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Abstract The task of parceling perceived visual motion

into self- and object motion components is critical to safe

and accurate visually guided navigation. In this paper, we

used functional magnetic resonance imaging to determine

the cortical areas functionally active in this task and the

pattern connectivity among them to investigate the cortical

regions of interest and networks that allow subjects to

detect object motion separately from induced self-motion.

Subjects were presented with nine textured objects during

simulated forward self-motion and were asked to identify

the target object, which had an additional, independent

motion component toward or away from the observer.

Cortical activation was distributed among occipital, intra-

parietal and fronto-parietal areas. We performed a network

analysis of connectivity data derived from partial correla-

tion and multivariate Granger causality analyses among

functionally active areas. This revealed four coarsely sep-

arated network clusters: bilateral V1 and V2; visually

responsive occipito-temporal areas, including bilateral LO,

V3A, KO (V3B) and hMT; bilateral VIP, DIPSM and right

precuneus; and a cluster of higher, primarily left hemi-

spheric regions, including the central sulcus, post-, pre- and

sub-central sulci, pre-central gyrus, and FEF. We suggest

that the visually responsive networks are involved in

forming the representation of the visual stimulus, while the

higher, left hemisphere cluster is involved in mediating the

interpretation of the stimulus for action. Our main focus

was on the relationships of activations during our task

among the visually responsive areas. To determine the

properties of the mechanism corresponding to the visual

processing networks, we compared subjects’ psychophys-

ical performance to a model of object motion detection

based solely on relative motion among objects and found

that it was inconsistent with observer performance. Our

results support the use of scene context (e.g., eccentricity,

depth) in the detection of object motion. We suggest that

the cortical activation and visually responsive networks

provide a potential substrate for this computation.

Keywords Object motion � Self-motion � fMRI �
Connectivity

Introduction

Much is known about how the brain processes visual

motion. Psychophysical sensitivity has been characterized

and the neural substrate of a vast number of specific motion

tasks has been identified. However, most of this knowledge

is specific to how a stationary observer perceives different

aspects of motion or how a moving observer uses the

pattern of visual motion (optic flow) generated by static

objects to judge the direction of self-motion (heading).

Comparatively, little is known about how the human brain

identifies the movement of objects while the observer is
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also moving, although ecologically, this is one of the most

ubiquitous motion processing problems.

During self-motion, the entire visual field moves, and in

order to determine whether (and how) objects are moving

within it, the visual system has to separate information

about the movement of the object from the optic flow

produced by the observer’s self-motion. There is robust

evidence that the visual system can effectively use extra-

retinal cues (proprioceptive and vestibular information,

efference copies of the motor command, concurrent audi-

tory cues, etc.) to contribute to the separation of the sources

of perceived motion (Wallach 1987; Gogel 1990; Vaina

et al. 2010a; Calabro et al. 2011).

However, recent studies suggested that visual informa-

tion alone is sufficient to estimate an object’s motion during

self-motion (Rushton and Warren 2005). In order to accu-

rately detect moving objects in this situation, it is not

enough to simply detect retinal motion, since the entire

scene is moving. Several possibilities exist for how

observers may solve this problem. For example, it has been

shown that observers are sensitive to deviations of a moving

object from a radial flow field, both based on the object’s

direction (Royden and Connors 2010) and speed (Royden

and Moore 2012). However, relying on an object’s direc-

tion, deviation alone would fail for objects moving on tra-

jectories parallel to the observer (e.g., moving cars

approaching in a lane adjacent to the observer). While

deviations from the radial speed gradient could identify

such objects, such deviations also occur for static objects at

different depths due to motion parallax. Distinguishing

moving objects from parallax-induced motion requires

knowledge of the scene’s 3D configuration and the object’s

location within the scene. Because of this, relying on rela-

tive motion cues alone may not be sufficient to accurately

and reliably detect moving objects during self-motion.

One mechanism that has been proposed to solve this

problem suggests that observers may use their sensitivity to

optic flow to estimate and subtract self-motion from the

observed flow field to isolate object motion, termed flow

parsing (Rushton and Warren 2005; Rushton and Duke

2007; Warren and Rushton 2007, 2009). By subtracting the

induced self-motion from the visible flow field, the motion

that remains reflects scene-relative object motion, or parts

of the scene where the motion cannot be explained solely

by the observer’s movement. If performed using the 2D

flow field alone, this approach would suffer the same dif-

ficulty in distinguishing parallax-induced motion from

world-centric object motion as the relative motion strategy

discussed above, but if based on 3D motion vectors, or if

using a 3D scene reconstructions, this computation would

accurately indicate moving objects. This approach is con-

sistent with results showing that the presence of a self-

motion optic flow field induces a world-centric frame of

reference when observers perceive 3D object motion

(Matsumiya and Ando 2009).

A similar approach has been suggested by Pauwels

et al.’s (2010) biologically inspired parallel processing

model for the extraction of object motion by a moving

observer. In a six-stage hierarchical model based on the

computational properties of the dorsal visual processing

stream, the authors demonstrate the effectiveness of a

distributed, parallel processing hierarchal architecture for

the separation of self- and object motion. This may suggest

that the neural implementation of object motion detection

during self-motion is likely to draw upon a distributed

network of cortical areas in the dorsal stream. To determine

the neural underpinnings of object motion detection in

humans, it is therefore important both to establish the areas

involved in this task as well as how those areas commu-

nicate and organize into networks.

