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A customized susceptible, exposed, infected, and recovered com-
partmental model is presented for describing the control of
asymptomatic spread of COVID-19 infections on a residential, ur-
ban college campus embedded in a large urban community by
using public health protocols, founded on surveillance testing,
contact tracing, isolation, and quarantine. Analysis in the limit of
low infection rates—a necessary condition for successful operation
of the campus—yields expressions for controlling the infection
and understanding the dynamics of infection spread. The number
of expected cases on campus is proportional to the exogenous
infection rate in the community and is decreased by more frequent
testing and effective contact tracing. Simple expressions are pre-
sented for the dynamics of superspreader events and the impact
of partial vaccination. The model results compare well with resi-
dential data from Boston University’s undergraduate population
for fall 2020.

COVID-19 | infection modeling | surveillance testing

The COVID-19 pandemic has challenged residential colleges
and universities to design and implement layers of public

health protocols to repopulate residential campuses and restore
in-person learning. Developing these protocols is especially
challenging for urban campuses where students, faculty, and staff
are in constant contact with a larger community. Students living
on and off campus are constantly interacting with city residents
and students from other institutions. Control of viral spread in
this environment requires limiting the number of on-campus
cases to prevent rapid spread of the disease among student
populations living in congregate housing.
The challenge is made much more complex with COVID-19

because, as documented by others (1, 2), a significant fraction of
the infected people may be asymptomatic during all or a portion
of the time when they can infect others. The analysis presented
here is based on the hypothesis that control of COVID-19 in-
fection rates on a college campus requires frequent surveillance
testing of students, staff, and faculty, coupled with isolation of
positive cases and contact tracing and quarantining of close
contacts.
A simple mathematical framework is developed for describing

the dynamics of infection in a university community with a sur-
veillance testing system. The model assumes that the university is
embedded in a larger urban area so that there is exogenous
transmission of the disease to members of the university com-
munity from people who are not in it. A customized version of
the standard SEIR (susceptible, exposed, infected, and recov-
ered) model (3) for infection spread is presented for this pur-
pose. In the analysis, the exposed population corresponds to the
asymptomatic carriers described above. The model demonstrates
the usual range of dynamic response for a SEIR model, with high
infection rates leading to herd immunity. The focus of our
analysis is on control of the infection rate in the presence of
exogeneous input from the surrounding community. It is dem-
onstrated that this is possible in the linear response or asymptotic
limit of low infection rate. In this limit, the spread of exogenously
introduced infections decays exponentially in time, resulting in a
bounded number of cases per day in proportion to the exogenous

input. Over time, the total number of cases grows linearly if the
daily exogenous input is constant. This linear regime has been
observed in simulations by others (4), but its importance in the
context described here has not been identified.
An asymptotic analysis valid in this limit is described that re-

sults in closed-form expressions for the control of the virus as a
function of key parameters in the model, including the testing
frequency and the test’s sensitivity. The results complement
numerical simulations using compartment (5) and network or
agent-based models (4, 6) and have the advantage of simplicity.
Finally, the predictions are discussed in the context of results
from the residential undergraduate program at Boston Univer-
sity, where such a surveillance system using qRT-PCR and con-
tacting tracing was implemented during fall 2020 (7).

Results
Modified SEIR Model. The modified SEIR model is shown in Fig. 1
and was inspired by a presentation by Hosoi who first proposed it
to model COVID-19 transmission (8). Beginning with N mem-
bers, the susceptible population S(t) becomes infected either
from transmission within the university from either an asymp-
tomatic and infectious member A(t) or an infectious and symp-
tomatic member I(t), both at an infection rate β (the rate of
infection per person per unit time). The disease can also be
acquired outside the community, as represented by the rate of
exogeneous cases E(t) introduced per day per member. Asymp-
tomatic individuals A(t) are assumed to either become infectious
I(t) at the rate fS or recover R(t) at the rate fR. Symptomatic
individuals are identified and moved to quarantine Q(t) (quar-
antine in this model accounts for both isolation and quarantine
in practice) at the rate fQ and recover at the rate fR.
Surveillance testing at a frequency fT is incorporated by

