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Abstract. In a previous study, we found that subjects’
performance in a task of direction discrimination in
stochastic motion stimuli shows fast improvement in the
absence of feedback and the learned ability is retained
over a period of time. We model this learning using two
unsupervised approaches: a clustering model that learns
to accommodate the motion noise, and an averaging
model that learns to ignore the noise. Extensive simu-
lations with the models show performance similar to
psychophysical results.

1 Introduction

Perceptual learning, broadly defined as practice-based
improvement, characterizes many garly visual tasks, such
as discrimination of complex gratings (Fiorentini and
Berardi 1980), hyperacuity (McKee and Westheimer
1978; Poggio et al. 1992), stereopsis (Ramachandran and
Braddick 1973: Fendick and Westheimer 1983), discrim-
ination of texture (Karni and Sagi 1991), direction of
motion (Ball and Sekuler 1987), or line orientation
(Vogels and Orban 1985}. A critical issue common to all
these studies is the time course over which learning
occurs, ranging from minutes (fast learning) to weeks
(slow learning). Tt appears that the fast learning is binocu-
lar, indicative of involvement of neural circuitry in which
full binocular integration has occurred, while the neural
substrate of slow learning may contain a mixture of bin-
ocular and monocular neurons as found in the first stage
of cortical provessing (primary visual cortex, or V1), These
attempts to address where in the pathway learning may
occur are particulary interesting in the context of recent
important evidence for plasticity in the adult early visnal
system (Frégnac et al. 1988; Gilbert and Wiesel 1992),
which provides a significant paradigm shift from the pre-
viously prevailing dogma that within early sensory pro-
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cessing the.properties of the neural mechanisms are sub-
ject to experience only during development but are fixed
in adulthood (Hubel and Wiesel 1962). This paradigm
shift has motivated studies of learning and plasticity at
the neuronal level, and the combination of simultaneous
peuronal and behavioral investigations (Newsome et al.
1989a; Zohary et al, 1994. For example, Zohary et al.
(1994) have documented cortical changes if1 macaque
monkeys trained to discriminate opposite directions of
motion in dynamic stochastic random-dot displays (2
detailed description of the stimuli is in Newsome and
Paré 1988) in which a varving proportion of dots carry-
ing the directional signal was embedded in masking
motion noise {Fig. 1a). These type of stimuli illustrate
global motion because the extraction of direction cannot
be obtained by local computations only, spatial integra-
tion of the motion signal over the whole image being
required. .

Zohary et al. (1994) recorded from neurons in the
middle temporal area (MT) while the monkeys were
performing a ditection discrimination task: within just
a few hundred trials the animals demonstrated improve-
ment in their ability to pick out the correct direction of
the signal dots, and this concutred with an improvement
in the direction specificity of the MT neurons. They
suggested that this improvement was an example of per-
ceptual learning. Since the learming transferred from
a trained site in the receptive field of an MT neuron to an
untrained site, the anthors concluded that MT neurons
were responsible for learning to discriminate the direc-
tion of the motion signal embedded in masking noise,
and that learning was not mediated by neurons with
a smaller receptive field like those in the sarly stages of
visual pathway, such as in the primary visual cortex {V1).

But what are the mechanisms by which MT neurons
mediate learning direction discrimination in these spa-
tially complex stimuli? The goal of the learning process is
to improve global direction judgments based on the
represcntation of motion encoded by MT neurons, and
thus it must deal with the responses of these units to noise
in the motion stimuli. In this paper we suggest two ways
of dealing with noise: the first one uses internal template
representations corresponding to the directions to be
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discriminated, and during learning these templates are
altered to accommodate the noise. The second one uses
a weighted encoding of the representation, and the
weights are gradually altered in order eventually to ig-
nore units in the representation that are tuned to noise. In
Sect. 3 we describe the architecture of the two learning
models and in Sect. 4 we present simulated experiments
showing that, like the buman observers trained on the
same task, both models learn in only a few hundred trials
to discriminate reliably between opposite directions of
motion in stimuli with weak motion signal embedded in
masking motion noise. These ate the same type of stimuli
used by Zohary et al. (1994) and first described in News-
ome and Paré (1988). Sect. 2 summarizes the psy-
chophysicial learning experiments carried gut on human
observers. Abbreviated forms of the models and psy-
chophysical results have been presented in (Sundares-
waran and Vaina 1995; Vaina et al. 1995).