In this paper, we were interested in determining whether

subjects use a simple (though inaccurate) relative motion

computation to detect moving objects during self-motion or

whether they incorporate scene context when detecting

object motion. Further, we aimed to determine the brain

areas and networks that mediate object motion detection in

the presence of self-motion. We addressed these questions

by combining psychophysics, functional magnetic reso-

nance imaging (fMRI) and functional connectivity analysis

of the fMRI data using partial correlation and multivariate

Granger causality analyses to identify the functional areas

and the connected networks involved in the detection of a

moving object during self-motion. We suggest that object

motion extraction and detection is mediated by distinct

cortical networks as revealed by a clustering analysis of the

connectivity data. The results show two clusters of visually

responsive areas that are likely involved in the detection of

object motion and scene context, and a cluster of fronto-

parietal areas involved in higher level functions such as the

interpretation of the stimulus for action.

Methods

Subjects

Seven subjects (ages 19–26, mean 21.5; 4 female) partici-

pated in the fMRI scans. Subjects were enrolled in the study

after they had given their written informed consent; the study

protocol was approved by the Massachusetts General Hos-

pital institutional review board and followed the guidelines

of the Declaration of Helsinki. All subjects had normal or

corrected to normal vision, were right handed, and none had

any history of neurological or psychiatric illness. Subjects

participated in at least 1 h of ‘‘pre-fMRI’’ practice on the task

to ensure that performance had stabilized.
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Apparatus

Stimuli were generated on and presented by a MacBook

Pro running Matlab using the Psychophysical Toolbox

(Brainard 1997; Pelli 1997) and OpenGL libraries and

projected by a Notevision6 LCD projector onto a translu-

cent acrylic screen. Subjects saw the screen through a Buhl

Optical collimating lens placed on the head coil. To ensure

accurate synchronization, a USB trigger code was sent at

the start of each fMRI acquisition to the stimulus presen-

tation computer, which was used to begin the visual

stimuli. Subject responses were recorded with a 4 button,

MRI compatible button box.

Object motion stimulus and task

Stimuli consisted of 9 spherical objects distributed within a

25 9 25 9 60 cm simulated OpenGL environment.

Objects were high contrast (28.3 cd/m2 on a 0.3 cd/m2

background) textured spheres with a mean initial diameter

of 1.5�. The display area was divided into 9 equally sized

wedges, each containing one object at a random eccen-

tricity up to 9� (using a square-root distribution to create a

uniform density), to prevent occlusion. Subjects were

instructed to fixate a red cross (20 9 20 arcmin) at the

center of the display throughout the testing period. The

display was viewed binocularly, but no stereo cues were

presented, so depth was inferred only through changes in

object size (Fig. 1).

Each trial began with the display of a static scene con-

taining 9 objects, with contrast at 0 % and gradually

increasing so that the objects became visible (2 s), then

remaining visible and stationary (1 s). Objects were then

moved and scaled consistent with forward observer transla-

tion of 3 cm/s (relative to a 30 cm simulated distance to the

objects, such that the radial velocity was up to 1.66�/s for the

most eccentric objects, or 0.84�/s for objects of mean

eccentricity), lasting 1 s in duration. One object (the ‘‘target’’

object) had an independent forward or backward motion

vector of 2, 4, 6 or 8 cm/s within the scene in addition to the

induced self-motion. After the motion interval, the screen

was cleared for 250 ms. Then, the target and three other

randomly selected objects re-appeared and were labeled with

numerals, 1–4. Subjects performed a 4AFC task to identify

which object was the target (although subjects had to monitor

all 9 objects since the labels did not appear until after the

stimulus motion finished).

fMRI scanning sessions consisted of four 240 s acqui-

sitions. Within each acquisition (details below), target

speeds and directions were mixed, repeating each condi-

tion 5 times. This resulted in 160 total trials per subject (40

trials per target speed). Performance on the 4AFC task was

converted to d0 (Green and Bridsall in Green and Swets

1966), such that 0 indicated chance performance on the

task.

A control fMRI task was used to determine which

activations were due to the object motion component of the

task. In the control fMRI task, subjects were presented with

the same textured objects, but their motion resulted from

the self-motion only, thus creating a radial motion pattern

(with no target object moving independently). Subjects

were asked to report the direction of self-motion (forward

or backward). This task was used to determine activation

due to the presence of moving objects from simulated self-

motion (but without the segmentation and detection of an

independently moving object), or to the right-handed but-

ton press response. This task was matched to the stimulus

parameters (self-motion speed, object sizes and lumi-

nance), but not to task difficulty.

MR scanning and data analysis

Data acquisition

Data were collected at the Athinoula A. Martinos Center

for Biomedical Imaging, using a 3T Siemens TrioTim

60 cm (RF coil ID) whole-body MRI. Two high resolution,

3D T1-weighted structural MRI scans were first obtained

for registering the functional data using a 3D magnetiza-

tion-prepared rapid acquisition gradient echo (MPRAGE)

sequence (TR 2,530 ms, TE 3.39 ms, inversion time

1,100 ms, flip angle 7�) with 128 slices of 1.33-mm

Fig. 1 Stimulus illustration. All objects expanded during simulated

self-motion. Observers had to detect the object that had an additional,

independent motion vector
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thickness and 256 9 256 in-plane sampling (1 9 1 mm

resolution). Functional volumes were acquired using an

interleaved, gradient echo EPI sequence every 2 s for each

6 min acquisition (TR 2,000 ms, 180 TRs; TE 30 ms, flip

angle 90�, distortion factor = 20 %, phase = 100). Four

acquisitions were obtained for each subject. We acquired

33 slices of 3-mm thickness spanning the entire cerebral

cortex, with in-plane sampling of 64 9 64 (resolution of

3.125 9 3.125 mm). Slice positions were based on an

AutoAlign sequence for consistency in slice positioning

across subjects (van der Kouwe et al. 2005).

