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Abstract. In neurophysiological experiments examining the selectivity of MSTd neurons
to visual motion components of optic flow stimuli in monkeys, Duffy and Wurtz (1991)
reported cells with double-component (plano–radial and plano–circular) and triple-component
(plano–radial–circular) selectivities, while Grazianoet al (1994) reported neurons selective to a
continuum of optic flow stimuli including spiral motion. Here, we address these reported findings
under simulated experimental conditions by examining the development of optic flow selectivity
in the hidden units of a two-layer back-propagation network. We also examine network motion
sensitivity during simulated psychophysical tests via the addition of a competitive decision layer.
Network analysis with neurophysiological stimuli identified a majority of hidden units whose
position invariance and motion selectivity were consistent with MSTd responses to the visual
motion components of optic flow stimuli reported by Duffy and Wurtz and Grazianoet al.
Furthermore, the hidden units developed a continuum of optic flow selectivities independent
of the biases associated with the specification of the motion selectivity in the output layer.
During psychophysical testing, network responses showed motion sensitivities which met or
exceeded human performance. Within the limitations imposed by the learning algorithm, the
psychophysical results were consistent with a model of global motion perception via local
integration along complex motion trajectories.

1. Introduction

During motion, the projection of points in the visual scene onto the retina forms a motion
pattern referred to as optic flow. This optic flow produces visually perceived complex
motion patterns which combine self-, object and retinal motions to provide a rich source of
information regarding the dynamic structure of the scene. The individual motions forming
these complex motion patterns are useful in guiding navigation, computing heading, object
tracking, and the recovery of three-dimensional structure from motion. In the light of this,
the development of processing mechanisms which can extract individual motions in a visual
scene would be a valuable component of any visual system.

Given the wide variety of motions which can occur, we might expect that such
processing mechanisms should contain specialized detectors sensitive to the independent
motion components (e.g. radial, rotational, translational) inherent in complex motion†. The

† During motion through a simple rigid environment, complex motion (optic flow) can be decomposed into a
set of component flow fields characterized by pure radial, rotational, and translational motion. Since radial and
rotational flow fields form a mutually orthogonal set of axes under a point-by-point scalar product of the flow
field, they can be used to define a two-dimensional optic flow space. Within this space, off-axis points represent
intermediate combinations of radial and rotational motion, (spiral flow fields) which can themselves be used as a
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relative responses of these specialized detectors could be used to extract the global self-
motion and more local object motions contained within the complex motion of the visual
scene.

Psychophysical studies have provided support for the existence of specialized detectors
sensitive to radial, rotational, and translational motion (Beverley and Regan 1979, Freeman
and Harris 1992, Morroneet al 1995, Snowden and Milne 1996, Te Paset al 1996, Burret al
1998). The results of these and other psychophysical studies suggest that these specialized
detectors integrate local motions to obtain a global motion percept (Watamaniuk and Sekuler
1992, Smithet al 1994, Morroneet al 1995, Burret al 1998). Specifically, in experiments
performed by Morroneet al (1995), the signal-to-noise sensitivity for motion discrimination
was measured as a function of stimulus area using random dot displays which presented
radial, rotational, and planar motion stimuli. For all sets of stimuli, subjects showed a linear
increase in motion sensitivity as a function of stimulus area. Because these results were
well approximated by an ideal linear-integrator model of motion detection, Morroneet al
used them to postulate the existence of neural mechanisms which integrate the components
of visual motion along complex trajectories.

Neurophysiological studies in the macaque have revealed cells in the dorsal division of
the medial superior temporal area (MSTd) of visual cortex which exhibit preferred responses
to pure optic flow fields characterized by expansion, contraction, rotation, and planar motions
(Saitoet al 1986, Tanaka and Saito 1989, Tanakaet al 1986, 1989, Duffy and Wurtz 1991a,b,
1995, Orbanet al 1992, Grazianoet al 1994, Lagaeet al 1994). These results confirm the
existence of specialized detectors in MSTd which are sensitive to complex motion and, in
conjunction with psychophysical results, suggest the existence of structures in the human
visual system which contain cells sensitive to the components of complex motion. However,
the variability in the reported preferred motion characteristics in monkey MSTd suggests
that the most suitable method for characterizing the preferred responses of cells in MSTd
is not generally agreed upon.

In experiments measuring neuronal responses to dynamic random dot stimuli, Duffy
and Wurtz (1991a,b, 1995) identified neurons with combinations of preferred responses
to optic flow and confirmed the results of previous experiments reporting neurons in
MSTd selective to radial, rotational, or planar motion. Specifically, they identified neurons
exhibiting preferred responses to two or three different types of complex motion stimuli,
referring to them as double- (plano–radial and plano–circular) and triple-component (plano–
radial–circular) respectively. For these multi-component neurons, the degree of response to
the preferred stimulus of each neuron was not constant over each group of double/triple-
component neurons but extended over a continuum of quantitative values. Furthermore,
the position dependence of these cells spanned a continuum of position dependence with
single-component neuron responses being the least position dependent and triple-component
neuron responses being the most position dependent.

Grazianoet al (1994) reported results which suggested an alternate characterization
for neurons classified as multi-component by Duffy and Wurtz. They hypothesized that
double/triple-component neurons were more responsive to the motion vector combination
of the preferred multi-component stimuli. In their experiments, neurons were characterized
using the multi-component classification and those exhibiting radial/rotational responses
were tested with radial, rotational, and intermediate spiral stimuli. The majority of multi-
component radio–circular cells exhibited preferred responses characterized by Gaussian

basis set for the space. The addition of translational motions produces a four-dimensional space in which points
not contained in the radial/rotational hyperplane (i.e. stimuli with translational components) represent stimuli with
shifted centres of motion.
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distributed tuning curves centred on the intermediate single-component spiral stimulus. In
these cases, the responses were position invariant to small shifts in the centre of motion
(COM) when the optimal preferred stimulus was used. However, as suboptimal multi-
component radial and rotational stimuli were presented position dependence increased.
Based on these results, Grazianoet al (1994) concluded that the majority of neurons in
MSTd could be most accurately classified as single component, spanning a continuum of
preferred responses in the optic flow space.

In order to characterize the neurophysiological and psychophysical results of complex
motion processing within a computational framework, several biologically plausible models
have been developed to address specific aspects of the reported results. To detect heading
direction from optic flow, Lappe and Rauschecker (1993, 1995) proposed models using
the subspace algorithm introduced by Heeger and Jepson (1990), while Perrone and
Stone (1994) developed a template-matching model utilizing direction- and speed-tuned
motion sensors. Both models identified units with preferred responses to complex motion
stimuli corresponding to specific subclasses of the multi-component classifications used
by Duffy and Wurtz. To examine position invariance in MSTd, Zhanget al (1993)
constructed a network using simple Hebbian synapses which developed position-invariant
units exhibiting selectivities to a continuum of complex motions. However, unlike cells
in MSTd, the network decomposed the velocity field, responding to the preferred complex
motion components regardless of the magnitudes of additional complex motion components
in the stimulus.

