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Abstract

Communication is an important component in determining the overall performance of a
distributed memory parallel computing application. It therefore becomes essential to
predict communication performance of applications on the underlying network hardware
of a target distributed memory system. This thesis concentrates on integrating a cycle
driven k-ary n-cube network simulator to the existing CAL-SIM distributed memory
simulator for evaluating communication performance of message passing applications.
The design and implementation of a suitable network interface required for the
integration is presented. With detailed network simulation the accuracy of predictions
made is very high. The impact on communication performance by varying some of the
network design parameters is studied. Other important aspect of this work is the access to
an evaluation platform for evaluating network design tradeoffs, using real applications as

workload instead of synthetic workloads.
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Chapter 1 - Introduction

1.1 Background

Parallel computing systems are widely accepted as an effective technology for solving
large, computationally intensive problems in the area of high performance computing.
Based on their memory organization, parallel computing systems fall into two categories:
shared memory systems and distributed memory systems. Of these, the distributed

memory architecture is more scalable and thus preferred for large-scale machines.

The distributed memory system also known as the multicomputer, consists of commodity
processors joined by a suitable interconnection network. Inter-processor communication
proceeds by exchanging messages through the network. Since processor speed is
increasing rapidly, the communication network becomes a limiting factor in the
performance of message-passing applications. Using commodity network components to
connect the processors results in immense slowdown of the application execution speed.
Therefore the design of a high-speed interconnection network becomes critical in

distributed memory architectures.

The cost and engineering effort required in building a high performance distributed
memory system makes it important to predict the performance of the proposed
architectural features. Performance prediction tools provide a low cost means for
predicting application performance on proposed systems. The information made available

by such a tool assists designers in optimizing their system for the highest possible



performance. The evaluation tool models several hardware and software characteristics of
a system. By varying these characteristics, the system performance can be predicted for

its intended class of applications.

1.2 Problem Addressed

The need was to provide an accurate and efficient tool for evaluating the performance of
distributed memory systems under realistic workloads. For most message-passing
applications, their communication performance is extremely crucial for achieving higher
performance. Variation in communication network can have a significant impact on the
application performance. It therefore becomes important that the tool facilitate detailed
evaluation of the communication network along with the evaluation of other system
characteristics. Thus the pseudo execution environment provided for applications should
be very much like the specified hardware, delivering accurate results to the users of the

system.

A distributed memory simulator (CAL-SIM) was previously developed as part of our
research [1]. The architectural parameter that can be varied within the simulator is the
number of processors. The simulator makes simplified assumptions of the network when

predicting the communication performance of message passing applications.

An interconnection network simulator (NetSim) for distributed memory systems has also

been independently developed [2]. The simulator allows for modeling of various network



designs. Like most other network simulators, it makes use of synthetic workloads to

generate traffic in the network.

The task we address in this thesis is the design of a suitable network interface within
CAL-SIM for integrating the network simulator. The integration of the two evaluation
tools, CAL-SIM and NetSim provides the capability to specify an interconnection
structure for processors within the CAL-SIM simulation system. It provides with a
realistic environment for program execution and more accurate performance
measurements. It also allows for evaluating the impact of network design on
communication performance of applications and in making refinements to the network

model, to suite the application domains requirements.

The other important aspect of this integration work is the access to an evaluation platform
for evaluating candidate interconnection networks using real application workload. Most
of the existing interconnection network simulators make use of synthetic workloads for
performance evaluation. Firstly, these synthetic (dummy) workloads have to be generated
by examining the communication behavior of real applications themselves. Secondly,
they may not necessarily capture the communication behavior very accurately and often
make simplifying assumptions about the workload characteristics, which may be
inappropriate and may lead to inaccurate performance predictions. So the best case would
be to have real world applications to test the network performance instead of the synthetic

workloads.



Chapter 2 - Related Work

Simulation is a very effective technique for the evaluation of parallel systems before
incurring the hardware cost. Various simulation techniques have been developed for
evaluating the performance of parallel systems as well as for their interconnection
networks. In this chapter, we describe some of the major simulation techniques and
indicate which technique best matches our requirements. The message passing interface
standard adopted by the benchmark applications used in this research is also discussed in

brief.

2.1 Message Passing Interface

Message Passing Interface (MPI) [3], has become an accepted standard in implementing
communication functions for message based parallel programs in distributed memory
systems. The major goal of this standard is to provide for portable and easy to use
communication library functions without affecting performance. Amongst the many
programming features, the standard provides several mechanisms to perform point-to-

point and collective communications.

With point-to-point communication mechanism, communication proceeds between a pair
of processes. The basic point-to-point operations are the send and receive operations. The
communication semantics for these operations can be either blocking or non-blocking.
With the blocking type, the send function call does not return until resources such as the

user buffer can be safely reused or the data transfer to the network interface has been



completed. But with the non-blocking semantics, the send operation can return right after
the communication has been initiated and does not wait to see if the buffer is safe to
reuse. The non-blocking semantics is provided for performance reason so that the
communication can be overlapped with computation. The sender however has to later
issue a send complete call to verify if the data transfer has been completed. With either of
the semantics, the operations use one of the following communication modes: standard,

buffered, synchronous and ready.

In the standard mode, the MPI implementation can choose to wait for a matching receive
to be posted before starting data transfer or can choose to buffer the message in a
temporary system buffer and return immediately. In the buffered mode, an outgoing
message always gets buffered and the operation will complete whether or not a matching
receive has been posted. With the synchronous mode, the MPI implementation ensures
that the receiver has started to receive the message and that the send buffer can be safely
reused. In this mode, a send can start immediately but can complete only if a matching
receive has been posted. In the ready mode, the send call proceeds only if the matching

receive is already posted.

The other communication mechanism provided is for collective operations. In a collective
operation, a group of processes participate in the communication. Typical collective
operations are the barrier synchronization, broadcast, gather, scatter, reduce and all to all
exchange. In barrier synchronization, each process is blocked until all other processes in

the group have executed the barrier call. A broadcast message involves the root process



sending a message to all processes in the group including itself. A gather operation is the
reverse of broadcast. The root process now waits to receive a message from every process
in the group. In a scatter operation, the message sent by the root process is split into n
equal parts and each of the respective parts is sent to the n processes in the group. In a
reduce operation each process combines the elements provided in its input buffer using a
common specified operation and returns the result for the combined elements to the root
process. With an all to all exchange, each process sends distinct data to each of the other

Processces.