Functional analysis

Data processing and analysis was performed using Freesurfer

v4.5 to obtain a 3D anatomical reconstruction of the cortical

surface and registration to Talairach coordinates (Dale et al.

1999; Fischl et al. 1999). Functional data were automatically

registered to the structural reconstruction, then manually

checked and adjusted to ensure accurate alignment. Func-

tional data were motion-corrected using the AFNI motion

correction tool and spatially smoothed with a Gaussian

smoothing kernel with a full-width, half-maximum of 5 mm.

Optimized event-related sequences (Burock et al. 1998;

Burock and Dale 2000) were used to specify the timing of

visual stimuli. Events were coded post hoc based on target

speed, target direction and subject response (correct/incor-

rect). Activation contrasts were computed between the

motion and static intervals to isolate activity associated only

with the motion of the stimuli, as well as for per-trial acti-

vation as a function of direction, speed and response, using a

group weighted random effects model. To identify voxels

with task-specific responses for both the object motion and

control tasks, a first-level statistical analysis was performed

using a gamma HRF model including motion correction

regressors. Individual activations were combined in a group

analyses by first mapping each subject’s activation to the

MNI305 brain and then using a surface-based weighted ran-

dom effects linear model on the concatenated time courses

across subjects. Regions of interest (ROIs) were chosen as

surface clusters of at least 80 mm2 with group activation of

p \ 0.01. To avoid biasing the results toward or against areas

with specific correlations to behavior, all speed conditions

were combined when defining ROIs. ROIs were automati-

cally mapped to each subject’s native space using their

spherical registrations. When available, functional labels

were assigned on the basis of the literature-defined functional

areas with similar Talairach and Tournoux (1988) coordinates

(http://collaborate.bu.edu/bravi/FAQ/BrainAreasSummary).

Areas not belonging to known functional visual areas were

assigned anatomical labels as determined during the ana-

tomical reconstruction. In order to confirm which of our

functionally active corresponded to hMT, each subject was

given an hMT localizer using a standard method (Tootell et al.

1995), which we have previously employed (Michels et al.

2005).

Connectivity and network analysis

To determine the functional associations and connectivity

among ROIs, we first computed partial correlations based

on the time courses of all functionally defined ROIs.

Connectivity analyses were based on the entire original

(non-spatially smoothed) 180 TR time courses, which were

motion corrected and slice-time corrected (Smith et al.

2004), and averaged across all functionally active voxels

(p \ 0.01) within each ROI and across all four test runs.

Associations were computed as the linear partial correla-

tion between each pair of ROIs conditioned on the time

courses of all other ROIs using the partialcorr function in

the Matlab statistics toolbox. For each association, a cor-

relation coefficient and significance (based on the t statis-

tic) were calculated and used to establish which areas had

functional associations. p values were combined across

subjects using Fisher’s method to obtain a v2 statistic and

group p value. Group p values were corrected for multiple

comparisons using a false discovery rate correction with

FDR \=0.01.

Community structure was investigated using two

approaches. First, a node-reordering algorithm (Rubinov

and Sporns 2010) that clusters highly connected nodes was

applied to the partial correlation map. This resulted in a

sequence in which nodes with similar patterns of connec-

tivity were located in proximity. Second, a weighted,

undirected modularity algorithm (Newman 2006; Leicht

and Newman 2008) was applied to the partial correlation

data. The algorithm finds non-overlapping clusters of nodes

by maximizing the number of within-cluster connections

while minimizing the across-cluster connections, resulting

in clusters of highly connected areas.

To hypothesize about the directionality of connections,

we coupled the partial correlation approach with a first-

order, multivariate Granger causality (mGC) (Granger

1969; Kaminski et al. 2001; Roebroeck et al. 2005) anal-

ysis. mGC was computed for pairs of ROIs that had a

significant (FDR \ 0.01) associations as determined by the

partial correlation analysis. Masking the Granger connec-

tions by the significant partial correlations was done to

reduce the likelihood of false positives (see Supplement).

Connections among pairs of ROIs are conditioned by the

time courses of all other ROIs and are evaluated by

determining whether knowing the time points in ROI-2

improves the prediction for ROI-1 after all other ROIs have

been included. For each subject, mGC was computed by

using the Granger Causality Connectivity Analysis toolbox

for Matlab (Seth 2010), which tests whether the Granger
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coefficients are significantly different than zero using an

F statistic and their corresponding p values. Group data

were computed using Fisher’s method, as in the partial

correlation analysis.

Results

Neural substrate for object motion detection

by a moving observer

Group activation was computed using a weighted random

effects model across all subjects for activation during the

object motion task relative to a baseline condition in which

all nine objects were visible, but stationary (Fig. 2). Based on

group activity, we defined nine bilateral, five left hemisphere

only and one right hemisphere only ROIs (see Table 1).

Cortical activation was distributed among occipital,

occipito-temporal, parietal and parieto-frontal regions

(Fig. 2). There was increased BOLD signal in the regions

corresponding to the location of V1 and V2 (Fischl et al.

