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1 INTRODUCTION 
 
As we drive on the highway, walk down the street, or move around in the 

house, we make constant use of a complex perceptual mechanism: vision. In 
these situations, we rely on the visual system’s ability to process the perceived 
motion of the visual scene across the retina, termed optic flow, for our 
perception and estimates of self-motion. When self-motion is known, it is 
possible to identify obstacles and moving objects, determine time to collision, 
and the three-dimensional structure of the environment.  

For most people, the perception of motion and its application in everyday 
tasks are seemingly effortless. In some cases, however, visual impairments 
seriously degrade motion perception to the point of reduced functionality in 
real world tasks such as walking and navigation, in which estimate of self-
motion is crucial. For these impairments, mobility-assistive devices capable of 
processing visual motion in real-time and calculating perceptually relevant 
information would be invaluable. However, theoretical and computational 
limitations significantly restrict our ability to develop devices capable of 
processing the full visual motion field in real-time.     

Several methods have been proposed in the literature to compute the 
motion of the observer from optic flow; for reviews see Barron, et al., 1994, 
Heeger & Jepson, 1992, or Hummel & Sundareswaran, 1993. In these 
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methods, however, the aperture problem restricts the recovery of the full 
optical flow field. Specifically, only the component of optical flow in the 
direction of the local image intensity gradient can be reliably computed 
without the application of computationally expensive local and/or global 
smoothness constraints (Adelson & Bergen, 1986, Horn & Schunck, 1981, 
Nagel & Enkelmann, 1986). For estimates of self-motion based on full optic 
flow, the application of such constraints via iterative or least-squares 
techniques significantly increases the amount of pre-processing necessary to 
recover self-motion estimates, limiting their real-time utility.  

Computationally efficient algorithms based on the local projection of 
optical flow, termed “normal flow”, have been developed to recover estimates 
of time to contact and heading direction in real-time (Aloimonos & Duric, 
1992, Alok & Aditya, 1995, Camus, 1995, Coombs, et al., 1998, Fermuller & 
Aloimonos, 1995, Herwig, et al., 1998, Horn & Weldon, 1988, Negahdaripour 
& Horn, 1989, Sinclair, et al., 1994). In a robotic navigation task, Herwig et 
al. (1998) used normal flow in conjunction with a cost function based on the 
half-plane constraint (Aloimonos, et al., 1993) to estimate heading direction. 
They found that robust heading performance could be achieved in the 
presence of statistical noise and for small amounts of rotation  (<0.05 rad/s). 
In a real-time wandering task, Coombs et al. (1998) used normal peripheral 
flow in conjunction with flow field divergence estimates to compute time to 
contact for obstacle avoidance. Together with a direction centering 
mechanism based on the maximal peripheral flows, they demonstrated that 
robust image motion cues such as time to contact could be extracted from 
normal flow and used in real-time to safely navigate complex visual 
environments for extended periods of time.   

In this chapter, we present a method for the rapid calculation of the 
observer’s translational velocity based on normal flow estimates and we 
demonstrate its applicability in two tasks: in the first a camera is actively 
controlled to orient itself in the direction of translation, and in the second, the 
method is used for fast collision detection. The goal of this work is to develop 
methods for performing tasks using visual information rather than building a 
representation based on visual processing. Together with the continued 
reductions in the size and increasing power of computer systems we expect 
that such methods could play a central role in the real-time vision processing 
applications necessary for the development of autonomous robotic systems 
and mobility assistive devices for the visually impaired.  
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2 BACKGROUND 

 
The relative motion of an observer with respect to a rigid, unknown 

environment can be represented in a coordinate system centered in the 
observer's center of projection. We will use perspective projection on a plane 
as the camera model. The two-dimensional motion of the image intensity 
pattern on the image plane, namely the optic flow, depends on the three-
dimensional motion (translation and rotation) of the observer. For instance, an 
optic flow pattern radially expanding from an image location corresponds to 
translational motion towards the 3-D location projected at that image location. 
Rotational motion produces elliptical patterns, and a combination of the two 
(translation and rotation) produces complex optic flow patterns that are the 
summation of the individual patterns. In the work outlined below we are 
interested in the inverse problem of determining the motion of the observer 
from optic flow patterns. 