moving asymptomatic individuals to quarantine with an effi-
ciency of s. We model a test such as qRT-PCR, neglecting the
low false-positive rate and assuming that there is a negligible time
lag between the time of the test and the result. A turnaround for
the test of under a day suffices for this assumption to be valid. The
COVID-19 infection rate in a university community is modeled by
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estimating the recovery rate fR ≡ 1=TR, where TR is an estimate
for the time course of the disease. The rate of conversion of
asymptomatic to symptomatic cases is modeled as SsfR, where Ss is
the fraction of infections that become symptomatic within time TR.
The large-scale study from South Korea (9) puts the asymptomatic
fraction between 0.55 and 0.7, depending on age, while Oran and
Topol (2) estimate it at 0.4.
The differential equations that govern this model are

dS
dt

= −βSA − βSI − ES [1]

dA
dt

= βSA + βSI − fSA − fRA − sfTA + ES [2]

dI
dt

= fSA − fRI − fQI [3]

dQ
dt

= fQI + sfTA − fRQ [4]

dR
dt

= fRQ + fRI + fRA = fR(Q + I + A). [5]

Typically, this system of nonlinear, ordinary differential rate
equations would be solved with an initial condition, such as
taking all variables as zero at t = 0 at the start of the infection.
An important feature of this model is that the university is mod-
eled as a community immersed in a much larger urban environ-
ment with interactions between the two being accounted for
through the “exogenous input” E = E(t), which may vary in time.
Then NE(t) estimates the exogenous cases per day in the univer-
sity and drives the infection rate in the university community.
Without exogenous input—a cloistered university—an initial input
of infections, A(0)> 0, would be needed to generate infections.
Rewriting Eqs. 1–5 in dimensionless form using N as the scale

for populations and (βN)−1 as the time scale introduces the re-
production number Ro ≡ βN=fR as the dimensionless parameter
scaling the rate of disease transmission to recovery. The repro-
duction number is not an intrinsic property of the COVID-19
pathogen but a measure of the transmission of the disease within
a specific setting and community. The parameter Ro is assumed
to account for public health protocols such as social distancing,
face covering, enhanced sanitation, and ventilation in the uni-
versity. Paltiel et al. (5) suggest that values of Ro between 1.5 and
3.5 represent a reasonable range for modeling COVID-19 with
these protocols, with larger values being appropriate when these
protocols are relaxed. Alimohamadi et al. (10) applied meta-
analysis to a number of previous reports and suggest that Ro

for COVID-19 without mitigations is ∼3.2, with 95% confidence
that it is in the interval 2.81 to 3.82. Zhang et al. (11) suggest with
95% CI that Ro is in the range 2.06 to 2.52.
Modeling the behavior of college students with a simple value

of Ro is an oversimplification. Students may adhere to the public
health protocols (mask wearing and social distancing) while in
classrooms, laboratories, and observed public settings on campus
but then take much greater risks during small (and not so small)
social gatherings on and off campus. The role of student
behavior is discussed below.
A key feature of effective repopulation of the campus is the

need to limit disease spread to low infection rates [A(t) << N] so
that care of infected people and their close contacts is man-
ageable by the university healthcare system and that the numbers
do not overwhelm the housing set aside for quarantine and
isolation. As shown in Fig. 2A, for a given constant daily rate of
exogeneous cases numerical integration of the model, Eqs. 1–5,
and other models for COVID-19, exhibit three types of behavior,
depending on the value of Ro: nonlinear response leading quickly
in time to herd immunity (large infection rates) for high Ro,
weakly nonlinear response leading to herd immunity over much
longer long times at intermediate values of Ro, and what is re-
ferred to as “linear response” in which the infection rate remains
low for very long times.
We focus on the linear behavior and approximate it by as-

suming that the number of infected individuals (and the number
of exogeneous cases introduced) remains small over time com-
pared to N. The analysis is performed rigorously by putting the
model in dimensionless form and expanding the equations in this
limit, with the further assumption that the number of exogeneous
cases introduced each day is small compared to N, or E(t) << 1.
The analysis is carried out in terms of dimensionless variables;

Fig. 1. Schematic of modified SEIR model showing each population and the
rates for moving between each population. The impact of testing is shown
in red.