Apart from the point-to-point and collective operations, the MPI standard includes
several more features such as process groups, process topologies, communication
contexts and derived data types. In this thesis the implementations of only point-to-point
and collective communications, which require the use of communication network are
considered. These are also the most frequently used MPI functions and are supported by

the MPI library within our simulation system.

2.2 Evaluation Tools

Message passing applications include two important components namely, computation
and communication. The time spent by the application in computation and in
communication needs to be simulated for accurate predictions. The simulation techniques

for predicting both the components are discussed below.



2.2.1 Simulation of Computation Performance of the Application

Some of the available techniques for simulating this component of application
performance are trace driven simulation, instruction level simulation and execution

driven simulation.

Trace Driven Simulation: In this method, a program is instrumented to generate a trace
of its execution events, which need to be simulated. The trace can then be used for
simulation of the target machine. The method can be accurate while studying
cache/memory behavior or study application performance on a uniprocessor system. But
trace driven simulation can prove very difficult while studying multiprocessor systems.
The execution being multithreaded, the generation of a representative trace is a problem.

This method is thus rarely used for simulation of parallel systems.

Instruction level Simulation: Unlike trace driven simulation, instruction level
simulation does not involve collecting a trace. This simulation model takes in each
instruction of the application program and emulates the behavior of the corresponding
instruction for the target architecture. Due to emulation of each target instruction, the
number of simulator instructions executed per host instruction is usually greater than
hundred. This results in significant slowdown of the simulator operation although the

accuracy of prediction is very high for such a technique.

Execution Driven Simulation: This technique is relatively new and most commonly
used today. With this technique the execution of the program and the simulation model

for the architecture are interleaved. The assembly language code for the application is



parsed for basic blocks and the timing information is inserted only at the start of each
basic block. Unlike instruction level simulation that emulates every single instruction,
this technique executes an entire basic block instead. So there is significant reduction of
simulation overhead in execution driven simulation as compared to instruction level

simulation, thereby making it the preferred technique.

The distributed memory simulator, CAL-SIM used in this research utilizes the execution
driven simulation technique to predict the compute performance of applications. It

enables efficient simulation while providing accurate performance predictions.

2.2.2 Simulation of Communication Performance of the Application

For message passing architectures, the communication performance of applications can
be determined from the time spent in communication routines as well as in the network
hardware. The latency for a message to reach its destination eventually adds up to the
execution time of the application, if the receiver of the message has been waiting on it.
The major components of message latency are the messaging layer latency, which
involves preparing the message for data transmission and the network hardware latency.
Although the overhead of messaging layer is significant, for long messages, the network
hardware latency dominates the communication latency. So in this research the latency
introduced by the networking hardware is considered and the following simulation

techniques are discussed with respect to the network hardware.



Analytical Model: Analytical models provide a quick estimate of the message latency
from some of the network parameters. However these models lack sufficient accuracy for

complex networks that incorporate several design tradeoffs.

Cycle Driven Simulation: This is a commonly adopted technique for evaluating
networks because of the number of details that can be incorporated in the simulation.
With this approach, the network is made to run as if there were a clock signal driving it
and the activities advance every clock cycle, in a way these would proceed in a real
network. Accurate results can be obtained as the simulation can model hot spots and
contentions in the network, which add to the message latency. However detailed cycle

driven simulation tends to slowdown the simulation process.

Event Driven Simulation: With event driven simulation a queue of events maintained in
a time order drives the simulation. Simulation time gets updated to the timestamp of an
event when it is selected for running from the head of the queue. The technique allows
for accurate simulation. However when there are a large number of network parameters,
which manipulate the event queue every simulation cycle, the simulation tends to be

extremely slow. Cycle driven simulation is preferred in this case.

The network simulator, NetSim used in this research, utilizes the cycle driven simulation
technique. The cycle-by-cycle network model is also appropriate for integration with the
execution driven distributed memory simulation system, as it provides easier control over

network run time in simulation.
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Chapter 3 - Distributed Memory Simulator Components

This chapter describes the tools that make up the distributed memory simulation system.

The simulation system is designed to run on a uniprocessor host machine.

A parallel architecture is simulated on a uniprocessor machine by creating threads to
represent the different processors in the architecture model. Each thread holds a copy of
the application program and executes its part of the code. The threads communicate by
sending messages to each other during their lifetime. The application program itself can
be made transparent to the details of setting up communication and having the messages
sent or received by simply making high level function calls, with these functions
implemented as part of the system software library. The desired feature would be to use
the MPI standard communication calls within the application. This means a run time
library implementing the MPI communication routines is required of the simulation tool.
CAL-SIM supports simulation of MPI based parallel programs and is described in section

3.1. More details of the simulator can be found in [1].

To simulate the communication behavior of the parallel application, a network simulator
configured with the distributed memory simulator is also required. NetSim, a cycle level
network simulator is suitable for integration with CAL-SIM and is described in section

3.2. More information on this tool can be found in [2].

11



3.1 CAL-SIM

CAL-SIM is an execution driven, distributed memory simulator running message passing
applications. The tool accepts an MPI application and predicts its execution time on the
target architecture in terms of number of cycles. Simulation is carried out on a
uniprocessor host while the simulator itself provides for the multithread framework. The
CAL-SIM simulator library is made up of several components such as the simulation

core, basic network model, MPI library, application profiling tools, timing analyzer etc.

With the execution driven technique, the execution of the application is interleaved with
the simulation process. Execution driven technique is presented in [4], [5]. The profiling
tool within the simulator parses the assembly level code of the application, identifying
basic blocks and inserts timing information code for each basic block. The instrumented
code is then compiled and linked with the simulation library to provide the executable.

This technique is depicted in Figure 1.