2008; Hinds et al. 2008), as well as several other cortical

areas that have previously been shown to be strongly

responsive to visual motion. Based on the Talairach coor-

dinates of the center of mass of each area and on ana-

tomical location, we identified these regions as

corresponding to V3A (Tootell et al. 1997; Mendola et al.

1999; Sunaert et al. 1999; Vaina and Soloviev 2004; Vaina

et al. 2010b), the kinetic occipital area (KO, or V3B, Smith

et al. 1998; Tyler et al. 2006), the human motion complex

(hMT, Tootell et al. 1993; Vaina et al. 1998, 2001; Sunaert

et al. 1999; Ffytche et al. 2000; Orban et al. 2003) and the

ventral intraparietal sulcus (VIP, Bremmer et al. 2001;

Orban et al. 2003), as well as a large, ventral area in the

lateral occipital area cortex (LO, Malach et al. 1995;

Kourtzi and Kanwisher 2001; Amedi et al. 2002). Bilateral

activation was found in the medial region of the dorsal

intraparietal sulcus medial (DIPSM, Orban et al. 2003;

Durand et al. 2009) and along the central sulcus. All these

cortical areas had a significant bilateral response to the

motion stimulus, and the activation and topographic loca-

tion were consistent across subjects (see Table 1). In

addition to the motion responsive ROIs, several fronto-

parietal cortical regions showed significant and consistent

activation across subjects. Increased activation was present

in the left hemisphere including two regions of the post-

central gyrus (ventral and dorsal, PoCG-v and PoCG-d,

respectively), the post-central sulcus, sub-central sulcus

and frontal eye fields (FEF, Orban et al. 1999). Right

hemisphere-specific activation was found only in the

precuneus.

Activations of areas V3A, KO, hMT, VIP and DIPSM

were significantly greater in the object motion task than in

the control task that displayed only the expanding pattern

motion of the objects. However, in both the object motion

and control tasks, there was a similar, overlapping activa-

tion in V1, V2 and LO (see Supplemental Figures 1 and 2).

Among the fronto-parietal left hemisphere areas, activation

was observed only in the central sulcus, though shifted

slightly compared to the object motion task. Since subjects

gave responses using the same right-handed button press in

both tasks, these results suggest that the left CS activation

may be attributed to the motor response associated with

pressing a button, but the other left fronto-parietal activa-

tion seen in the object motion task cannot be attributed to

the button press.

Fig. 2 Weighted random effects model of group activation (n = 7)

on the object motion task compared to an interval with all objects

present, but static registered to the MNI305 standardized brain. Color
indicates significance of activation [-log(p)]. Only significant voxels

falling within surface clusters of at least 80 mm2 are shown. Blue text

indicates functionally active ROIs, as listed in Table 1. Anatomical

labels (white text) include the transoccipital sulcus (TOS), inferior

temporal sulcus (ITS), superior temporal sulcus (STS), central sulcus

(CS), post-central sulcus (PoCS), intra-parietal sulcus (IPS) and

parieto-occipital sulcus (POS)
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We used subjects’ responses recorded during the scans to

measure task condition-dependent performance. Figure 3

summarizes subject performance as a function of target

speed and direction. Performance in the scanner was sig-

nificantly worse than the performance of these subjects

during pre-fMRI training (3-way ANOVA for testing

location: F1,106 = 27.44, p \ 0.001, speed: F3,106 = 54.29,

p \ 0.001, and direction: F1,106 = 28.97, p \ 0.001), likely

due to better testing conditions in the lab, but in both cases,

the trends (performance proportional to speed; asymmetry

between approaching/receding objects) were maintained

from our previously reported psychophysical performance

on this task (Calabro et al. 2011). Event-related, trial-by-

trial performance data used in an exploratory voxel-wise

analyses did not show any significant group activation

clusters associated with the direction of the target object,

nor between trials with correct and incorrect responses.

However, there were significant correlations between

BOLD signal and performance when comparing across

different speeds. For every subject, we normalized the

BOLD signal and task performance in the scanner for each

speed (grouped across directions). Normalization was rel-

ative to the subject’s own overall BOLD signal and per-

formance, respectively, combined across all conditions

(based on Gilaie-Dotan et al. 2001). We computed corre-

lation between the normalized BOLD signal and perfor-

mance with a generalized linear model using the data from

all subjects (Fig. 4). The activation of several areas was

significantly correlated to behavior after correcting for

multiple comparisons (FDR \ 0.05): bilateral V1 (lh:

