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_ Abstract. The importance of boundaries for shape
‘decomposition into component parts has been dis-
cussed from different points of view by Koenderink
and van Doorn (1982), and by Hofman and Richards
{19%84). The former define part boundaries as parabolic
contours, whereas the latter propose that part bound-
aries should be defined by contours of negative minima
{or maxima) of principal curvature. In this article,
building on aspects of both approaches, we develop a
new method for shape decomposition. This method
relies exclusively on global properties of the surface
which are fully characterized by local surface prop-
ertics. We propose that a useful parcellation of shapes
into parts can be obtained by decomposing the shape
boundary into the largest convex swrface patches and
the smallest nonconvex surface patches. The essential
computational stops of this method are the following:
(i) build initial parts from the largest locally convex
patches, (i) consider an initial part as a constituent
part if it is essemtially convex, and (iii) obtain the
remaining constituent parts by merging adjacent
initial parts generated by the largest locally convex and
the smallest nonconvex patches of nearly the same
sizes. The method is illustrated on both smooth and
continuous shapes. We show that the decomposition of
shapes into the largest convex patches aims to maxi-
mize the “thingness” in an object, and to minimize its
“non-thingness”, The method is conducive to a natural
parcellation of shapes info constituent parts useful for
recognition and for inferring function.

1 Intreduction

For the visnal system, Bartlett’s phrase “effort after
meaning” (Bartlett 1932) implies that it must recognize
and identify objects in the visual field, for it is objects
that have meaning for us. The world around us is filled

with an overwhelming variety of objects. One of the
most fundamental buman abilities is the perception of
similarities and differences of objects and to thereby
categorize them. Psychologists from the time of the
Gestalt school onwards (Gibson 1979) have argued
convincingly that the perception of objects is inti-

_ mately related to the exploratory, manipulative and

otientational motor behavior of the perceiver. That
people recognize what they perceive as known objects,
and that they can easily figurc out posaible functions of
objects that they have never seen before and, moreover,
that these perceptions tend to be consistent across
perceivers (Pentland 1987), indicate that there is some
natural, stable method for structuring object descrip-

tion. Furthermore, people tend to recover this natural |
structure from images and use it for recognilion. We

suggest along with others (Marr and Nishihara 1978;

Vaina 1983; Pentland 1986; Biederman 1985) that at

the heart of this commonly used method for structui-

ing objects is the notion of “parts™. These parts have

both a perceptual and a functional prevalence for the

perceiver, for they underlie both the distinctiveness of

objects and their similarity. Our view is that parts are

important because they offer a canonical and stable

description of objects which is at once perceptual and

functional. . ‘

Parts embody the visual meaning of objects and
constitute the dominant component of the basic level
of reference in the object category (Rosch 1973). Thus,
at the basic level of a category the attributes of a chair
include seat, legs and back. The basic level categoties
are the most general categories having members with
gimilar shapes. We submit that object parts constitute
the (global) reference space for features useful for
recognition, or for determining the compatibility with
the requirements imposed by actions (Vaina and
Jaulent 1988). For example, a handle, which is the
graspable part of a wide class of hand manipulable
objects such as tools or kitchen utensils is usually long
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and thin and its size is compatible with the aperture of
the human hand.

The structure of objects into parts and associated
perceptual attributes serves as an economical reason-
ing about the world in terms of simplified category
descriptions (Rosch 1973; Vaina and Jaulent 198%),

If we consider that parts are the building blocks of
visual knowledge systems, then rcasons of efficiency
. and usefulness impose that relatively simple combina-
tions of parts must form “rough-and-ready models of
the objects in our world and of how they behave”
(Pentland 1986). We consider that the practical goal of
perception, which refers to reasoning and to various
types of recognition, is to find parts of objects as soon
and as reliably as possible in the visual processing of
images. The basic premise of this study iz that organi-
zation by parts is both convenient and sufficient for the
type of mental manipulations of objects which are
involved in knowledge-based vision.

The idea of breaking objects into their components
has been implicit in ‘many -systems, but has only
recently been addressed explicitly. In recent years there
has been considerable effort to formalize the decompo-
gition of objects into paris in terms of differential
geometry (Koenderink and van Doorn 1982; Hoffrean
and Richards 1984), Along this line, wo proposc a now
method for obtaining parts. It differs from the previons
methods in that it relies exclusively on global prop-
erties of the surface, which are fully characterized by
local surface properties.

The problem of characterizing objects by parts, or
in short the Parts Problem, consists of several subprob-
lems which must be understood independently. It has
been argued that the description of parts should be
separated from the problem of finding parts (Hoffman
and Richards 1984). In other words, the problem of
assigning parts to categories is different from the
problem of carving an object into parts, or from
deriving pacts from the image, or of relating the paris
for describing whole objects for recognition, ingpec-
tion, or manipulation.

We propose a new method of carving objects into
parts and hence we shall limit the discussion to this
aspect of the “parts problem”, The paper is organized
as follows: Section 2.1 briefly reviews two fundamental
paradigms for decomposition of objects into parts.
Section 2.2 presents in detail one of these paradigms,
the boundary-based method, which constitutes the
point of departure for the decomposition method
proposed in this study and discussed in Sect. 3. Sec-
tion 3.1 illustrates the method with an example. Sec-
tion 3.2 gives the mecessary formal background for
developing this method and Sect. 3.3 gives examples of
partitions according to the method of the largest
convex patches we propose. Sectibn 4 concludes by

llustrating the psychological validity of the decompao-
sition method proposed. We shall call our method the
decompuosition in the largest convex patches to distin-
guish it from Hoffman and Richards’ minima rule and
from Koendernck and van Doorn’s parabolic lines.