12
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Figure 1. Steps in profiling a parallel program

The instrumented code now has the instructions for updating the time counter executed as

the application is being executed. The simulation core begins execution by creating
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threads equal to the number of nodes being simulated and each thread now holds a copy
of the profiled application. With multiple threads executing, the access to global data
structures within the simulator such as the time counter needs to be maintained in the
correct sequence. The threads would require synchronizing every time there is a need to
update one of the global variables. With a large amount of synchronization activity, the
slowdown in the simulation speed is significant. Therefore to avoid the high overhead of
synchronization, global variables are maintained as one-dimensional array per variable
and each thread uses its own copy of the variable indexed by the processor number or
thread number. The time counter for example will now be maintained as time
counter[ NPROCS] and the instructions for updating the processor thread’s time will
update the array element of the time counter, which is indexed by the thread number.

Synchronization routines are used only for access to a processor’s message queue.

Once the threads get created and initialized, the simulator core schedules these threads for
execution. Note that the execution of threads is serialized on a uniprocessor host. A
context switch occurs when the currently running thread performs a communication call.
A new thread is then picked up for execution by the simulator core and this process
continues until all the threads have executed. The simulation time gets updated to the
schedule time of various activities, which are maintained in time order as in event driven
simulation. This type of scheduling which is part of the execution driven technique is

depicted in Figure 2.
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Figure 2. Process execution cycle in execution driven simulation

The above scheduling technique ensures that communication schedules within the

processor thread occur at the correct cycle of execution. The communication calls require

15



for a thread to either exchange data with a process running on another processor (another
thread in simulation) or participate in a collective operation by all threads on the global
data or participate in a synchronization activity. The MPI library implementation for the
communication calls is responsible for the setup to have messages transferred to their
destination. Message queues are maintained to hold the outgoing and incoming messages
for a thread. In a simulated send operation, a message is time stamped with the send time,
which is the current time of simulation and with the receive time which is the send time
plus the predicted message latency. An event which places the message in the destination
thread’s message queue is then scheduled to occur at the receive time stamp. In a
simulated receive operation the destination thread simply checks its message queue to see

if the message has arrived.

The time at which a destination thread receives its message is computed using simple
delay functions. The network hardware latency is computed using a linear message
latency model, where the latency is proportional to the length of the message and to the
distance between the source and destination nodes. This is essentially the ideal latency
experienced by a message in the network to get transferred to the destination processor.
In addition to the network latency, delay models for overhead at the sender side (e.g.,
creation of message packets) and at the receiver side (e.g., transfer of message from the
network to receiver memory) are provided. So the total message latency is the sum of the
three basic parameters shown in figure 3. An event is scheduled at the message arrival
time which puts the message into the destination thread’s receive queue and signals a

receive semaphore. The destination thread executing its receive call, checks the receive

16



queue for its intended message. If the message has arrived, it copies the message in the
user level buffer specified by the receive operation and returns successfully. If the
message has not yet arrived, then the semantics of the receive operation determines
further action. If the receive is non-blocking, the receive call simply returns. The thread
has to execute a wait routine at a later point in execution to check if the request had been
processed and it will now wait for the message to arrive in the wait routine. If the receive
is blocking then the receiving thread blocks itself on the receive semaphore. On a
semaphore signal, the receiver checks the arrived message. If this message is the
expected one, the receiver copies it to the user buffer else puts it in a checked message

queue and again waits on the receive semaphore for the next signal.

Sender transmit latency Receiver transmit latency

> NETWORK <

v

Network latency

Figure 3. Network delay model parameters
This mode of the simulator that does not support simulation of network activity has been
provided if the user of the simulator is interested in predicting application runtime

without worrying about the details of the network, requiring knowledge only about the

17



behavior of parallel application and its compute efficiency. The use of simple delay
equations in such a case enables faster simulation. This mode within the simulator is
however flexible enough to let users of the system use their own delay models for the
network parameters of figure 3. If a user does not provide the delay models, then the

default models in the system will be used.

A separate mode of operation is required within the simulator for situations in which a
parallel application needs to be evaluated for its communication performance. The
accuracy of event timing for the send and receive operations becomes very important in
this case. The message arrival time obtained from simulation of network activities needs
to be used rather than the time predicted by a simple latency model. This is because
simple latency expressions cannot account for factors such as network contention, traffic
patterns and complex design of messaging algorithms, which can have a significant
impact on the message latency. A network simulator thus needs to be connected with
CAL-SIM in this mode. The first task now would be to have a suitable interconnection
network simulator. NetSim described in section 3.2 is used for the purpose. The next task
would be to develop a network interface in CAL-SIM, to have the tools work together

and provide for a comprehensive distributed memory simulation system.

3.2 NetSim

For integrating a network simulator with CAL-SIM, a choice has to be made as to which
would be the appropriate model: event driven or cycle driven. CAL-SIM being an event

driven simulator, having another event driven simulation combined with it would be

18



rather complicated and make it very difficult to ensure that the messages are sent into the
network at the correct simulation time. Also the time when the network needs to halt and
let other threads continue would be difficult to control. With cycle driven simulation it
would be much easier to control the number of cycles to run the network simulator.
Moreover the network can be scheduled as an independent event within the event driven
simulator. The use of a cycle driven network simulator for integration with an event
driven simulator is thus the preferred choice. NetSim [2] is a cycle driven network
simulator that models the behavior of multi-computer networks and switches. This
network simulator has been used for integration with CAL-SIM and is described in this

section.

The main component within NetSim is a router, which handles message communication
for the node. A router is connected directly to the routers of the neighboring nodes in a

direct network. The router is designed using the canonical model shown in figure 4.
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Figure 4. Canonical model for the router switch used in NetSim

With the router design model of figure 4, the flexibility to vary network design
parameters is large. The model also provides a common environment for a fair evaluation
of the design tradeoffs. The design space of this canonical router in NetSim is discussed

below.

3.2.1 Design Space of Router
= Network topology

As with most direct networks, k-ary n-cube mesh and torus networks are modeled. For
the n-dimensional mesh, the number of nodes k (or the radix) in each dimension is the
same, with each node having n to 2n neighbors based on the nodes location in the mesh.
With a torus network, variable number of nodes k (variable radix) for each dimension is

possible. In a bi-directional torus, all nodes have the same number of neighbors, 2n

20



because of the wraparound channels. For simplicity the simulator models equal number
of nodes in each dimension or the radix k is the same for each dimension in a bi-

directional torus.

