buffers per physical channel, per virtual channel or per lane within the virtual 

channels. The position of the buffer is also a design tradeoff. Buffering may be done only 

at the inputs (input buffering) or only at the output (output buffering) or at both the input 

and output side. Buffer size is modeled as a per node parameter in the NetSim router 

model. 

 Crossbar Switch 

A crossbar is used for connecting the inputs to the outputs. The crossbar switch having N 

inputs and M outputs allows up to min{N,M} one to one connections when no contention 

occurs. The two common crossbar configurations are the single crossbar with direct 

connection between lanes and the cascaded crossbars in which the output of the X 
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crossbar is fed to the input of the Y crossbar. Both are modeled inside NetSim. The 

crossbar model has ports for all the virtual channels and the lanes within them. 

 

 

 

 

 

 

 

 

 

                          (a)                                                                   (b)                        

          Figure 6. Crossbar Switch Architecture (a) N x M crossbar (b) Cascaded crossbar 
 

 Arbitration Unit 

When multiple sources request for the same output virtual channel at the same time, 

arbitration is essential to choose only one amongst the conflicting requests. The selection 

of the input channel can be done either using the first come first served scheme or 

randomly or in a round robin fashion. Fast arbitration is crucial to maintain low latency of 

the switch especially for large network or switch design using full connectivity. 
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 Routing Unit 

The routing unit implements the routing algorithm, which selects an output channel for 

the incoming request and sets the crossbar switch accordingly. Several routing algorithms 

have been proposed for wormhole and cut through switched networks and each of these is 

aimed at providing better and faster connectivity from source to destination node. With 

wormhole switching, cyclic dependencies occur which lead to a deadlock. Routing 

algorithms must thus be designed to be deadlock free. Also it would be preferred if 

routing adapts itself to the current network state and selects an alternative route for the 

incoming packet if the current selected route is busy, so that the packet does not get 

blocked. Thus the implementation classes of the routing algorithms are deterministic, 

adaptive and partially adaptive.  

With deterministic routing the route selected between a source and destination pair is 

always the same. Dimension order routing is a deterministic routing algorithm that routes 

packets by crossing dimensions in a strictly increasing (or decreasing) order. For an n 

dimensional mesh and hypercube, this routing is deadlock free but for a k-ary n-cube tori 

network it introduces cycles and thus a possibility of a deadlock. A deadlock free design 

of the routing algorithm is presented in [8] for the torus network. 

Adaptive algorithms on the other hand try to make use of the network state while making 

a decision on the output path to be selected. This type of routing is preferred because the 

possibility of a packet holding any buffer space or being blocked is reduced as the packet 

can now take an alternate route. This adaptivity can be allowed either for a subset of the 
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output physical paths possible (known as partially adaptive routing) or can utilize any of 

the output physical paths with no restriction at all( known as fully adaptive routing). 

More adaptivity improves performance. However increase in adaptivity increases the 

complexity of the router and can affect its operating frequency. Partially adaptive routing 

algorithms are thus designed as a tradeoff between speed and cost. 

Several fully adaptive routing algorithms have been proposed. Many of them make use of 

a large number of virtual channels and this tends to slow down the router speed while 

increasing the chip area. Some of the practical fully adaptive algorithms that use 

reasonable number of virtual channels have been modeled in the router. These are also 

designed to be deadlock free. 

3.2.2 Basic Parameter Settings 

Some parameters are fixed within the simulator and are not programmable by the user. 

These parameters settings are based upon reasonable assumptions for network simulation 

and are listed below 

• The width of the physical channel is assumed to be one flit.  

• There is only one injector port and one ejector port for the processor interface. 

• The number of virtual channels is specific to the routing algorithm selected and is 

computed within the simulator. 

• The network is tightly coupled. So the wiring delay is not critical and the transfer 

from an output channel to a downstream input channel takes one cycle. 
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• The transmission of flits is pipelined. 

• A flit takes one cycle to be transferred from the input buffer to the output buffer 

within the router or from the output buffer to the input buffer of the next router if 

there is no congestion along the path. A header flit injected into an empty buffer 

would take an extra cycle to be routed. The routing for the header flit following the 

tail flit of another packet will be done in parallel with the transmission of this tail flit. 
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Chapter 4 - System Integration 

In this chapter, the design and implementation of the network interface required for 

integrating CAL-SIM and NetSim is presented. We focus on how the network 

synchronizes itself with the processor nodes in simulation. 