B

A

Fig. 2. Comparison of numerical result for the full model (without con-
tact tracing), Eqs. 1–5, with results from the asymptotic linear model. (A)
Simulations for several values of Ro for 100 d for fT = 2

7 d
−1 with other pa-

rameters fixed as described in the text. The model prediction from Eq. 10
is shown in red for the two values of Ro in the linear regime,
Ro = 4.0 Reff = 0.48( ) and Ro = 4.0 Reff = 0.77( ). (B) Comparison of total
number of positive cases predicted by numerical solution and by Eq. 10
shown in red.
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however, all the results described below are presented in di-
mensional form so as to enhance their utility.
One further simplification is key to the analysis. It is assumed

that symptomatic individuals I(t) are moved to quarantine at a
rate much faster than the rate of disease transmission, i.e.,
fQ ≫ fR. This assumption essentially moves the burden of dis-
ease spread to the asymptomatic and infected population, A(t),
and is justified with rapid detection and isolation of symptomatic
people. Making this assumption is mathematically equivalent to
introducing the quasi-steady-state approximation (12) for I t( ),
and gives the approximate expression

I(t) ≅ (SsfR
fQ

)A(t) ≪ A(t). [6]

Hence, the infections caused by interactions with the symptom-
atic and infected population are small relative to those due to
A(t) and are neglected in the remainder of the analysis.
Under these assumptions, the remaining Eqs. 1, 2, 4, and 5

decouple and the asymptomatic population A(t) is governed by
the simple linear differential equation written in dimensional
form as

dA
dt

= Ro

TR
(1 − 1

Reff
)A(t) + NEop(t). [7]

Here the exogeneous rate is expressed as E(t) ≡ Eop(t), where Eo
is a constant and p(t) is a dimensionless function of time; a con-
stant exogeneous rate is expressed as p(t) = 1. The effective re-
production number Reff in Eq. 7 is defined as

Reff ≡ Ro(1 + Ss + sfTTR). [8]

The expression for Reff was derived by Hosoi (8) using a popu-
lation balance on the asymptomatic cases. Three regions of be-
havior for A(t) are identified, depending on whether Reff is less
than, equal to, or greater than 1. The region for stable (nonex-
ponential) growth is

Reff<1. [9]

For Reff > 1, the model predicts exponential growth of A(t) and
the asymptotic approximations are invalid. When Reff < 1 and
without exogenous input [p(t) = 0], Eq. 7 always predicts an
exponentially decreasing number of infections. This is the linear
regime.

Constant Exogenous Rate. If the stability condition Eq. 9 holds, it is
simple to solve Eq. 7 for a constant exogenous rate, i.e., p(t) = 1,
to yield the steady-state result:

A(t) ≡ Reff(1 − Reff )
NEoTR

Ro
= NEoTR(1 − Reff )

1(1 + Ss + sfTTR). [10]

Here A(t) is a constant in time, proportional to the number of
exogeneous cases introduced daily NEo. Eq. 10 gives a useful
estimate for the impact of surveillance testing; for a given Ro,
increasing the testing frequency decreases Reff and A(t). The
number of asymptomatic individuals is not observable (they are
asymptomatic!). What is observable is the total of daily number
of infected individuals detected either by testing or from symp-
toms. The expression for the number of detected cases per day is
CT t( ) ≡ Ss + sfTTR( ) A t( )=[ TR]. The total number of infections is
computed as a function of time by solving for the difference [N −
S(t)] as