2 Methods for Obtaining Paris
2.1 Paradigms for Part Decomposition

Three main methods have been proposed for obtaining
parts. The first method is usually referred to as axis-
based (Blum 196%; Binford 1971) and relies on the
decomposition of objects into parts based on the axes
of symmetry. The second method is called primitive-
based and relies on defining the possible shapes of the
parts. The basic shapes of parts most commonly nsed

* are cylinders, spheres, cones or polyhedras. The third

method i boundary-based, and here parts are defined
through their boundary with adjacent parts (Koender-
ink and van Doorn 1982; Hoffman and Richards 1984;

‘Bennet! and Hofftan 1987). Both, the primitive-based

and the boundary-based methods define parts on a
representation of the object which is independent of-
the vantage point. Furthermore, they fully specify the
3-D shape, that is the volume cccupied by the object or,
equivalently, the whole 3-D bounding surface.

Both these methods have advantages and disad-
vantages. The axis-based method is good for objects
which have axes of symmetry which are easily acces-
sible from the carlier processes.

The primitive-hased method is very useful for 4
priori specified classes of objects. Once one decides on
the appropriate primitive parts, the task is to find them
in the object and to associate them with characteristic

_ metrical properties (e.z length) and relate them by

predicates which express spatial relations (e.g. to the
right of). Many of our recognition tasks in the daily life
are facilitated by context or by our expectations of
what kinds of objects we may be dealing with. Specifi-
cally,in the domain of computer vigion, for which most
of the part-based methods have been developed, this
holds quite well. :

Naturally, one would prefer a general purpos
shape recognizer which does not impose strong de-
mands on the earlier processes. In cssence it would be
desirable to have a system which could recognize
pincapples, tomatoes, cats and chairs equally well,
even though in some circumstances some of these
objects might be better described by some “special
purpose” representations.

Bennett and Hoffman (1987) bave demonstrated
that the boundary-based methods do give a part
definition which is completely general. In addition, we
argue that the boundary based methods are better



suited for discovering how to use an object in other

than its primary finction, that is the functicm that the
object is designed for (Vaina and Jaulent 1988; Zlateva
and Vaina, in preparation), This is because we visually
sample only the parcellation of an object (Koenderink
1987), rather than the whole object. For the perceiver
an object is first defined through exploratory move-
ments as the visnal response to its parcellation. Hence
we argue that one first obtaing a fimctional definition of
the object, Tather than a description of it.

" Imagine, for example, holding an object in your
hand and examining it Lo see what it is good for. You
will first observe its humps, dimples, and furrows and
then you will apply your reasoning to them. In this
paper we Proposc a new houndary based method of
parceliation, It is useful for relating the perception of
an object to potential actions and this 1$ the goal of the
functional recoghition. '

22 Boundary Based Methods

Most r;prcsentaﬁvc of the boundary based method are
the approaches of Koenderink and van Doorn (1982),

and Hoffman and Richards (1984). The basis for -

obtaining parts in both methods is not dependent on
the vantage point, .

Both these methods, as weil as the decomposition
theory proposed in this article, employ technigues
from differential geometry, Therefore, we shall briefly
introduce the nevessary terminology. The intersection
of a surface § with a plane containing the susface
normal at some point pe S is called normal section. This
is a plane curve and its curvature is called the normal
curvature of the surface in the direction given by the
tangent of the nofmal section at p. The maximum
normal curvature k, and the minimum normal curva-
ture k are called principal curvatures. The correspond-
ing tangents give the principal directions of the surface
which can be shown to be orthogonal. The Gaussian
curvatuze at p is the product of the principal curva-
tures, k; and k;, and it constitutes the basis for a
classification of the points on the surface independent
of its orentation. A point p is planar if k;=k;=0,
parabotic if k,-k,=0 and either k, or k; is =0,
elliptic, if k, -k, is positive and hyperbolic, if k, -k,
is megative.

K oenderink and van Doorn (1982) were the first to
develop a boundary based method for the decomposi-
tjon of smooth solid shapes which are commected,
bounded volumes with at most a finite number of sharp
edges ot points, In this method the parts are outlined
by the parabolic lines on the surface of objects. Theze

 Tines divide the surfaces of smooth shapes into elliptic

(synelastic) and hyperbotic (anticlastic) patches. In the
neighborhood of any point of the elliptic patches the
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object boundary lies completely on one side of the
tangent plane. However, in the case of a hyperbolic, or
saddle like patches, the surface cuts the tangent plane

- and cuts an hourglass region shape of the object. For

elliptic patches, if the planc lies on the owtside the patch
ig convex and if it lies inside, it is concave.

We have seen above that, in geometric terms, the
parabolic lines conneut points on the surface where the
(Gaussian curvature is zero. This method gives a part
definition which is general and provides a partition of
any smooth surface. In this sense we could informally
consider that this schema is inherently global. How-
ever, Hoffman and Richards (1984) pointed out two
limitations of Koenderink and van Doorn’s method
mainly regarding the unnaturalness of the decomposi-
tionm it obtains. First, the condition of zero of the
Gaussian curvature is not sufficient for all developable
surfaces have zero Gaussian curvature but the method
does not obtain parts in such cases. Second, this
approach does not work in the case of figure/ground
reversal since the parabolic ines are independent from
the surface orientation.