t1,26 = -3.38, p = 0.0023; rh: t1,26 = -2.83, p = 0.008),

rh V2 (t1,26 = -4.64, p \ 0.001), rh V3A (t1,26 = -2.26,

p = 0.03), lh KO (t1,26 = -2.48, p = 0.02), lh LO

(t1,26 = -3.16, p = 0.004), lh hMT (t1,26 = -2.80,

Table 1 Mean values across subjects for defined ROIs

ROI Talairach coordinates -log(p) % Signal change # Vtx # Subj BA

x y z

LH V1 -12.76 -76.24 5.52 3.96 (1.31) 0.82 (0.27) 128.1 (42.49) 7 18

RH V1 10.20 -78.02 10.38 4.02 (1.01) 0.85 (0.23) 123.7 (47.30) 7 17

LH V2 -11.20 -73.92 16.29 4.25 (1.31) 0.82 (0.25) 123.4 (47.33) 7 18

RH V2 14.26 -69.64 -0.57 3.81 (0.90) 0.89 (0.21) 92.3 (31.42) 7 18

LH LO -22.73 -72.93 -5.00 3.55 (0.59) 0.91 (0.10) 115.6 (36.98) 7 18

RH LO 27.82 -77.54 -5.37 3.75 (0.62) 1.14 (0.25) 119.1 (36.49) 7 18

LH V3A -24.13 -90.07 10.40 2.76 (0.69) 0.65 (0.13) 18.9 (12.19) 7 18

RH V3a 29.83 -80.95 16.27 3.07 (0.41) 0.79 (0.06) 67.4 (17.04) 7 19

LH KO -34.48 -79.08 10.97 3.41 (1.12) 0.79 (0.18) 30.7 (15.97) 7 19

RH KO 33.89 -82.39 5.72 3.12 (0.63) 0.85 (0.12) 28.9 (9.91) 7 19

LH hMT -39.64 -70.34 -7.05 4.37 (1.27) 1.26 (0.22) 91.9 (27.50) 7 19

RH hMT 44.82 -63.36 -4.06 3.42 (0.77) 1.15 (0.28) 30.9 (18.58) 7 37

LH VIP -31.39 -72.16 24.27 4.21 (1.91) 0.99 (0.32) 32.1 (8.43) 7 19

RH VIP 30.96 -66.43 30.51 3.54 (0.54) 0.99 (0.10) 66.4 (16.77) 7 39

LH DIPSM -19.91 -62.13 38.02 3.60 (0.82) 1.11 (0.15) 17.1 (5.34) 7 7

RH DIPSM 38.74 -45.20 37.24 2.81 (0.49) 0.78 (0.11) 30.7 (19.35) 7 40

LH PoCS -44.28 -24.83 40.87 5.99 (1.26) 1.35 (0.30) 63.7 (29.18) 7 2

LH PoCGd -44.29 -20.36 49.80 4.49 (0.85) 1.13 (0.27) 45.6 (10.97) 7 3

LH PoCGv -59.12 -10.40 27.00 3.59 (1.65) 0.82 (0.27) 15.1 (6.54) 7 4

LH CS -47.40 -6.49 28.79 2.64 (0.91) 0.67 (0.12) 16.0 (9.13) 7 6

RH CS 57.69 -9.44 22.02 2.73 (0.61) 0.67 (0.20) 14.3 (6.68) 7 4

LH SubCS -51.41 -14.76 16.36 3.95 (0.67) 0.85 (0.17) 25.7 (7.02) 7 43

LH FEF -34.79 -16.18 57.69 4.94 (1.95) 1.49 (0.59) 16.4 (4.93) 7 4

RH Precun 9.31 -59.49 48.16 3.34 (1.08) 1.06 (0.27) 23.0 (8.39) 7 7

Anatomical area is based on the group results mapped to the MNI305 brain. Activation values are shown as significance [-log(p)] and mean %

BOLD signal change. Values in parentheses are standard deviation across subjects. Talairach coordinates are the mean of all active voxels in the

ROI. ‘‘# Subj’’ is the number of subject for whom the ROI was defined (all subjects for each ROI), and BA indicates the Brodmann Area of the

mean Talairach coordinate. ROIs include LO lateral occipital, KO kinetic occipital, hMT human motion complex, VIP ventral intraparietal,

DIPSM dorsal intraparietal sulcus medial, PoCS post-central sulcus, PoCGd/v post-central gyrus dorsal/ventral, CS central sulcus, SubCS sub-

central sulcus, FEF frontal eye fields, Precun precuneus
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p = 0.001) and lh VIP (t1,26 = -2.53, p = 0.017). Inter-

estingly, only cortical regions known as visually respon-

sive areas had significant correlations to behavior, and all

correlations were negative (there was less BOLD signal as

performance improved). The correlation between BOLD

signal and performance is in agreement with previous

studies showing increased BOLD response with more

difficult stimuli (Heekeren et al. 2004; Kayser et al.

2010), showing that activation in these areas depended on

stimulus parameters and suggesting that these areas are

strongly involved in forming a perceptual representation

of the task.

Cortical connections mediating object motion detection

Partial correlations were computed among all ROIs and are

shown in Fig. 5. A modularity algorithm (Rubinov and

Sporns 2010) applied to the partial correlation adjacency

matrix revealed 4 clusters of ROIs. One cluster (black

boundary in Fig. 5) consisted of bilateral V1 and V2 with

5 of a possible 6 associations statistically significant after

correcting for multiple comparisons (q[ 0.1, p \ 0.001).

The intra-hemispheric V1 to V2 associations were stron-

gest, with q = 0.35 and 0.47 for the RH and LH, respec-

tively. A second cluster (Fig. 5, green boundary) consisted

of visually responsive areas including bilateral LO, V3A,

KO and hMT had both within- and cross-hemispheric

associations. Within this cluster, 21 of 28 associations were

significant, with strongest correlations between intra-

hemispheric hMT and LO (q = 0.27 and 0.20 for LH and

RH, p \ 0.0001) and between KO and V3A (q = 0.23 and

0.18 for LH and RH, p \ 0.0001). A third network (Fig. 5,

yellow boundary) involved visually responsive areas in the

parietal lobe (bilateral VIP and DIPSM), and the right

precuneus, with 8 of 10 associations significant. Unlike the

previous two clusters that were mostly within one hemi-

sphere, the strongest association in this cluster was cross-

hemispheric, between LH and RH VIP (q = 0.35,

p \ 0.0001). Finally, a fourth cluster involving higher

level, primarily left hemisphere areas (Fig. 5, blue

boundary) included PoCS, PoCG (dorsal and ventral), FEF,

SubCS as well as bilateral CS. The node-reordering algo-

rithm (the sequence of ROIs listed in Fig. 5) resulted in a

sequence in which all ROIs were placed next to the rest of

the ROIs in their cluster with one exception (left V3A),

reinforcing the clusters found by the modularity algorithm.

