An Implementation of a Model for
Functional Recognition

Marie-Christine Jaulent
Service o Informatique Médicale, Hopital Broussais, 96 rue Didot,
75014 Paris, France

Lucia M. Vaina
Intelligent Systems Laboratory, Gollege of Engineering,
Boston University, Boston, Massachusetts 02215

This article addresses the problem of the recognition of the usefulness of man-made
objects in actions. In a recent article, [L. M. Vaina and M. C. Jaulent, Inrelligent System
Journal 6, 313-336 (1991)] we defined the functional recognition problem in terms of

“the compatibility between the primary functions of objects and action reguirements.
We proposed a model, based on fuzzy sets and possibility theory, for the organization
of this knowledge and the evaluation of the compatibility to perform funetional recogni-
tion. In this article, we present an implementation of functional compatibility which
takes the functional descriptions of objects and the object requirements of an action as
inputs, and maps-them into an output space that evaluates their functional compatibil-
ity.© 1994 John Wiley & Sons, Inc. :

I. INTRODUCTION

Broadly speaking, visual object recognition involves matching the descrip-
tion of an object with previously stored items in memory. Popular forms of
visnal object recognition methods are the hypothesis—prediction—verification
paradigm,? the constrained search scheme? the relaxation scheme,* and the
rule based production scheme®. Each of these models is concerned with the
construction of explicit descriptions of physical objects from their images.
Such descriptions, however, may not be sufficient when the purpose is object
manipulation rather than object recognition. We proposed'* that, for manipula-
tion, objects must also be described by their functions or possible uses in
actions. Moreover, we argued that for tasks of manipulation and reasoning
about objects, structural and geometrical descriptions of objects in a model are
not sufficient for discrimination and recognition of the possible uses of objects
in actions. ‘

Asd’Arcy Thompson’ put it, “‘form follows function,” and this is especially
true of the man-made objects in our every-day environment. In order to be

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 9, 379402 {1994)
@ 1994 John Wiley & Sons, Inc. CCC 0884-8173/94/040379.24

e i e b e -

[S

380 JAULENT AND VAINA

useful in actions, the object’s structure must have certain propertics designed
to realize those actions. Whereas other approaches to functional representation
have addressed the problem of object design, our focus is on the recognition
of functions.

In a representation of the functional dunensmns of objects, the functional
properties of objects are explicitly expressed (Fig. 1). We restrict our study to
the functional recognition of manufactured objects useful in hand actions.

Functional information is an intrinsic part of one’s general knowledge about
objects: the “*object-concept.””' The relation between the structure and function
of objects is often not directly available and must be extracted through reason-
ing. From a computational point of view, this means that the functional informa-
tion is only implicit in the perceptual representation of an object, and computa-
tions are requlrcd to make it explicit.®

In a previous study, we identified a set of consuamts on the functional
representation and proposed a theoretical model of functional compatibility
between manufactured objects and hand actions' using the framework of possi-
bility theory.?

The present study contributes to the computational validation of this theo-
retical model by first addressing the constraints on the representations involved
in the model, and then describing a specific algorithm that evaluates the func-
tional compatibility between objects and actions.

II. A MODEL FOR FUNCTIONAL RECOGNITION

A. General Objective

The general objective of the functional recognition task is to associate
objects and actions. However, objects and actions cannot be compared direc:tly
Rather, they must be released through functions.

In daily human activities, functional or practical knowlﬁdge is invoked in
order to determine whether an object ¢can be used in an action or whether an
object can serve a certain purpose (the goal of the action), For example, if one
wants to drive a nail into a board, the natural thing to use is a hammer. This
use of the hammer we define as the primary function of an object: the specific
action for which the object has been manufactured (we may know this from
the lexical or categorical knowledge domain). However, we would also know
that a rock, a certain part of pliers, or in some circumstan¢es, the handle of a
screwdriver may accomplish the same goal. This sort of knowledge is different
in nature, it is derived through inferences on the physical properties of these
objects and the requirements of the action to pound (a nail). This additional
function of an object, beyond its primary function, is called an anxiliary function.
The task or functional recogmtmn concerns both primary and auxiliary func-
tions.

In addressing the problem of functional recognition, we must first decide
which representations to use, and then devise and implement an algorithm

FUNCTIONAL RECOGNITION 381

(image of the)
object Cbservable properties
: Structural and geometrical
model
(Perceptual)
representation Non- artios
Structural and functional
. knowledge

Conceptual
reprasentation

Figure 1. The place of the functional dimensions in the successive representation of
an object. :

which evaluates the functional compatibility between deseriptions of objects
and action requirements.

B. Constrainis on the Representations

The goals of correctness, efficiency, and robustness of a functional recogni-
tion system place many constraints on its design and performance, especially
on the nature of the representations that may be used.