Any method to compute optic flow must deal with the aperture problem 
which restricts measurement of the local motion component to the direction of 
the local intensity gradient (Horn, 1985). This direction is normal to the local 
edge; hence the 2-D motion along this direction is referred to as "normal 
flow." Typically, a regularization approach is taken to compensate for the lack 
of motion information along the edge (Anandan, 1989, Heeger, 1988, 
Hildreth, 1984, Horn, 1985). However, regularization involves a function 
minimization process that can be time-consuming; for an exception, see 
Hildreth (1984). Also, regularization assumes smoothness across the optic 
flow field and often introduces deviations from the actual motion field, in turn 
reducing the accuracy of 3-D motion and structure calculations based on the 
optic flow. Due to these reasons, we are interested in developing a method 
that computes relative 3-D motion directly from the normal flow. The goal is 
to develop a method that is approximate but fast enough to be useful in real-
time or near- real-time applications. 

 
 

3 PROPOSED METHOD 
 
The proposed method is based on the well-known observation that for 

translational motion of the camera, image motion everywhere is directed 
away from a singular point corresponding to the projection of the translation 
vector on the image plane. This point, also called the Focus of Expansion 
(FOE), corresponds to the intersection of the optic flow vectors depicting the 
image motion. The FOE can be determined by a simple analysis of the 
direction of the components of the optic flow field vectors, as described 
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below. In the current approach we focus on translational motion under gaze-
stabilized viewing conditions.  
 
 
3.1 Approach to Determine the FOE from Optic Flow  
 

In a rigid environment the sign of the horizontal component of an optic 
flow vector (e.g. positive: rightward, negative: leftward) is determined by the 
location of the FOE. At a qualitative level, the distribution of the component 
signs in an image region is determined by the position of the FOE relative to 
the region. For example, if the FOE is in the middle of the region, motion 
vectors in one half of the region will have negative sign, and those in the other 
half will have positive sign. This observation suggests the possibility to use 
the distribution of the signs to determine the horizontal location of the FOE. 
In a similar fashion, by using the signs of the vertical components, the vertical 
coordinate of the FOE may be determined. 

We are interested in examining the applicability of this simple approach 
to determine the FOE based on the normal flow field instead of the full optic 
flow field. In the proof of the following theorem we demonstrate that the use 
of the normal flow field in this manner is likely to yield usable FOE estimates 
under the previously prescribed conditions. 

 
Theorem: With probability greater than chance, the signs of the 

components of a normal flow vector agree with the signs of the components of 
the corresponding optic flow vector, providing the local intensity gradient 
direction is distributed uniformly 

 
Proof: Let the local gradient subtend an angle α, and the optic flow 

vector subtend an angle θ, with respect to the x-axis. Without loss of 
generality, we can assume that both α and θ span the range [0, π/2], where the 
local intensity gradient and the optic flow vector lie along the unit vectors 
[cos(α), sin(α)] and [cos(θ), sin(θ)] respectively. Since, by definition, the 
normal flow vector corresponds to the component of the optic flow that is 
parallel to the local intensity gradient (i.e. perpendicular to the local edge) the 
normal flow direction is given by cos (θ−α)[cos(α), sin(α)]. 

For the x-component of this (normal) vector to have the same sign as the 
x-component of the optic flow vector, 

 
                                  ( ) ( ) ( ) 0coscoscos >− θααθ       (1) 
 

We consider two possibilities: 
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The first situation occurs if |θ−α| < π/2, and if α and θ are in the same vertical 
set of quadrants (first and fourth, or second and third). For a given θ, α has a 
range of π-θ for which an agreement of signs results. For the second situation, 
|π + θ - α| < π/2, and α and θ must be in the same horizontal set of quadrants 
(first and second, or third and fourth). This corresponds to a range of π-θ for 
α. Since the total possible range for α is 0 to 2π, assuming a uniform 
distribution for α, the probability that the signs of the x components agree is 
(π - θ)/π. Using a similar argument, it can be easily shown that the probability 
that the y components agree is (π/2+θ)/π. In passing, we note that for α = 0 or 
π (vertical edges), the signs of the x components always agree! 