Fig. 3 Performance of subjects during fMRI scans (d0) as a function of

the speed of the target object both during the fMRI scans, and in pre-

scan testing in the laboratory. Trials in which an invalid button press

was recorded were excluded. Negative speeds indicate receding objects;

positive speeds indicate objects approaching the observer. Data points

are offset for clarity, but used the same speeds (± 2, 4, 6, 8)

Fig. 4 Behavioral correlations between normalized performance during the scan and BOLD signal. Each data point corresponds to a single

target object speed (grouped across directions) for a single subject. Each subject is indicated by a different marker symbol

Exp Brain Res (2012) 221:177–189 183

123



We compared the partial correlation results to those

obtained in the control task (self-motion only) (see Sup-

plemental Figure 3). While the control task elicited the

same connectivity in the V1/V2 cluster, the connectivity in

the LO/KO/hMT/V3A and left fronto-parietal clusters was

sparser. Furthermore, the connectivity was almost absent in

the VIP/DIPSM cluster. This suggests that the connectivity

among the cortical network of intra-parietal sulcus areas is

specific to the object motion task and may be involved in

the separation of object and self-motion components from

the perceived motion field.

Among the connections resulting from the partial cor-

relation analysis, we were interested to see whether we

could classify the directionality of the connection in order

to speculate on the processing architecture supporting the

object motion task. To this end, we measured mGC for all

pairs of ROIs that had significant (FDR \ 0.01) associa-

tions in the partial correlation analysis. This was done to

mitigate potential false positives. Figure 5b shows the

significance of the Granger coefficients for connections

that were significant for both their mGC and partial cor-

relation relationships. mGC measures the proportional

change in the residual error of time course estimation to

provide an estimate of which associations can be consid-

ered causal, directional connections. Interestingly, none of

the associations within the V1/V2 cluster had significant

causal connections, suggesting that these correlations were

driven by a similar or common source, but did not directly

affect each other. In the other clusters of visually respon-

sive areas, two ROIs—right KO and right VIP—were the

largest recipients of connections. Right KO had strong

incoming connections from bilateral hMT and VIP, while

right VIP was driven primarily by bilateral hMT and

DIPSM. This suggests a network architecture in which

visual information represented in hMT feeds into VIP, and

both hMT and VIP feed into KO.

Object motion detection: scene context or relative

motion?

To understand the functional roles of the activations and

networks (described above), we investigated the psycho-

physical mechanism being used by subjects in the task.

Specifically, we were interested to determine whether the

stimulus motion alone (the optic flow field) could account

for subjects’ performance, or whether observers were

incorporating scene-context information, such as the

eccentricity and/or depth of the objects, when identifying

the target object. Previous psychophysical studies have

shown that subjects are sensitive to deviations in direction

(Royden and Connors 2010) and speed (Royden and Moore

2012) from the optic flow field. We suggest two possible

strategies that subjects could have employed to solve our

task without incorporating scene context. First, subject

responses could have been based solely on retinal speed of

the objects. Although this strategy would be ineffective for

Fig. 5 Connectivity map among the functionally defined ROIs

showing connections that were significant among subjects

(FDR \ 0.01) as measured by a partial correlations and b multivariate

Granger causality. Color indicates the uncorrected significance of the

group connection [-log(p)]. In (a), connections are undirected, and

for directional connections in (b), origin area (‘‘connections from’’) is

indicated on the y-axis and destination area (‘‘connections to’’) on the

x-axis
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most task conditions (since the target object was not gen-

erally the fastest or slowest object in the scene), it would

produce more correct responses at high target speeds,

similar to the behavioral trend shown by our subjects

(Fig. 3). However, we have previously shown that perfor-

mance did not change when the speed of observer motion

changed (which shifted the distribution of retinal speeds),

indicating that subject performance was not linked to

absolute retinal speed (Calabro et al. 2011).

Second, subjects could have based their responses on the

relative motion among objects, independent of their loca-

tions in the scene. By this strategy, subjects could have

considered all the motion vectors (speed and direction) and

choose the object with the maximum magnitude and/or

unique direction (e.g., moving inward if all other objects

are moving outward). To address whether observer per-

formance could be explained by this relative motion

strategy, we analyzed performance of all subjects while

participating in the fMRI experiment for object speeds of 2,

4, 6 and 8 cm/s (both approaching and receding) during

forward observer translation of 3 cm/s (Fig. 6, shaded

region). The results showed that observers’ results on the

task was consistent with our previous reports of their per-

formance outside the scanner and depended on both the

speed and direction of the object motion, with faster and

approaching objects easier to detect.