N − S(t) = NEoTR(1 − Reff )
t
TR

, [11]

which is the expression for linear (in time) growth of the number
of infections. As shown in Fig. 2A, this expression is accurate for
Reff < 1. Interestingly, because the numerical results shown in
Fig. 2A were computed with ranges of parameter values, the
parameter Reff also effectively parameterizes the model, Eqs.
1–5, over the entire range of behavior. This scaling is rigorous
justified as Reff is the sole parameter in the dimensionless equa-
tions governing A(t) and S(t) in the limit where the quasi-steady-
state approximation is valid.
How much testing is required to control the spread of the

virus? For the parameter values listed below, here are examples:
fT = 1

7 d
−1 gives Reff = Ro

3.4, and fT = 2
7  d

−1 gives Reff = Ro
5.2. Hence,

surveillance testing twice per week will offset a transmission
significantly rate higher than reported for COVID-19,
2.5≤Ro ≤ 3.8. If COVID-19 transmission is modeled with
Ro = 2.5, thenReff = 0.48 for fT = 2

7 d
−1. For a university com-

munity with n = 10,000 and a daily exogeneous rate of NEo = 4
cases per day, the model predicts A(t) = 20.7 cases within the
university community at any time and 6.2 cases per day detected.
In a semester lasting 100 d, the model predicts 620 detected
cases from 769 total infections (Eq. 11).

Time-Varying Exogenous Rate. Eq. 7 is easily integrated for a va-
riety of time-dependent inputs for p(t) modeling the time vari-
ation of the exogenous rate. Polynomial expressions for p(t) are
especially simple to analyze. For example, linear growth in time
for p(t) results in linear growth of A(t) and the total number of
infections rising proportional to t2. One of the most interesting
cases is the effect of an event—sometimes referred to as a
superspreader event—that is modeled as a pulse in exogenous
cases at time t = tp using p(t) = Poδ(t − tp), where δ t( ) is the Dirac
delta function. It is straightforward to solve Eq. 7 to yield

A(t) ≅ (PoN)eα(t−tp)TR , t>tp, [12]

where α ≡ (Reff − 1)(1 + Ss + sfTTR)< 0 controls the rate of ex-
ponential decay of the pulse for Reff < 1. A higher testing fre-
quency increases α and speeds the decay of the pulse. For the
parameters above α = −2.70, so that a week after the event the
pulse has decayed to 0.26PoN. Under these conditions, only weak
coupling exists between events (pulses) occurring one weekend
and the next. Increasing the transmission rate (increasing Ro and
Reff) lengthens the time for pulse decay; for example, for
Ro = 3.8, the pulse will decay only to 0.5PoN in a week and ad-
ditive effects are expected from events on sequential weekends.
What can the model say about superspreader events affecting

a campus? In the linear regime studied here, a large gathering
causing a number of cases would be equivalent to a pulse input in
the exogenous rate. The compartmental model treats these cases
as spread about the entire university community, which is
equivalent to each infected person dispersing into the commu-
nity and potentially infecting others, according to the model. As
long as Reff < 1, the pulse of cases will decay in time according to
the expression Eq. 12. However, the more cases created by the
pulse, the larger the demand for isolation and quarantine of
students during the decay period. A mechanism for failure of the
campus public health system is for demand to exceed the ca-
pacity of these special housing units.

Contact Tracing. Contact tracing is incorporated using a simple
model that assumes that for every positive case identified, Nc
close contacts are identified and a fraction σ of these develop the
virus, hence they are from A(t); then, (1 − σ) is the fraction of the

Brown PNAS | 3 of 6
A simple model for control of COVID-19 infections on an urban campus https://doi.org/10.1073/pnas.2105292118