2 Learning direction discrimination in global motion

In an effort to assess the hypothesis that the time course
for learning direction discrimination in global motion is
consistent with the fast learning method, we measured
performance of naive observers' using a training method
similar to that proposed by Fiorentini and Berardi (1980)
for learning to discriminate complex gratings. The sub-
jects were asked 1o make judgements about global
motion perceived in random-dot kinematograms in
which 25% of the dots were displaced in a single di-
rection while the remaining dots were randomly
repositioned from frame to frame. The test stimuli con-
sisted of two successively presented frames of different
stationary random-dot patterns. Each frame was com-
posed of 100 white dots plotted within an imaginary
circular aperture 10 degrees in diameter. In the second
frame, 25 of the dots were repeated with a displacement
of 6 arc min (either horizontal or vertical displacement,
depending on the test). A single frame was 45ms in
duration, and there was no interstimulus interval. The
total duration of a trial was 90 ms - too short for subjects
to initiate eve movements. Observers were asked to
maintain fixation on a small rectangular mark placed at
midline 2 degrees to the left or right of the outer margin
of the stimulus. Observers’ performance improved in the
absence of reinforcement (feedback), was fast (200--400
trials), stabilized quickly and was retained for days
{Fig. 1b) or even months. These effects of practice were
specific to the stimolug location in the visual field
(Fig. 1¢,d) and to the trained direction of motion
(Fig. 1¢,¢). We showed that the effect of practice transfer-
red from the trained eye to the untrained eye, and that
the learning is retinal-specific. Interestingly, not all ob-
servers improved their performance. Specifically,

Informed consent according to the Boston University institutional
review board for research with human subjects was obtained from. all
subjects. :
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Fig la—& Psychophysics. a Schematic of the stimulfus consisting of
random dots each moving either in a coherent motion direction or
randomly. The right diagram depicts all dots moving in the coherent
motion ditection (apward), the left diagram depicts pure random
motion, and the middle diagram depicts the stimulus used in the
learning experiments, with 25% of the dots moving in the coherant
direction and the test (75%) moving in random ditections. b Perfor-
wnance improvement in seven subjects averaged and shown as data
points for blocks of 40 trials each of left-right motion with the stimulus
at feft visual field eccentricity of 2 degrees. ¢ The performanece on day
1 of b reproduced. 4 Performance of the same subjects on day 2 when
the stimulus i presented st left visual field eccentricity of 5 degrees,
showing no ttansfer. e Performance on day 2 when the motion direc-
tion was changed to up-down

observers starting at chance level wete not able to stabil-
ize and improve their performance sufficiently to qualify
as learning, Further details and discussion of the psycho-
physical learning study can be found in Vaina (in prep-
aration).

2.1 Neurobiological basis for the input representation:
newrans that discriminate divection in global motion

Global motion is spatially complex such that its direction
must be computed from several component motion vec-
tors. Physiological (e.g. Maunsell and van Essen 1983;
Newsome et al. 1989b) and behavioral (Newsome and
Paré 1988) studies in the macaque found that the MT
is the first area in the motion pathway where a large
majority of neurons are directionally selective, and thus

.
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is 2 good candidate for encoding global motion. Such
a spatially complex task, in which the global direction
of the stimulus is extracted from integrating motion
information throughout the display, has been shown
(Newsome and Paré 1983) to charactenize the perceprual
abilities of MT neurons. More recently (Britten et al
1992; Salzman and Newsome 1994) studies involving the
simultaneous recording and manipulating of MT neur-
ons while trained monkey were petforming a near-
threshold discrimination task, revealed that these
neurons carry direction signals of sufficient precision to
account for psychophysical performance. This result,
taken together with the lesion studies, suppotts the idea
that directional signals in the MT contribute directly to
the perception of motion, and thus motivates our choice
of MT units as input-representation for networks that
learn to discriminate opposite dircction of motion in the
same stimuli used with the human observers, and simu-
late the psychophysical learning results (Fig. 1).

2.1.1 Relationship between MT neurons and motion input

from V1. The analysis of the mean firing rate of the MT

neurons and of psychophysical performance in humans
and macaque monkeys has revealed an almost linear
correlation with changes in the strength of the signal:
petfect dircetion discrimination at 100% coherence, and
a linear decrease as the proportion of coherence is de-
creased (Fig. 7). The linear correlation-responses of MT
neurons to the stochastic random-dot displays described
in this section (Fig. 1) can be obtained by linear pooling
of local motion filter inputs (Downing and Movshon
1989}

Thus, on the basis of the assumption that learning
global motion is mediated by MT neurons, a natural
reptesentation of the input to the learning mechanism is
a summation of response of the V1 neurons. Units per-
forming summation of local (V1) unit responses, denoted
o units, have tesponse of the form

3
X, = Z e—u,':a:(e.—et)i) 0

i=1

whete 1, is the standard deviation of the tuning curve,
and information from n local units is taken into account.
The angle 8, is the preferred motion direction for the unit,
and 8; the actual motion direction of the ith point in the
visual field. Thus, the MT-like unit with a certain prefer-
red direction sums over local units tuned to the same
preferred direction.

2.1.2 How may MT neurons compute global motion? Cells
in the MT are broadly tuned to the direction of visual
motion. Dot patterns moving in different directions gen-
erate discharge patterns that when mapped to motion
directions result in tuning patterns similar to those de-
scribed by Georgeopolos et al. (1986) in the motor cortex
and by Lebky and Sejnowski (1990} in the visual system
as population coding. Population coding theories assume
that distributed patterns of activity in neuronal popula-
tions underlie perceptual behavior, and that correspond-
ingly the neurons will show broadly graded responses. It
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is possible that responses of MT neurons can be repre- -
sented as an instance of population coding and, as such,
a few directionally tuned neurons will be used to describe
all the directions in the global motion stimulus.