The second boundary-based decomposition meth-
od we shall discuss here is based on the observation
that maxima, minima and inflections of principal
curvature along lines of curvature form good candi-
date points for partitioning a surface into umits in a
viewer independent manner. Hoffman and Richards
(1984) ohserved that in the natural or constituent
parts of shapes when 3-D parts are joined to create
coraplex objects, by and large the contour of the joint
iz concave. This sugpested to them that only minima
of the mormal curvature, not the maxima or inflec- -
tions, be used to partition a surface into parts. Thos
they proposed that, as a general rule, part boundaries
are found in places of concave discontinuities of the
tangent plane or pegative minima of curvature. Hoft-
man and Richards’ method relies in two rules for

‘dividing a surface info parts:

(a) Divide a surface into parts at concave discon-
tinuity of the tangent plane;

¢b) Divide a surface into parts at loci of negative
minima of each principal curvature along its as-
sociated family of lines of curvature (the minima rule).

A consequence of the above formulation is that the
part boundaties which are not invarnant under an
orientation reversal for contours of the minima
become contours of the maxitna and vice versa. Thisis
a psychologically valid point in that there is vast
evidence that the human visual system is very sensitive
to figure-ground reversal and so, for example, it
describes the same curve differently depending on the
direction of the traversal of the curve. : :

However, there are examples for which this method
will not give good parts (Fig. 2). One problein is that
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although Hoffman and Richards’ schema may obtain
the required information for recognition, it is often not
explicit and relations between parts are hard to obtain.
Also, the application of the minima rule is not always
straightforward while minima of the principal curva-
tate may not necessarily exist on the surface or along
the associated lines of curvature it is still possible to
perceive distinct structural parts. Consider the shape
bounded by the surface of revolution shown in Fig. 4a
whose generating curve is composed of threc smoothly
* joining circular arcs. The boundmg surface is given by

r=(ucosq,using, (1), SR o)

where u is the radius of the parallels, cp the angle .

between the (x, ) plane and the rotation planc and § ()
the parameterization of the generating curve. The
principal curvatures are correspondingly:

&
du®
k,= (2a) -
df 2% 3/2
((())")
4
k= du _ cos @ (2t)

iy
1+(4)

where, § is the angle between the axis of rotation and
the tangent to the generating curve (Fig la). The
sutface 1s smooth with two contours of discontinuity
of k.

Taking intoe comsideration that k, is just the

curvarure of the generating curve and ks, the reciprocal

of the length of the normal intercepted between f(u)

. Fig. 1. a Geometrical characterization of a surface of revolution
whose generating curve f{x) is a circwlas arc of radius R. The
principal curvatores ki, k; of any surface of revolution are
correspondingly the curvature of the gencrating curve and the
reciprocal of the length of the normal intercepted between f(x)
and the axis of rotation z. In the above cxample &, is constant

everywhere {k; =R). At places characterized a5 being of minfmal .

width k, has a positive maxitaum [ =0, with @ the angle between
z and the tangent of f{u)]. b Segmentation contours accerding 1o
the minima tule (from Hoffman and Richards 1984, Fig. £)

and the z-axis. Itis easy to see that there are no negative
minima of k, and k. is positive everywhere. Even if one
smooths the surface the minima would be rather weak
and difficult 1o localize.

However, segmentation contours like those shown
in Hoffman and Richards (Fig. 1b) could be obtained
when the rule is extended as 10 defing part boundanies
at loci of positive maxima if the two principal curva-
tures take opposite signs. For example in Fig, 4a, this
would yield the segmentation contour occurring at
6 =0 corresponding to places informally characierized
as being if minimal width.

The shape in Fig. 4a is more likely to be perceived
as composed of two spheres connected by a smooth
neck. The decomposition accotding to the extended
minima rule, results in two spheres and half of the
joining ncek which is rather unnatural

2.3 Criteria for the Evaluation
of the Decomposition Methods

The previous discussion and the general goal of this
study to obtain parts which are functional, suggest
gencral oriteria which must be satisfied by an adequate
method of part definition:

The first criterion is robustness, This criterion says
that the method must be ingensitive to small changes of
shape due to differences among the members of a class
or to small differences in the viewing position. Robust-
ness is achieved by requiring that the part definition
should rely on global features of the spatial structure.

The second criterion is computability and requires
that ultimately parts must be extracted from the image.
To satisfy computability, it is assumed that sclected
global features build on local properties extracted from
representations obtained earlier in the image process-
ing (Mart and Nishihara 1978; Brady 1983; Brady and
Asada 1954; Biederman 1985).

The third crterion refers to the scale, or the
resolution of the description. Parts can be defined at
geveral scales and the parts defined at coarser scales
tend to play 2 more dominant role in the deseription of
the object, comparable to object sizes. However, for
determining the implementation of an action with the
object, parts expressed at finer scales are often more
relevant, The multiple scale structure involves a de-
scription which is based on the use of parts, and the

- smaller parts ars expressed in terms of coarser ones.

This induces a hierarchical indexing of the object that
makes efficient both the search and the representation
of useful attributes (Vaina and Jaulent 1989). For
sawing, for example, the wiggly edge of the blade
implements the physical constraints required by the
action-consequence. The blade, however, tells us that it
is & “cutting” object.



The fourth criterion requests that the representa-
tion have rich local support (Brady 1983). By nich, 1t is
meant that the representation should be information
preserving so that a close approximation to the
original shape is recoverable from the representation.