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

PO
PU

LA
TI
O
N

BI
O
LO

G
Y

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

S
ep

te
m

be
r 

2,
 2

02
1 

https://doi.org/10.1073/pnas.2105292118


contacts from S(t). After quarantine, the close contacts are
moved back to either the recovered or susceptible populations,
depending on whether they have had the virus. Adding contact
tracing to Eqs. 1–5 and applying the approximations described
above leads to a delay differential Eqs. 13 and 14:

dA
dt

= Ro

TR
(1 − 1

Reff
)A(t) + σNc

TR
(Ss + sfTTR)A(t − tc) + NEop(t),

[13]

where tc is the time lag between identifying the index case and
moving the close contacts to quarantine. Eq. 13 has complicated
solutions for arbitrary values of tc (13, 14), including oscillations
in time, if tc is comparable to or greater than the time between
tests. If tc is small, that is, contact tracing is performed quickly
compared to the testing cadence, Eq. 13 yields a result identical
to Eq. 7 with Reff replaced by

Rct
eff ≡ Ro[(1 + Ss + sfTTR) + σNc(Ss + sfTTR)]. [14]

The additional infection control due to contact tracing is
measured by comparing the expressions for Reff and Rct

eff . For
fT = 2

7 d
−1, Nc = 3 and σ = 1

6 (empirical values estimated from
the Boston University data), Rct

eff=Reff = 0.71, or a 30% enhance-
ment. By this result, increasing the testing frequency augments
the effectiveness of contact tracing, if the number of infected
close contacts σNc remains constant. This may not be the case:
More-frequent testing also decreases Nc, slowing disease spread.
Conversely, less-frequent testing should lead to more close con-
tacts and more disease spread.

Impact of Partial Vaccination. As the pandemic evolves vaccines
become critical to restoring close-to-normal operation of a res-
idential university. The analysis is expanded to include the effects
of a partially effective vaccine in a partially vaccinated university
community. We assume that the fraction of the community
fv ≡ (1 − φ) has been vaccinated with a vaccine that has efficacy
ev ≡ (1 − e); it is assumed that the transmission rate of the dis-
ease is lowered to eβwith vaccination. In the model the susceptible
population is divided into unvaccinated φN and vaccinated
(1 − φ)N segments, each with the appropriate transmission rate.
Repeating the analysis described above leads to the same ex-
pression for the rate equation for A(t), Eq. 7, with Reff replaced by
Rv
eff ≡ ΦReff , whereΦ ≡ e + φ(1 − e) ≡ (1 − evfv). Operating in

the linear or stable region requires Rv
eff < 1.

The relationship between vaccine efficacy and the vaccinated
fraction of the population for a specific value of Φ is given by
φ = (Φ − e)=(1 − e). Then, using no public health mitigations
(fT = 0,Nc = 0, Ss = 0) results in Rv

eff = ΦRo. Remaining in the
linear region and living with the resulting higher transmission
rates, perhaps 3≤Ro ≤ 5,will only be achievable with Φ< 0.2,
requiring highly effective vaccines and almost everyone vacci-
nated. Until herd immunity is achieved by a combination of
vaccination and natural immunity, remaining in the linear regime
may require some level of public health mitigations (e.g., mask
wearing) and surveillance testing, especially in the congregate
housing on a college campus.

Comparison with Boston University Data. The results described
above assume that the infection rate from the surrounding
community is constant in time. This was clearly not true during
the fall of 2020 as urban universities operated in the midst of
surging cases in their surrounding communities. The effect of the
surge is investigated by comparing directly to data for Boston
University’s operation throughout fall 2020. The university operated

during the fall (classes from 1 September 2020 to 10 December
2020, or 101 d) with a comprehensive qRT-PCR testing program
for the entire campus community delivered by an on-campus testing
laboratory. The protocol used by the university is described in ref. 7.
The comparison here is for the undergraduate student population
at Boston University during the fall, who were tested twice per week
with a compliance rate of nearly 95%; test results were returned in
an average of 18 h and students who tested positive were isolated.
The average daily testing positivity rate for the semester was 0.2%.
The contact tracing program resulted in close contacts being placed
in quarantine in less than 12 h after identifying the index case.
Examination of cases and close contacts showed almost no trans-
mission of COVID-19 between the undergraduates and other
campus populations and very low transmission in traditional
classrooms and laboratories.
In the calculation, the exogenous rate NE(t) is estimated using