4.1 Interface Design and Implementation 

Within the interface, the function of a network interface card for each node is 

implemented. This network interface card resides between a processor and the network. It 

performs the task of processing a message into packets that are to be sent into the 

network and also informs the processor when a message has been received in its entirety. 

The network interface thus allows the processor to continue with its job as the message 

transmission is being done in parallel.  

The interface also provides a set of functions for interacting with the network simulator.  

Its simple design allows users to replace the network simulator with their own version if 

required. That is, the software interface to the network simulator is not very specific to 

the implementation details within the network simulator. This flexibility is essential 

because a large number of network models exist and it is difficult to support all of them 

in our network simulator. However the user network simulator must adhere to certain 

design guidelines to work successfully with the simulation system. These design 

guidelines will be mentioned in this chapter. 
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The overall simulator design is shown in figure 7. CAL-SIM simulation system includes 

the MPI library, simulator core, which is responsible for thread scheduling and the 

network interface, which is used to integrate the network simulator. The network 

simulator, NetSim includes the network setup, which configures the network parameters 

for simulation and the network core, which simulates a single cycle of network execution. 

The network interface now has to coordinate the running of the network core with the 

processor threads every time a MPI communication routine gets called. It must also 

interact with the network simulator to have a message sent or received from the network.  

 

 

 

 

 

 

   

                                         Figure 7. Simulation system design 

4.1.1 Send Side 

When a message is to be sent, the processor signals the network interface using an 

interface routine. The network interface further performs the tasks of transferring the 

message from processor’s memory to the interface memory, creating message packets 

and transmitting the packets to the node router.  
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For the transfer of a message from the processor’s memory to the network interface 

memory, a memory-mapped device or a DMA within the interface is assumed. In 

simulation this data transfer can be done by creating a copy of the message within the 

interface and releasing the sender data buffer. The send function call can now return, as 

the user buffer is safe to reuse. The overhead for initiating the message transfer is 

computed using a delay model. The first packet of the message is thus created at a time 

equal to the current simulation time plus the sender transmit time, where sender transmit 

time is the initial setup time to transfer data to the interface memory. 

The network interface then computes the number of message packets from the message 

size and the flit size. Packet creation involves creating the header flit that contains routing 

information for the packet and its following data flits. The header is assumed to be one 

flit and a single packet creation takes one cycle. The interface maintains a packet queue 

to hold the outgoing message packets. The size of the packet queue is set to a default 

value and can be reset by the user. This feature enables to see the effect of queuing 

latency when the network is saturated, which results in packets holding buffer space 

within the interface memory and preventing any further packet creation.  

Within the network interface, flit injection for a previous packet proceeds in parallel with 

the creation of a new packet. To inject a flit into the router injection channel buffer, the 

network interface calls the injector routine of the network simulator.  
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4.1.2 Receive Side 

A global message list is maintained by the interface to keep track of the messages being 

sent into the network. When the network simulator notifies the interface about the arrival 

of a message packet, the message list is looked up by an interface function to check 

which message the packet belongs to and if this is the last packet for the message. If all 

the packets for the message have been received, the network interface schedules a 

message arrival event at a time equal to the current simulation plus receiver transfer time. 

The receiver transfer time represents the time to transfer a message from the interface to 

the processor memory. The message arrival event places the message in the receive queue 

of the destination processor and signals a receive semaphore. 

A processor thread waiting for a message on the receive semaphore, is triggered by the 

semaphore signal. The receiver checks to see if the intended message has arrived and if 

so, copies it into the user buffer and returns. If the expected message has not yet arrived, 

then the receiver simply waits for another signal from the receive semaphore. 

4.2 Network Event 

The simulation library within CAL-SIM consists of two simulation activities, processes 

and events. The main difference between these two entities is that a process can 

temporarily suspend execution while an event must execute till completion. Once the 

body of an event terminates, the event thread is destroyed. The only way to have an event 

schedule itself multiple times (reschedule itself) is to have the event as a non-deleting 

entity. 
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The interface to the network and the network simulator together form a network event, 

which is designated as a non-deleting event. An event is chosen over a process to avoid 

the overhead for a process when a context switch occurs from the network thread to some 

other ready thread. Moreover an event does not affect simulation time; it takes 0-

simulation time to execute an event. 