A O
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U U U
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.

Figure 5. (a) Two Dimensional Torus Network (b) Two Dimensional Mesh

= Network Size

With a k-ary n-cube network configuration having k nodes in each of the n dimensions,
the size of the network becomes k " n. Varying network size in simulation can enable

finding the scalability of the proposed network for a large network size.

= Switching Technique

The switching technique determines the path establishment between the source and
destination nodes and also how a packet uses the buffer resources. Store and forward

packet switching was traditionally used in which each individual packet is routed from
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source to destination. This required buffering the entire packet at an intermediate node
before it could be forwarded to the next node. But more recent switching techniques such
as virtual cut through and wormhole switching are more popular for multicomputer
networks as they attempt to forward an incoming packet as soon as the header
information of the packet has arrived. Subsequent bytes of the message follow on the
path established for the header previously and the message transfer is essentially
pipelined through the network. These switching techniques result in low latency for
message transfer than packet switching. The unit of information transfer for these
techniques is a flit and a packet is comprised of flits. Virtual cut through and wormhole
routing differ in their buffering mechanism. With virtual cut through, if the packet header
is blocked for an output channel, the entire packet must be buffered along with the header
at that node. Virtual cut through thus requires that every router have buffer space to
buffer at least one packet entirely. Wormhole routing has more relaxed buffer
requirements than cut through. The buffer at each router can be large enough just to hold
a few flits. With the header of a packet blocked on an output channel, the packets flits
occupy buffer space in several routers. In the absence of blocking, the packet transfer is
pipelined through the network just as in cut through. Both unidirectional and bi-
directional wormhole and virtual cut through switching techniques have been

implemented within the canonical model.

=  Virtual Channels

A physical channel may hold several virtual channels that are multiplexed across the

physical channel. Each virtual channel can in turn hold buffer space to buffer flits of
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blocked packets. Use of virtual channels greatly improves latency and throughput of the
network. Deadlock prevention in wormhole switched networks is another reason for the
introduction of virtual channels in the model. Arbitration is required to decide which
virtual channel can get hold of the physical channel, if there are colliding requests among

them. Arbitration is either random, first in first out or round robin based in the model.

= Buffering Scheme

A very important network parameter is the size and position of buffers in the router. Each
virtual lane can have sufficient space to buffer away a few flits. The buffer size is critical
to both wormhole and cut through switching but especially more for cut through as it has
to guarantee space for at least one packet. The buffers are FIFO buffers and routers can
have these buffers per physical channel, per virtual channel or per lane within the virtual
channels. The position of the buffer is also a design tradeoff. Buffering may be done only
at the inputs (input buffering) or only at the output (output buffering) or at both the input
and output side. Buffer size is modeled as a per node parameter in the NetSim router

model.

=  Crossbar Switch

A crossbar is used for connecting the inputs to the outputs. The crossbar switch having N
inputs and M outputs allows up to min{N,M} one to one connections when no contention
occurs. The two common crossbar configurations are the single crossbar with direct

connection between lanes and the cascaded crossbars in which the output of the X
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crossbar is fed to the input of the Y crossbar. Both are modeled inside NetSim. The

crossbar model has ports for all the virtual channels and the lanes within them.

N inputs

- p >
i nxn |
! Xbar 1
2n-1 —>
Inputs
2n-1
> —> Outputs
M outputs , [Xbar2 |
) L
(a) (b)

Figure 6. Crossbar Switch Architecture (a) N x M crossbar (b) Cascaded crossbar

=  Arbitration Unit

When multiple sources request for the same output virtual channel at the same time,
arbitration is essential to choose only one amongst the conflicting requests. The selection
of the input channel can be done either using the first come first served scheme or
randomly or in a round robin fashion. Fast arbitration is crucial to maintain low latency of

the switch especially for large network or switch design using full connectivity.
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= Routing Unit

The routing unit implements the routing algorithm, which selects an output channel for
the incoming request and sets the crossbar switch accordingly. Several routing algorithms
have been proposed for wormhole and cut through switched networks and each of these is
aimed at providing better and faster connectivity from source to destination node. With
wormhole switching, cyclic dependencies occur which lead to a deadlock. Routing
algorithms must thus be designed to be deadlock free. Also it would be preferred if
routing adapts itself to the current network state and selects an alternative route for the
incoming packet if the current selected route is busy, so that the packet does not get
blocked. Thus the implementation classes of the routing algorithms are deterministic,

adaptive and partially adaptive.

With deterministic routing the route selected between a source and destination pair is
always the same. Dimension order routing is a deterministic routing algorithm that routes
packets by crossing dimensions in a strictly increasing (or decreasing) order. For an n
dimensional mesh and hypercube, this routing is deadlock free but for a k-ary n-cube tori
network it introduces cycles and thus a possibility of a deadlock. A deadlock free design

of the routing algorithm is presented in [8] for the torus network.

Adaptive algorithms on the other hand try to make use of the network state while making
a decision on the output path to be selected. This type of routing is preferred because the
possibility of a packet holding any buffer space or being blocked is reduced as the packet

can now take an alternate route. This adaptivity can be allowed either for a subset of the
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output physical paths possible (known as partially adaptive routing) or can utilize any of

the output physical paths with no restriction at all( known as fully adaptive routing).

More adaptivity improves performance. However increase in adaptivity increases the
complexity of the router and can affect its operating frequency. Partially adaptive routing

algorithms are thus designed as a tradeoff between speed and cost.

Several fully adaptive routing algorithms have been proposed. Many of them make use of
a large number of virtual channels and this tends to slow down the router speed while
increasing the chip area. Some of the practical fully adaptive algorithms that use
reasonable number of virtual channels have been modeled in the router. These are also

designed to be deadlock free.

3.2.2 Basic Parameter Settings

Some parameters are fixed within the simulator and are not programmable by the user.
These parameters settings are based upon reasonable assumptions for network simulation

and are listed below

« The width of the physical channel is assumed to be one flit.

« There is only one injector port and one ejector port for the processor interface.

o The number of virtual channels is specific to the routing algorithm selected and is
computed within the simulator.

« The network is tightly coupled. So the wiring delay is not critical and the transfer

from an output channel to a downstream input channel takes one cycle.
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The transmission of flits is pipelined.