Additional models proposed by Wang (1995, 1996), Zemel and Sejnowski (1998), and
Pitts et al (1997), examined the characteristics of complex motion tuning and the emergent
properties of units in biologically plausible networks. Wang (1995, 1996) constructed
a competitive network utilizing the hierarchical structure of motion processing identified
between the middle temporal (MT) area and MST. The network was trained with simple
schematic representations of ‘cardinal’ complex motion stimuli (radial, rotational, and
translational motion) and the properties of units in the middle and output layers were
examined. In both layers Wang identified units with a continuum of complex motion
selectivities and preferred COMs. Similar results were obtained by Zemel and Sejnowski
(1998) using optic flow stimuli generated from movie sequences simulating a variety of
natural motions. Using an unsupervised network containing units with different receptive
fields, their model identified position-invariance properties similar to those of MST and
investigated the ability of MST-like units to segment individual motions in a complex motion
scene. Pittset al (1997) developed a model based on the organization of pattern selective
units proposed by Duffy and Wurtz (1991b). Using complex motion patterns similar to those
of Wang (1995, 1996), the model accounted for the complex motion properties reported by
Duffy and Wurtz (1991a,b) and was extended to include preferred responses to a larger set of
complex motion stimuli. Within the limitations imposed by the simplified network inputs,
the model was able to develop position-independent properties via additional inhibitory
connections between units.

This paper consists of two parts. First, we use a two-layer back-propagation network
to investigate the properties of the hidden layer under conditions simulating the multi-
component and a continuum of single-component responses in MSTd. Second, we test
the ability of the network to integrate complex local motions into a global motion percept
based on its psychophysical performance. While previous models utilized simple optic flow
stimuli we have developed a more complex stimulus set which minimizes symmetry in
the input. Unlike unsupervised networks which use similar MT/MST structures and more
natural and complex optic flow, the supervised nature of the network presented here allows
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the development of intermediate layers to be biassed via the output layer. This allows us to
compare the methods of cell classification proposed in MST by implementing distributions
in the output consistent with each classification and examining the hidden layer of the trained
networks under an optimal encoding hypothesis.

To investigate hidden-unit properties we developed a network consistent with a
hierarchical structure of motion processing. Network inputs consistent with MT responses
to schematic representations of optic flow stimuli were propagated through the network
via weights fully connecting adjacent layers. After training under conditions simulating
multi-component and a continuum of single-component classifications of cell selectivity,
hidden-unit properties including their preferred responses and degree of position invariance
were examined. By manipulating the selectivity of units in the output layer through the
target conditions, we addressed the multi-component (Duffy and Wurtz 1991a,b) and a
continuum of single-component (Grazianoet al 1994) classifications and investigated the
distribution of hidden-unit selectivities under an optimal encoding hypothesis.

We then extended the network to examine its psychophysical performance and
investigated its ability to integrate local motions into a global motion percept. To obtain
psychophysical responses from the trained network we added a competitive decision layer
to the primary network. The decision layer was fully connected to the output layer of the
primary network and trained to respond to radial and rotational stimuli. After training,
schematic representations of the psychophysical stimuli used by Morroneet al (1995) were
presented to obtain the motion sensitivity of the network. These results were then compared
and contrasted with psychophysical results from human subjects and also with the motion
sensitivity predicted by an ideal linear-integrator model of motion discrimination. Finally,
the resulting network structure, hidden-unit characteristics, and psychophysical responses
of the computational model were discussed and compared with neurophysiological and
psychophysical results.

Preliminary versions of this work have been presented at the Society for Neuroscience
1996 Annual Meeting (Beardsleyet al 1996) and the Association for Research in Vision
and Ophthalmology 1997 Meeting (Beardsley and Vaina 1997).

2. Methods

To simulate the neurophysiological experiments on MSTd, we used a two-layer back-
propagation network and examined the development of optic flow selectivity in the hidden
layer. The physiological and computational organizations of the network were selected to
remain consistent with a hierarchy of motion information processing in the visual pathway
from MT to MSTd.

2.1. Primary network structure and training: investigation of hidden-unit properties

The primary network was implemented using the physiological and computational
organization shown in figures 1 and 2. Using a hierarchical structure, schematic
representations of complex motion stimuli were presented to directionally selective MT
units whose receptive fields were contained within a set of coincident MST receptive fields
63◦ in diameter (mean receptive field size reported by Duffy and Wurtz (1991a,b)). Network
inputs were fully connected to the hidden layer and consisted of MT directional responses
to complex motion/optic flow stimuli. The hidden layer, tentatively designated as MSTd,
was fully connected to an output layer explicitly defined to contain units whose responses
to optic flow were consistent with the reported selectivity of MSTd neurons.
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Figure 1. Primary network structure. Inputs to the network consisted of 1072 directionally
selective MT units uniformly distributed across 67 overlapping receptive fields and 16 directional
selectivities (22.5◦ increments across the 360◦ directional space). MT inputs were fully
connected to a hidden layer, tentatively designated as MSTd, such that the ‘effective’ receptive
field for each hidden unit coincided with the net receptive field of the input layer. The hidden
layer was fully connected to an output layer, producing receptive fields in the output layer
which were coincident with those of the hidden layer. To accommodate supervised learning in
the network the output layer was explicitly defined as MSTd.

Each schematic representation of a complex motion pattern represented an optic
flow field containing constant-speed vector representations of motion uniformly spaced
throughout a 63◦ diameter ‘visual field’ with a density of 1 point/degree2. The COM
of each stimulus was centred in the visual field during training and testing. Network
inputs consisted of a population code of 1072 Gaussian MT responses to optic flow stimuli
uniformly distributed among 67 receptive fields. Each receptive field corresponded to 16 MT
units whose directional selectivities were uniformly distributed in 22.5◦ intervals throughout
the 360◦ directional space†. The net response of each MT unit represented a normalized

† To reduce the complexity of the network we used idealized optic flow components and did not include speed
selectivity in the input layer. A more biologically plausible and physically valid implementation of the network
should include speed variability in the optic flow and speed selectivity in the MT-like inputs. This would increase
both the size of the stimulus set and the network while adding a second dimension to the selectivity (direction and
speed tuning) of the input layer. Computationally this would allow us to investigate speed tuning in the hidden
layer and permit the development of forward and inverse preferred speed gradients reported in MST (Duffy and
Wurtz 1997).
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Figure 2. Computational structure of the primary and extended networks. The network input
consisted of 1072 directionally selective Gaussian responses (σ = 11.25◦) fully connected with
the hidden layer. The response of the hidden and output units was formed from the sum of
weighted input to each unit passed through a logistic activation. To force an optimal encoding
in the hidden layer, the size of the hidden layer ranged from 15 to 45 units as determined by
the size of the output layer and the minimum number of units required to consistently achieve
the output error bound. The output layer of the primary network was fully connected with
the hidden layer and contained 10 or 20 units whose target responses to input stimuli were
chosen to remain consistent with observed MSTd responses to complex motion stimuli. In the
extended network, the output layer of the primary network was fully connected to four decision
units whose responses utilized a winner-take-all rule based on the sum of weighted inputs to
each unit. After training was completed with the psychophysical stimuli, the decision units were
classified as expansion, contraction, clockwise rotation, and counterclockwise rotation, according
to their binary responses to the respective stimuli.

spike rate calculated using the sum of responses across (N ) non-zero motion points in the
MT receptive field

opi = 1

N

N∑
m=1

exp

[
(min[µi − xpm])2

2σ 2

]
whereopi represents the response of theith MT unit to pattern (p), xpm is the orientation
angle of themth motion vector in pattern (p), µi is the directional selectivity of theith
MT unit, min[ ] refers to the minimum angular distance betweenµi and xpm, and σ is
the standard deviation of the Gaussian response for each MT unit. To reduce the effects of
stimulus symmetry in the input representation, MT receptive fields (with normally distributed
diameters,µd = 10◦ and σd = 0.67◦) consistent with average MT receptive field sizes
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(Albright and Desimone 1987, Rodman and Albright 1987, Andersen 1997), were pseudo
randomly placed within the encompassing MST receptive field.