3 Two computationa} schemes for learning
global motion direction

In this paper we focus on modeling the Jearning rather
than on computing the representation of motion priot to
learning (this will be addressed in a future study). Here we
assume that motion information is available to the learn-
ing models in the form of a representation consisting of
responses of a collection of directionally tuned MT-like
units. A directionally tuned unit is charactenzed by a re-
sponse function which has a high value for a certain
preferred direction, and decays with angular separation
of directions from this preferred direction. Several cur-
rent computational models have used velocity-tuned
flters with similar response properties for computing
image velocity (Adelson and Bergen 1985; Heoger 1987,
Fleet and Jepson 1989),

3.1 Learning to accommodate

We suggest that therc is an internal template for global
motion in any given direction. In the representation
proposed above, the template for a global direction
corresponds to the collection of responses from direc-
tion-sensitive units to (noise-free) motion in that global
direction. Since such templates correspond to a correla-
tion of 100% (ie., all the dots are moving in the same
direction), it is a trivial task to discriminate between
leftward and rightward motion by finding the better
match among the internal templates for the motion
measurement. If we use the same templates for lower
values of correlation, direction judgements can be ex-
pected to be worse; the performance will deteriorate with
lowering correlation, and will eventually reach chance
levels (i.e., the judgements are completely random).

The learning to accommodate model gradually alters
initial internal templates of global motion. Each initial
template is a vector [x4,Xa,. .., X4l corresponding to
responses x; of directionally tuned, MT-like units to
nolse-free motion in a specific direction. In the presence
of noise, however, the responses x, will depend on the
signal-to-noise ratio (SNR), and for a given SNR the
response vectors to several inputs form a cluster. The
learning process attempts to estimate the center of the
clusters corresponding to the left and right noisy global
motion, starting from the initial templates as the hy-
pothesized centers. In other words, starting with ‘clean’
templates (corresponding to zero noise) of the global
motion, the method learns to accommedate the noise in
the input by gradually altering the templates.

The model is 3 combination of HyberBF-like func-
tions (Poggio and Girosi 1990) and clustering. We use
gaussians with meat at the cluster centers, and ‘move’ the
cluster centers by a learning algorithm. The model is
presented schematically in Fig. 3a. The input units x,
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T Global motion direcﬁon

MT-like
units

Fig. Z. Genetic schemutic of the modeling. Units with characteristics
similar to those of MT neurons ate used in the simulations; these nmits
integrate motion information over a large arca by sumuming over local
responses of tuned units. The responses of the MT-like upits are used to
determine global motion divection and to leam the task
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Fig. 3. a Architecture of the learning to accemmodate model: inputs
%, represent responses of MT-like unite; cluster gaussian functions
f; measuze the closensss of the responss vector to the corresponding
elugter center. Decision rule for the winming chuster is shown schemati-
cally 82 2 pon-linear thresholding operation on the cluster gaussian
responses. b One-dimensional schematic of the classification: winning
cluster for a given fnpwt X is the one with a higher response above
a threshold; if the higher response is below the threshold, the winner is
chosen randomly. The cluster centers are matked C, and €

correspond to the responses of directionally tuned neut-
ons. Hidden units f; cotrespond to the two cluster gaus-
sians, and the output is a linear combination of the
gaussian outputs. A cluster gaussian response Is

a measure of how close the current input is to the corres-
ponding cluster center:

g~ =TT IE-T) 2

where ¥ is the current input, 2. is the current estimate of
the center of clustet ¢, and ¢.] is the covariance matrix of

cluster paussian. The cluster gaussian with the largest

response ‘wins. This is shown pictorially for an one-
dimensional example n Fig, 3b,

" Learning occurs by improvement in the estimate of
the cluster centers. The following lcamning rule (e.g.
Moody and Darken 1989; Hertz et al. 1991) modifies the
current estimate of the center of the ‘winning’ cluster:

FEED — 20 4y (RO _2W) (3)

This rule moves the center towards the new data vector
% that hus been judged to belong to the wth cluster. Using
this rule, a reliable estimate of the cluster center is ob-
tained after a sufficient number of input presentations.
The paramoter 7 controls the learning rate.

In summary, learning to accommodate consists of the
following steps:

1. Initialize cluster centets to templates corresponding to
100% correlated global motion in the directions to be
discriminated.

2. For each trial, repeat the following steps:

+ determine the largest G; = exp(¥ — ¢;); let this be
Gy if Gy is above a chosen threshold g, (henceforth,
gaussian threshold), declare w to be the winning
cluster; otherwise choose a cluster w randomly;

= move the center 2, using the rule in (3), and update
the standard deviation a,,;

+ interpolate using the cluster gaussians as HyperBFs,
if desired. ‘

In the above, 2 is the ith cluster, and X is the current input
vector. The use of the gaussian threshold is explained below.
There are several reasons why we use cluster gaus-
sians to determine cluster membership, instead of simply
using a distance measure. First, the standard deviation of
the gaussian (7,) can be Jearned; this will be wseful for
situations where the noise depends om the signal, ie,
where certain signals are more noise-prone, and have
correspondingly ‘broader’ ¢lusters. Sccond, the gaussians
may be used as basis functions to perform learning as an
interpolation scheme, exactly as in HyperBE learning
(Poggio and Girosi 1990). Third, the gaussians are useful
in modeling the gray area in classification (where one is
upable to judge class membership, and makes random
judgments) by thresholding the response of the winning
cluster gaussian, ‘