4.3 Scheduling the Network Event  

The interface to the network simulator is responsible for synchronizing the network 

thread with the running processor threads. The network event should schedule itself at the 

correct simulation time and keep its simulation time synchronized with that of other 

running threads. This is essential so that message packets are injected into the network at 

the correct simulation time and also received at the correct time. Two important issues 

need to be considered here. Firstly, all the processor threads must have run before the 

network thread can run. This way all the messages for the current simulation time get 

inserted in the message queue. Secondly, there needs to be a way of knowing how long 

the network simulator can run. It may happen that if the network simulator is run till a 

message has reached, the cycle count would advance and a processor thread that has not 

been able to catch up to that time, will send messages meant to be sent at an earlier 

simulation time. This will lead to incorrect network simulation. There needs to be a way 

to get around both the problems for accurate network simulation. 

To start with, all the threads get scheduled at simulation time 0. When the network thread 

enters execution, its first task is to check if any other activity is scheduled for the same 
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time as itself. This is possible using a simulator core function that allows performing a 

look-ahead into the activity schedule queue. This queue is ordered by the activity 

schedule times and allows for insertion of activities in the queue dynamically, as these 

get scheduled from the current simulation time. The look-ahead function returns the 

schedule time of the next activity and the interface routine checks to see if this time is 

equal to the current simulation time. It then lets this activity proceed first by rescheduling 

itself at the current simulation time. This adds the network event back to the activity 

queue without its further execution. When the current activity is finished, the network 

event is again activated and if no other thread is still scheduled, the interface proceeds to 

execute the network code. This way all the processor threads have had a chance to run 

and put their messages in their respective message queues before the network thread can 

run. Figure 8 depicts the rescheduling of the network event by performing a look-ahead 

into the activity queue.   

 

 

 

 

 

 

                                 Figure 8. Scheduling the network event with look-ahead 
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The other situation where the difficulty in scheduling the network event arises is when all 

the processors are waiting for their messages on their message receive semaphore. Such a 

situation frequently arises during execution, as the receiving processor enters its receive 

routine even before the sender has had a chance to enter its send routine. The receiver, if 

it is in a blocking receive mode or is performing a wait operation to have the data buffer 

filled, simply suspends itself on the receive semaphore. Only when the network interface 

puts the message into the receiver’s message queue does the receiver get awakened and 

start further execution. In the meantime, the sender after sending the message can itself 

perform a receive operation waiting for a message from the receiver of its message. So 

both the sender and receiver are now blocked on their respective semaphores and the time 

of their further activity is unknown. Activities waiting on a semaphore do not get added 

to the activity schedule list but instead are added to the semaphore list of the receive 

semaphore.  

With all the processor threads waiting on their respective semaphores, the look-ahead 

method mentioned above fails. This is because the interface checks for the next event 

time and the look-ahead function not finding any activities in the queue returns a negative 

value upon which the network event may delete itself thinking all other processes have 

terminated. The way to get around this problem is to have the network event check for 

two conditions. 

1. To check for the next event time using look-ahead 

2. If the look-ahead returns a negative value then check to see if there are processors 

waiting on their semaphores.  
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The second condition can be checked using another simulator core function. In such a 

situation the network event has to keep running until at least one of the processors is 

awakened for the look-ahead to work again. However, if both the look-ahead and the 

check for semaphore wait return negative results, it means that all the processor threads 

have terminated and it is now safe for the network event to exit. 

Once the network event is scheduled, the next question is how long should the network 

run. This is also an important issue here, as the network has to run only for certain cycles 

so that the processor threads can catch up and the simulation of network activities occurs 

at the correct simulation cycle. The network running for a time to have an entire message 

delivered to its destination may result in the network cycle count exceeding the 

processors simulation time. Any further insertion of packets in the network by the 

processor will be at the incorrect cycle for the network, leading to inaccurate simulation 

results.  The best way to avoid this is to have the network run for a time less than the 

schedule time of the next activity. The look-ahead function is used here again. The 

network can run for a time frame between current simulation time and the next event’s 

time that is returned by the look-ahead function. So lets say the network event is 

scheduled at time 0 and the next event time is 10, the network simulator is run from time 

t = 0 to t = 9.  