To provide above threshold responses to intermediate local motion stimuli in the 360◦

directional space, a standard deviation of 11.25◦ was chosen for the MT Gaussian responses.
This corresponded to a half-amplitude direction tuning bandwidth of 43.2◦ such that over
the input range the minimum net response to intermediate motion directions was 97% of
maximum. While previous neurophysiological studies (Albright 1984, Maunsell and Van
Essen 1983), indicate that cells in MT exhibit a broad range of tuning bandwidths (32–186◦)
with a mean of 95◦, network training with larger tuning bandwidths did not significantly
affect the hidden unit properties†.

In the hidden layer, the number of units varied as a function of the number of output
units and ranged from 15 to 45 hidden units. Hidden units were fully connected to the input
layer with the output response of thej th hidden unit to pattern (p) given by

opj = 1

1+ exp
[
−(∑j wij opi + θj )

]
where θj is the bias associated with thej th unit andwij corresponds to the weighted
connection between theith input and thej th hidden unit.

Similarly, the output layer, designated as MST, was fully connected to the hidden layer
and responded via a logistic activation to the summed weighted input. To remain consistent
with the neurophysiological findings, the output layer target responses to optic flow were
obtained from Gaussian tuning curves predetermined to satisfy either the multi-component
or a continuum of optic flow selectivities and characteristics reported by Duffy and Wurtz
(1991a,b) and Grazianoet al (1994) respectively.

The primary network was trained using MT responses to 32 schematic representations
of optic flow spaced at 11.25◦ intervals throughout the 360◦ optic flow space illustrated
in figure 3. For each distribution of preferred responses simulated in the output layer, a
predetermined set of target responses was specified for the input set to facilitate supervised
learning. Using the sum-squared output error (SSE), the network was minimized through a
gradient descent of the error space via a modified version of the classic back-propagation
with momentum learning rule (Rumelhartet al 1986),

1wij (n+ 1) = ηδpj (n)opi(n)+ α1wij (n)
where for thenth iterationopi is the output of theith unit in the preceding layer to pattern
(p), δpj is the output error of thej th unit in the current layer to pattern (p), andη andα
correspond to the learning rate and momentum respectively. To increase the speed of
learning and execution, weight adjustments were made adaptively by incrementing the
learning rate as a function of the SSE

η =
{

1.001η SSE(n+ 1) 6 SSE, (n)

0.07η SSE(n+ 1) > SSE(n)

and by performing batched matrix calculations to obtain a gradient descent for each training
epoch. During training, the learning rate was set to an initial value of 0.2 and the momentum

† To investigate the effects of the tuning bandwidth on network responses, we constructed a network using broader
input direction tuning bandwidths of 95◦ (σ = 24.5◦). While increasing the input tuning bandwidth provided a net
input more closely approximating a uniform distribution throughout the directional space, post-training analysis
of the network units showed that the development of hidden-unit properties was consistent with primary networks
using narrow tuning bandwidths (σ = 11.25◦).
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Figure 3. A graphical representation of an optic flow space can be defined by increments of the
schematic motion vector angles from the baseline vector representation of a ‘pure’ expansion
stimulus. Regions intermediate to the basis motions defined by expansion, contraction, clockwise
rotation, and counterclockwise rotation correspond to varying degrees of spiral motion.

was held constant at 0.9. Training was completed when the average error of the output layer
across the training set reached a minimum bound of 0.5%.

To constrain the hidden layer to construct an optimal encoding of the MT inputs for
each configuration of output units, network structure was minimized via the hidden layer.
This was accomplished by reducing the number of hidden units until the minimum error
bound could not be consistently achieved within 30 000 epochs. After the network was
minimized, and prior to examining the hidden layer, the target Gaussian tuning curves were
verified in the output layer.

Because the network contained a minimum of 16 230 weighted connections trained on
32 schematic patterns the system was capable of grossly overfitting the training set. Under
these conditions, the network could develop highly non-Gaussian tuning curves in the output
layer which satisfied the training patterns but were not consistent with cells in MSTd. To
confirm that the output layer correctly generalized to the targetted tuning curves, a test
set of 360 patterns spanning the optic flow space formed by radial and rotational motions
was generated in 1◦ increments of the flow angleθ (figure 3). The learned responses to
the test set were correlated with the ideal target tuning curves to ensure that the network
developed correct generalizations (r > 0.95). When the output layer generalized correctly
to the training patterns, the hidden-unit properties were examined for each network (trained
and minimized).

2.2. Extended network structure and training: examining psychophysical performance

After training was completed, the primary network was extended for psychophysical testing
by the addition of a decision layer containing four linear units fully connected to the output
layer of the primary network (figure 2). To obtain a psychophysical ‘decision’ consistent
with the ‘2 alternative forced choice’ (2AFC) protocol of Morroneet al (1995), the output
responses from the decision layer utilized a binary winner-take-all representation based on
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the maximum weighted sum of inputs across units.
Since the primary network responses were deterministic while psychophysical

performance is probabilistic, we included internal Gaussian noise (σ = 0.05) in the extended
network to simulate human psychophysical responses more accurately. The Gaussian noise
used to represent the internal noise of an observer was added to the output of the decision
layer prior to choosing the winning decision unit and provided a decision uncertainty in the
psychophysical responses of the network.

The decision layer was trained using a winner-take-all competitive learning algorithm

1wm∗k(n) = η(opk − wm∗k)
whereopk is the output of thekth output unit of the primary network to pattern (p), wm∗k
is the weight connection between the winning unit (m∗) in the decision layer and thekth
output unit of the primary network, andη corresponds to the learning rate. To prevent
domination of the decision response by a single unit and to promote the classification of
stimuli into one of four ‘cardinal’ decisions (expansion, contraction, clockwise rotation,
and counterclockwise rotation), modifiable biases (bk) were applied to each decision unit.
To distribute winning across units, the biases for consistent losers were increased and the
biases of consistent winners decreased such that for thekth decision unit during the(n+1)th
iteration

bk(n+ 1) = e/zk(n+ 1)

where

zk(0) = 0.25 zk(n+ 1) = 0.999zk(n)+ 0.001opk(n).