1. . The Conceptual Representation

Functions relate objects and actions and this relationship is mediated
through object parts and their configuration.*'® The structure and description
of parts form the appropriatc level of abstraction for the representation of object
functions. Consequently, the conceptual representation (Fig. 1)} must make
explicit the direct association between the structural components of objects
(parts) and their functional properties (as defined in the primary function of the
object). For instance, a knife has two structural parts, the blade and the handle.
The blade directly implements the action while the handle facilitates the imple-

mentation of the action. The handle affords grasping (the associated functional-

ity) of the object while the blade affords its specific use for curting (the associated
functionality). Some authors' have argued that the functional descriptions of
a wide set of manufactured objects can be approached by decomposing them inte
networks of functional primitives. This approach requires detailed knowledge of
the constraints imposed on shapes by functions and defines a limited number
of functional primitives for associating functions with shapes.’ Our approach
is different in that our conceptual representation (the functionat description)
makes explicit only the primary function of the object. The general function
primitives are not explicitly attached to any specific manufactured object, they

- _,&_f_"':_,,_, .: e

ST e s s e ST i

382 JAULENT AND VAINA

are part of the general commonsense knowledge about functions expressed in
terms of physical properties rather than in terms of specific shapes.

2. The Functional Knowledge Representation

The invariant physical properites and relations which can fulfill a function
constitute the functional prototrype of that specific function. It explicates the
association between a singular functionality and its structural, geometrical, and
descriptive properties.

It is important to note that the functional prototype is not an ideal object -

with a particular function or a primary function. There is a fundamental differ-
ence between a prototype and a primary function. For example, “‘to-screw™
is a functional prototype and not the primary function of a given screwdriver,
We consider the functional prototype as a more generic concept which can be
afforded by a class of objects with possibly different primary functions or even
no primary function at all (e.g., coin, knife, screwdriver-1, screwdriver-2, etc.).
The primary function of a given screwdriver is: ‘1o drive a screw of a precise
length, a precise shape through a specific movement of the hand.”

C. Object Representation

Vaina'>!? proposed a model for representing commonsense knowledge in
tarms of three modules: categorical, conceptual, and perceptual.
The object-category module is a hierarchical representation of objects

organized in terms of their semantic categories. Thus, for example, acupisan .

object, man-made, able to be manipulated, and a container. The role of this
representation is to provide classification and taxonomies of objects.

The object-concept module, a conceptual representation, makes explicit
the object’s parts, their relations, and functions. Parts which occur at the same
level of detail (e.g., the legs of a chair) are described at the same level in the
hierarchy. In addition fo the description of parts and relations, the object-
concept level also makes explicit the specific function associated with the object,
usually by a direct link between a part and the function that it affords. Only
the primary function is made explicit in the object concept.

The object-structure module is the perceptual representation whose role
is to make explicit the structure of the object. It describes the shape of the
parts, their geometrical relations, and their visual attributes. Naturally, one
would prefer a general purpose shape recognizer which does not impose too
strong demands on the carlier processes. In essence, it would be desirable to
have a system which could handle equally well the recognition of pineapples,
tomatoes, cats, cups, and hammers, even though in certain circumstances some
ofthese objects might be better described by **special purpose’” representations.
However, this is not practically feasible. The structural characteristics of ob-

jects, the nature of the regularities discovered by the earlier vision mechanisms, .

will constrain the representation that could provide an appropriate description
of a three-dimensional object and its parts. As discussed in the introduction,

FUNCTIONAL RECOGNITION ‘ 383

for the purpose of recognizing the possible uses of objects in actions, it is
necessary to rely on shape representation for the visual input which can give
accurate descriptions of parts effortlessly and quickly.

Three main methods have been proposcd for isolating parts. The first
method is usually referred to as axis-based'! and relies on the decomposition
of objects into parts based on the axes of symmetry. The second method
is called primitive-based, and it relies on defining the possible shapes (most.
commonly cvlinders, spheres, cones or polyhedras) of the parts. These two
methods cach have their advantages and disadvantages. The axis-based method
is very useful for objects which have axes of symmetry and when the axes are
easily accessible from the earlier processes, while the primitive based method
is very useful for a priori specified classes of objects, such as man-man objects.
Once one decides on the appropriate primitive parts, the task is to locate these
parts in the object and associate them with characteristic metrical properties
(e.g., length) and then refate them by predicates which express spatial relations
(e.g., to the right of). Many of our recognition tasks in daily life are facilitated
by context or by the expectations of the kinds of objects we may be dealing
with. Spccifically, this holds quite well in the domain of computer vision, for
which most of the part-based methods have been developed.