The additional case where the time for the network simulator run needs to be decided is 

when processors are waiting on their message semaphore as mentioned above. In this 

case as look-ahead fails, some other approach needs to be taken to decide how long the 
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network simulator can run. We know that when the final packet for a message gets 

ejected, the network interface signals the destination processor about the message arrival. 

This wakes up the destination processor and adds it back to the activity schedule queue. 

With at least one other activity besides the network event in the activity queue, the look-

ahead method will start functioning again. So the method adopted here is to let the 

network run till at least one message reaches its destination. The network event can then 

reschedule itself at the message arrival time letting the awakened processor thread resume 

its execution.  

4.4 Reducing Simulation Overhead 

Detailed cycle-by-cycle simulation of the network tends to be slow for a large network 

size and for a large number of messages through the network. It would thus be essential 

to reduce as far as possible the overhead introduced by detailed simulation. Unnecessary 

network simulation, for example when there are no packets in the network can be skipped 

by the network event. If the network event is to run from the current simulation time to 

the time of the next activity which may be tens of thousands of cycle away, the number of 

packets injected into the network can be checked. If all the packets have reached their 

destination, further simulation till the next event time is a large overhead and so the 

network cycle is simply made to advance to the next event time. The basic code frame for 

the network event is shown below. 
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                                                         Figure 9. Code format for network event 
 

4.5 Design Guidelines for the Network Model 

The network interface provides for easy integration of different network simulators with 

the simulation system. The interface interacts with the network simulator through a set of 

functions. This way unnecessary details of CAL-SIM implementation are hidden to the 

network simulator and vice versa.  The network simulator however has to follow certain 

design rules to ensure its correct working with the system. These are listed below.  

• The network simulator must be cycle driven 

• The network simulator code must be organized in two parts; an initialization part 

which sets up the network configuration using a wrapper function called NS_Init( ) 

and a single cycle execution part, which simulates the activities in the network for a 

single cycle in a wrapper function called NS_SimCycle( ). 

           Network_Event( )  {  
                 next_event_time = time_of_next_activity_in_queue 
                     if(next_event_time != -1)  {         // look-ahead succeeds 
                         if(cur_time == next_event_time) 
                         Reschedule_Network_Event 
                         else 
                         while(cur_time < next_event_time) { 
                             if( ! injected_pkts )  
                                 network_cycle = next_event_time 
                                 break 
                             else 
                                 simulate_a_network_cycle 
                          } 
                      } 
                      else if any processors waiting on message semaphore { 
                          while ( ! msg_arrived) 
                              simulate_a_network_cycle 
                      Reschedule Network_Event at network_cycle – cur_time 
                  } 
                  else terminate Network _Event 
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• A global data structure called Net and a pointer to it need to be maintained within the 

network simulator. The elements of this data structure required for integration are the 

PacketArray and the cycle counter variable called global_cycle. PacketArray must 

contain variables called pkt_cylcreated (the cycle at which the packet got injected into 

the router), pkt_cylarrived (the cycle at which the packet is ejected through the ejector 

port of the router), pktid (the id of the packet ejected) and msgnum (the message 

number to which this packet belongs). These fields are required by the interface when 

a packet gets ejected, to maintain a check of when a message arrives in its entirety.  

• The global_cycle variable is the network cycle counter, it is incremented for every 

simulated cycle of the network. But control of this variable is also required by the 

interface. 

• A function NS_QuePkt( ) must be provided which creates a packet in the PacketArray 

and returns a positive value if the packet could be successfully created. 

• When the tail flit of a packet gets ejected through the ejector port, a wrapper function 

called NS_Eject( ) must be called, which informs the interface of the incoming 

packet. 
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Chapter 5 - Simulation Results 

In this chapter simulation results from the integration of CAL-SIM and NetSim are 

presented which demonstrate the working of the two tools together. We examine the 

communication performance of MPI benchmark applications on target systems and report 

on system performance parameters such as message latency. We also compare the 

message latencies predicted by a linear message delay model and by detailed network 

simulation for the benchmarks. 

All the simulations were carried out on a 360MHz Sun UltraSparcII, solaris2.7 system. 

Simulation results are presented for the NAS 2.3 Integer Sort Class W benchmark, 

Multigrid and Embarassingly Parallel Class A benchmarks and for the Fast Fourier 

Transform application. NAS benchmarks (except IS) are in fortran77 and as the simulator 

can run C/MPI applications, the benchmarks are converted to C using the F2C tool.  