Local support means that the information shounld be

derivable from local parts of the shape.

The fifth critcrion refers to smooth extension and
subsumption (Brady 1983). Smooth extension requires
that local information should give rise to global
representation through processes of grouping relating
local representations into a single global representa-
tion. The subsumption criterion suggests that one local
representation is better suited than others in order to
yield a more concise and natural representation of the
shape. ‘

In this paper we shall propose a method for part
identification from three dimensional surfaces which
gatisfies these criteria. We shall prove formally and
illugtrate with several examples that our approach
circumvents the difficulties met by the decompeosition
methods discussed above. ‘

3 A Convexity Based Method
of Surface Decomposition
into the Largest Convex Patches

Both the mathematical concept of smooth shapes and
plastic art emphasize the importance of the elliptic
patches which have a thing-like characteristic. By
contrast, the hyperbolic patches are only surfaces of
‘transition have a nonthing-like characteristic (Koen-
derink and van Doorn 1982), they are the “glue” that
holds the parts together. Viewing plastic ari as the
expression of knowledge which, by and large, is gained

through visual perception, Koenderink and van-

Doorn suggested that “natural” models for shape
description will have to take into account these
observations, and use as descriptors mathematical
formulation of elliptic patches. The decomposition
into elliptic and hyperbolic patches works well for
smooth shapes. Many of the objects surrounding us
have continuous shapes in the sense that derivatives of
higher order do not exist (unless one does smoothing of
the shape). A consistent extension of the local
behaviour of the elliptic patches is, however, captured
by the property of local convexity of the surfaces.
Taking into consideration the tendency of the
visual system to ¢lose curves and surfaces in the most
conservative way %, the “inward” surface of a part may

! Thig property has been used in the work on surface representa-
tion (Horn 1936; Brady and Asada 1584; Brady et al. 1385).
However we use it here not to obtuin surface representations
consistent with the available sparsc dats, but to trace part
bouandaries
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be defined as the surface of minimum area (minimal
surface ) that closes the locally convex patch, Follow-
ing these observations, and considering the impor-
tance of the space enclosing properties of surface
patches for part perception (Gibson 1979), we propose
the hypothesis that a natural decomposition of 2 shape
mnnst maximize its thing-like properties and minimize
its non-thing like characteristics.

Wesuggest a decomposition of the shape boundary
into the largest convex surface patches and the non-
convex surface parches which, as we shall prove, with
additional assumptions gives a umigue surface par-
tition. More specifically, we first decompose an object
into sets of points “enclosed™ by the largest convex
and smallest nonconvex surface patches of comparable
sizes. We argue that such a decomposition maximizes
the “thingness” in an object, and minimizes its “non-
thingness™.

The sutface decomposition into the larpest convex

and the smallest nonconvex patches will then generate

three types of shape regions, which we will refer to as
initial parts: () convex parts if the set of points
enclosed by the convex surface patch builds a convex
body; (ii) nonconvex patts generated by the largest
convex patches; (i) nonconvex parts gemerated by
the smallest nonconvex patches.

3.1 An Example

We will discuss a simple example which illustrates the
different initial parts and how they may relate to the
constituent parts of the object. A suitcase, such as that
depicted in Fig. 2, has two component parts: the
container and the handle. The container surface has
two largest locally convex parts (P*,P?) and three
smallest nonconvex surface patches (P?,5%,57%). As
discussed above the significance of the two nonconvex
patches §* and 32 is limited to “gluc” or to relate the
constituent parts.

We see that by closing P! through the minimal
surface, we obtain exactly a constituent part. The same
procedure applied on the P* results in an awkward
segmentation of the handle. In order to detive the
handle shape the two parts obtained from F? and P?,
by closing them through the minimal surface, must be

.merged.

Two observations emerge from this example. First,
the largest nonconvex patches are conducive to obtain-
ing parts. Second, two distinct strategics can be
employed for obtaining parts, and which one should be
used is determined by the specific structural character-
istics of the surface. Thus, ag we have scen in the

2 By “enclosed” it is meant that the shapes points belong to the
subset of R? bound by the corresponding surface paich and the
minimal surface which closes it
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Fig. 2. The surfacs of the suitcase shape displays two connected
subseis £* and P2 which arc locally convex cverywhere, Closing

P! in a “comservative” way, e through a surface of minimal

arca, one obtains a convex set of 3D points which defines a
constituent part  the container. The other constituent part — the
handle — builds & nonconvex set and is defined by the locally
convex P2 as well as the nonconvex P? of nearly the same size ag
P2 The remaining two nonconves sets 51 and 52 are of small size
and are overridden by the constituent parts

suitcase example, the part generated by closing P* is
locally and globally convex. That is, the whole part
always lies on one side of any of its tangent planes,
whereas the part generated by P? is (globally) non-
convex. The locally nonconvex patch P has size
parameters of the same order as the locally convex
surface patches, whereas the nonconvex patches 5% and
52 are significantly smaller in size. Methods based on
the parabolic lines would divide the handle into several
regions, and likewise the minima rule would decompose
the handle into several parta.

In the following section we shall give the formal
characterization of the class of shapes under discussion
and we will present a new decomposition method for
smooth shapes.

3.2 The Largest Convex Patch Method
of Shape Decomposition

The class of shapes discussed in this paper is limited to
smooth objects with well defined physical boundaries.
Therefore it includes man-made objects and animals,
but not shapes of rivers, clouds or mountains.