the daily rate of new infections reported in Suffolk County, MA
(15) scaled for the ∼10,000 student undergraduate population.
The Suffolk County data are shown in Fig. 3 and demonstrate
the rising infection rate throughout the fall caused by the second
surge of infections seen across the country. Eq. 13 including
contact tracing was numerically integrated with the Suffolk
County data used for p(t); the results are also shown in Fig. 3 and
demonstrate how the model results qualitatively mirror the in-
creasing infection rate in the county. This is not surprising. The
timescale for change in the exogenous rate is somewhat slower
than the fast timescale for the decay dynamics give in Eq. 13.
Under these conditions, a formal multiple timescale analysis (16)
shows that the time-dependent response A(t) approximately
follows Eq. 10 with Eo replaced by Eop(t). The validity of this
approximation depends on the separation of the timescales for

B

A

Fig. 3. Results for increasing exogenous input modeled by data from Suf-
folk County, MA compared to numerical solution of Eq. 7 and undergrad-
uate positive cases at Boston University for fall semester (1 September 2020
to 10 December 2020). (A) Calculation of cumulative case are shown for both
Ro = 2.5 and Ro = 3.8. (B) Calculation of the daily observed cases with Ro

values of 2.5, 3.8, 5.0, and 6.5, corresponding to values of Rct
eff of 0.34. 0.52,

0.68, and 0.89, respectively.
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the decay of infections, given by Eq. 12 and the timescale for
variation of p(t).
The model calculations for the cumulative number of cases as

shown in Fig. 3A for Ro values of 2.5 and 3.8 (spanning the range
suggested in refs. 5 and 10) to highlight the sensitivity of the
model to this variable. We have not attempted to “fit” the model
to specific parameter values. If we did, the sensitivity to other
variables, such as the duration of the infection period TR, the
efficiency of the PCR testing s, and the fraction of asymptomatic
infections that become symptomatic Ss should also be considered.
We expect such a fitting process to be sensitive to the value se-
lected for TR. Varying TR from 14 d (the value used in our cal-
culations) to 10 d (holding Ro constant) decreases Reff by ∼21%.
Also, as recognized by King et al. (17), accurate parametric

fitting of the model to the data is better based on prediction of
the number of daily cases, not the cumulative number of cases as
shown in Fig. 3, and by implementing a stochastic variant of the
model. This approach has not been pursued, as the focus of this
study is on the simplicity of the results described here.
The number of daily cases CT(t) is shown in Fig. 3B for a range

of values of Ro. Note that CT(t) remains relatively small
throughout the semester, ranging for Ro = 2.5 from none at the
start of the semester to 28 on day 95 at the height of the pulse
caused by Thanksgiving gatherings. Increasing Ro increases the
daily cases but does not appreciably change the response time to
variations in p(t).
The cumulative infections seen in the Boston University un-

dergraduate population during the semester are shown in
Fig. 3A. The comparison between the model and the case data is
better than expected, especially with no attempt to fit the model
parameters to the data. The comparison does suggest that the
transmission on campus is better modeled by the higher repro-
duction number Ro = 3.8 for the values of the parameters used in
these calculations.
Can the case data from Boston University be explained with-

out considering exogenous input? The data are not described
with p(t) = 0 if Reff < 1. Then, Eq. 7 predicts exponential decay of
the on-campus infections for all reasonable values of Ro and the
disappearance of the disease, which is not what was observed.
The student data also show surges of cases in time that are

loosely coupled to events during the semester when compliance
with social distancing and mask wearing were known to be laxer
or when travel from campus (Thanksgiving week) introduced
additional risk. These events cause dynamics in the viral trans-
mission rate that cannot be captured by this simple model.
However, the analysis for the response to a pulse suggests that
the impact of such events decays if they are adequately separated
in time.