Each network was trained for a minimum of 3000 cycles withη = 0.05 using 400
full-field (63◦) schematic representations of cardinal optic flow distributed across 10 levels
of motion noise (0, 10,. . . , 90%). Motion noise was incorporated into the static stimuli by
probabilistically designating each motion vector as noise with a probability equivalent to the
level of motion noise. When the motion was designated as noise, the velocity vector was
randomly reoriented to a new position in the 360◦ directional space. Since each stimulus
used a single schematic image to represent a time series of motion, the dynamic nature of
the motion noise was conveyed to the network by presenting 10 separate stimuli per noise
level for each of the four cardinal stimuli.

3. Simulations

3.1. Examining the development of optic flow selectivity in the hidden layer

The development of optic flow selectivity in the hidden layer was examined under two
conditions for the primary network. The first, referred to as the uniform condition, simulated
a ‘continuum of patterns to which MSTd cells are selective’ (Grazianoet al 1994) by
selecting target tuning curves whose Gaussian means were uniformly distributed throughout
the optic flow space. To remain consistent with neurophysiological results, the standard
deviation of each tuning curve was normally distributed withµ = 61◦ and σ = 15◦,
(Grazianoet al 1994).

The second condition, referred to as the cardinal condition, simulated the decomposition
of optic flow into the orthogonal ‘basis’ selectivities proposed by Duffy and Wurtz (1991a,b).
As for the uniform condition, a normal distribution of standard deviations withµ = 61◦ and
σ = 15◦ was used to create the target tuning curves. However, in the cardinal condition
the means of the target tuning curves were distributed uniformly throughout four cardinal
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Figure 4. Cardinal regions in the optic flow space
centred around expansion, counterclockwise rotation,
contraction, and clockwise rotation atθc = 0, 90◦, 180◦,
and 270◦, respectively. Each region encompassed an
angular width of 45◦ such that intermediate areas form
an equivalent set of spiral regions.

regions formed by dividing the optic flow space equally into ‘cardinal’ and ‘spiral’ regions
(figure 4). As a result, each cardinal region was centred at its cardinal angle (θc) with a
range of±22.5◦.

Under both simulated conditions, two network sizes were implemented. The first used
10 output units in conjunction with a minimized hidden layer of 15, 16, or 17 hidden
units. Although the use of 16 and 17 hidden units did not strictly minimize the network,
the resulting convergence and hidden-unit properties were consistent with the minimized
15-hidden-unit network. Their inclusion in the simulation analysis increased the sample set
of hidden units (reducing biases in the hidden-unit selectivities of individual networks) and
indicates that the system need not be strictly minimized. The second network size used 20
output units in conjunction with a minimized hidden layer of 45 hidden units. The increase
in network size provided additional variation in the hidden layer and extended the results
to larger networks.

3.2. Testing for position invariance in the hidden layer

To examine the position-invariant characteristics of units in the hidden layer, two sets of
shifted stimuli were presented to the primary network. The first set simulated the position-
invariance test outlined by Grazianoet al (1994) and extended it to tests with larger stimulus
apertures. Hidden-unit responses to optic flow stimuli were examined at five positions within
the network receptive field using stimulus apertures of 10◦, 20◦, and 63◦. An overlapping
cloverleaf arrangement was used such that the COM of shifted stimuli were separated by 5◦

axially for 10◦ and 20◦ aperture stimuli and 10◦ axially for 63◦ aperture stimuli (figure 5).
To measure the position invariance quantitatively under the cardinal and uniform

conditions, the hidden units and their preferred/anti-preferred optic flow stimuli were
classified into one of four extended cardinal regions (θc ± 45◦). Hidden unit responses
to the preferred and anti-preferred cardinal stimuli (θc) at each of the five positions in the
receptive field were used to calculate a directional selectivity (DS) index

DS= 1− response to anti-preferred stimulus

response to preferred stimulus
.

Using the DS indices, a position invariance (PI) index was calculated at each of the four
surrounding positions via the ratio of shifted and centred DS indices

PI= DSsurround

DScentre
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      Output Unit
    Receptive Field

Variable Optic
Flow Aperture

  5o shift (10,20o aperture)
  10o shift (63o aperture)

Figure 5. Cloverleaf arrangement of the stimulus
apertures used to test for position invariance in the
hidden layer. Cardinal stimuli with apertures of 10◦,
20◦, or 63◦ were shifted to four positions in the
hidden-unit receptive field with axial shifts of 5◦, 5◦,
and 10◦, respectively.

and was used to quantify the degree of position invariance observed in the hidden layer.
The second set simulated tests of the spatial distribution of COM specificity similar to

those performed by Duffy and Wurtz (1995). Unlike the protocol of Duffy and Wurtz, the
network units did not contain a view-centred reference frame which did not coincide with
the receptive field of the units in the network. As a result, the network tests were modified
from the original neurophysiological tests to present stimuli in the receptive field reference
frame of the network.

As with the first set of position-invariance tests, each hidden unit was classified into
one of four extended cardinal regions and tested with the corresponding cardinal stimulus.
Hidden-unit responses to full-field cardinal stimuli with shifted COMs were examined for 25
COM positions arranged in three concentric rings of eight combined with a centred baseline
stimulus. As illustrated in figure 6, each ring corresponded to an angular shift of 22◦, 45◦,
or 90◦ from centre and contained the appropriate cardinal stimulus shifted in one of eight
different directions. To remain consistent with neurophysiological results, COM shifts were
labelled as pericentric, eccentric and planar, respectively.

Figure 6. Schematic representation of 25 stimuli
containing examples of the shifted COMs used during
testing with an expanding cardinal stimulus. In
each representation, the circular boundary represents
the 63◦ receptive field of the network, filled circles
represent the COM of the stimulus, and the arrows
illustrate the relative directions of visual motion
within the stimulus. The stimulus set consisted
of a centred baseline stimulus (no shift) and three
concentric rings of eight shifted COM stimuli each.
The inner and middle rings labelled as pericentric
and eccentric represented stimuli whose COM was
shifted by 22◦ and 45◦, respectively. The outer ring
represented planar motion corresponding to stimuli
whose COM was shifted to infinity (Duffy and Wurtz
1995).
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For each set of shifted COMs, hidden-unit responses to the preferred shifted cardinal
stimuli were examined as a function of the direction of shift. The position invariance of units
in the hidden layer to large shifts in the COM was examined by comparing the hidden-unit
responses for pericentric, eccentric, and planar shifts with each other and with the centred
baseline response.

3.3. Psychophysical tests of motion sensitivity

To compare network responses with recent psychophysical results, the extended network
was tested for motion sensitivity using schematic patterns of cardinal optic flow whose
structure was consistent with psychophysical stimuli used by Morroneet al (1995). In the
psychophysical experiments, stimuli were represented by movie sequences of 360 black-and-
white Gaussian patches (space constant= 0.5′) whose motion was confined to a 10◦ aperture
with the central 1.5◦ removed. Cardinal and translational stimuli were presented and the
subject’s ability to discriminate between opposing motions (e.g. expansion or contraction)
was tested as a function of stimulus area and motion noise under mask and no-mask
conditions. For each test, stimulus area was decreased by dividing the stimulus aperture
into 16 sectors and symmetrically masking sectors. Under the mask condition the masked
sectors were filled with random dot motion while under the no-mask condition the masked
sectors remained blank.