5.1 Simulator Parameter Settings 

A two-dimensional torus network is assumed in the simulations for comparing the 

message latency predicted by the simple mode of the simulator using linear message 

delay and the network mode involving network simulation. The network sizes used are 4 

x 4, 8 x 8 and 16 x 16. Thus the number of nodes simulated is 16, 64 and 256. 
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5.1.1 Linear Delay Model Parameter Settings 

The ideal message latency, which does not take into account network traffic and 

contention, is presented in [7]. This delay model is used in the simple mode of the 

simulator. Message latency is this case is given by  

                              Message Latency = D * (Tr + Ts + Tw) + Ts(L/W)                      ( 1 )                         

where D – average distance,  

           Tr – router delay, Ts – Switching delay, Tw – Wire delay,  

           L – Message Length in flits, and W – Physical Channel Width in flits 

The average distance in a two-dimensional torus is 2*K/4, where K is the number of 

nodes in a dimension. This is true when K is even. The parameters Tr, Ts, Tw are set 

according to the way the network simulator has modeled them to provide fairness of 

comparison. Our evaluations are for tightly coupled networks, where the wiring delay is 

not critical and so Tw is set to one cycle. The routing delay and the switch delay are also 

set to be one cycle each. The width of the physical channel is equal to one flit, which is 

equal to one 64-bit word. The message latency equation can thus be re-written as 

      Message Latency = (2 * K / 4) * (1 + 1 +1) + (1) * (L / 1)                                     ( 2 ) 

5.1.2 Network Mode Parameter Settings  

The detailed network simulation mode allows for setting of more communication 

network parameters than the simple delay model presented above and is an advantage 

associated with network simulation. The following network parameters are assumed in 

network simulation: 
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                                                Table 1. Network parameter settings 

            Topology               2D Torus 

           Width (Radix K)               4, 8, 16 

            Wiring  Bidirectional Wormhole 

    FIFO size per node              108 flits 

   Packet Size in Flits               8 

   Flit size in bits              64 

    Routing Algorithm    Deterministic TRC 

 

5.2 Results for the NAS Multigrid Benchmark 

The benchmark under evaluation here is the NAS MultiGrid (MG) Class A benchmark. 

The benchmark solves a 3D Poisson partial differential equation. The code has a good 

mix of short and long distance communication. The dominant communication type here 

is point-to-point with blocking sends and non-blocking receives.  

It has been shown [9] for the NAS benchmarks that with increasing machine size, the size 

of a message usually decreases. However the number of messages is likely increased. The 

results in figure 10 say the same. Only the messages sent over the communication 

network are considered. With increased number of nodes, the communication is of finer 

granularity leading to a decrease in the average message size. However the 

communication pattern now requires interaction with more number of nodes increasing 

the total number of messages. 
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            Figure 10. Avg. message size and total number of messages as a function of machine size 

With smaller message size, the average message latency experienced by a message would 

be expected to reduce. This can be observed in figure 11. However the network mode for 

256 processors shows an increase in the average message latency. As the number of 

nodes is increased beyond 64, the communication pattern for the benchmark changes 

rapidly. 
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                  Figure 11. Predicted average message latency for the MG Class A benchmark 

To observe the impact of the routing algorithm in such a case where the static routing 

scheme performance degrades, the algorithms are varied to be partially and fully 

adaptive. Figure 12 shows the average message latency change with a change in the 

routing algorithm. The adaptive algorithms under test here are Duatos partial and fully 

adaptive and the fully adaptive T3D-like. 

                                        Figure 12. Comparison of routing algorithm performance                     
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From figure 12, it is seen that the adaptive algorithm scales well with increasing machine 

size. Partial adaptive however does not perform any better than deterministic routing for 

this particular workload.  

Even though the number of messages and message size is significant for the benchmark, 

computation still dominates the overall execution time. The total amount of 

communication is less than 20% as seen in figure 13. MG benefits from the increased 

number of processors. The execution time and change in communication performance 

across processors is presented in figure 14. The communication time considered here 

includes the time spent by processor threads inside a communication routine waiting for 

the intended message. The wait time may be due to imbalance in the send and receive 

schedule times and also due to the actual communication network cost. 