We compared observers’ performance to a model that

selected a response based only on the relative motion

among objects. The model had the motion vectors for all

objects and selected its response as the object with the

maximal (for expanding object motion conditions) or

minimal (for receding conditions) speed or direction

(inward/outward). Since object motion was always parallel

to the observer’s path (and line of sight), the object had no

directional deviation from the radial flow field produced by

the world-static objects, so that directional deviations did

not provide a means to identify the target object. Thus, the

directional information was limited to whether the object

was moving inward or outward. The model therefore

measured the proportion of trials in which the target could

be uniquely identified on the basis of relative speed and/or

direction. Since objects with a larger eccentricity had a

faster self-motion-induced speed, and since each object had

a randomly chosen eccentricity, the target object did not

necessarily have the highest speed, which was the primary

limitation on the model’s performance. We performed

simulations to determine whether a relative motion strategy

could quantitatively explain subject performance by com-

puting the percent of trials (of 10,000 simulated trials per

object speed condition) in which the target object moved

faster than any other object. Results are plotted in com-

parison with subject performance in Fig. 6. For approach-

ing (positive) velocities, the relative speed strategy could

account for performance of approaching object trajectories,

but importantly, for receding objects (negative object

velocities), the model did not provide above-chance correct

responses, since the speed of the target object nearly

always fell within the range of the speeds of the objects

whose motion was due only to the motion of the observer.

Although receding objects could not be uniquely iden-

tified by their speed, they could be identified by their

direction. When the target was receding faster than the

observer’s forward motion (object speeds of -4, -6,

-8 cm/sec), it had a net motion away from the observer,

and the target was the only object moving radially inward.

Thus, we conjecture that a strategy combining speed and

direction should result in task performance without any

errors for receding objects, as verified by our simulations

(Fig. 6, open squares). In contrast with the results of these

simulations, human observers had significant difficulty in

detecting receding objects (speeds \ 0) and performed

well below the prediction of the relative speed and direc-

tion strategy. A similar problem is encountered if we

consider the use of motion-in-depth cues (expansion/con-

traction) of the objects, rather than direction. For receding

objects, only one object would contract over time. Thus,

the same problem occurs: if subjects were to use the

‘‘direction’’ of looming, we would expect their perfor-

mance to be significantly better than we have observed.

The comparatively poor performance for receding object

conditions suggests that observer performance was not

consistent with target selection strategies based on relative

speed and/or direction among the objects.

Instead, the data suggest that subjects used more than

just the motion vectors to determine whether an object

Fig. 6 Observer performance (filled circles) on the object motion

detection task compared to simulations using relative speed (open
circles) or speed and direction (open squares) among objects to select

the target. Shaded region indicates ±1 SD across subjects; *’s

indicate data points where no correct responses were obtained from

the simulations (d0 = -Inf)
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moved relative to the scene during simulated egomotion

(e.g., contextual information such as the object’s location

and depth within the scene). This is consistent with

mechanisms of object motion detection such as the flow-

parsing hypothesis put forward by Rushton and Warren

(2005), Rushton and Duke (2007), Warren and Rushton

(2007, 2009) and the parallel processing model of Pauwels

et al. (2010), both of which consider the object relative to

the entire scene to determine its world-centric object

motion. However, whether either of these proposals or

another explanation best represents the mechanism at work

in our task of object motion detection remains an issue for

future study.

Discussion

In this study, we examined the cortical areas and networks

involved in the detection of a moving object by a moving

observer. We used an ROI-based activation analysis, in

conjunction with partial correlation and multivariate

Granger causality analyses of connectivity, to show that the

perception and representation of the stimulus is mediated

by highly active and interconnected visually responsive

areas, including LO, V3A, KO, hMT, VIP and DIPSM. In

addition to the visual processing areas, activation was also

found in a network of higher level, primarily left hemi-

sphere fronto-parietal regions, including the CS, PoCS,

PoCG, SubCS and FEF.

The results of the psychophysical experiment suggests

that observers do not use a relative motion strategy for

detecting moving objects during self-motion. Such an

approach would be prone to errors by failing to discrimi-

nate moving objects from parallax-induced motion for

objects at different depths. Instead, our psychophysical

data and mathematical models suggest that to detect

moving objects during egomotion, observers take into

account the scene context of objects (e.g., position and/or

depth within the scene) This is compatible with, but does

not specifically indicate the use of, the flow-parsing models

proposed by Rushton and Warren (2005) and Pauwels et al.

(2010).

Network organization

The modularity of the connectivity pattern revealed that the

distinct regions of activation in the object motion task

could be divided into four clusters. Each cluster was dis-

tinguished by its functional properties, suggesting specific

computational roles. The V1/V2 cluster was both activated

and connected in the self-motion only control task, as well

as the object motion task, suggesting that while these areas

had increased activation in response to object motion, the

difference was only in magnitude, and the involvement of

these areas was not specific to the object motion task. The

cluster including hMT/LO/V3A/KO was strongly activated

and connected in the object motion task, but not the control

task (with the exception of LO activation), suggesting that

these areas had an increased role in the object motion task

and were tightly linked to stimulus parameters (as revealed

by the correlation to task difficulty). ROIs in the third

cluster, containing VIP/DIPSM, were not activated nor

connected to each other in the control task, but did contain

regions correlated to behavioral performance, suggesting

that they were involved in processing stimulus features not

present in the control task. The ROIs in the cluster of

primarily left hemisphere fronto-parietal areas were not

activated by the control task, nor were they correlated to

behavior in the object motion task. This suggests that the

activation of ROIs in this cluster was specific to the object

motion stimulus, but were not dependent on the stimulus

properties per se.