Such objects are bounded volumes formally de-
fined as connected compact (closed and bounded)
subsets of the three dimensional Euclidian space, R*.
For the present investigation we assume that the

boundary is a single connected surface. For smooth

objects (for which the first derivative exists every-
where), the boundary has a tangent plane defined
everywhere, This differs from the case of continuous
shape for which first order derivatives do not always
exist everywhere and hence the tangent plane is not
always defincd. We note that methods from differential
geometry cannot always be directly applied for the
shapes defined above as they are developed for surfaces
" with partial derivatives of all orders.

The local convexity property that our decomposi-
tion method builds upon can be defined uniformly for
smooth and continuous shapes as follows: a surface §

Fig 3a-d. Local and global comvexity of swface patches,
Under the assumption that the surface normal points towards
the shape the boundary S at p is: alocally positive convex;
b locally negative convex or concave; ¢ locally nonconvex. The
left column illustrates the above notions for smooth and the
right column for coptinuous shapes, The surface in d shows that
local convexity does not entail global convexity: the surface
patch P! is locally convex in all its points and nevertheless
there is a tangent plane which cuts P! (P? is locally nonconvex
and thus globally nonconvex)

is locally convex at a point p, peS if there exists a
neighborhood ¥ C§ of p, such that V is enfircly
contained in one of the closed half spaces determined
by the tangent plane(s) T, at p (i=1,...,i,), where i, 1s
the number of sided tapgent planes at p (usually p is
cqual to 2). Correspondingly, if there is a tangent plane
T, with ke{1,...,i,} such that ¥, lies in both half-
spaces determined by T,,, the surface is nonconvex at p.

For a fixed divection of the surface normal n, at p,
(e.g. pointing towards the shape) we can differentiate
two cases of local convexity, A convexity is locally

positive if and only if for all tangent plane(s) 7,; both the

normal #n, to T, and some ncighborhood V, arc
contained in one of the half-spaces determined by T
Otherwisc the convexity is locally negative convex or
concave (Fig. 3a—<). ‘

A connected subset of the surface iz referred to as a
surface patch and is said to be locally convex (positive
or negative) if the surface is locally convex in all points
of the patch. It is clear that global convexity implies
local convexity but the converse is not necessarily
correct, as illustrated in the example of Fig. 3d where
the locally convex patch P* is locally but not globally
CONVEX.
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Global convexity is a strong requirement which is
computationally sensitive to very small perturbations
of the object surface. In order to make the method
more robust we propose 1o compare the ¢onvexity of a

" set against a model {c.g. the convex hull of the set?).
* One possibility is to threshold the difference between

the volume of the considered subset of R* and the
volume of its convex hull. This results in an essentially
convex subsct (Philipps et al. 1986). A subset K of R*is
said to be essentially convex if

Volume, — Volume o mes ik, < Threshold .

The input to the decomposition method 15 a
canonical representation of the three-dimensional sur-

face of the whole object. Also, ag with the other

boundary-based decomposition methods, the surface
representation is viewer independent and hence the
parts obtained will be defined independent of the
viewpoint.

We are ready now to present our method for
surface decomposition according to the largest convex
patches and the smallest nonconvex patches.

The decomposition is performed in four stages:

3,21 Initial Swrface Decompaosition [S]* into Smooth
Surface Patches 8. Build the set [5]° of the connected
subsets §' with area (SH+0 and with the first and
second derivatives defined everywhere. [S1° is referred
to as the initial surface decomposition. A label I{S°) of the
ordered pair of signs of principal curvatures is uniguely
assigned to cach &, with

SH=(sign(ky)sign(k)) and KSHe{—1,0,1}?

with (t,,t,,n), building a positively oriented local

coordinate frame at pe 8. The £,,1, are the fangents in
the principal directions and n is the sutface normal
pointing towards the shape.

The initial decomposition [S]° contains the follow-
ing classes of surface patches:
— positive (or negative) elliptic patches for which (5%
w=(11) [respectively {$H=(—1—1)] :
— positive (or negative) parabolic patches for -which
(8% e {(01), (10)} [Tespectively ($e {(0—1)(—10)}]
— planar patches for which ¥§)=(00)
— hyperbolic patches for which K$9e {(—11),{1—1)}.

The positive (negative) elliptic and positive (nega-
tive) parabolic patches are locally positive convex
(negative locally convex ot concave) everywhere and
the hyperbolic patches are Iocally nonconvex
everywhere.

3 A st K (KeR% is convex if for every pair of points p,p,
belonging to K, the whole sepment pip2 belongs to K or
equivalenily, if K is the intersection of all closed half-spaces
that contain it {e.£ Sercat 1982). The conves hull of a sct is
defined as the smalleat convex set containing the set

21

The boundary e between two patches 5, S/e[§]°
is a curve with the tangent uniquely defined every-
where (5§ was assumed to have a tangent plane uniquely
defined everywhere). The surface § in e* has discon-
tinuity in the curvature (the Gaussian curvature is not
defined) or at least one principal curvature is equal to
zero. In the following, we shall refer to e¥ as the edges
between two patches. Locally an edge is uniguely
assigned a label Ke)=(4, —, n) depending on whether
the sutface is locally positive convex, ¢omgave of
nonconvex in e¥ (Faux and Pratt 1978).

For smooth shapes the signs of the principal
curvatures of §* and S/ constrain the possible labels of
the edge ¢ between them. If thereds a neighborhood ¥,
for pe8 in which the principal curvatares do not take
opposite signs, then the surface is convex in p and we
have the following possible situations: .