In the network simulations, psychophysical stimuli were represented by schematic
motion vectors in a 21◦ aperture with the central 3.15◦ removed. The aperture contained
340 motion vectors and provided motion information which was similar to the motion of
360 dots used in the psychophysical experiments. Each stimulus was divided equally into
16 sectors such that the signal stimulus could be confined to 16, 8, 4, 2, or 1 maximally
separated sectors. The mask condition was simulated by filling the masked sectors with
100% motion noise (figure 7(b)) and the no-mask condition was simulated by leaving the
masked sectors blank. To approximate the dynamic nature of the motion noise during testing
under mask/no-mask conditions, 10 patterns were presented per cardinal stimulus per noise
level (0–90%) resulting in 400 test stimuli for each increment in stimulus area. Finally, to
average the effects of the internal noise of the observer each testing sequence of 400 stimuli
was averaged over 100 presentations.

As in the psychophysical 2AFC tasks, the network discriminated between expansion
and contraction, or between clockwise and counterclockwise rotation. Correct responses
were classified and tallied across noise levels and stimulus area and the average number of
correct radial and rotational responses was calculated as a function of noise and signal area
by combining the percentage of correct responses from opposing decision units.

To determine the motion sensitivity (MS) of the network

MS= 1+ N
S

where S and N correspond to the signal and noise components of the signal sectors
respectively, a least-squares Weibull fit was applied to the average percentage of correct
responses as a function of noise level. For each of the five signal areas, the 75% threshold
was compared with psychophysical results under mask/no-mask conditions and analysed
based on the linear-integrator model proposed by Morroneet al (1995) (see also Burret al
1998).
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Figure 7. (a) Scaled and time-lapsed example of stimuli used during psychophysical testing.
The stimuli contained 360 small black-and-white Gaussian patches (with space constant 0.5′)
whose four-frame time course moved in an expanding pattern within a region subtending a visual
angle of 10◦ (central 1.5◦ removed). (b) Example of a static representation of an expanding
motion stimulus (containing eight signal sectors under a masked condition with MS= 1) used
to simulate the four-frame motion sequence during psychophysical testing of the network. Each
stimulus contained 340 motion vectors and was presented in a 21◦ aperture centred in the 63◦
receptive field of the hidden layer.

4. Results

4.1. The development of optic flow selectivity in the hidden layer

For each set of simulations, a series of eight-point least-squares Gaussian fits was applied to
the hidden-unit responses to optic flow to estimate the mean and standard deviation of each
unit’s tuning curve, figure 8. For each unit, the eight responses used in the fitting procedure
corresponded to the presentation of eight pure cardinal and spiral optic flow stimuli located
at 45◦ intervals in the optic flow space. As in the neurophysiological experiments conducted
by Grazianoet al (1994), Gaussian fits with correlations below 0.9 and/or units exhibiting
double-lobed tuning curves were excluded from further analysis. In addition, Gaussian fits
with σ < 15◦ were excluded from analysis because of inadequate sampling using the eight-
point set. Throughout the hidden-layer analysis, these restrictions excluded 28± 10% of
the hidden units in each network.
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Figure 8. (a) Response profile for hidden unit 3 in a 15 hidden unit/10 output unit network with
a uniform distribution of optic flow selectivity in the output layer. Asterisks denote hidden-unit
responses to neurophysiological stimuli used to obtain an eight-point least-squares Gaussian fit
(dashed line). The solid line represents the actual hidden-unit tuning curve obtained using the
360-pattern test set. (b) Actual hidden-unit tuning curves for the hidden layer of the 15 hidden
unit/10 output unit network (note: Gaussian profiles appear rectangular owing to uneven axis
scaling). Owing to double-lobed tuning curves and/or Gaussian fits withr < 0.9, units 11 and
12 were excluded from additional analysis.
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4.1.1. Optic flow selectivity in the hidden layer using a uniform distribution of optic flow
selectivity in the output layer. Figure 8(a) illustrates a typical eight-point least-squares
Gaussian fit for a hidden unit in a 15 hidden/10 output unit network trained under the
uniform condition. Across network sizes, approximately 72% of the hidden units developed
single-peaked tuning curves which were well approximated by an eight-point Gaussian fit
(r > 0.9). Figure 8(b) illustrates the actual hidden-unit tuning curves of the same network
obtained using the 360-pattern test set. Units 11 and 12 were excluded from analysis owing
to double-lobed profiles and/or Gaussian fits withr < 0.9. Of the remaining units, most
exhibited tuning curves which were Gaussian in shape (rectangular in figure 8(b) owing to
uneven scaling) while some exhibited complex tuning curves which were well approximated
by an eight-point Gaussian fit. Throughout the simulations under the uniform condition,
the predominance of tuning curves with eight-point Gaussian structure was consistent over
multiple training sessions and across network sizes.

The selectivity of each hidden unit was defined as the mean of the corresponding eight-
point fit and a distribution of hidden unit selectivity was plotted in the optic flow space
for all units passing the minimum specifications, figure 9. The composite distribution in
figure 9(a) was constructed using the individual network distributions in figure 9(b). For the
units included in the composite distribution, the average standard deviation and correlation
of the fitted Gaussian profiles were 60± 38◦ and 0.96± 0.03, respectively. These results
were consistent with those of Grazianoet al (1994) who reported spiral tuned cells with
averageσ andr of 60± 34◦ and 0.96± 0.03 and cardinal tuned cells with averageσ and
r of 62± 25◦ and 0.97± 0.02, respectively.

An examination of both the individual and composite distributions (figure 9) reveals
units selective to spiral motion. Under the cardinal/spiral segmentation of the optic flow
space (figure 4), the selectivity of these units occurs within the spiral regions centred at
45◦, 135◦, 225◦, and 315◦ in the optic flow space. The distribution of selectivities in the
composite plot also indicates a continuum of optic flow selectivity with a slight bias toward
clockwise rotation. The presence of the bias is associated with the strong preference for
counterclockwise selectivities observed in the (45 hidden unit)/(20 output unit) network
(figure 9(b)). Because of the limited population used in the composite plot, it is not clear,
based on the networks examined here, whether this bias is an emergent property of the
network or a statistical variation from a uniform distribution.

While the continuum of optic flow selectivity observed in the composite and individual
plots is consistent with neurophysiological results, the distribution in the hidden layer
differs from neurophysiological results which indicate a strong bias toward MST selectivities
centred around expanding flow fields. This is not unexpected since the network was trained
with stimuli chosen uniformly from the optic flow space. However, based on the results of
Zemel and Sejnowski (1998) we expect that had the network been trained using a stimulus
set biased for expanding motions, the hidden layer would have developed an expansion bias.

4.1.2. Optic flow selectivity in the hidden layer using a cardinal distribution of optic flow
selectivity in the output layer. In networks trained under the cardinal condition with a
cardinal/spiral segmentation of the flow space, the output layer did not contain units selective
to spiral optic flows. This biassed the hidden layer against the development of spiral selective
units since the simplest solution in the hidden layer under an input/output mapping would
be to develop units whose tuning curves clustered in the cardinal regions represented in the
output layer.