The third method is boundary-based, and in this method parts are defined
through their boundary with adjacent parts.'®?" Both the primitive-based and
the boundary-based methods have in common the fact that they define parts
on a representation of the object which is independent of the vantage point and
fully specifies the 3-D shape (the volume occupied by the object) or, equiva-
lently, the whole 3-D bounding surface. Bennett and Hoffman'® have demon-
strated that boundary-based methods do give a part definition which is com-
pletely general. In addition, we argue that the boundary-based methods are
well sujted for discovering how to use an object in both its primary and auxiliary
functions.! This is due to the fact that one visually samples not the whole of
an object, but the parcellated object,” and for the perceiver an object is first
defined as the visual response to its parcellation which is obtained through
exploratory movements. Hence we argue that one first obtains a functional
definition of the object rather than a description of it.

D, Action-Requirements Representation

The necessary and sufficient properties for achieving the goal of an action
are collectively called action-requirements. They involve movement-reqitire-
ments which refer to how the action is carried out, and object-requirements
which embody the required functional properties of the object.! The object-
requirements provide constraints on the structure of the object in order for that
object to be useful in an action. Thus, to be useful in an action such as digging,
the two necessary functions of “‘containing” and ‘‘cutting”’ must be {ulfilled
by the same structural part. We will focus here only on the object-requirernents
(but will use the term action-requirements).

E . .

384 JAULENT AND VAINA

==))D)M)

{a)

(b)

Figure 2. (a)Different screws to drive different materials. (b) Different screws requining
different screwdrivers.

The representation of a set of action requirements must include information
about the context in which the object is used. Although the functions ““1o cut
butter’” and ‘‘to cut a log” both require the same physical property of “‘a sharp
edge,” the sharpness of the edge must differ in the two actions, resulting in two

different sets of actionrequirements. The contextconstrains the domainofadmis-

sible values for a physical property and is embedded in a space of reference.

To illustrate, Figures 2(a) and 2(b} show different types of screws, Fignre
2(a) shows screws differing on the basis of the material in which they are used
{(wood, metal, etc.). These differing media imply different structural require-
ments on the part that is driven (by a screwdriver) and the part that is grasped.
The requirements are delineated by the force necessary to drive the screw.
Figure 2(b) shows different screw heads which impose different functional
requirements on the shape of the screwdriver head. Depending on which screw
one wants to use, the action-requirements to perform the action “‘to-screw-
that-screw’” will be different.

E. A Compatibility Model

We defined the functional recognition problem' as the problem of finding
the functional compatibility between object requirements and object properties.

The evaluation of functional compatibility consists of finding a measure of
similarity between the set of those properties required by a specific action
(objects-requirements) and the description of an object in the three-modules
representation (Fig. 3). The model is based on a pattern-matching procedure
between the two inputs of the action requirements and the object’s description.

1. A Pattern-Matching Procedure

Pattern matching is a tool that has many applications in computer vision
which allows an interpretation of the input data (visual Input) to predefined
. patterns (models).*>* The interpretation is performed by relating visual discrip-
tions to a catalogue of models

FUNCTIONAL RECOGNITION ‘ 385

Object- (Object) Object
STRUCTURE

. Degree of
COMPATIBILITY MODEL COMPATIBILITY

Action reguiremant

Figure 3. Outline of the compatibility model.

The first step of a pattern-matching procedure is to verify that the two
entities are described by the same basic primitives.” In the three modules
representation of the object, each module bas its own set of descriptors. Conse-
quently, we define the pattern-matching procedure to be a threc-step process:
category pattern matching, conceptual pattern matching, and structural pattern
matching. Category pattern matching refers to Rosch’s basic category concept®
and verifies that the candidate for a match can be held by the hand.

The second step of a pattern-matching procedure is to define a support
to express the “‘resemblance’ between the two entities. Matching involves
quantifiable similarity which evaluates resemblance and this can be expressed
by minimizing dissimilarity or maximizing similarity,” by logically combining
matching and mismatching properties” or by using ad-hoc metrics. Tversky’s
contrast sirmlarity model is particularly interesting here, since the similarity
between two objects depends not only on the features they have in common,
but also on the features by which they differ. Tversky has demonstrated that
categorical similarity is not psyehologically symmetric and that the metrics of
a similarity measure is strongly information-dependent.

2. Pattern and Dara

The set of action-requirements defining an action and the appropriate spaces
of reference generate the conceptual pattern of the procedure, while a functional
property generates the structural pattern [Fig. 4(a) and Fig. 4(b)].