3.2 Learning to ignore

In our (M [-like) representation, the global motion direc-
tion is encoded as the responses of several direction-
sensitive units. This information e¢an be ‘decoded’ by
a weighted combination of the responses. Figure 4 pro-
vides a schematic of the architecture of 2 network that
performs the decoding. Let the response of the units
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Fig.4. a Architecture of the learning to ignore model: glabal motion
direction is cotputed a5 a weighted average of the tuning directions.
b Schematic showing changing weights in the model in a typical simu-
lation. Weights of eight directions are depicted as cireles (radius propor-
tional to weight value) in colunms: the leftmost column corresponds to
the weizhts before training, and each successive column depicts weights
after succesyive blocks of training

be xy,%2,...,%,. Let the corresponding weights be
Wi, Wz,. . -, Wy The global velocity is decided as a
weighted combination of the individual unit preferred
velocities; each weight 15 2 product of adjustable weights
w, and the unit responses x,. Weighting by the adjustable
w, provides for learning, and weighting by the unit re-
sponses x, assures cotrect decoding of any instance of the
representation. If the neuron preferred velocity is
v, = [cos(8,),sin(6,) 1, the output velocity is calculated as

Yo = Z WA ¥y #
t

or, equivalently, the global motion direction is calculated
as

0 = tan-? (Zw,.xt,sin EL)

¥ wyx, cos f,

Judgment of the global motion direction is based on 6,.
For instance, the global direction is judged to be ‘right’
H4+8y, =0, —8y, and to ‘left’ if 740 =>4,
= 1t — O, where B, determines an annulus of tolerance
within which the computed direction is expected to fall.
The ust of 8, in this model is analogous to thresholding
cluster gaussian response in the learning to accommodate
maodel.

Z¥We have assummed unit speed, for siteplicity.
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Clearly, the output direction will be strongly biased
towards the preferred direction of a unit with a high
response and a high connection strength (weight). If the
task is to discriminate between Jeftward and rightward
motions, vnits ras}pnndimg to motion in other directions
contribute ‘noise™ to the final computation, The goal of
the learning to ignore model is to suppress the contribu-
tion of these noise neurons by reducing the correspond-
ing weights.

Since prior to learning the model has no bias for onc
direction over another, all the weights are equal. During
learming, the weightsw, are altered by a learning rule. We
suggest two learning rules based on two differcnt notions
of what information is used to alter the weights: first, an

‘exposure-based rule in which units that are consistently

active increase their woights, and second, « self-supervised
rule, in which the model uses its own prediction of global
motion direction to change the weights. In both cases,
to prevent uncontrolled growth, the weights are renor-
malized to maintain a unit weight vector {or to maintain
the sum of the weights to be unity; in the simulations,
there was no qualitative difference in performance be-
tween the two choices of renormalization).

3.2.1 Exposure-based rule. In this scheme, the weight
corresponding to a unit is incremented by an amount
proportional to the current weight. Only units whose
response values are above a certain threshold are allowed
to increase their weights; this learning rule favors units
that are often active. This is consistent with the Hebb rule
because a consistently active input must be contributing
to the output, and its connection to the output should be
strengthened. The lesurning rule is as follows:

wp—wy +awg, X = (3

where r, i5 a threshold, and # is a small fraction that
controls the learning rate. The same leaming rule has
been used in learning hyperacuity by Weiss et al. (1993),

It is interesting to note that the model need not be
performing 2 task in order to learn, since the learning tule
merely depends on a unit being active, no matter for what
reason. Neurons with similar propertics have been re-
ported by Zohary et al. (1994), who found neurons in the

macaque MT that improved in sensitivity even though

the monkey was merely fixating whilc being exposed to
global motien stimuli like the ones used in our study.

3.2.2 Self-supervised rule. In the self-supervised learning
mechanism, an internal feedback signal is derived from
the computed global motion direction. The weight cor-
responding to a unit is increased by an amount propor-
tional to the product of the current weight and a measure
of the agreement between the computed global motion
direction and 'the preferred direction of the unit:

Wy = Wy + fwge’ TGN if o ey 3]

% learly, the choice of the task influences the notion of what is con-

sidered noise,
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The model uses its own estimate of the global motion
direction to.generate an internal reinforcement that con-
trols the learning. For the purpose of learning, the model
requires only measures of the discrepancy between the
model output-and the tuning parameters of input units.
Such measutes may be available even without a precise
knowledge of the output.

This rule also has a Hebbian favor because units
whose weights are increased the most are those that
contribute the most to the output. Equivalenty, a umt
whose response is not strong enough to sway the output
closer to its preferred direction is forced to contribute less
to the output by a reduction of the corresponding weight
(the reduction is not explicit: it occurs due to the renor-
malization}.