In light of this theorem, we conclude that it is possible to determine FOE 
based on normal flow vectors. Below, we present results based on the 
application of this method to compute the FOE in real image sequences. 

 
 
4 EXPERIMENTS 

 
The procedure described above has been implemented on three different 

platforms: in the image processing package HIPS on a Sun SPARC IPX to 
determine FOE in off-line image sequences, in a robot control program on a 
Sun SPARC 10 for controlling the motion of a six degree-of-freedom (DOF) 
robot in real-time, and in the public-domain software NIH Image for a real-
time collision warning system.  
 
 
4.1 FOE Calculation  

 
Following the theorem in Section 3.1, the focus of expansion (FOE) is 

computed based on the principle that flow vectors are oriented in specific 
directions relative to the FOE. Specifically, the horizontal component hL of an 
optic flow vector L to the left of the FOE points leftward while the horizontal 
component hR of an optic flow vector R to the right of the FOE points 
rightward, as shown in Figure 1. In a full optic flow field the horizontal 
location of the FOE, corresponding to the position about which a majority of 
horizontal components diverge, can be estimated using a simple counting 
method to tally the signs of the horizontal components centered on each 
image location. At the point where the divergence is maximized, the 
difference between the number of hL components to the left of the FOE and 
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the number of hR components to the right of the FOE will be minimized. 
Similarly we can estimate the vertical location of the FOE by identifying the 
position about which a majority of vertical components (vU and vD) diverge.  

Here we extend this principle to the field of normal flow vectors. As 
outlined in the theorem in Section 3.1, we can reliably estimate the FOE from 
a normal flow vector field, providing that the intensity gradient (edge) 
distribution in the image is uniform (i.e., the probability that a certain 
orientation is seen in an image location is constant across orientations). 

We implemented a version of the proposed method in HIPS to determine 
FOEs in standard image sequences. To calculate the normal flow vector 
fields, the images were first convolved with one-dimensional Gaussian 
derivative kernels to estimate the spatial derivatives of the intensity gradient. 
The standard deviation of the Gaussians was 0.75 pixels. The results of 
applying this kernel on an image are shown in Figure 2. The image, and its x- 
and y- spatial derivatives (Ix, Iy) are shown respectively from left to right. The 
temporal derivative (It) was computed as the pixel-wise difference between 
sequential pairs of image frames. Normal flow was then computed using the 
image flow constraint equation (Horn, 1985) 

 
                      0=++ tyx IvIuI       (3) 

 
where Ix, Iy, and It correspond to the spatial (x,y) and temporal gradients in the 
local image intensity respectively and (u,v) correspond to the x- and y-
components of motion.  

The FOE coordinates were estimated from the fraction of rightward 
horizontal components and the fraction of downward vertical components of 
the normal flow. This method is admittedly crude because it does not consider 

 
 
Figure 1. Schematic representation of two local optic flow components resulting from forward
translation. For motion vectors located to the left (L) and right (R) of the Focus of Expansion 
(FOE) the horizontal components of motion point to the left and right respectively.   
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the detailed distribution of the signs (we used a more elaborate 
implementation in the collision detection application described later) and the 
temporal difference calculation does not incorporate temporal smoothing 
(which can improve the results for typical 3-D observer motion where 
transitions in the FOE are generally smooth). Using this straightforward 
procedure, we calculated the FOEs on four different standard image 
sequences, and found the FOEs to be qualitatively correct in each. The results 
are illustrated in Figure 3 where the FOE is marked as a dark dot within a 
white square (only typical results across the images sequences are shown).  

Naturally, this method is limited because it is useful only for motion with 
pure translational velocity. The applicability of the method will be enhanced 
if we can demonstrate its utility in applications requiring rapid computation of 
the FOE such as control loops or fast collision detection. Accordingly, we 
describe below applications where we have used this fast approach to 
compute the FOE from the normal flow vector field. 