A flit takes one cycle to be transferred from the input buffer to the output buffer
within the router or from the output buffer to the input buffer of the next router if
there is no congestion along the path. A header flit injected into an empty buffer
would take an extra cycle to be routed. The routing for the header flit following the

tail flit of another packet will be done in parallel with the transmission of this tail flit.
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Chapter 4 - System Integration

In this chapter, the design and implementation of the network interface required for
integrating CAL-SIM and NetSim is presented. We focus on how the network

synchronizes itself with the processor nodes in simulation.

4.1 Interface Design and Implementation

Within the interface, the function of a network interface card for each node is
implemented. This network interface card resides between a processor and the network. It
performs the task of processing a message into packets that are to be sent into the
network and also informs the processor when a message has been received in its entirety.
The network interface thus allows the processor to continue with its job as the message

transmission is being done in parallel.

The interface also provides a set of functions for interacting with the network simulator.
Its simple design allows users to replace the network simulator with their own version if
required. That is, the software interface to the network simulator is not very specific to
the implementation details within the network simulator. This flexibility is essential
because a large number of network models exist and it is difficult to support all of them
in our network simulator. However the user network simulator must adhere to certain
design guidelines to work successfully with the simulation system. These design

guidelines will be mentioned in this chapter.
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The overall simulator design is shown in figure 7. CAL-SIM simulation system includes
the MPI library, simulator core, which is responsible for thread scheduling and the
network interface, which is used to integrate the network simulator. The network
simulator, NetSim includes the network setup, which configures the network parameters
for simulation and the network core, which simulates a single cycle of network execution.
The network interface now has to coordinate the running of the network core with the
processor threads every time a MPI communication routine gets called. It must also

interact with the network simulator to have a message sent or received from the network.

CAL-SIM NetSim
Application ——>» MPI Network @ Network
Library:> Interface Core
Architecture Simulation Core Network <: Network
Specification — Setup Parameters

Figure 7. Simulation system design

4.1.1 Send Side

When a message is to be sent, the processor signals the network interface using an
interface routine. The network interface further performs the tasks of transferring the
message from processor’s memory to the interface memory, creating message packets

and transmitting the packets to the node router.
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For the transfer of a message from the processor’s memory to the network interface
memory, a memory-mapped device or a DMA within the interface is assumed. In
simulation this data transfer can be done by creating a copy of the message within the
interface and releasing the sender data buffer. The send function call can now return, as
the user buffer is safe to reuse. The overhead for initiating the message transfer is
computed using a delay model. The first packet of the message is thus created at a time
equal to the current simulation time plus the sender transmit time, where sender transmit

time is the initial setup time to transfer data to the interface memory.

The network interface then computes the number of message packets from the message
size and the flit size. Packet creation involves creating the header flit that contains routing
information for the packet and its following data flits. The header is assumed to be one
flit and a single packet creation takes one cycle. The interface maintains a packet queue
to hold the outgoing message packets. The size of the packet queue is set to a default
value and can be reset by the user. This feature enables to see the effect of queuing
latency when the network is saturated, which results in packets holding buffer space

within the interface memory and preventing any further packet creation.

Within the network interface, flit injection for a previous packet proceeds in parallel with
the creation of a new packet. To inject a flit into the router injection channel buffer, the

network interface calls the injector routine of the network simulator.
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4.1.2 Receive Side

A global message list is maintained by the interface to keep track of the messages being
sent into the network. When the network simulator notifies the interface about the arrival
of a message packet, the message list is looked up by an interface function to check
which message the packet belongs to and if this is the last packet for the message. If all
the packets for the message have been received, the network interface schedules a
message arrival event at a time equal to the current simulation plus receiver transfer time.
The receiver transfer time represents the time to transfer a message from the interface to
the processor memory. The message arrival event places the message in the receive queue

of the destination processor and signals a receive semaphore.

A processor thread waiting for a message on the receive semaphore, is triggered by the
semaphore signal. The receiver checks to see if the intended message has arrived and if
s0, copies it into the user buffer and returns. If the expected message has not yet arrived,

then the receiver simply waits for another signal from the receive semaphore.

4.2 Network Event

The simulation library within CAL-SIM consists of two simulation activities, processes
and events. The main difference between these two entities is that a process can
temporarily suspend execution while an event must execute till completion. Once the
body of an event terminates, the event thread is destroyed. The only way to have an event
schedule itself multiple times (reschedule itself) is to have the event as a non-deleting

entity.
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The interface to the network and the network simulator together form a network event,
which is designated as a non-deleting event. An event is chosen over a process to avoid
the overhead for a process when a context switch occurs from the network thread to some
other ready thread. Moreover an event does not affect simulation time; it takes O-

simulation time to execute an event.

4.3 Scheduling the Network Event

The interface to the network simulator is responsible for synchronizing the network
thread with the running processor threads. The network event should schedule itself at the
correct simulation time and keep its simulation time synchronized with that of other
running threads. This is essential so that message packets are injected into the network at
the correct simulation time and also received at the correct time. Two important issues
need to be considered here. Firstly, all the processor threads must have run before the
network thread can run. This way all the messages for the current simulation time get
inserted in the message queue. Secondly, there needs to be a way of knowing how long
the network simulator can run. It may happen that if the network simulator is run till a
message has reached, the cycle count would advance and a processor thread that has not
been able to catch up to that time, will send messages meant to be sent at an earlier
simulation time. This will lead to incorrect network simulation. There needs to be a way

to get around both the problems for accurate network simulation.

To start with, all the threads get scheduled at simulation time 0. When the network thread

enters execution, its first task is to check if any other activity is scheduled for the same
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time as itself. This is possible using a simulator core function that allows performing a
look-ahead into the activity schedule queue. This queue is ordered by the activity
schedule times and allows for insertion of activities in the queue dynamically, as these
get scheduled from the current simulation time. The look-ahead function returns the
schedule time of the next activity and the interface routine checks to see if this time is
equal to the current simulation time. It then lets this activity proceed first by rescheduling
itself at the current simulation time. This adds the network event back to the activity
queue without its further execution. When the current activity is finished, the network
event is again activated and if no other thread is still scheduled, the interface proceeds to
execute the network code. This way all the processor threads have had a chance to run
and put their messages in their respective message queues before the network thread can
run. Figure 8 depicts the rescheduling of the network event by performing a look-ahead

into the activity queue.