Discussion
Urban universities are integrated within their local communities,
with their students, staff, and faculty potentially bringing infec-
tions to the campus. The model gives a simple description for the
interplay of the COVID-19 transmission rate with surveillance
testing and contact tracing to keep the infection rate in the linear
regime. The simple compartment model cannot capture the
details of behavior that impact the transmission rate, such as
mask wearing, social distancing, ventilation, and sanitation. In

our description these effects are lumped into the value used for
the reproduction number Ro.
Capturing the behavior of college students with a single con-

stant is probably impossible. Although students may comply with
protocols in formal campus settings, their behavior in social
gatherings is more likely to mimic the higher values of Ro asso-
ciated with the viral spread. This behavior could be responsible for
the better fit of the model with the data in Fig. 3 using Ro = 3.8.
Successful operation of the campus is contingent on the success

of testing and contact tracing and on the logistics for quarantine.
For a constant exogenous rate, the model predicts a steady-state
need for quarantine spaces as Q(t) = (1 +Nc)(Ss + sfTTR)A(t),
where the expression for A(t) is given by Eq. 7. For the parameters
used in the example above Q(t) = 274 spaces, or equivalent to
under 3% of the population.
The effectiveness of surveillance testing also is predicated on

the specificity of the testing method; false-positive results can
easily swamp the capacity of the quarantine system. For 10,000
students tested twice per week, a false positivity rate of only 1%
would lead to over 400 students per day (false positives and their
close contacts) mistakenly placed in quarantine, unless second-
ary testing is used to sort out the false positives. The positivity
rate was ∼0.2% for the Boston University testing program in
fall 2020 and has decreased substantially as vaccinations have
become available.
The applicability of the simple model presented here to a

residential university or any residential community hinges on the
speed of delivery of testing and contact tracing, as well as the
compliance of community members with the protocols for quar-
antine, isolation, and symptom attestation. At Boston University
PCR tests were returned in an average of 18 h and contact tracing
and quarantining of individuals was completed in under 12 h. As
discussed above for contact tracing, delays in execution of these
steps leads to nonlinear behavior; Eq. 13 becomes a delay differ-
ential equation. Oscillations in time for A(t) can result, which
would be difficult to assess and complicate control strategies.
Boston University developed robust systems for symptom at-

testation, contact tracing, isolation, quarantine, and communi-
cation strategies for each of these efforts (7). Our success with
controlling virus spread was a result of the compliance of com-
munity members with these protocols.

Materials and Methods
The numerical integrations of Eqs. 1–5 used to produce Fig. 1 and of Eq. 7
used in Fig. 3 were carried out using a simple Euler method written by the
author. Parameter values used in all calculations for the customized SEIR
model were as follows: test efficiency (accounting for test sensitivity, inde-
terminate tests [less than 0.2% in Boston University experience], and stu-
dents who miss their tests) s = 0.9; fraction of asymptomatic infections that
convert to symptomatic. Ss = 0.6, consistent with the data presented in ref. 3.
The duration of the infectious period is taken as TR = 14 d. This estimate is in
rough agreement with estimates in Larremore et al. (6) for the time of high
viral load for an infected person.

Data Availability. All study data are included in the article and/or supporting
information. Previously published data were used for this work (7).

ACKNOWLEDGMENTS. I am grateful for the assistance of L. Decarie with
compiling the data from the Boston University Community testing program
and the data from Suffolk County, MA.

1. H. Nishiura et al., Estimation of the asymptomatic ratio of novel coronavirus infec-
tions (COVID-19). Int. J. Infect. Dis. 94, 154–155 (2020).