(@) VIS),KS){(11).(10),(00),(00)}  Ke¥)=+
(®) VISYUSH{(—1—1),(—10),(0—1),(00)}
Kety= - , : ‘

The patches 5 of the initial surface decomposition
[5]°, have the following property:

V. area(§)=area(§) S5 +0 for i+j.
e (3]

In general §'=S, and thus the decomposition [$1°%
is not a partition.

3.2.2 Surface Decomposition [S] into Largest Locaily
Convex and Smollest Nenconvex Patches., Build a
surface decomposition [S] of the largest convex (posi-
tive and negative) and smallest nonconvex swutface
paiches P* and label thein with

(P =(+, —,n)

where

—I(P¥)= + == Pt = U(S'USY) |

for I(89, (8 {(11), (10), (01), (00)} and Ie!)=+

w (P = — = P*= (S USh .

for (SO KSHel(—1-1), (=10, ©-1), ©O0) and
le)y=— ‘ ‘
(P =n == Pr=8 for KSHe{(1—1)(—11)}.

The surface decomposition [5] is uniquely defined
if there is no planar patch §° which joins a positive
copvex patch §™ in & positive convex edge and,
concomitantly, it joints 2 concave patch 5™ in a concave
edge, e
v &L, 5 S (5T =(00)

— ()= + and KS™H{(11),(01),(10)} and
e")=— and KSD{(~1—1)(0—1).(-10)}).
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The surface decomposition [ 8] is trivially uniquely
defined for surfaces in which there is no ocowrence of
patches §° with X(5%) =(00) and area (5 ==0.

Mote that, even in the last case, the shapes under
consideration build a larger class than the classical
surfaces with partial derivatives of all orders. Similarly
to [5] the surface decomposition [S1 has the
property: '

v area(P¥)=area(S) and- PEnPi=0

Fre[8]

for k1.

3.2.3 Shape Decomposition into Initial Parts (IP™).

Build the closed: subsets IP* of R® with boundary, P¥,
size parameters of the same order as the largest locally
convex patches and a minimal surface that closes them.
The IP* are called initial parts and are assigned the
same Jabels as the generating P*. The sct of all initial
patts is denoted by [IP].

3.2.4 Shape Decomposition into Constituent Parts
(CP. (1) Consider all essentially convex initial parts
IP* as essentially convex constitucnt parts CP” In this
case the label of the constituent pazt is the same as the
label of the corresponding initial part. Thus, accord-
ingly, a constituent part labelled with + (respectively
with ) is a positive (negative} constituent past.

(2) Nonconvex constituent parts CP" are ob-
tained in two ways. Firstly, they result from the union
of all pairs of adjacent nonconvex initial parts in which
one initial part is generated by a largest locally convex
patch, and the other initial part is genmerated by a
smallest nonconvex initial patch (e.g. the handle in
Fig. 5). Secondly, they are obtained from the remaining
nonconvex initial parts which are of comparable size
and are generated by a single smallest nonconvex
patch (e.g. the graspable part of the handle in Fig. 42
and b). Nonconvex constituent parts are always posi-
tive and hence they are always labeled with +.

We wish to emphasize here that the nonconvex
surface patches P* of small sizes, as compared to the
convex patches do not generate initial parts. The small
negative Gaussian curvatures correspond to joints but
large non-negative curvatures correspond to non-
convex constituent parts which should be merged with
convex parts. Hence, from this decomposition into
constituent parts [CP"], an approximation of the
shape may be obtained by building the difference
between the wnion of the positive parts and the union
of the negative parts.

In summary, the basic idea of the decomposition
proposed here involves the following steps: (i) build
initial parts from the largest locally convex patches;
(i) consider an initial part as a constitucnt part if it is
essentially convex and (i) obtain the remaining

(' .
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Fig, 4a—¢. The dumbbell shapes shown in a, b, and ¢ have the
same constitwent parts — two weights and a joining neck for
grasping — but different bounding surfaces, Thus the initial
decompositions are different for each shape, This is depicted as a
graph with nodes, the surface patches §* of onzero arca, snd
sccond derivatives defined everywhere. The ordered pair of signs
of principal curvatures of § is assigned as its lower index, Two
patches $and § are joined by an edge in the graph if thereis an
edge e on the surfacs, The edges of the graph arc labeled with the
corresponding He'). The boxes indicate only the largest locally
convex and smallest lovally nonconvex patches F¥ which genes-
ate initial parts [P, In this example all initial parts are positive
and are gencrated by a single P5. Again the label of the
constituent part s assigned as lower index to the CP

constituent parts by merging adjacent initial -parts
generated by the largest locally convex and the smal-
lest nonconvex patches of nearly the same sizes.

We shall illustrate this method by several cxamples
of decomposition of smooth objects.

3.3 Examples of Partitions
According to the Method
of the Largest Convéx Patches (LCF)

In Fig. 4 we see three differently shaped dumbbelis and
a corresponding graph representation of the initial
decomposition [8]. The elliptic, parabolic, and hyper-
bolic patches §' are mapped onto the nodes, and the
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Fig. 5. Surface decomposition of a cup with the corresponding
graph representation. The blocks outline the larpest convex
patches which penerate initial parts. The convex initial parts 177
and IP? define 2 negative and a positive comstithent part
correspondingly. The two adjacent nonconvex parts I P3and 1P,
the one gencrated by a largest convex and the sccond by a
smallest nonconvex patch of comparable size, are then merged to
yvicld the handle

edges ¢/ onto the graph edges. The nodes are denoted |

by 5%, with the corresponding label I(SY) as lower index,
and the graph edges are labelled as Ke). We see that
althongh the initial decomposition [S1° is different for
each shape, the method always yiclds the correct
constitvent parts. This satisfies the robustness criterion.
Figure 5 illustrates the decomposition of a cup which
displays a negative patt.