Analysis of the hidden layer revealed units whose tuning curves were accurately
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Figure 9. (a) Composite plot of the distribution of hidden unit selectivities projected onto
the optic flow space under the uniform condition. The angular position of each radial line
represents the selectivity of a hidden unit in the optic flow space and the radial length represents
the correlation of the eight-point Gaussian fit. Based on a cardinal/spiral segmentation of the
optic flow space, the networks contain hidden units selective to spiral motion located in the
45◦ regions centred at 45◦, 135◦, 225◦, 315◦. The distribution of hidden-unit selectivity was
consistent with a continuum of optic flow selectivity in the hidden layer and exhibited a slight
bias toward clockwise rotation resulting from a numerical bias associated with the presence of
the 20-output-unit network in the composite plot. (b) The distribution of hidden-unit selectivity
for each network under the uniform condition where values in parenthesis indicate the number
of hidden units included in each analysis. As in the composite plot, spiral selectivity and a
continuum of optic flow selectivity are present across networks.

approximated by an eight-point Gaussian fit and whose structure was consistent with the
units illustrated in figure 8. As with simulations under the uniform condition, the Gaussian
structure observed in the hidden-unit responses was consistent over multiple training sessions
and across network sizes.

Figure 10 shows the distribution of optic flow selectivity obtained with networks trained
under the cardinal condition. For the units included in the composite distribution, the
resulting average standard deviation and correlation of 52± 36◦ and 0.96± 0.03 were
generally consistent with neurophysiological results. Despite the bias associated with the
cardinal condition, the hidden layers continued to develop units selective to spiral motion.
In addition to spiral selectivity, both the composite and individual distributions developed
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Figure 10. (a) Composite plot of the distribution of hidden-unit selectivities projected onto the
optic flow space under the cardinal condition. In spite of the bias against spiral selectivity implicit
in the output layer, all networks developed hidden units selective to spiral motion (located in
the 45◦ regions centred at 45◦, 135◦, 225◦, 315◦ based on a cardinal/spiral segmentation of the
optic flow space). Furthermore, the distribution of hidden-unit selectivity is consistent with an
unbiased continuum of optic flow selectivity in the hidden layer. (b) The distribution of hidden-
unit selectivity for each network under the cardinal condition. Values in parenthesis indicate the
number of hidden units included in each analysis. As in the composite plot, spiral selectivity
and a continuum of optic flow selectivity were present across networks.

unbiassed uniform distributions consistent with a continuum of optic flow selectivity in the
hidden layer. Taken together with the minimized nature of the hidden layer, these results
suggest that a continuum of optic flow selectivity may be an efficient method of encoding
optic flow input from directionally selective units.

4.2. Testing for position invariance in the hidden units

For each set of position-invariance tests conducted with small shifts in the COM (< 10◦), PI
indices were calculated at the four shifted positions and examined in a composite histogram
format (bin width = 0.1). Hidden units containing PI indices of 1 represented units which
were position invariant within the scope of the test. As the PI indices deviated from 1, units
responded more (> 1) or less (< 1) to the shifted stimulus than to the centred stimulus. In
cases where a unit flipped its selectivity at a shifted position, the PI index became negative.
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Figure 11. Position invariance (PI) histograms (bin
= 0.1) of all hidden units passing Gaussian fit
specifications for each of three stimulus apertures (10◦,
20◦, and 63◦). Across networks and stimulus apertures,
no hidden units reversed their selectivity (PI< 1).
As the stimulus aperture increased, the hidden-unit
population became more position invariant, as indicated
by the decrease in variance about PI= 1. For
full aperture stimuli (63◦), the hidden-unit population
became largely position invariant for stimulus shifts of
up to 10◦.

Figure 11 shows the composite PI histogram results across stimulus aperture for all
hidden units passing the Gaussian fit specifications under the uniform condition. As the
stimulus aperture increased, the position invariance of the units increased. Under full-
aperture (63◦) conditions the hidden-unit population became largely position invariant to
stimulus shifts of up to 10◦. As in neurophysiological results, none of the units reversed
their selectivity (PI< 0). Under the cardinal condition, PI histograms similar to figure 11
in both distribution and bin amplitude were obtained, but these are not shown here.

When hidden units were tested with larger shifts in the COM (> 22◦), they exhibited
a continuum of position-invariant responses. Figure 12(a)–(c) illustrates several examples,
ranging from units with position-invariant responses (12(a)) to those with position-dependent
responses (12(c)). Those units which were position invariant to large shifts in the COM
exhibited significant planar responses which were often indistinguishable from responses
to stimuli with COM shifts of 22◦ or 45◦. While these units did not exhibit the preferred
planar motion responses identified in multi-component neurons, their presence is intriguing
given that the networks were not trained with planar stimuli. Finally, the average hidden-
unit responses to pericentric, eccentric, and planar stimuli (figure 12(d)), showed the hidden
layer to be predominately position dependent with respect to COM shifts greater than 22◦.
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Figure 12. (a)–(c) Response amplitudes of three hidden units spanning the observed range
of position invariance in the hidden layer. Each hidden unit was presented with the ‘most
preferred’ cardinal set containing 25 stimuli with shifted COMs (figure 6). Each shifted set of
eight stimuli was plotted according to the directional shift of the COM (shown on the abscissa)
for pericentric (circles), eccentric (squares), and planar (triangles) shifts. Dashed lines represent
the hidden unit’s response to the centred stimulus and were always the best response in the set of
shifted stimuli. Hidden units were identified which encompassed a range of position invariance
from highly position-invariant units (a) to highly position-dependent units (c). Across hidden
units, little spatial specificity was observed in each shifted set of eight stimuli. (d) Average
hidden-unit responses to the 25-pattern set of shifted stimuli. The average responses in the
hidden layer indicate a significant degree of position dependence for COM shifts> 22◦.

4.3. Weight analysis

In addition to the examination of optic flow selectivity in the hidden layer, the primary
network structure was examined for functional and topographic structure in the weight
connections (hidden–output and input–hidden respectively). In figure 13, the weight
connections between the hidden and output units were examined for functional structure,
under the cardinal condition, using a weighted projection of hidden-unit classifications
to output units. Hidden units were grouped into eight classifications according to the
cardinal/spiral segmentation of the optic flow space. Classifications were designated by
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Figure 13. Surface plot showing functional structure in the weight connections between hidden
and output units in the 16-hidden-unit network trained under the cardinal condition. Hidden
units were grouped into eight classifications represented by their central angle (θc) following the
cardinal/spiral segmentation of the optic flow space. Output units were classified into one of
four cardinal regions and the net weight projection as a function of hidden-unit classification was
calculated for each. The diagonal ridge and adjacent troughs indicate the presence of opponency
between layers which is further illustrated by the two-dimensional slice corresponding to an
output unit selective for expansion. The expansion unit received positive weight projections
from expansion-selective hidden units and negative weight projections from contraction-selective
hidden units.

the centred flow angle (θc = 0, 45◦, 90◦, . . . , 315◦) of each region. Output units were
classified into one of the four cardinal regions and the net weight projection to each output
unit was calculated as a function of the eight hidden unit classifications. Figure 13 shows
the three-dimensional surface formed across output classification. The ridge and adjacent
troughs running diagonal to the classification axes illustrate the presence of opponency
between layers. This is seen more clearly in the two-dimensional slice of an output unit
selective for expansion. For this unit, the hidden units selective for expansion projected a
large positive net weight while units selective for contraction projected a large negative net
weight.