In summary, learning to ignore consists of the follow-
ing steps:

L. Initialize all the weights to equal vatues.
2. For each input presentation:

» determine the olobal motion direction as the
weighted combination of unit preferred directions;

+ if computed global motion direction is within 6y, of
a candidate global metion direction (left or right, for
example), declare that candidate direction to be the
global motion ditection, else choose randomly;

- .alter the weights using eithet the rule in (5) or the
one in (6), and

+ renormalize the weights,

4 Experiments

The purpose of our simulations was primanly to repli-
cate psychophysical performance. In the simulations,
the input representation was generated in the following
manner. A collection of eight MT-like units, with
preferred  directions uniformly spread over 2m (four
cardinal directions and four oblique directions) was
used. For simplicity, speed-selectivity was ignored (umit
speed was assumed). The units integrated information
from the whole visual field (with no variation due to
eccentricity), using (1). For each trial, the coherent
motion direction was randomly decided. Motion of 40
random dots was simulated, with 10 dots (25% correla-
tion) moving coherently (left or right) and the remaining
30 moving randomly. Trials were grouped into blocks of
50. For the experiments reported here, we simulated the
responses of neurons based on their directional luning.
By comparing the decision of a model with the known
correct Tesponse, each trial outcome was labeled as cor-
rect or wrong The percentage of correcl responses was
used as 2 measure of performance (as in the psycho-
physics).

4.1 Learning to accommodate: simulations

Simulations were performed to study the learning by
moving the centers (3). Tf the representation vector for
a tria} was close enough to one of the eluster centers, the

vector was assigned to that cluster. ‘Closeness’ was meas-
urcd by & measure of the distance to the cluster center;
the measure used wag the cluster gaussian function value.
If & representation vector could not be assigned to either
cluster (i.e., both cluster gaussian values for this vector
were below a threshold), then the vector was randomly
assigned to one the clusters {this corresponds to the
forced choice paradigm in psychophysics). We believe
that the use of thresholding results m a more realistic
model of human decision-making than the case
where a sharp decision is made in favor of the nearest
cluster.

Typical learning curves, averaged over the perfor-
mance in 10 simulation runs, are shown it Fig. 5. For the
simufation, an # value [see (3)] of 0.0075 was used.
Use of this value resulted in perortiiance Improvement
comparable to that in psychophysics. The cluster gaus-
sians had a fixed ¢ values of 0.5 (nominal variations in
this value did not have any impact on the qualitative
performance).

4.2 Learning to ignore: simulations

Global motion direction was computed from the repres-
entation vector by the weightoed averaging in (4), A simple
decision rule would choose the coherent motion
directions clogest to the computed global motion

direction. Our decision rule chooses the coherent

motion direction that is closer and is within a certain
threshold angular distance (10 degree range), as described
in Sect. 3.2. If the global motion direction was within
a 10 degree range around the O degree direction
(tight), the model judged the motion to be rightward.
If the global motion direction was within a 10 degree
range around the leftward direction, the model
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Fig. 5. Performance improvement gver time fof the learning Lo accom-
medale model in the simulations. Data have been averaged over 10
simnulation runs. ¢ units tuned to four cardinal and four oblique direc-
tions wers used. Parameter valoes: n = 00075, g, =08, 5, =a/8,
a, =105
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Fig. 6. Performance improvement ovar time for the learning to ignore
model in the simulations. Data have been averaged over 10 simwlation
runs. & units tuned to four cardinal and four oblique directions were
iised. Parameler values: i = 0015, O = 5 degrees, oy — =/3. Results
are shown for exposure-based learning (open circles), self-supervised
learning (triangles) and a non-lesrning averaging mechanist (open
sguares). See text for details

judged the motion to be leftward. In all other cases, the
model’s judsment was randomized to choose left and
right directions with equal probability.

Typical learning curves, averaged over 10 simula-
tions, are shown in Fig, 6. A learning rate () of 0.015 and
an angular threshold By, of 3 degrees were used, The
response threshold, 7, was set to be 0.9 max(x;). It was
found that in all the simulations, the model learned at
a rate comparable to human subjects, irrespactive of
whether the exposure-based learning rule or the self-
supervised learning rule was used.

4.3 Justification of architectures

To verify that (he architecture of the models was appro-
priate for the chosen task, we disabled the learning, and
studied the performance of the models for varying pro-
portions of correlated dots (signal). For 100% correlation
(no noise), the performance was perfect (100% correct
responses), and by decreasing the proportion of corre-
lated dots, the petformance level was reduced.