 
 

4.2 Closed-Loop Control  
 
The goal of this application was to control a camera so as to align its 

optical axis with the unknown direction of translation. The direction of 
translation (FOE) was computed using the method outlined above, and a 
standard visual servoing method (Espiau, et al., 1992) was used to calculate 
the rotational velocity control to accomplish the desired alignment. The 
overall control procedure, shown schematically in Figure 4 and explained in 
detail elsewhere (Bouthemy & Sundareswaran, 1993, Sundareswaran, et al., 
1996, Sundareswaran, et al., 1994), resulted in correct alignment of the 
camera optical axis direction with the unknown direction of translation. A 
graph illustrating the convergence of these two directions in a typical 
experiment is shown in Figure 5. 

 

 
 
Figure 2. A sample image (left) together with the corresponding spatial gradients, Ix (middle) 
and Iy (right), formed by convolving the difference kernels  with the image. 
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Figure 3. Frames from standard image sequences showing the results of the FOE computations
using the method proposed here. The FOE is shown in each case as a black dot embedded
within a white square.  

Y

T
Z

Z

T

Y
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Figure 4. Schematic of the control system. Before control, the relative orientation between the
camera optic axis (Z) and the translational direction is arbitrary. After control, they are aligned.
A two-dimensional projection is shown for simplicity. 
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4.3 Collision Detection  

 
An important capability for mobile systems is to avoid collisions with 

static and mobile objects. Knowledge of self-motion is very useful to 
determine the time to collision (TTC) with static objects, and to segment 
independently moving objects. Using the method outlined above we 
calculated the FOE and estimated TTC by determining if the area surrounding 
the FOE was "zooming in" at a sufficiently fast rate to detect possible 
collision with that area.  

The TTC can be estimated from the parameters of the first-order 
approximation to the optic flow field. The first-order (affine) approximation is 
given by 

 

                                               
yaxaav
yaxaau

654

321
++=

++=
      (4) 

 
where the parameters a2 and a6 encode the divergence of the flow. It can be 
shown that for surfaces that give rise to a flow that is nearly affine, the TTC is 
given by the expression  
 

      
62

2
aa +

=τ        (5) 

 

 
 
Figure 5. The graph shows the convergence in the angular difference between the camera
optical axis direction and the direction of translation for an experiment performed with a
camera mounted on a 6-DOF robot arm 
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The parameters a2 and a6 can be computed from the normal flow over a 2-D 
image region. However, to simplify the computation, we consider only the 
horizontal line and the vertical line passing through the FOE. Figure 6 
illustrates the simplification achieved by this choice of normal flow 
components.  

Arbitrary local edge directions have been chosen to show the normal flow 
of two optic flow vectors, one along the vertical line and the other along the 
horizontal line passing through the FOE. Note that these optic flow vectors 
must lie along these lines because of the structure of translational flow fields. 
It can be easily shown that the magnitude of the horizontal optic flow vector 
is  

 

   
y

t
h I

I
v =        (6) 

 
and that of the vertical optic flow vector is 
  

   
x

t
v I

I
v =        (7) 

 
where (I) is the spatio-temporal intensity function. Using several 
measurements along the horizontal and vertical lines, we can calculate the 
desired affine parameters as follows 

  

 
 
Figure 6. The affine parameters a2 and a6 can be estimated from points along the horizontal and 
vertical lines passing through the FOE as the distance normalized horizontal (vv) and vertical 
(vh) components respectively. 
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where xh and yv correspond to the transformed image coordinates of the 
horizontal and vertical normal flow components with the FOE as the origin, 
and m and n correspond to the number of horizontal and vertical motion 
components computed across the image. 

We have implemented a demonstration in NIH Image, based on 
computation of the TTC on a PowerMacintosh 8500 with a camcorder 
connected to the built-in video port. The system generates warning beeps 
whenever an object approaches faster than a pre-set threshold to indicate a 
"low" time to collision value.  

The difference between this system and a general motion sensor is that 
this system provides a warning only if there is an impending collision, but not 
if there is any other type of motion. The schematic in Figure 7 illustrates the 
operation of the system. Image sequences showing results of the collision 

 
 
Figure 7. Flow chart of the collision warning method. 
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detection method can be accessed at http://www.bu.edu/bravi/research/ 
MagicHat/MagicHat.html. 