In this study, we were interested primarily in two net-

work clusters consisting of visually responsive areas, one

consisting of bilateral LO, V3A, KO, hMT, and one of VIP

and DIPSM. Activations in these areas had significant

behavioral correlations (between BOLD % signal change

and task difficulty, as Gilaie-Dotan et al. 2001; Vaina and

Soloviev 2004), suggesting involvement in the perception

and representation of the object motion stimulus. Fur-

thermore, with the exception of LO, these areas had

increased activation in response to the object motion

stimulus compared to the control stimulus which contained

only pattern motion consistent with self-motion. Previous

neuroimaging studies have implicated these areas in a

variety of aspects of visual motion processing. Area hMT

has been significantly implicated in human motion pro-

cessing, including tasks of navigation based on optic flow

(for a review, see Vaina and Soloviev 2004). Recent

studies have shown that activation in hMT is accompanied

by parietal activity during detection and maintenance of

path information during locomotion (Billington et al.

2010). Area VIP in the Macaque (Colby et al. 1993;

Bremmer et al. 1997; Duhamel et al. 1998), and its human

homolog identified by fMRI (Bremmer et al. 2001),

responds to motion in depth and is particularly relevant

since the object trajectories in our stimulus were in depth,

toward or away from the observer. The kinetic occipital

area (KO/V3B) has been associated with the detection of

kinetic edges (Dupont et al. 1997; Van Oostende et al.

1997; Tyler et al. 2006). Area KO/V3B received connec-

tions from both hMT and VIP, suggesting that it pools

information from these visually responsive areas. DIPSM

has been linked to the perception and processing of 3D
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structure (Durand et al. 2009), which may be critical to

determining the expected optic flow field based on self-

motion alone.

This visually responsive network was complemented by

a network of higher level, primarily left hemisphere,

fronto-parietal regions (especially along the post-central

sulcus and gyrus, and central sulcus). Of these regions,

only the central sulcus was activated during the control

fMRI experiment, suggesting that it could be attributed to

the motor activation associated with the button press.

Activation in the post-central gyrus has been associated

with attention to the upper visual field, and in the pre-

central gyrus with attention along the horizontal meridian

(Mao et al. 2007), as well as pre-motor functions (Field and

Wann 2005). We suggest that the role of these areas is to

link perception to action planning. In particular, this net-

work of cortical areas may be interpreting visual infor-

mation represented by the networks of the visual areas, for

planning actions that help a moving observer avoid or

intercept a moving object.

Neuronal computations for object motion detection

during self-motion

Our psychophysical data suggest that subjects do not per-

form the object motion task by simply comparing the

motion of nearby objects, but rather incorporate scene

context in their judgments. This allows for a more robust

detection of moving objects since a strategy based on rel-

ative motion alone would be prone to errors in distin-

guishing object motion from induced motion parallax of

static objects at different depths. Instead, we suggest that

when estimating scene-relative object motion, observers

use a strategy that incorporates scene context such as depth

and position within the flow field.

We were particularly interested in the activation of

hMT, since the properties of its homolog in the Macaque

provide a plausible model for object motion detection

during self-motion. Neurons in the Macaque dorsal

medial superior temporal area (MSTd) have been shown

to be highly selective to radial motion patterns, and self-

motion (Tanaka and Saito 1989; Duffy and Wurtz 1991a,

b), while the lateral MST (MSTl), responds well to

motion properties associated with object motion (Tanaka

et al. 1993; Eifuku and Wurtz 1998, 1999). In principle,

these two areas might be thought to be sufficient for the

task described in this study. However, our fMRI study

showed that activation in many cortical areas involved in

processing visual motion, including occipito-temporal

and parietal areas, was correlated to behavioral perfor-

mance. This suggests that, rather than hMT alone pro-

viding the neuronal substrate for object motion detection

during self-motion, there is a network of occipital and

parietal areas interacting to mediate object motion

detection in our task.

Computationally, several models for object motion

detection are consistent with our psychophysical data

supporting the use of scene context and are interesting to

consider given the cortical activation and connectivity

exhibited during our task. One possibility is that observers

perform a 3D vector subtraction, in which the difference

between a self-motion translation vector and an ego-centric

object motion vector would produce the scene-relative

object motion. The drawback of this approach is that the

3D motion vector must be reconstructed (and vector sub-

traction must be computed) for every object in the scene,

making it inefficient in search situations. Alternatively, the

visual system could use a 3D representation of the scene

and perform a mental translation to produce an expected

flow field. A 2D vector subtraction between the expected

and actual flow fields would leave motion only at those

locations in the scene where scene-relative object motion

exists. Although this would be more efficient for search, it

requires an accurate model of the absolute depth and

position of objects in the scene. The latter proposal mirrors

the model proposed by Pauwels et al. (2010), which iso-

lated moving objects when observed by a moving (binoc-

ular) camera using known cortical visual processing

computations (e.g., edge detection, stereo extraction, optic

flow), including the subtraction of ego-flow from optic

flow.

Both approaches involve 3D scene and object manipu-

lations, as well as a difference operation, either between the

self- and object motion vectors or between the expected

and observed flow fields. The association of intra-parietal

areas to 3D structure-from-motion processing provides the

possibility that the activation we have seen in VIP and/or

DIPSM is related to this 3D manipulation. Furthermore,

previous studies have linked KO/V3B to the processing of

kinetic boundaries across stimulus types (Van Oostende

et al. 1997). The connections from hMT and VIP to

KO/V3B therefore suggest an intriguing possibility that

KO/V3B provides the substrate for the difference operation

required by models of object motion detection, by com-

puting the difference between the visual representations

provided by hMT and VIP, respectively.
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