In the weights of the input–hidden layer, topographic structure was examined under the
cardinal condition as a function of the weighted input activation mapped onto the input space.
For each hidden unit the sum of weighted inputs was calculated for the 67 MT receptive
fields using the ‘most preferred’ cardinal stimulus determined from the position-invariance
tests. Figure 14 shows a typical surface map of the input activation to a hidden unit with
the net activation from each MT receptive field projected onto its receptive field centre.
Throughout all simulations, the input activation projected to the hidden units exhibited a
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Figure 14. Surface map showing the topographic structure of the net weight connections to a
hidden unit. For the hidden unit the sum of weighted inputs was calculated for each of the 67
MT receptive fields using the ‘most preferred’ cardinal stimulus determined from the position-
invariance tests. The surface map was generated by projecting the summed weighted input from
each MT receptive field onto its respective centre. Throughout network simulations, the hidden
units exhibited a centre–surround topography with the net weighted input of the central 5–30◦
a factor of two to three lower than the periphery.

centre–surround topography with the central 5–30◦ exhibiting a significantly lower activation
than the periphery. As figure 14 illustrates, input units with more central receptive field
positions exhibited net activations near zero while units whose receptive fields were located
peripherally in the input field exhibited significant positive net activations.

This reduced area of central activation helps to account for the position-invariant nature
of the hidden layer to small shifts in the COM. As stimulus aperture increases, the peripheral
activation progressively dominates the stimulus input. Since changes in the motion vectors
of the stimulus periphery decrease with increasing aperture, the variability of hidden-layer
responses to COM shifts also decreases. By definition, this decreased variability increases
the position invariance of the hidden layer (figure 11).

4.4. Psychophysics

Figure 15 shows radial and rotational motion sensitivity as a function of stimulus area for
the extended network and the experimental results of Morroneet al (1995). The dashed
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lines represent the motion sensitivity of an ideal integrator model for complex motion
discrimination. Under the no-mask condition the network agreed closely with experimental
results and was generally consistent with an ideal integrator model. Under the mask
condition, the motion sensitivity slope increased slightly from the no-mask condition but did
not follow the increased slope predicted by an ideal integrator. The absence of a significant
increase in the motion sensitivity slope over stimulus area under the mask condition indicates
that the network was not affected by the presence of motion noise in the mask sectors.

To determine how the network ‘ignored’ the noise sectors under the mask condition,
the weight distribution in the input–hidden layer connections was analysed by plotting a
histogram (30 bins) of the weight values to each hidden unit. The weighted projections to
the hidden layer were well approximated by Gaussian distributions with means centred near
zero (±0.0011) and an average standard deviation of 0.0048. During presentations of stimuli
with varying degrees of noise, the multiplication of positive noise inputs with the weighted
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Figure 15. Network motion sensitivity for discriminating radial and rotational motion compared
with experimental results from Morroneet al (1995). Dashed lines represent the motion
sensitivity of an ideal integrator model of complex motion detection. Under the no-mask
condition, the network results agreed closely with the experimental results and were generally
consistent with an ideal integrator model. Under the mask condition, the network results
decreased slightly from the no-mask condition and did not follow the increased slope of motion
sensitivity predicted by an ideal integrator. The results under the mask condition indicate that
the network was not affected by the presence of motion noise in masked sectors.
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connections produced weighted noise inputs which were also well approximated by zero-
mean Gaussian distributions. Under these conditions the input contribution of the summed
weighted noise to the hidden layer was approximately zero prior to the activation function
and its effect on the network motion sensitivity was minimized. For rotation sensitivity the
weight distributions were closely centred near zero. This increased the noise cancellation
and produced virtually no change between the mask and no-mask results with increasing
noise. In contrast, for radial sensitivity, the contributing weight distributions showed more
variance in the mean. This reduced the noise cancellation allowing the mask and no-mask
results to diverge with increasing noise.

Throughout training and testing, the network measurements of MS as a function of signal
area remained robust to changes in a variety of parameters including the distribution of noise
used to simulate the internal noise of the observer, the range of noise levels presented in the
training stimuli, the presence of internal noise during training, and changes in the threshold
used to calculate the MS. Since several of these parameters characterized the decision layer,
their inability to affect the motion sensitivity of the network significantly suggests that the
decision layer did not play a significant role in the psychophysical responses. Instead,
the decision layer acted only to reduce the amount of post-processing necessary to obtain
psychophysical responses from the primary network.

5. Discussion

In sections 4.1–4.3 we presented results and analysis for the properties of hidden units in the
primary network. These results include the types of complex motion tuning observed in the
hidden layer (section 4.1), which we discuss in section 5.1, and an analysis of the weights
and position-invariance properties (sections 4.2 and 4.3), which we discuss in section 5.2.
We also presented psychophysical results of complex motion sensitivity for the extended
network in section 4.4 which we discuss in section 5.3 in the context of the input–hidden
layer weight structure.

5.1. The development of optic flow selectivity in the hidden layer

During network training and testing several primary network parameters including network
size, input response profiles, and output response biases were varied across implementations
of the network. In the primary network, the hidden layers developed units with preferred
responses to optic flow consistent with the multi-component (Duffy and Wurtz 1991a,b)
and continuum of single-component (Grazianoet al 1994) methods of classification used
to characterize MSTd neurons. In addition to the single-component units identified in
neurophysiological results, a large proportion of hidden units developed stimulus selectivities
characterized by multi-component radio–circular responses. Consistent with findings in
MSTd neurons (Grazianoet al 1994), the hidden units classified as radio–circular exhibited
‘most preferred’ responses to the intermediate spiral stimuli formed by the scalar product of
the respective radio-circular motions. Since translational motions were not included during
network training, multi-component classifications including translation were not specifically
tested. However, the position-invariance tests for large COM shifts did show units with
significant responses to multiple directions of translational motion.

Analysis of the hidden-layer responses to stimuli spanning the optic flow space identified
a wide range of complex response profiles. Over 70% of the hidden units developed near-
Gaussian responses to optic flow stimuli producing good Gaussian fits (r > 0.9) to the
eight-pattern stimulus set used by Grazianoet al (1994) with average standard deviations
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and correlations which were in good agreement with neurophysiological results. For these
units, a more extensive sampling of the optic flow space revealed a subset of units which
contained secondary peaks not detected with the eight-pattern stimulus set. The structure
of the secondary peaks varied considerably in amplitude but typically exhibited standard
deviations less than 15◦.

The development of secondary peaks in the hidden layer is interesting but not
unexpected. While we have constrained the network through minimization of the hidden
layer to optimally encode the input to the output we have not imposed any explicit
constraints to force Gaussian responses in the hidden layer. In its current implementation
we have allowed the network a significant amount of freedom in developing suitable weight
structures. Because the network uses a small training set to constrain a large number of
weights, we suggest the secondary peaks may result from an overfitting of the computational
representation in the hidden layer.