Time =0 (T Time=10 (T) Time=10 (T) Time=10 (T)
Proc 1 10 Net Event 10 Proc 1 10 Net Event 10
Proc 2 10 > Proc 1 10 ! Proc 2 10 e Proc 3 20
Net Event | 10 Proc 2 10 Net Event | 10 Proc 4 20
Proc 3 20 Proc 3 20 Proc 3 20 Proc 1 40
Proc 4 20 Proc 4 20 Proc 4 20 Proc 2 55

Figure 8. Scheduling the network event with look-ahead
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The other situation where the difficulty in scheduling the network event arises is when all
the processors are waiting for their messages on their message receive semaphore. Such a
situation frequently arises during execution, as the receiving processor enters its receive
routine even before the sender has had a chance to enter its send routine. The receiver, if
it is in a blocking receive mode or is performing a wait operation to have the data buffer
filled, simply suspends itself on the receive semaphore. Only when the network interface
puts the message into the receiver’s message queue does the receiver get awakened and
start further execution. In the meantime, the sender after sending the message can itself
perform a receive operation waiting for a message from the receiver of its message. So
both the sender and receiver are now blocked on their respective semaphores and the time
of their further activity is unknown. Activities waiting on a semaphore do not get added
to the activity schedule list but instead are added to the semaphore list of the receive

semaphore.

With all the processor threads waiting on their respective semaphores, the look-ahead
method mentioned above fails. This is because the interface checks for the next event
time and the look-ahead function not finding any activities in the queue returns a negative
value upon which the network event may delete itself thinking all other processes have
terminated. The way to get around this problem is to have the network event check for

two conditions.

1. To check for the next event time using look-ahead
2. If the look-ahead returns a negative value then check to see if there are processors

waiting on their semaphores.
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The second condition can be checked using another simulator core function. In such a
situation the network event has to keep running until at least one of the processors is
awakened for the look-ahead to work again. However, if both the look-ahead and the
check for semaphore wait return negative results, it means that all the processor threads

have terminated and it is now safe for the network event to exit.

Once the network event is scheduled, the next question is how long should the network
run. This is also an important issue here, as the network has to run only for certain cycles
so that the processor threads can catch up and the simulation of network activities occurs
at the correct simulation cycle. The network running for a time to have an entire message
delivered to its destination may result in the network cycle count exceeding the
processors simulation time. Any further insertion of packets in the network by the
processor will be at the incorrect cycle for the network, leading to inaccurate simulation
results. The best way to avoid this is to have the network run for a time less than the
schedule time of the next activity. The look-ahead function is used here again. The
network can run for a time frame between current simulation time and the next event’s
time that is returned by the look-ahead function. So lets say the network event is
scheduled at time 0 and the next event time is 10, the network simulator is run from time

t=0tot=9.

The additional case where the time for the network simulator run needs to be decided is
when processors are waiting on their message semaphore as mentioned above. In this

case as look-ahead fails, some other approach needs to be taken to decide how long the
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network simulator can run. We know that when the final packet for a message gets
ejected, the network interface signals the destination processor about the message arrival.
This wakes up the destination processor and adds it back to the activity schedule queue.
With at least one other activity besides the network event in the activity queue, the look-
ahead method will start functioning again. So the method adopted here is to let the
network run till at least one message reaches its destination. The network event can then
reschedule itself at the message arrival time letting the awakened processor thread resume

its execution.

4.4 Reducing Simulation Overhead

Detailed cycle-by-cycle simulation of the network tends to be slow for a large network
size and for a large number of messages through the network. It would thus be essential
to reduce as far as possible the overhead introduced by detailed simulation. Unnecessary
network simulation, for example when there are no packets in the network can be skipped
by the network event. If the network event is to run from the current simulation time to
the time of the next activity which may be tens of thousands of cycle away, the number of
packets injected into the network can be checked. If all the packets have reached their
destination, further simulation till the next event time is a large overhead and so the
network cycle is simply made to advance to the next event time. The basic code frame for

the network event is shown below.
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Network Event() {
next_event_time = time_of next_activity_in_queue
if(next_event_time !=-1) { /I look-ahead succeeds
if(cur_time == next_event_time)
Reschedule_Network Event
else
while(cur_time < next_event_time) {
if( ! injected_pkts )
network_cycle = next_event_time
break
else
simulate_a_network_cycle
}
}

else if any processors waiting on message semaphore {
while (! msg_arrived)
simulate_a_network_cycle
Reschedule Network Event at network_cycle — cur_time

}

else terminate Network Event

Figure 9. Code format for network event

4.5 Design Guidelines for the Network Model

The network interface provides for easy integration of different network simulators with
the simulation system. The interface interacts with the network simulator through a set of
functions. This way unnecessary details of CAL-SIM implementation are hidden to the
network simulator and vice versa. The network simulator however has to follow certain

design rules to ensure its correct working with the system. These are listed below.

« The network simulator must be cycle driven

« The network simulator code must be organized in two parts; an initialization part
which sets up the network configuration using a wrapper function called NS Init( )
and a single cycle execution part, which simulates the activities in the network for a

single cycle in a wrapper function called NS_SimCycle( ).
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A global data structure called Net and a pointer to it need to be maintained within the
network simulator. The elements of this data structure required for integration are the
PacketArray and the cycle counter variable called global cycle. PacketArray must
contain variables called pkt cylcreated (the cycle at which the packet got injected into
the router), pkt_cylarrived (the cycle at which the packet is ejected through the ejector
port of the router), pktid (the id of the packet ejected) and msgnum (the message
number to which this packet belongs). These fields are required by the interface when
a packet gets ejected, to maintain a check of when a message arrives in its entirety.

The global cycle variable is the network cycle counter, it is incremented for every
simulated cycle of the network. But control of this variable is also required by the

interface.

A function NS_QuePkt( ) must be provided which creates a packet in the PacketArray
and returns a positive value if the packet could be successfully created.