2. D. P. Oran, E. J. Topol, Prevalence of asymptomatic SARS-CoV-2 infections. Ann. In-
tern. Med. 173, 363–367 (2020).

3. M. Martcheva, An Introduction to Mathematical Epidemiology (Springer, 2010).
4. A. Nishi et al., Network interventions for managing the COVID-19 pandemic and

sustaining economy. Proc. Natl. Acad. Sci. U.S.A. 117, 30285–30294 (2020).
5. A. D. Paltiel, A. Zheng, R. P. Walensky, Assessment of SARS-CoV-2 screening strategies

to permit safe reopening of college campuses in the United States. JAMA Netw. Open
3, e2016818 (2020).

6. D. B. Larremore et al., Test sensitivity is secondary to frequency and turnaround time
for COVID-19 frequency. Sci. Advances 7, eabd5393 (2021).

7. D. H. Hamer et al., Control of COVID-19 transmission on an urban university campus
during a second wave of the pandemic. medRxiv [Preprint] (2021). https://doi.org/10.
1101/2021.02.23.21252319 (Accessed 26 February 2021).

8. M. Dahleh, P. Hosoi, D. Jones, Rules of thumb for reopening. https://idss.mit.edu/vi-
gnette/rules-of-thumb-for-reopening/. Accessed 4 June 2020.

9. C.-Y. Jung et al., Clinical characteristics of asymptomatic patients with COVID-
19: A nationwide cohort study in South Korea. Int. J. Infect. Dis. 99, 266–268
(2020).

Brown PNAS | 5 of 6
A simple model for control of COVID-19 infections on an urban campus https://doi.org/10.1073/pnas.2105292118

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

PO
PU

LA
TI
O
N

BI
O
LO

G
Y

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

S
ep

te
m

be
r 

2,
 2

02
1 

https://doi.org/10.1101/2021.02.23.21252319
https://doi.org/10.1101/2021.02.23.21252319
https://idss.mit.edu/vignette/rules-of-thumb-for-reopening/
https://idss.mit.edu/vignette/rules-of-thumb-for-reopening/
https://doi.org/10.1073/pnas.2105292118


10. Y. Alimohamadi,M. Taghdir,M. Sepandi, Estimate of the basic reproduction number for COVID-
19: A systematic review and meta-analysis. J. Prev. Med. Public Health 53, 151–157 (2020).

11. S. Zhang et al., Estimation of the reproduction number of novel coronavirus (COVID-
19) and the probable outbreak size on the Diamond Princess cruise ship: A data-
driven analysis. Int. J. Infect. Dis. 93, 201–204 (2020).

12. L. A. Segel, M. Slemrod, The quasi-steady-state assumption: A case study in pertur-
bation. SIAM Rev. 31, 446–477 (1989).

13. H. Gorecki, S. Fuksa, P. Grabowski, A. Korytowski, Analysis and Synthesis of Time
Delay Systems (John Wiley and Sons, Warzawa, 1989).

14. F. M. Asi, A. G. Ulsoy, Analysis of a system of linear delay differential equations.
J. Dyn. Syst. Meas. Control 125, 215–223 (2003).

15. Commonwealth of Massachusetts, COVID-19 raw data, March 1, 2021. https://www.
mass.gov/doc/covid-19-raw-data-march-1-2021/download. Accessed 14 January 2020.

16. A. H. Nayfeh, Perturbation Methods (John Wiley and Sons, 1973).
17. A. A. King, M. Domenech de Cellès, F. M. G. Magpantay, P. Rohani, Avoid-

able errors in the modelling of outbreaks of emerging pathogens, with special
reference to Ebola. Proc. R. Soc. Lond. B Biol. Sci., 10.1098/rspb.2015.0347
(2015).

6 of 6 | PNAS Brown
https://doi.org/10.1073/pnas.2105292118 A simple model for control of COVID-19 infections on an urban campus

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

S
ep

te
m

be
r 

2,
 2

02
1 

https://www.mass.gov/doc/covid-19-raw-data-march-1-2021/download
https://www.mass.gov/doc/covid-19-raw-data-march-1-2021/download
https://doi.org/10.1073/pnas.2105292118