In this context, the fact that the hidden units developed responses well approximated by
Gaussian fits is actually more significant than the presence of secondary peaks. Although
the variety of tuning profiles is reasonable based on the network structure, the ability to fit
them accurately to Gaussian profiles by rough sampling of the optic flow space is interesting
and suggests that the tuning profiles reported in MST need not be fully Gaussian throughout
the stimulus space.

Finally, an analysis of optic flow selectivity in the hidden layer across networks revealed
a continuum of preferred responses. The hidden units in all network simulations developed
a continuum of preferred responses to optic flow stimuli, regardless of the biases associated
with the specification of preferred responses in the output layer. Specifically, when the
output layer was biased to contain units with cardinal selectivities, the hidden layer continued
to develop a continuum of preferred responses including preferences for spiral motion.
These observations support results reported by Grazianoet al (1994) and suggest that a
continuum of optic flow selectivity may be an efficient method of encoding the visual
motion components of optic flow.

5.2. Testing for position invariance in the hidden layer

As with the development of hidden-unit selectivity in the network, position-invariance
testing in the hidden layer identified units with characteristics consistent with the
neurophysiological results reported by Duffy and Wurtz (1991a,b) and Grazianoet al (1994).

For small shifts in the stimulus COM (< 10◦), the hidden units produced position-
invariant responses which increased with stimulus aperture. Network analysis suggests that
the increased position invariance resulted from a combination of the computational increase
in input and the emergent weight structure in the network.

Because the hidden units contained logistic activation functions, small changes in the
weighted input tended to produce large changes in the output near the maximum slope of
the activation function. As stimulus aperture increased, the input to the network increased
proportionally with area. This caused the output to shift to regions of the logistic with
decreased slope, reducing sensitivity to small changes in the input. As a result, for small
changes in the input associated with shifting the COM, the variability in the output decreased
causing an increase in position invariance with aperture.

In addition to the position invariance associated with the increased input, the emergent
weight structures in the input–hidden layer connections also contributed significantly to the
position invariance of the hidden layer. During training, weight structures developed which
placed more emphasis on input from the periphery of the network receptive field. As the
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stimulus aperture increased, the weighted input from the periphery increasingly dominated
the input to the hidden layer. Since the periphery of the optic flow stimulus did not change
significantly for small shifts in the COM, the bias toward peripheral weighting caused a
significant increase in the position invariance of the hidden layer.

For larger shifts in the COM (> 22.5◦), the degree of position invariance in the hidden
layer spanned a continuum of responses with a predominantly position-dependent response
profile. In a manner similar to that for small shifts, the resulting position dependence was
caused primarily by changes in the preferred optic flow of the periphery. As the COM
shifted toward the periphery and beyond, the peripheral optic flow dominating the input
changed significantly from the preferred centred stimulus. This decreased both the output
from the hidden layer and, as a result, the position invariance.

Although a comparison of the neurophysiological results (Duffy and Wurtz 1995) with
the hidden layer responses for large shifts in the COM reveals differences in the degree
of spatial specificity, these appear to be due to the form of stimulus presentation. In the
neurophysiological experiments, most cells exhibited significant spatial specificity to the
direction of shift when shown stimuli centred in the monkey’s field of view, while in
the network, hidden-unit responses remained largely independent of the direction of shift
with stimuli centred in the unit’s receptive field. Owing to the structure of the current
network, stimuli could not be presented in a view-centred frame which did not coincide
with the receptive field of units in the hidden layer. Had network stimuli been presented in
a view-centred frame which did not coincide with the network receptive field, the hidden-
unit responses would have been more consistent with neurophysiological results in MSTd
showing increased spatial specificity for directions of COM shift.

5.3. Psychophysics

The motion sensitivity of the extended network was consistent with psychophysical results
from human subjects in the no-mask condition and its performance was significantly
better than psychophysical results in the masked condition. The linear increase in motion
sensitivity (as a function of the square root of the signal area) observed in the no-mask
conditions suggests that the network processed motion in a manner analogous to an ideal
integrator under no-noise conditions (Morroneet al 1995). In the mask condition, the zero-
mean Gaussian distribution of weights in the input–hidden layer connections caused the
network to ‘ignore’ sectors containing noise. As a result, in the mask condition the overall
motion sensitivity did not follow the linear increase with stimulus area observed in human
subjects and predicted by a linear-integrator model.

Although the network results in the mask condition were not consistent with
psychophysical results, the network did integrate local motions into a global motion percept
as observed in the human results. Based on the weight analysis, the discrepancy in the mask
condition arose primarily from a lack of constraints on the weights during learning. In the
network, the distribution of positive (excitatory) and negative (inhibitory) weight values
was freely determined within the constraint imposed by the output error. In the case of our
network, this resulted in a roughly equal distribution of excitatory and inhibitory weighted
connections which are not consistent with the predominantly excitatory connections in
cortex. Because inputs were summed prior to the activation function, the resulting zero-mean
weight distribution allowed the network to ‘ignore’ noise sectors in the mask condition even
though the local motion information to the network was integrated into a psychophysical
global motion percept in the decision layer.
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6. Conclusion

Although the extensive recurrent information used while training the network precludes its
literal application to learning in the brain, previous computational models of higher cortical
areas utilizing back-propagation have been shown to discover algorithms and develop
network interactions similar to those employed in cortex (Zipser and Anderson 1988, Zipser
1990, Sharonet al 1995). Similarly, our network has used back-propagation to discover
network properties which suggest that the structure of the network in conjunction with
the learned weight connections captured many of the salient features of neurons in MSTd.
Analysis of the network has shown that units in the hidden layer developed complex motion
properties consistent with a variety of neurophysiological results in MSTd. Specifically, the
network developed units with multi-component classifications (Duffy and Wurtz 1991a,b)
which were more accurately labelled using a continuum of classifications for cell specificity
proposed by Grazianoet al (1994). Testing with shifted COMs showed that the hidden
layer developed position-invariant properties which were consistent with MSTd for both
small (< 10o, Grazianoet al 1994) and large shifts (> 22◦, Duffy and Wurtz 1995) in
the COM. During psychophysical tasks measuring motion sensitivity to complex motion
stimuli, the network responses met or exceeded human performance and that predicted by a
simple ideal integrator model. In the context of applying physically more valid optic flows,
it would be interesting to examine these issues further using more natural stimuli similar to
those of Zemel and Sejnowski (1998) which encompass larger fields of view and contain
both observer and object motion.

In addition to being consistent with neurophysiological results in MSTd, the combination
of properties observed in the hidden layer suggest a possible role in heading and navigation.
Since it is postulated that neurons in MSTd contribute to heading and navigation, the
specificity of network units for complex motion stimuli in conjunction with position-
invariant responses to small shifts in the COM and increasing position dependence for
larger shifts, suggest that individual units could be used to code roughly for heading. Taken
in the context of a population coding mechanism, these units could be combined to obtain
refined estimates of heading and relative motion for use in navigation.
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