                       Figure 13. Percent computation and communication in MG benchmark 
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                  Figure 14. Predicted performance for the Multigrid Class A benchmark 

5.3 Results for the NAS Integer Sort Benchmark 

The Integer Sort (IS) benchmark tests a sorting operation on primarily integer data type. 

The benchmark has a significant amount of communication as compared to most other 

NAS benchmarks. Reduction and all to all function calls dominate the communication. 

Usually for collective communication routines, the vendor specific MPI library 

implementation plays an important role in deciding how many messages get generated. 

The routines may be optimized to reduce the volume of traffic to be sent over the 

network. The MPI library within the simulator currently has a straightforward and 

reasonable implementation of the collective communications that provide functional 

support for those found in the NAS benchmarks. Some deviation in the number of 

messages generated for such collective communications is therefore expected here. The 

average message size and the total number of messages for the benchmark are shown in 



 

   
46 

 
  
 

figure 15. Due to all to all communication the number of messages generated increases 

significantly with increase in number of processors especially from machine size of 64 to 

256.  

 

     Figure 15. Avg. message size and total number of messages as a function of machine size for  
                        the IS Class W Benchmark 

Figure 16 shows the predicted average message latency in the simple and network mode 

of the simulator. The routing algorithm was varied to see the impact on message latency 

as in figure 17. The topology was next selected as mesh to observe how much 

performance advantage the torus layout offers because of the wraparound channels. 

Figure 18 presents the average message latency on a mesh. The torus layout only very 

slightly performed better than the mesh and the difference is almost negligible.  

Although the computation efficiency of the benchmark increases with machine size, the 

communication increase is very large. Communication thus dominates the benchmark 

performance at very large machine sizes. Figure 19 shows the communication increase 

with the increasing number of processors. 
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                               Figure 16. Avg. message latency prediction for the IS Class W benchmark 

 
 
 
 

                             Figure 17. Avg. message latency with a variation in routing algorithm  

                                               for the IS benchmark                             
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                        Figure 18. Avg. message latency on a 2D mesh for the IS Class W benchmark     

 
     
 

                         Figure 19. Percent computation and communication in the IS Class W benchmark 

 

Figure 20 shows the performance of the benchmark. The code benefits from increased 

number of processors up to 256. For communication performance of the application, the 
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understanding the contribution of network cost to the communication time of the 

application.  
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                            Figure 20. Predicted performance for the IS Class W benchmark 

5.4 Results for the NAS Embarrassingly Parallel Benchmark 

The Embarrassingly Parallel benchmark generates a large number of gaussian 

pseudorandom numbers. The benchmark has very little communication. Most of this 

modest communication that is present, is collective type. One reason the benchmark was 

selected for study here was that it has a constant message size across varying machine 

size. It allows seeing the network performance for a fixed message size. The average 

message latency is seen to increase with increase in number of processors as in Figure 21.  

The predicted performance for the benchmark is shown in figure 22. 
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                              Figure 21. Average message latency for the EP Class A benchmark 
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                             Figure 22. Predicted performance for the EP Class A benchmark 

5.5 Results for the FFT Benchmark 

The FFT application solves the partial differential equation using fast fourier transforms 

of given N numbers. Each of the P processors computes the FFT of N/P numbers and 
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communicates with other processors to compute for other remaining elements. The FFT 

application does less than 20 percent communication in the code for processors up to 64. 

Figure 23 shows the communication time spent by FFT and figure 24 gives the 

performance for FFT. 
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                                                Figure 23. Communication time for FFT benchmark 
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                                                     Figure 24. Performance of the FFT benchmark 
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5.6 Prediction Error for Simple Mode of the Simulator 

Figure 25 shows the difference in the communication performance prediction for the MG 

and IS benchmarks by the simple mode of the simulator, which uses a linear delay model 

and by the network mode of the simulator, which supports detailed network simulation. 

The linear delay model introduces error in the predictions, as it does not account for the 

current workload and contention in the communication network. 