Figure 6 demoanstrates that, by and Iargr: our
method accounts for figure-ground reversal. This
figure represents the 2D view of an object that can be
perceived either as a face ot as a goblet. Since the
curvature of the contour has the same sign as the
CGlaussian curvature of the surface (Koenderink and
van Doorn 1982; Brady and Asada 1984) and one of

the principal curvatures is always positive for all the -

points of the bounding contour, it follows that the
largest logally convex patches project in a contour of
zero or positive curvature, With the reversal of surface
orientation, negatively curved sections of the contour
become positively curved and associate the adjacent
gections of zero curvature, In this way, a change in part
boundaries is entailed [this has been cxtensively

discussed Brady et al. (1934) and by I{oendennck‘

(1987)].
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Fig. 6. F1gure—gmund mersaj leads to chauge in part bound-
aries: The local properties of the susfwe along the bounding
comtour can be inferred from the projection of the bounding-
contour taking into sccount that for points along the contour (i)
the sign of the Gaussian curvature iz the same as the sign of the
curvature of the projection (Koenderink 1384; Brady et al. 1985)
and (1) onc of the principal curvatures is always positive, The
smooth patches 8 of the initial decomposition [$3” can then be
easily inferred from the cormesponding portions of the contour
and grouped in largest locally comvex and smallest locally

. momconvex patches according step 2 of the method and eorre-

sponding part boundarics found. With reversal of the direction of
the surface normal the number of elements of [§]° femains the
same but their local convexity characteristic changes which
entails a changein part boundaries. The praph representations of
the initial decomposition with the blocks indicating the P*
lsading to initial parts are shown for the face (a) and the globe-
Iet (b)

Hence the largest convex patches (LCF) method of
shape decomposition gives essentially the same results
as Hoffman and Richard’s minima rule when the
constituent parts are separated by nonconvex parts of
small sizes or by a closed contour of concave
discontinuity.

4 Psychological Validation

The above method of shape decomposition based on
finding the largest convex swiface patches and the
smmaliest nonconvex patches yields two types of parts:
essentially convex (positive and negative) and essen-
tially nonconvex parts. We have shown (Sect. 3) that in
cither case the structural feature used for part dis-
crimination is the largest locally convex surface patch
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P* This generates an essentially convex constituent
part if the set of space points enclosed by P* i
essentially convex and a nonconvex constiteent part
otherwise. .

In thiz section we shall provide empirical evidence
that the largest convex parts tend to correspond to the
constituent parts of objects. Thus, if the hypothesis that
visnal recognition of objects may be carried out on
representations of shapes by constituend party Is cor-
reet, it is natural to assume that recognition would be
best achieved in those views in which most object parts

" can be identified, According to our method this ocours

in views in which the ouiline of the parts can be
obtained, and their convexity or nonconvexity at-
tributes can be determined.

Although in everyday life objects are seen In many
orientations, it is clear that some orientations are more
farpdliar than others. Warrington and James (1986)
have investigated the ability of normal sabjects and
patients with right hemisphere lesions to identify
common objectz viewed in three-dimensions at differ-
ent angles of rotation. The motivation for their experi-
ment was Warrington's earlier results (Warrington and
Taylor 1973) which showed there is a “favoured” view
for efficient object recognition, informally called the
prototypical view. Furthermore, brain damaged pa-
tients with lesions affecting the posterior right hemi-
sphere are Jess able to tolerate a deviation from the
prototypical view. However, such patienis had no
difficulty in the recognition of object photographs in
which the angle of view was considered prototypical.
The results were interprated as a deficit of perceptual
categorization, which is & process whereby multiple
stimuli (e.g the same object, but different views) are
judged to belong to the same class.

Only two views were considered in these experi-
ments, and thus the question of what object view might
constitute the rocognition threshold was not ad-
dressed. The recognition threshold is measured by the
angle of rotation for correct identification. Warrington
and Yames (1986) addressed the threshold for the
identification of 3 Dimensional objects by both normal
subjects and patients with right hemisphere lesions.
Ten common objects, ¢ach with a well defined base,
were uscd in this experiment and they were presented
in three-dimensions by a shadow image projector
{Gregory 1964). The objects were placed, onc at the
time, on a turn table rotated by a stepping motor in
11/2° steps. The turn table was situated between the
light sources and the screen and, by using crossed
polaroid glasses, the subjects viewed the three-
dimensional shadows of objects presented in various
degrecs of rotation, The thresholds for object recog-
nition were measured under two conditions: (a) by
rotating the object from its dorsal view through its

‘ dd M o
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Fig. 7Ta~d. (From Warrington and James 1986) Projected images
of twao objects — iron and kettle: a initial image of the object in
lateral rotation conditions; b imapge of objects correctly re-
cogized by 50% of the control group; ¢ image of the objects
correetly recognized by 100% of the control group; d image of
objects fully rotated through 90°

vertical axis and (b} by rotating the object from its
basal view through its horizontal axis (Fig. 7).
Starting from two initial positions (90° rotation

about the vertical axis and 90° rotation aboui the -

horizontal axis with respect to the lateral view) the
objects were rotated in single steps back to the lateral
view (through s lateral and base rotation correspond-
ingly) and the anple at which correct recognition was
achieved was recorded as the “object recognition
threshold™, Independence of the measnrements was
suaranteed by recording once from each subject for
each rotation condition.