Both the conceptual and structural representations of an object form the
- data of the procedure,

3. OQutline of the Procedure

The pattern-matching procedure operates initially at the conceptual level.
When a “‘function’’ is not found directly at this level (independent of the
compatibility rate), a new pattern-matching procedure is triggered at the struc-
tural level, This operates between the functional prototype associated with the

e norm B o e

g

386 JAULENT AND VAINA

Object description

DATA
; PATTERN
Object-
category
) conceptual Objeci-
Requirements mateh eoncept
Functional structural Qhject-
prototype match. I structure
Compatibility
General Knowladge
Rufer-
categary
. - conceptual Ruler-
cutting ; mateh concept
Sharp structural Ruler-
Erige - match structure

Compatipliity .
Figure 4. (a) Levels of matching. (b) A “‘ruler’’ can cut butter.

missing function and the structural representation of the object. At the structural
level, the description of parts must facilitate the extraction of the physical
properties. ‘

We now focus on the implementation of a compatibility model. In this
model, we will describe objects and actions in terms of functional features. If
an object has been especially designed to implement an action (e.g., bread knives
are designed for cutting bread, fish knives for cutting fish) the compatibility is
obviously trivial: the action requirements are automatically matched by the
object functional properties. The compatibility model is problematic when we
try to determine the usefulness of abjects for actions other than those which
directly embody the designer’s goal.

FUNCTIONAL RECOGNITION 387

Agtion Catatogue
Representation \ of abjects
Space of
refaranca
MDA
Congeptual Object \

Raguirements match Concept %
\

7

Symbolic
Ohject

7

COMPATIBILITY

Catalogue of Fiiil DEGREE

functions

,//ﬁ{///

Functional i Structural
prototype ""h' maich

- rt At i oy
SR HH peleivicienng

Figure 5. Synoptic representation of the global system..

Ifl. IMPLEMENTATION

The implementation of the. compatibility model is composed of several
modules. The organization of the different modules is shown in Figure 5. Some
of these modules have been fully implemented (hatched area) while others still
need to be validated. We will discuss the modules presented in the hatched
area. N

Globally, the subsystem takes the conceptual representation of one object
from a catalogue of objects and a set of action-requirements representing one
action and provides: (a) a global compatibility which expresses the extent to
which the objects fit the requirements and, (b) a symbolic representation in
which the object is described in terms of how to be used in the action,

In the current implementation, when the structural pattern matching is
required it is triggered at the user level through an appropriate interface.

(Global compatibility reflects an aggregation of all the elementary compati-
bilities computed for the single requirements. The estimation of the elementary
compatibilities and the modeling of the aggregation operations is based on
possibility theory.®*2° The global compatibility is expressed by two numerical
values: the first value representing the possibility that the obiect can be used to
achieve the action, and the second valuc being the nccessity (the dual measure)
expressing the impossibility of the opposite event.®

An important aspect of the system is the symbolic representation of the
object (also referred to as the goal-oriented representation). This representation
is used when the hands actually grasp the object (give the appropriate position)

f §
e N

S UV SUOTRP VNS U U S

388 JAULENT AND VAINA

1

u X — [0,1] A
A 0 =

Figure 6. The membership function of a fuzzy set A.

and perform the movement underlying the action. This new conceptual repre-
sentation of the object makes explicit the structural and functional properties of
the objcct compatible with the action requirements. For example, the symbolic
representation of *‘a ruler” for the action *‘to-cut-butter’ will contain only one
part (the body part of the ruler) which affords grasping as well as cutting soft
material like butter. When the match is successful at the conceptual level, the
symbolic representation is a subset of the conceptual represcntation. Otherwise
it is a new representation which makes explicit the specific auxiliary function.

The current system is implemented in Common-Lisp on a Lisp-machine
(Gigamos Inc). For increasing efficiency, a subsequent version will be written
in C on a DEC Station 5000 under Ultrix.

A. Implementation of the Action-Requirements

Each action-requirement describes a specific functional property afforded
by an object ideally suited for the action. A function-al property is expressed
by a list (ATTRIBUTE (SPACE VALUE)). “‘Attribute” refars to a functional
prototype, ‘‘space™ refers to the space of reference of the functional prototype
for the given action, and “*value™ is the value required in this particular space.
In the example fo pound (a nail), the action-requirement: **to have a flat surface
that affords pounding the nail” is expressed by the following list: (POUND
(SURFACE LARGER-THAN-NAIL-HEAD)).

The values of an attribute in a given space are offen imprecise in the sense
that their bounds are not well-defined. For instance, for the space “‘capacity,”
when does “‘deep’’ become “‘shallow®? Where is the boundary between the
two? We suggest! that the fuzzy sets theory?®! allows the representation and the
interpretation of an imprecise and subjective meaning of a functional property.
Fuzzy sels are appropriate to use in this representation because a fuzzy set is
a set for which the membership function takes its values in the interval [0, 1]
rather than in the subset {0, 1}. The value 0 corresponds to the absolute nonap-
partenance and the value 1 corresponds to the absolute appartenance. A fuzzy
set A in a reference space X is entirely defined by its membership function p,
(Fig. 6).

For all xin A, the quantity u, (x) evaluates the appartenance of the value
x to the set A and it is called the membership degree of x in A. :

Example. Let A be the fuzzy set A = {x|x is deep} defined on the space

FUNCTIONAL RECOGNITION : 389

= CAPACITY
U v

Figure 7. A possible representation of the fuzzy set “"DEEP".