When the tail flit of a packet gets ejected through the ejector port, a wrapper function
called NS Eject( ) must be called, which informs the interface of the incoming

packet.
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Chapter 5 - Simulation Results

In this chapter simulation results from the integration of CAL-SIM and NetSim are
presented which demonstrate the working of the two tools together. We examine the
communication performance of MPI benchmark applications on target systems and report
on system performance parameters such as message latency. We also compare the
message latencies predicted by a linear message delay model and by detailed network

simulation for the benchmarks.

All the simulations were carried out on a 360MHz Sun UltraSparcll, solaris2.7 system.
Simulation results are presented for the NAS 2.3 Integer Sort Class W benchmark,
Multigrid and Embarassingly Parallel Class A benchmarks and for the Fast Fourier
Transform application. NAS benchmarks (except IS) are in fortran77 and as the simulator

can run C/MPI applications, the benchmarks are converted to C using the F2C tool.

5.1 Simulator Parameter Settings

A two-dimensional torus network is assumed in the simulations for comparing the
message latency predicted by the simple mode of the simulator using linear message
delay and the network mode involving network simulation. The network sizes used are 4

x 4, 8 x 8 and 16 x 16. Thus the number of nodes simulated is 16, 64 and 256.
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5.1.1 Linear Delay Model Parameter Settings

The ideal message latency, which does not take into account network traffic and
contention, is presented in [7]. This delay model is used in the simple mode of the
simulator. Message latency is this case is given by
Message Latency =D * (Tr + Ts + Tw) + Ts(L/W) (1)
where D — average distance,
Tr — router delay, Ts — Switching delay, Tw — Wire delay,

L — Message Length in flits, and W — Physical Channel Width in flits

The average distance in a two-dimensional torus is 2*K/4, where K is the number of
nodes in a dimension. This is true when K is even. The parameters Tr, Ts, Tw are set
according to the way the network simulator has modeled them to provide fairness of
comparison. Our evaluations are for tightly coupled networks, where the wiring delay is
not critical and so Tw is set to one cycle. The routing delay and the switch delay are also
set to be one cycle each. The width of the physical channel is equal to one flit, which is

equal to one 64-bit word. The message latency equation can thus be re-written as

Message Latency =2 *K/4)*(1+1+1)+ 1) *(L/1) (2)

5.1.2 Network Mode Parameter Settings

The detailed network simulation mode allows for setting of more communication
network parameters than the simple delay model presented above and is an advantage
associated with network simulation. The following network parameters are assumed in

network simulation:
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Table 1. Network parameter settings

Topology 2D Torus
Width (Radix K) 4,8, 16
Wiring Bidirectional Wormhole
FIFO size per node 108 flits
Packet Size in Flits 8
Flit size in bits 64
Routing Algorithm Deterministic TRC

5.2 Results for the NAS Multigrid Benchmark

The benchmark under evaluation here is the NAS MultiGrid (MG) Class A benchmark.
The benchmark solves a 3D Poisson partial differential equation. The code has a good
mix of short and long distance communication. The dominant communication type here

is point-to-point with blocking sends and non-blocking receives.

It has been shown [9] for the NAS benchmarks that with increasing machine size, the size
of a message usually decreases. However the number of messages is likely increased. The
results in figure 10 say the same. Only the messages sent over the communication
network are considered. With increased number of nodes, the communication is of finer
granularity leading to a decrease in the average message size. However the
communication pattern now requires interaction with more number of nodes increasing

the total number of messages.
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Figure 10. Avg. message size and total number of messages as a function of machine size

With smaller message size, the average message latency experienced by a message would
be expected to reduce. This can be observed in figure 11. However the network mode for
256 processors shows an increase in the average message latency. As the number of
nodes is increased beyond 64, the communication pattern for the benchmark changes

rapidly.
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Figure 11. Predicted average message latency for the MG Class A benchmark

To observe the impact of the routing algorithm in such a case where the static routing
scheme performance degrades, the algorithms are varied to be partially and fully
adaptive. Figure 12 shows the average message latency change with a change in the
routing algorithm. The adaptive algorithms under test here are Duatos partial and fully

adaptive and the fully adaptive T3D-like.
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Figure 12. Comparison of routing algorithm performance

43



From figure 12, it is seen that the adaptive algorithm scales well with increasing machine
size. Partial adaptive however does not perform any better than deterministic routing for

this particular workload.

Even though the number of messages and message size is significant for the benchmark,
computation still dominates the overall execution time. The total amount of
communication is less than 20% as seen in figure 13. MG benefits from the increased
number of processors. The execution time and change in communication performance
across processors is presented in figure 14. The communication time considered here
includes the time spent by processor threads inside a communication routine waiting for
the intended message. The wait time may be due to imbalance in the send and receive

schedule times and also due to the actual communication network cost.
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Figure 13. Percent computation and communication in MG benchmark
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Figure 14. Predicted performance for the Multigrid Class A benchmark

5.3 Results for the NAS Integer Sort Benchmark

The Integer Sort (IS) benchmark tests a sorting operation on primarily integer data type.
The benchmark has a significant amount of communication as compared to most other
NAS benchmarks. Reduction and all to all function calls dominate the communication.
Usually for collective communication routines, the vendor specific MPI library
implementation plays an important role in deciding how many messages get generated.
The routines may be optimized to reduce the volume of traffic to be sent over the
network. The MPI library within the simulator currently has a straightforward and
reasonable implementation of the collective communications that provide functional
support for those found in the NAS benchmarks. Some deviation in the number of
messages generated for such collective communications is therefore expected here. The

average message size and the total number of messages for the benchmark are shown in
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figure 15. Due to all to all communication the number of messages generated increases

significantly with increase in number of processors especially from machine size of 64 to
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Figure 15. Avg. message size and total number of messages as a function of machine size for
the IS Class W Benchmark

Figure 16 shows the predicted average message latency in the simple and network mode
of the simulator. The routing algorithm was varied to see the impact on message latency
as in figure 17. The topology was next selected as mesh to observe how much
performance advantage the torus layout offers because of the wraparound channels.
Figure 18 presents the average message latency on a mesh. The torus layout only very

slightly performed better than the mesh and the difference is almost negligible.