- For the learning to accommodate architecture (with
cluster centers set to positions corresponding to pure left
and right motion-100% correlation), we found that the
model’s performance (Fig. 7b) was very different from
that of the monkeys (Fig. 7a). Figure 7b shows the perfor-
mance of the mode] for different values of the threshold
on the gaussians as the percentage coherence is increased.
Cleatly, the larger the threshold, the poorer the perfor-
mance (recall that below threshold, random judgments
are made), which explains the shift in the curve for the
different threshold values. However, unlike the perfor-
mance of monkeys or humans on this task, in the model,
all the curves stay at chance level for a range of coherence
values, and then abruptly climb up to peak performance.
This is not surprising, since for low values of coherence
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Fig. 7. 3 Psychophysical petformance of monkeys for increasing
stimulvg correlation (reproduced from Newsome et 2l 19890). b Learn-
ing to accommodate: curves for different values of gaussian threshold g,
showing parformance of the medel to increasing signal in the input. The
propottion of inputs for which a random decision is made is plotted
against the percentage coherence for various values of the paussian
threshold. ¢ Learning te ignove; curves for different values of the angu-
Latr threshold 6, for increasing percentage coherence

the cluster is so “spread out’ that the gaussian threshold
cannot be reached (the model has fixed centers corres-
ponding to 100% correlation), and thus the performance
is at chance level. However, beyond a certain level of
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correlation the cluster is sufficiently close to the fixed
center, and the performance jumps to 100% correct. This
is what we see in Fig. 7b. The input tepresenlation vec-
tors lie largely in the helow-threshold region for low
values of coherence, and fall within the above-threshold

 region for high values of correlation, with a rather abrupt
transition. This non-smooth behavior suggests that the
learning to accommodate model does not have the archi-
tecture appropriate to explain human and monkey
data.

For the learning to ignore architecture, with the learn-
ing disabled, the correlation varied and all the weights set
equal, the model’s behavior conforms to the expected
drop in performance with decreasing correlation
(Fig. 7c). At 100% corrclation, the response of the unit
tuned to the coherent motion direction is significantly
higher than the response of the other units, resulting in
correct decisions. However, when the correlation is re-
duced, the responses become more evenly distributed,
and the direction judgments are more erroneous. The
various curves in Fig. 7c show the performance for difter-
ent values of the angular threshold. As expected, when
the angular threshold is large (i, a greater range of
angles are accepted as being correct), the performance is
better.

We also investigated an alternative model of global
integration, and we comment on it in Appendix A. In
Appendix B, we report miscellaneous experimental ob-
setvations that shed more light on the behavior of the

. maodels,

5 Dscussion

5.1 Other learning models that simulate
psychophysical performance

While psychophysical and neurophysiological studies of
learning visual tasks comsistently indicate the involve-
ment of early portions of the visual system whose neut-
onal properties and functional cortical architecture are
modifiable by experience, they do not address explicitly
what is being learned, and what may be the plausible
computations that underlie learning of a perceptual task.
Recently, Poggio and Girosi’s (1990) theotetical propo-
sal, that learning from examples may be viewed as syn-
thesizing task-related modules at the level of the cortex,
has provided the basis for a series of important studies
which explicitly siroulate perceptual learning obtained in
human observers in several tasks (Poggio et al. 1992
Weiss et al. 1993). Briefly stated, Poggio and Girosi’s
(1990) hypothesis is that synthesizing a template from
examples for a specific task can be viewed as a problem of
approximating a multivatiate function from sparse data.
They showed that the solution to the approximation
problem can be expressed in terms of a class of multilayer
networks that they named HyperBF functions, which are
a type of generalized radial basis functions (GRBFs).
HypetBF networks with gaussian basis functions (gaus-
sian HyperBF) are an efficient and neurobiologically
plausible model for this computation (Poggio 1990). That

the cortex might actually be constructing such templates
through learning is consistent with psychophysical find-
ings of the specificity of learning to the stimulus at-
tributes. Furthermore, Poggio (1990) argued that Hy-
perBF networks with gaussian basis functions can ba
implemented in terms of biologically plausible mecha-
nisms and circuitry mediating the learning of perceptual
tasks. Indeed, brain architecture can easily implement
radial basis functions (Moody and Darken 1989; Poggio
1990) as they are radially symmetric and die off exponen-
tially. The gaussian HyperBF is also consistent with the
experiment-dependent plasticity of the neuronal and
functional architecture, since both the centers of the
radial functions and the weights in the norm are updated
during learning. The centers represent templates, and
updating (moving) the centers is equivalent to modifying
the corresponding template (Poggio 1990). Finding the
optimal weights corresponds to task-dependent- dimen-
sionality reduction, that is, through learning some fea-
tures become more salient than others. This approach is
exemplified by a series of simulated psychophysical ex-
periments in which a HyperBF network was trained in
the supervised modc to itprove on several hyperacnity
tasks. For example, the network, like the human ob-
setvers, upon briefly being presented with two vertical
bars arranged one under the other with a small spatial
offset, had to determine whether the upper bar was to the
left or to the right of the lower one. Units with gaussian
receptive fields were stimulated by input images of the
line segments, and by comparing the prediction of the
network to known offset direction, the centers of the
gaussians and the weights that combine the gaussian
responses were adjusted to minimize the ertor in the
output. This network learned to improve visual hy-
peracuity at a rate comparable to humans (Poggio et al.
1992). A somewhat different approach to modeling learn-
ing hyperacuity was taken by Weiss et al. (1993). They
used unsupervised learning rules in a HyperBF
network with the imput set to response characteristics of
orientation-selective units and the output to a weighted
combination of the basis functions, In this case also the
model learned to perform well in the vernier hyperacuity
task,