“Capacity”’ (a linear, objective referential, subset of the reals), Figure 7 shows
a possible membership function of A

A set of values is associated to each space of reference. A value is entirely
defined by a quadruplet, the classical trapezoidal computer representation of
a fuzzy set.?® Sp, for instance:

(PUTDROP " CAPACITY
' (20 (VERY-SHALLOW 0 6 O 2) (SHALLOW 5 11 1 2)
(DEEP 10 16 1 -2} (VERY-DEEF 15 20 1 0))
' SPACE -(F - REFERENCE)

I. Data Structure Assaciated to Action-Requirements

We restricted the action to have only two properties, the REQUIRE property
and the WEIGHT property. The wEIGHT property will be discussed in Section
II1-C.3. The REQUIRE property is a collection of functional and structural con-
straints on the objects. It has a semantic network structure where nodes are
functional constraints and links are structural constraints. The latter are of two
types: type-part links and connections. A type-part link is used when two
required functionalities have to be located specifically in two different parts
(two different named TYPE-PART) and connection is used when two functional
parts are required to be physically attached. The access to this property is
associative.

The following example shows the lisp expressions for the action-require-
ment representation associated to the action *'to screw’” when a flared screw-
driver is required. In example a, to perform the action does not require a lot
of strength and there are no constraints on where the graspable property is
located. In example b, some strength is required and the object must have an
independent graspable part.

ar
(PUTPROP ' TQ-SCREW-1
' (TYPE-OBJECT (GRASPABLE) .
‘ (SCREWING (SHAPE FLARED) (LENGTH $HORT)))
'REQUIRE) '

390 - JAULENT AND VAINA

(PUTPROF 'TO-SCREW-2 ‘
" (TYPE-OBJECT (TYPE-PART (NAME X1} (GRASPABLE))
(TYPE-PART (NAME X2}
(SCREWING (SHAFE FLARED)
{LENGTH SHORT))1
(CONNECTION X1 X2 (R-0 EXTENSION)))
'REQUILRE}

B. Three Modules for Knowledge Representation

The knowledge used by the system to perform the functional recognition
is organized into three modules M1, M2, and M3 which form the knowledge
representation sysiem. ,

M1 is a catalogue of objects. In the current state of the system, there i3
no true organization in terms of the categories inside the catalogue. This cata-
logue is just a collection of objects in which the system searches for a possible
ohject to perform the action. A future extension of the system will be to organize
hierarchically this knowledge base in order to preserve the different classes of
manufactured objects and the natural inclusions between objects in each class
(a Champagne glass is a glass with a stem and all glasses belong to the class
of containers). M1 relates objects to their primary function (if any} and their
structural representation. ,

M2 contains knowledge about functional prototypes and relates functions
io their physical properties. The access to this knowledge base 1s associative;
each function is directly associated to its structural and physical properties.
We will not discuss here the representation of the structural and physical
properties of the functional prototype.

M3 contains knowledge about actions and relates actions to functions.
Here again, access is associative, As was pointed out in Section II-D, the
knowledge about an action is limited to the knowledge of the structural and
functional properties that must afford a manufactured object for successfully
performing that action.

{. Data Structure Associated to Objects

An object is an entity (or “‘atom™) with four classes of properties, the
STRUCTURE-LEVEL property, the CONCEPT-LEVEL propérty, the CATEGORY-
LEVEL property, and the SYMROLIC-LEVEL property. Each property is repre-
sented s a record containing information specific to that level. The access to
these properties is associative and performed by the classical Lisp retrieval
function: (GET ORBRJECT 'STRUCTURE-LEVEL), (GET OBJECT 'CONCEPT-
LEVEL), (GET OBJECT 'CATEGORY-LEVEL), (GET OBJECT 'SYMBOLIC-
LEVEL) . The latter is different in the sense that it is associated to a particular
action and accesses the side-effect result of the global pattern matching pro-
cedure. '

FUNCTIONAL RECOGNITION 391

KNIFE
s A I5 A
SUBPART SUBPART
- OF &
j)’FAHT 1 ‘k\EAEI 2
GRASPABLE CUTTING
TRUE | (MATERIAL BREAD)
IS CONNECTED TO
CONNECTION
R-O EXTENSION

{PUTEROP

'FNIFE
(MAKE-OBJECT
:NAME ‘FENIFE

: SON (LIST PART 1
{MAKE-QBJECT o
:DAD 'ENIFE 1 :