The experimental results indicated that very differ-
ent recognition thresholds reasures were obtained
with respect to task difficulty (as measured by the angle
of rotation) and intersubject variability, The data
showed that in both normal control subjects and
patients with right hemisphere lesions, the manipu-

" lation of the angle of view did not have a systematic

effect on the object recognition. The anthors interpret
these resuits as a challenge to an aspect of Marr's
theory of object recognition, namely that the object
representation depends on axes of symmeiry or elon-
gation {for objects which do have such axes) which are
obrtained from a viewer cemtered surface description
(the 2 and 1/2D sketch in Marr’s theory). Such axes
give rise to a viewer independent coordinate system to
deseribe the geometry of the spape. While agreeing
with Marr's view that object recognition must rely on
descriptions which are independent of the viewer,
Warrington and James argue, however, that the
object’s principal and component axes may not form

the basis for describing the geometry of the shape. They
suggest instead that the perceivers may rely on distine-

tive features, and that recognition pccurs when suffi-
cient featurcs have been processed to specify the
object and to differentiate it from other similar ob-
jects. That iy, when there is enough information for
obtaining perceptual categorization.
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Fig. 84—, Decomposition of views of the shadowed three-
dimensional images depicted in Fig 7. The initial parts IP®
generated by the largest locally convex patches on different views
of the two objects are shown, The columns correspond to initinl
position, views of 50% and 100% revogrition and lateral view

A detailed debate on whether axes or featnres are
maost useful for recognition is outside the scope of this
article, Our focus 1% to show first that the decompo-
sition into the lgrgest convex paiches proposed here

. defines formally the distinctive features whick nsually

constitute component parts of the object, and second,
to discuss the circumstances in which recognition
OCCUrs.

The local surface convexity is viewpoint indepen-
dent. Thus, applying our decomposition mcthod on a
particular view of the object surface will result in
outlining the constituent parts in view. As might be
expected, if parts are missing or nonconvex parts are
perceived as convex the recognition becomes more
difficuit,

We will nse the shapes of the iron and the keitle
(Fig. 8) from Warrington and James’ experiment to
show that the recognition threshold function is strongly
related to the identification of the larpest locally
convex patches and the convexity-nonconvexity at-
tribute of the set of enclosed points which determine
the parts derivation process.

In the initial position the surface of the ketile in
Fig. 8a dieplays only two locally convex patches which,
closed through the minimal surface, define convex
initial parts 1P and IP? In Warrington and James's

experiment, these yicld only 10% recogaition. In the

second view the remaining parts generated from IP?
and I P* are cutlined but recogrition rises only to 50%.
This is because the alternative essentially convex-
nonconvex for IP* is undecided. This is resolved in the
third view which corresponds to 100% recognition.
Similarly, in the initial position the iron (Fig. 8b}
shows two locally convex patches generating IP' and
IP?, with IP? mistaken as defining an essentially
convex part. We see that this view achicves 0%
recogmition. In the following views as the recognition
ability rises (50% and 100%), IP? is identificd as
nonconvex and thus it leads to a nonconvex part.
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These considerations bring experimental support
to the naturalness of the decomposition method pro-

‘posed in this paper. It must be pointed out, however,

that we do not claimm that only the largest locally
conver patches and the convexity-nonconvexity alter-
native of the set of enclosed points may be used to
characterize the object parts and to achieve recog-
nition. The rige from a 0% to 50% recognition rate in
the first two views of the kettle is perhaps related more
1o the perception of elongation of the two parts
obtained in the same view, rather thanp to the fact that
in the second view I P2 is not unequivocally determined
as essentially convex. _

This sugpests that part discrimination and charac-
terization relies on several global features which are
computed in parailel and integrated fo yield
recognition, ‘

5 Conclusion
A ncw appmaéh to the decomposition of objects into

. parts haz been proposed. It iz suggested that parts are’

obtained by decomposing the object into sets of shape
points enclosed by the largest convex and the amallest
nonconvex patches,. The method, called the decompo-
sition into the largest convex patches (LCF) is based on
the global features of the surface which, in tarn, are
built upon  sueface features extracted by local
operators. The basic idea of this decompaosition in-
volves the following steps: (/) obtain the imitial parts
from the largest locally convex patches, (2) consider
essentially convex initial parts as constitnent parts, ('3 )
obtain the remaining constituent parts by merging
adjacent initial parts. These initial parts are obtained
from the larpest convex and the smallest nonconvex
patches of nearly the same sizes,

We show in a series of examples that the LCP
decomposition method maximizes the “thingness”
characteristics of the object and minimizes its “non-
thing-like” characteristics. Thus, it gives struetural
parts which also are constituent parts. We are planning
further experiments along the line of those of Warring-
ton and James to evaluate the psychological validity of
our theory and to contrast it with other existing
theories for extracting object parts. Our view i3 that
several representations based on different salient char-
acteristics of the object (e.g. axes, surface patches) are
maintained in parallel in the human visual system. The
one which is actually used depends on the specific
object one looks at. A comparison of these various
representations and their effectiveness on the recog-
nition of common objects will be presented in a
forthcoming paper (Zlateva and Vaina, in prepa-
ration). .
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