 The two models proposed here have close similarities
with the approaches of Poggio et al. (1992} and Weiss
etal (1993). The cluster gaussians in the learning to
accommodate model are similar to HyperBFs (Poggio
and Girosi 1990), since in both learning is mediated by
moving the centers of radial functions, However, in con-
trast to HyperBFs, we do not interpolate available data,
and thus in our model there are no weights to be modi-
fied. Another major difference is that Poggio et al. use
supervised learming while we use unsupervised learning.
In this respect, our model is closer to that of Moody and
Darken (1989), who use cluster gaussians with movable
centers. But again, their goal is to obtain interpolation of
the input data, and to cxamine a hybrid lcarning scheme
to move the centers and to alter weights in their network;
we focus on classification and on the role of clustering to
aceommedate noise in the data. The learning to ignore
model is somewhat similar to the model proposed by



Weiss et al. {1993). Both use a weighted combination of
tuned detector responses (motion in the case of the for-
mer, and orientation in the latter), and learn by changing
the weight values. The exposure-based learning rule is
also examined in both models. However, in Weiss et al.
(1993) noise is due to the noise neurons, while in our
modeling noise is in the input {motion stimulus).

5.2 Car global motion representation be learnt?

Two alternatives have been proposed to compute global
motion direction. The first is 2 Wirner Take Al (WT 4)
mechanism, and the second is 2 simple averaging mecha-
nism (Salzman and Newsome 1994).

In the WTA smethod, global motion direction is the
preferred direction of the unit with the largest response.
This mechanism i5 necessarily limited, because it will
obtain reliable results only if the noise content is relative-
1y low. This does not, however, Tule out WTA as a candi-
date. Salzman and Newsome (1994) present evidence that
WTA is more likely than averaging in a global motion
direction task. By electrical simulation of directionally
runed MT neurons is 2 monkey, they verified that motion
direction judgment of the monkey was biased towards
the most active neuron. Interestingly, our learning to
accommodate is 3 clustering approach which is an imple-
mentation of WTA (Hertz et al. 1992 discuss clustering as
WTA). After learning, each cluster corresponds to a pos-
sible global motion direction, and the ‘winnet’ (the one
with the largest cluster gaussian response above thre-
shold) “takes’ the current input. We propose that learning
to accommodate provides a mechanism to learn the WTA
methed to perform the global motion direction task.

In the averaging method, global motion direction is
the average direction of optical flow vectors. To use this
alternative, two issues need to be addressed: computation
of the optical flow field, and the performance of the
averaging mechanism. While there is substantial evidence
for directionally tuned neurons in the cortex, there is no
direct evidence for the computation of optical flow vee-
tors. Also, methods which have been proposed to com-
pute optical flow from directionally tuned units (e.g.,
Heeger 1987, Grzywacz and Yuille 1950) lack reliability
and robustness. Other methods for computing optical
flow (image intensity gradient-based methods and feature
correspondence-based methods) exhibit. similar short-
comings, and their biological plausibility is questionable.
Even assuming that these criticisms are somehow
countered, our simulations* show that the averaging
mechanism performs worse than the learning methods
we presented (Fig. 6). However, learning to ignore 15 an
averaging mechanism, and it performs betier (than aver-
aging optical flow vectors) because of weighted averaging
and alteration of the weights to ignore noise. We suggest
that learning to ignore is a method that learns an adaptive
averaging mechaniam,

4The same angular threshold values (see Sect. 42) were usaed in the
simulations of averaging as well as learning to ignore.
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6 Canclusions

Global motion perception is a critical aspect for the vast
majority of our daily activities. When we move through
the environment by driving, hiking ot walking, we use
motion within large areas of the visual field to determine
our own motion, motion of objects, presence ol obstacles
in our path, time taken by a moving object to arrive close
to us, and the shape of objects. Several computational
studies have attempted to characterize mechanisms of
global motion perception (e.g., Prazdny 1930; Rieger and
Lawton 1985; Heeger and Jepson 1992; Hummel and
Sundareswaran 1993). The methods proposed in these
studies can integrate motion information from a large
number of points in the visual field to determine the
motion of the vbserver. However, good performance of
these methods depends on having little or no noise. In
real life, vision-based systems have to deal with various
contingencies (fog, rain, smoke, snow, low Jight, ete.) that
considerably degrade visibility. Under such low-visibility
conditions, noise-sensitive methods can be expected to
fail due to their sensitivity to perturbations in the input.

An interesting question is whether poor petformance
in motion judgments under low-visibility conditions can
be improved by training. In our experiments involving
judgment of direction of motion embedded in masking
motion noise, we found that performance of subjecls
jmpraves very rapidly. This performance improvement is
sustained, and does not degrade over a long period of
time. These psychophysical results suggested the interest-
ing possibility of designing adaptive computational maod-
els that can improve on motion perception by training.
Such models can be expected to adjust rapidly 1o cope
with changing conditions. Motivated by this potential,
and to understand the neural mechanisms behind petfor-
mance improvement in the psychophysical tasks, we de-
veloped two models for fast learning of global motion
direction. In this paper, we presented these models and
simulation results.

The masking motion noise used in our experiments is
only one possible rendering of low-vistbility conditions,
In further experiments, we plan to explore more realistic
presentations of low-visibility conditions. Other experi-
ments currently in progress examine more complex
motion scenarios (e.g., expansion and contraction) that
are important in three-dimensional motion perception.