Incoming frames were smoothed using a built-in (NIH Image) weighted 
averaging filter, and spatial derivatives were computed using 3X3 difference 
filters. Temporal derivatives were computed by differencing (two) smoothed 
frames. The normal flow was computed as before using the optic flow 
constraint equation. The FOE was computed as the coordinate with the least 
number of "wrongly oriented" components on either side of it (e.g., for the 
horizontal coordinate of the FOE was chosen so that the sum of the number of 
rightward components to the left of it and the number of leftward components 
to the right of it was minimal). 

The linear coefficients of the first-order approximation to the optic flow 
provide effective measures of the rate of expansion, and hence the time to 
collision. Thus the time to collision can be directly related to the coefficients 
of x and y in the first order expansion. The linear coefficients in a region 
around the FOE were estimated by considering the normal flow on the 
vertical and the horizontal lines passing through the FOE. The time to 
collision based on the estimated coefficients was thresholded, i.e., if it was 
below a threshold a warning beep was sounded.  

To verify our assumption that the edge distribution is uniform, we 
implemented a method to histogram the orientation of moving edges in typical 
image sequences (using bins of 1 degree width), assuming that the edge 
distribution is a stationary process (probability distribution at a pixel location 
is the same as the spatial distribution). We observed empirically that for 
indoor image sequences the distribution of edge orientations was not uniform. 
We found a preponderance of vertical and horizontal edges, and a relatively 
uniform distribution across the other orientations (Figure 8).  

0 90 179

21%

2%
 

 
Figure 8. A sample frame from an indoor sequence and the corresponding distribution of edge
orientations (across the whole sequence). The graph shows average percentage of pixels in each
frame with a certain edge orientation (0 deg corresponds to horizontal edges, and 90 deg
corresponds to vertical edges). 
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This result, however, does not invalidate the method proposed here. 
Following the reasoning in the theorem in Section 3.1, it can be shown that 
for vertical edges, the sign of the x components of the optic flow and normal 
flow always agree; likewise for the horizontal edges, the sign of the y 
components always agree. Thus, the effect of the non-uniform edge 
distribution for indoor scenes only improves the performance of our 
implementation, as long as the camera pose is such that the vertical and 
horizontal edges of the scene are imaged as vertical or horizontal edges (i.e., 
near-zero camera tilt angle). 
 
 
5 DISCUSSION 
 

In this research we proposed the development of specific methods for 
performing tasks using visual information rather than building a 
representation based on visual processing. Toward this goal we have 
presented an approximate but fast method to locate the focus of expansion 
(FOE) based on the normal optic flow in an image sequence. Together with 
the use of a simple divergence estimator that does not require significant post-
processing beyond the normal flow calculations, we have shown that the FOE 
in conventional image sequences can be reliably estimated in real-time and we 
have demonstrated its use in gaze control and collision detection.  

The algorithm described here has several advantages that make it 
appealing as a method for extracting real-time FOE estimates for use in 
visually-guided tasks. First and foremost, the system can be implemented 
using off-the-shelf frame grabbers and cameras and the algorithm’s 
performance can be easily scaled up to real-time levels using commercially 
available computer systems.  

Second, no camera calibration information is required. While it is true 
that the inter-pixel distance is required for the TTC computation, it can be 
specified in arbitrary units (e.g., pixel count, as in our implementation) since 
the "collision sensitivity" or threshold of the system can be adjusted to 
compensate for the unknown scale factor.  

Due to the simplicity and reliability of the computations, the approach can 
also be extended for use in low-light situations or infrared image sequences. 
Similarly, the approach can be easily adapted for tracking and motion 
encoding applications.  

However, before the proposed method can be applied to more complex 
environments involving multiple motion sources it will be important to 
incorporate algorithms to segment the image motion and identify observer 
motion. This is a complex problem in itself and we do not propose a solution 
here. Nevertheless, we note from empirical observations that for the camera 
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alignment task, small object movement did not significantly affect the 
computation of the FOE and the subsequent convergence (Bouthemy & 
Sundareswaran, 1993). 

In future work we will investigate these issues with the goal of 
generalizing the proposed algorithm to systematically more complex visual 
scenes. Together with the increase in computer power and portability, we 
expect that the ongoing development of robust and computationally efficient 
real-time methods will continue to facilitate application-driven research into 
autonomous robotic systems and mobility assistive devices for the visually 
impaired.  
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