:NAME 'HANDLE
:CONNECTION ' { (BLADE (R-O EXTENSION)}})
:ATTRIEBUT ' ((GRASPABLE))) ‘
(MAXE-OBJECT PART 2
:DAD 'ENIFE —
:NAME 'BLADE ‘
:CONNECTION ' ((HANDLE (R-0 EXTENSION}))
© ATTRIBOT ' ((COTTING (MATERIAL BREAD)))))}}
'CONCEPT-LEVEL) ‘ ‘ ‘

Figure 8. Graphic and Lisp representation of a I{NIFE

The current version of the system considers the concept-level property of
an object as the primer data used in the matching procedure. The value of this
property makes explicit the functional parts and their structural relations ina
hierarchical structure similar to the Marr and Nishihara model.?* For instance,
parts which occur at the same level of detall (e.g., the legs of a chair) are
described at the same level of the hierarchy. The relations are of different types
such as, ““is connected to’* which specifies which parts are attached to each
other and “*is a subpart of”* which breaks down a part in several subparts. Figure
% shows both the graphic and lisp expression for the conceptual representation of
a knife whose primary function is to cut bread.

C. The Pattern-Matching Procedure

The pattern matching between the CONCEPT-LEVEL property of an object
and the REQUIRE property of an action occurs in two steps. The system first
looks inside the conceptual representation of the object to be extracted, which

et am e e

a

392 JAULENT AND VAINA

is, if possible, a structure similar to the structure required by the action (the.

structural organization of the action-requirements). This operation is performed
by a search procedure, each step of which a partial functional compatibility is
computed. One advantage of this algorithm is that it provides a partial result
in the case of failure. The symbolic representation of the object reflects the
success (or partial success) of the procedure and is built at the same time that
the functional compatibility is computed. When a failurc occurs during the
application of the matching, a backtrack procedure is triggered which will
correct the partial functional compatibility and modify the symbolic representa-
tion. A global faiture will trigger structural pattern matching.

The special variable RESULT-MATCH gives a trace of the matching at any
time of the procedure. The module PARTIAL-MATCH is an additional function
which stores all the detected partial matchings to reconsider in case of back-
tracking. ‘

{. Search Procedure

The isomorphic compatisons between the pattern and the datum structures
are performed by a simple breadth-first search algorithm.”® Each functional part
at a given level .of the representation will be examined before the procedure
goes to a deeper level. A breadth-first search algorithm is justified in the context
of functional recognition since details are not relevant when recognition oceurs
at a coarse-level. Thus, a common knife might appear suitable to cut a soft
material (like butter) without verifying that the- teeth of the knife are exactly
appropriate to that kind of material.

For a type-part link, the modale TYPE-PART looks for a compatible part
inside the data which has not been already associated w:th a prcvmus type-
part link of the pattern structure.

For a connection link, the module CONNEC’I‘ION checks the conne.ctmns
among the parts already named. ‘

‘ For a simple attribute, the module MATCEING-ATTRIBUTE COmputes the
elememary compatibility between an attribute in the pattern and an attribute
in the datum.

2. Compumtmn of an Elementary Compat:bzl;ty

In the current state of the system, the elementary compatibility between
twa functional properties is evaluated only when the two spaces of reference
are the same. Consider for example, the three following functional properties:

(CUT (MATERIAL HARD))

P, =
F, = (CUT (SHARPNESS SHARF))
F, = (CUT (MATERIAL SOFT)}

There is certainly a strong relation between the two spaces SHARPNESS
‘and MATERIAL.! In the current version of the system, however, this relation is

FUNCTIONAL RECOGNITION 293

not made explicit and as a result, only the functional properties ¥, and F, can
be compared. In this case, the elementary compatibility between F, (a functional
properly from the pattern) and Fy (a functional property from the datum) is
given by possibility I1 and necessity N that the value of F, is compatible with
the value of F, ‘ ‘

(1 (val,/val,), N(valy/Val)))

3. Global Aggregation

Global compatibility is defined by a combination (or aggregation) of all of
the elementary compatibilities associated with the action-requirements. The

aggregation is performed by the min operation taken over the set of require-.

ments.

Il (Action/Object) = min {H(val;)/F;}
N{Action/Object) min {N(val;) /F}

i

This aggregation depends on the salience of each requirement (how much
~ of the functional property can be missing with the object still suitable for
performing the action?) as well as the nature of the different links involved
(type-part or connections). In order to take into account the difference in
salience between the requirements, a weight a; is associated to cach action-
requircment F, reflecting such information with the following convention,
a, = 0 indicates that the requirement is negligible while a; = 1 indicates that
the requirement is essential. Such information about the action 1s made explicit
in the WEIGHT property of the action. Figure 9 displays the LISP expressions
of the WEIGHT property of the action “‘to-screw’’ as introduced in. Section
III-A. For the action TO-SCREW-1, great strength is not necessary, so how
and where the screwdriver is grasped is of less importance than.the type of
screwdriver head used. It is most important that the screwdriver head fits
perfectly into the screw head. On the other hand, for the action TO-SCREW-Z,
the screw head is bigger so the shape of the screwdriver is not as important.