In conclusion, our experiments have sugpested thal
there are interesting aspects of plasticity in the motion
pathway of the adult human cortex, and in this papet we
presented two computational models of this plasticity.
The model that learns to perform a weighted averaging
seems the more appropriate model of human perfor-
mAance.

Appendices

A Alternative model of MT neurons

Since the stimuli used in the learning experiments are
noisy, and because the ‘noise’ dots carry a mixed motion
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signal and stimvlate most MT neurons, it is likely that in
reality we have to deal with a mixture of cxcitation and
inhibition to the MT neuron. Inhibition may reduce the
effective gain of the excitatory imputs, and this could
be represented by encoding MT as a product of V1
responses. The response of a product (7) unit, is defined
by

X; o= (H/2neh T, (=00 (A1)

For a given preferred direction 6,, the response is the
product of local responses of gaussian units tuned to the
same preferred direction, Both o and x units model
adequately the directionally tuned response of M T neur-
oms. The 7 units do not have such a direct physiological
correlate as the ¢ upits; Durbin and Rumefhart (1989)
suggested a neurobiological interpretation for 7 units by
hypothesizing a logarithmic transformation at the
presynaptic stage followed by a qualitatively exponential
response function at the postsynaptic stage. We compare
the performance of the two types of units for both learn-
ing to accommodate and learning to ignere models.
Since the product can decay very rapidly as a function
of the number of units involved in the product, the spread
{o3) of the tuning function has to be large compared with
~ those for the ¢ units. In other words, to make = units
responsive, the local (V1) motion units have to respond
less selectively to direction. This reduced selectivity to
direction renders the population coding ‘uniform’,
especially in the presence of nose. That is, the ¢ unit
responding maximally corresponds to the global motion
direction almost always, whereas the n uanit responding
maximally signals global motion direction to a much
" lesser degree. Another way to interpret this is that the
representation vector is elongated along one of the axes
for the o units but not for the 7 units and, thus, a winner-
takeall mechanism would profit from ¢ units but not
from 7 units. ‘
" We observed the following effects of the uniform
representation based on the n units:

+ the 7 units required a high value of the tuning function
spread (o,); otherwisc, many local units have negligible
response, pulling down the overall response;

= the clusters of the representation vectors had a greater
spread than in the case of o units, which forced the
choice of a larger cluster spread [, see (2)];

- in learning using the exposure-based rule (3), the
smooth representation results in favoring units that are
not tuned to the directions being discriminated. This
makes it hard to learn using the exposutre-based rule,
since the ‘noise’ directions are also favored quite fre-
quently; and

* in general, the learning based on ¢ unit representation
was much more robust to changes in parameter values,
and to minor alterations in the learning rules.

B Experimental ohservations

The results of our simulations suggest that the para-
meters of the models play a systematic role in the perfor-
mance. In general, the parameters may be varied over

a reasonably wide range with smooth efiects on the
performance. The exception is o,, the sptead of the tu-
ping function. The larger the o,, the more uniform the
representation (a representation is considered uniform if
the variation among its constituent elements is not large).
The uniformity of the representation influences learning
by the exposure-based rule. This is easily explained. For
the exposiute-based learning rule to induce the proper
weight structure, the favored units (i.e., whose weights are
increased) must be the ones pertinent to improve petfor-
mance in the direction discrimination task (for example,
the left and right direction-tuned units, for a feft-right
direction discrinination task). A uniform representation
favors nearby units quite frequently, resulting in poor
exposute-based learning. In particular, as discussed in
Appendix A, the 7 units require a large oy, which leads to
poor and unstable exposure-based learning,

The parameters specific to the learning to accommo-
date model are the spread {o,) of the cluster gaussians,
and the gaussian threshold (g,). The spread of the cluster
gaussians, o, and the threshold g, together account for
the initial performance. A sufficiently low o, and a suffi-
ciently large g, are needed to mimic the poor performance
exhibited by the human subjects in the first block of the
learning experiments,

The parameters specific io the learning to ignore
model are angular threshold @y, and threshold r,. The
angular threshold f,,. plays the role of 6. and g, discussed
above, that is, to tune the initial performance. The role of
t,is, however, more complex. The thresholding operation
may be omitted for the ¢ units but not fox the 7 units due
to the uniformity of the m representation. With thre-
sholding, the learning is more robust (less susceptible to
changes in other parameters and signal content in the
input), since by thresholding only the highly active units
(responding to signal) have the possibility of ncreasing
their weights.

For the learning to ignore model, where ¢ units are
used, the cxact form of the learning rules is not very
critical. Learning occurs with any of the following expo-
sure-based rules, which differ from (5) by replacing w;
with either x; or w;x;

wp =Wy g, X =7y,
or
wy Wy opwixg, X =

In the latter ¢age, # must have a higher value to compen-
sate for the reduction due to the product w;x;. The same
changes to the self-supervised learning rule (6) do not
alter learning performance. From the empirical evidence,
we conclude that learning to ignore s a robust form of
learning,
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