Although the computation efficiency of the benchmark increases with machine size, the
communication increase is very large. Communication thus dominates the benchmark
performance at very large machine sizes. Figure 19 shows the communication increase

with the increasing number of processors.
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Figure 18. Avg. message latency on a 2D mesh for the IS Class W benchmark
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Figure 20 shows the performance of the benchmark. The code benefits from increased
number of processors up to 256. For communication performance of the application, the

effect of startup latency is not considered. The communication behavior helps in

48



understanding the contribution of network cost to the communication time of the

application.
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Figure 20. Predicted performance for the IS Class W benchmark

5.4 Results for the NAS Embarrassingly Parallel Benchmark

The Embarrassingly Parallel benchmark generates a large number of gaussian
pseudorandom numbers. The benchmark has very little communication. Most of this
modest communication that is present, is collective type. One reason the benchmark was
selected for study here was that it has a constant message size across varying machine
size. It allows seeing the network performance for a fixed message size. The average
message latency is seen to increase with increase in number of processors as in Figure 21.

The predicted performance for the benchmark is shown in figure 22.
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Figure 21. Average message latency for the EP Class A benchmark
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Figure 22. Predicted performance for the EP Class A benchmark

5.5 Results for the FFT Benchmark

The FFT application solves the partial differential equation using fast fourier transforms

of given N numbers. Each of the P processors computes the FFT of N/P numbers and
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communicates with other processors to compute for other remaining elements. The FFT
application does less than 20 percent communication in the code for processors up to 64.
Figure 23 shows the communication time spent by FFT and figure 24 gives the

performance for FFT.
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Figure 23. Communication time for FFT benchmark
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Figure 24. Performance of the FFT benchmark
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5.6 Prediction Error for Simple Mode of the Simulator

Figure 25 shows the difference in the communication performance prediction for the MG
and IS benchmarks by the simple mode of the simulator, which uses a linear delay model
and by the network mode of the simulator, which supports detailed network simulation.
The linear delay model introduces error in the predictions, as it does not account for the

current workload and contention in the communication network.
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Figure 25. Prediction error for communication performance prediction using
the linear delay model

5.7 Functional Verification of the Simulator

To observe if the interface functions correctly two things need to be verified. First if the
number of packets created from the message size and packet size are correct and second
if the packets are being created and inserted in the network at the appropriate cycle. Since
a common clock is assumed for the processor cycles and network cycles, it is pretty

straightforward to observe if the packets are being inserted at the right cycle.
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A sample code in which each processor sends a message to every other processor and
then waits for the other processor messages was used as the initial test. The number of
processors and the message size was varied. The MPI library was instrumented to see
when the message was created and the instrumented interface code was checked to see if
the packets get created in the following cycles. Information was also collected to see if

the packet flits get injected into the network at the correct cycle count.

The NAS benchmarks perform self-verification to see if the result obtained is equal to the

precomputed result. The simulator has been successfully tested for the following

benchmarks.
Table 2. Benchmark Tests
Application Class Type Number of Processors
NPB MG W, A 1,2, 4,8, 16, 32, 64, 256
NPB EP W, A 1,2,4,8, 16, 32, 64, 256
NPB IS W 1,2,4,8, 16, 64, 256
FFT 1,2,4,8, 16, 64

Another test for functional verification is to use the ideal delay model given above for a
2D torus and have a single message’s packets travel through the network. This way there
is no contention in the network and the delay predicted by the network mode and the
ideal mode should be close in value. There may be a slight difference in the two values as

the ideal mode uses average distance and the network mode uses the actual distance. But
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for case of comparison here, an 8 x 8 network size is chosen and the message is sent from
processor 0 to processor 10, with the distance between node 0 and node 10 equal to the
average distance within the simulator. This way same results should be obtained from
both the modes. The results from network simulator verify this as shown in table 3, with
varying message size. The remaining parameters for the network and simple mode are the

same as given in section 5.1.

Table 3. Functional Verification

Message Packets Message Latency Message Latency
Message Size in Created In Ideal Mode In Network
Flits Mode
64 10 92 92
128 19 164 164
256 37 308 308
512 74 604 604
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Chapter 6 - Conclusion and Future Work

6.1 Conclusion

In this work, a flexible network interface for supporting network simulation within the

CAL-SIM simulation system is designed and implemented. The following goals have

been achieved with this work:

1.

The capability to specify an interconnection structure for the processors in the
simulated architecture model. This allows us to evaluate the impact of network
designs on the communication performance of applications, which are executed
on the system.

More accurate performance measurements. Detailed network simulation provides
more accurate event timing for the send and receive operations than the simple
latency model. The event queue within the simulator as a result processes the
events in a more precise order.

A platform for evaluating candidate network designs using real applications as
workload instead of synthetic workloads. The traffic pattern generated by the
application directly simulates the network. The effect of traffic burstiness and
bimodal messages through the network can also be captured. These however
cannot be easily modeled with synthetic workloads.

The flexible network interface allows easy integration of different network

simulators with the simulation system.
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6.2 Recommendations for Future Work

Network simulation tends to be slow when a large network with a great amount of
network activity needs to be simulated. Parallelizing the simulation system could help in

reducing the time of simulation.

The current simulator model assumes a single processor per node. But looking at the
current trend in supercomputing most new architectures are designed to be cluster
architectures with more than one processor per node. Within the node shared memory is
used and between nodes a message-passing network is used. Examples of such
architectures include the IBM RS6000 SP, SGI Origin, Compaq AlphaServer. So the next
task in the simulator design extension would be to include support for simulating a cluster

based architecture, by making each node a shared memory multiprocessor.

This task could be simplified by integrating an existing shared memory simulator with
the simulation system. An example of such a publicly available shared memory simulator
that can be used for integration is the Multiprocessor SimpleScalar tool set [14]. A simple
model that can be adopted for the execution of applications on simulated cluster

architectures is presented in Figure 26.
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Figure 26. Execution flow for a cluster architecture in simulation

Here the master threads representing each node get created first. Then each master thread
forks new threads, which represent the processors per node. Within a single node, all the
threads communicate using shared memory. But only the master thread of a node can
carry out any communication with a processor thread in some other node. This inter-node
communication proceeds using MPI communication routines. Finally when all the slave

threads for a node exit, the master thread also terminates.
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