               Figure 25. Prediction error for communication performance prediction using 
                                 the linear delay model 
 

5.7 Functional Verification of the Simulator 

To observe if the interface functions correctly two things need to be verified. First if the 

number of packets created from the message size and packet size are correct and second 

if the packets are being created and inserted in the network at the appropriate cycle. Since 

a common clock is assumed for the processor cycles and network cycles, it is pretty 

straightforward to observe if the packets are being inserted at the right cycle.  
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A sample code in which each processor sends a message to every other processor and 

then waits for the other processor messages was used as the initial test. The number of 

processors and the message size was varied. The MPI library was instrumented to see 

when the message was created and the instrumented interface code was checked to see if 

the packets get created in the following cycles. Information was also collected to see if 

the packet flits get injected into the network at the correct cycle count. 

The NAS benchmarks perform self-verification to see if the result obtained is equal to the 

precomputed result. The simulator has been successfully tested for the following 

benchmarks.    

                                                      Table 2. Benchmark Tests 

Application Class Type Number of Processors 

NPB MG W, A 1,2, 4, 8, 16, 32, 64, 256 

NPB EP W, A 1,2, 4, 8, 16, 32, 64, 256 

NPB IS W 1, 2, 4, 8, 16, 64, 256 

FFT  1, 2, 4, 8, 16, 64 

 

Another test for functional verification is to use the ideal delay model given above for a 

2D torus and have a single message’s packets travel through the network. This way there 

is no contention in the network and the delay predicted by the network mode and the 

ideal mode should be close in value. There may be a slight difference in the two values as 

the ideal mode uses average distance and the network mode uses the actual distance. But 
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for case of comparison here, an 8 x 8 network size is chosen and the message is sent from 

processor 0 to processor 10, with the distance between node 0 and node 10 equal to the 

average distance within the simulator. This way same results should be obtained from 

both the modes. The results from network simulator verify this as shown in table 3, with 

varying message size. The remaining parameters for the network and simple mode are the 

same as given in section 5.1.  

                                                       Table 3. Functional Verification 

               
Message Size in 
      Flits 

Message Packets 
         Created 

Message Latency 
In Ideal Mode 

Message Latency 
In Network 
Mode 

          64            10             92          92 

        128            19             164         164 

        256            37             308         308 

        512            74             604         604 
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Chapter 6 - Conclusion and Future Work 

6.1 Conclusion 

In this work, a flexible network interface for supporting network simulation within the 

CAL-SIM simulation system is designed and implemented. The following goals have 

been achieved with this work: 

1. The capability to specify an interconnection structure for the processors in the 

simulated architecture model. This allows us to evaluate the impact of network 

designs on the communication performance of applications, which are executed 

on the system. 

2. More accurate performance measurements. Detailed network simulation provides 

more accurate event timing for the send and receive operations than the simple 

latency model. The event queue within the simulator as a result processes the 

events in a more precise order. 

3. A platform for evaluating candidate network designs using real applications as 

workload instead of synthetic workloads. The traffic pattern generated by the 

application directly simulates the network. The effect of traffic burstiness and 

bimodal messages through the network can also be captured. These however 

cannot be easily modeled with synthetic workloads. 

4. The flexible network interface allows easy integration of different network 

simulators with the simulation system. 
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6.2 Recommendations for Future Work 

Network simulation tends to be slow when a large network with a great amount of   

network activity needs to be simulated. Parallelizing the simulation system could help in 

reducing the time of simulation. 

The current simulator model assumes a single processor per node. But looking at the 

current trend in supercomputing most new architectures are designed to be cluster 

architectures with more than one processor per node. Within the node shared memory is 

used and between nodes a message-passing network is used. Examples of such 

architectures include the IBM RS6000 SP, SGI Origin, Compaq AlphaServer. So the next 

task in the simulator design extension would be to include support for simulating a cluster 

based architecture, by making each node a shared memory multiprocessor. 

This task could be simplified by integrating an existing shared memory simulator with 

the simulation system. An example of such a publicly available shared memory simulator 

that can be used for integration is the Multiprocessor SimpleScalar tool set [14]. A simple 

model that can be adopted for the execution of applications on simulated cluster 

architectures is presented in Figure 26. 
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                                Figure 26. Execution flow for a cluster architecture in simulation 

Here the master threads representing each node get created first. Then each master thread 

forks new threads, which represent the processors per node. Within a single node, all the 

threads communicate using shared memory. But only the master thread of a node can 

carry out any communication with a processor thread in some other node. This inter-node 

communication proceeds using MPI communication routines. Finally when all the slave 

threads for a node exit, the master thread also terminates. 
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