In this case, strength is necessary and of greater importance to the design of

the object, so the object should have a graspable part.
Finally, global compatibility is defined by":

[I(Action/Ohject) = min {max (1-a;, M(val;)y / Fy}
NAction/0Object) min {max (1-z;, N(val;) /"Fi}_

The final degree of compatibility is provided by the pair of values {II' (Action/
object), N(action/Object)) which evaluate the usefulness of the abject to
perform a given action. . ‘ ‘

394 + JAULENT AND VAINA

Power grip

Figure 9. Examples of weighting.

IV, CONCLUSION

The work presented -in ‘this article is a follow up of our previous more
theoretical studies which addressed the problem of the recognition of object .
functions. Here we present an implementation of our moedel of functional recog-
nition as the compatibility between objects and their use in hand actions. This
model is based on fuzzy sets and possibility theory, where the compatibility is
computed by a three-leveled pattern-matching procedure (category patiern-
matching, conceptual pattern matching, and structural pattern matching). We
consider two classes of necessary and sufficient properties for achieving the
goal of an action. The REQUIRE property is the collection of functional and
structural constraints on the objects and the WEIGHT property describes to what
extent each REQUIRE properly is necessary. These two properties are used to
locate within a catalogue of objects those objects that are useful in carrying
out the action. The object is described in a three-modules representation (the
CATEGORY-LEVEL, the CONCEPT-LEVEL, and the STRUCTURAL-LEVEL) which
constitutes the datum of the procedure. The general knowledge of how a single
functionality is linked to the structural, geometrical, and descriptive properties
of shapes is storedin a catalogue of functional prototypes. The currently imple-
meriting system matches the CONCEPT-LEVEL property of the object and the

FUNCTIONAL RECOGNITION - 305

REQUIRE property of the action and computes the global compatibility between
the object and the action. An important secondary component of this procedure
builds a symbolic representation of the object: the ooal-oriented representation
of the object for the given action. In the current implementation, when structural
pattern matching is required, it is triggered at the user level through an appro-
priate interface between the functional prototypes and the STRUCTURAL-LEVEL
properties of the object. The proposed conceptual model between objects and
their use in hand actions would have many applications due to the fact that it
enhances the difference in computations between primary and auxiliary func-
tions. This model, if applied in the area of robotics, could provide an intelligent
robot with the capability to carry out a task in an unconstrained environment,
and this will be useful especially as unattended manufacturing advances.

V. EXAMPLES

A. A Set of Screwdrivers

SCREWDRIVER-1 and SCREWDRIVER-1-BIS describes the same flared screw-
driver except that the parts (the blade and the handle) are not described in the
same order and that the blade is graspable in the second one, The results show

how the pattern-matching procedure is sensitive to this parameter. SCREWDRIV-

ER-2 describes a tory screwdriver,

(PUTPROP . ' S3CREWDRIVER-1

(MAKE-OBJECT

'NAME ‘'SCREWDRIVER-1

:S0N (LIST (MAKE-OBJECT
*NAME 'HANDLE
. CONNECTION ' { (BLADE (R-O EXTENSION)))
: ATTRIBUT ' ((GRASPAELE)}))
(MAKE-OBJECT
: NAME 'BLADE
" CONNECTION ' ((HANDLE (R-0 EXTENSION)))
 ATTRIBUT ' ((SCREWING (SHAPE FLARED)

(LENGTH MEDIUM))) 1))

1 CONCEPT-LEVEL)

{PUTFROP 'SCREWDRIVER-1-BIS
(MAKE-0OBJECT
:NAME ' SCREWDRIVER-1-EIS&
(80N (LIST (MAKE-QBJECT
: NAME: 'BLADE
- CONNECTION ' ((HANDLE {(R-0 EXTENSION)))
. ATTRIBUT ' ((SCREWING (SHAPE FLARED)
: (LENGTH MEDIUM))))
(MAKE-OBJECT
: NAME 'HANDLE
. CONNECTION ' { (BLADE (R-0 EXTENSION)))
: ATTRIRUT ' { (GRASPABLE}))))
tCONCEPT-LEVEL)

396 | * JAULENT AND VAINA

(PUTPROP 'SCREWDEIVEE-1

{MAKE -ORJECT

: NAME ' SCREWDRIVER-1

Ci80N (LIST (MAKE-OBJECT
: NAME 'HANDLE
; CONNECTION ' ({(BLADE (R-Q EXTENSION)))
'ATTRIBUT ' { (GRASPAELE)))
(MAKE-OBJECT
:NAME 'BLADE :
: CONNECTION ' { (HANDLE (R-0 EXTENSION)))
TATTRTBUOT ' ((SCREWING (SHAPE TORX)

(LENGTH SHORT))) 1))
' CONCEPT-LEVEL)

B. A Set of Actions

Each action is described along the REQUIRE and PONDERE properties.
In the first example, the two parts are required to be the same. A *WITH*
link.

a- (PUTPROP 'TO-SCREW-1
' (TYPE-OBJECT {GRASPABLE) '
{SCREWING (SHAPE FLARED) (LENGTH SHORT)))
'REQUIRE)
{PUTFROP 'TO-SCREW-1
' {{GRASPABLE 0.6} (SCREWING 1))
'WEIGHT

In this example, the two parts are required to be different. A *APART* link.
A connegction requirement appears in the prototype.

b~ (PUTPROP 'TO-SCREW-2 :
' (TYPE-OBJECT (TYPE-PART (NAME X1) (GRASPABLE))
(TYPE-PART (NAME X2)
{SCREWING (SHAPE FLARED)
{LENGTH SHORT)})
{CONNECTION X1 X2 (KE-O EXTENSION)})
"REQUIRE)
{PUTPROP 'TO-SCREW-2
' ((GRASPABIE 1) (SCREWING 0.2) (CONNECTION 0.2))
"WEIGHT)

In this case, there is a *wA= link. The connection requirement appears in the
implement part of the prototype with a variable =X.

¢= (PUTPROP 'TO-3CREW-3
" (TYPE-QRJECT (GRASPABLE)
(TYPE-PART (NAME X2)
(SCREWING (SHAPE FLARED)
(LENGTH SHORT))
(CONNECTION X2 =X

P

e e R

;J-" [

FUNCTIONAL RECOGNITION 397

(R-0 EXTENSION))))
'REQUIRE)
(FUTPROF 'TO-SCREW-1
‘ ' ((GRASPABLE 0.6) (SCREWING 1) (CONNECTION 0.2))
'WEIGHT)

C. Examples of Spaces of Reference

(PUTPROP 'SCREWING ‘ ‘
' { (FLARED) (PHILLIPS) (POZIDRIV) (REED) (CLUTCH)
(ROBERTSON) (TORX)) ‘
'BHAPE)
(PUTPROP 'SCREWING . ‘
' ({(VERY-SHORT 0 6 0 2} {(8HORT 5 11 1 2) (MEPIUM & 12 1 1)
(LONG 10 16 1 2) (VERY-LONG 15 20 1 0)}
'LENGTH)
(PUTPROP 'CONNECTICN
' ((EXTENSION) (PARALLEL) (ORTHOGONAL))
TR-0)

D. Results of the Pattern-Matching Procedure for These Examples

[FUNCTIDNAL-MATCH 'TO-SCREW-1 'SCREWDRIVER-1)
“TO-SCREW-1 = TYPE-OBJECT: GRASPABLE
SCREWING (SHAPE FLARED) (LENGTH SHORT)
SCREWDRIVER-1 HANDLE --> {GRASPABLE)
BLADE --7 (SCREWING (SHAPE FLARED) (LENGTH MEDIUM))

MESSAGES: NONE

The match is successful at the conceptual level without no requirement of parts.
CONCLUSION IS (1.0 0.33)

(FUNCTIONAL-MATCH 'TO-SCREW-2 'SCREWDRIVER-1)
TO-_SCREW-2 = TYPE-OBJECT: '
TYPE-FART: NAME X1
' GRASFPABLE
TYPE-PART: NAME X2 :
'SCREWING (SHAPE FLARED) (LENGTH SHORT)
CONNECTION ¥1 X2 (RE-0 EXTENSION)
SCREWDRIVER-1 HANDLE --> {GRASPABLE)
BLADE --> (SCREWING (SHAPE FLARED) (LENGTH MEDIUM))

MESSAGES:
1 -= A PART IS REQUIRED FOR (TYPE-FART (NAME ¥1) (GRASPABLE})
LOOK FOR A PART AMONG (HANDLE BLADE) TO AFFORD ((CRASPABLE))

The system looks first if the Handle is graspable.

S

398 ' JAULENT AND VAINA

2 => A PART IS5 REQUIRED FOR (TYPE-PART (NAME X2) (SCREWING
(SHAFE FLARED) (LENGTH SHORT)))
LOCK FOR A PART AMONG (HANDLE BLADE} TOQ AFFORD

((SCREWING (SHAPE FLARED) (LENGTH SHORT)))
2 - %% HANDLE IS ALREADY AFFECTED --2» SKIP IT

Even if the Handle can afford the required functionality it is skipped since the
two functionalities have to be in two different parts,

2 = LOOK FOR A PART AMONG (BLADE) TO AFFORD ((SCREWING
(BHAPE FLARED) (LENGTH SHORT)))

4 -> A CONNECTION IS REQUIRED
LOOK FOR A CONNECTION AMONG ((X2 BLADE) (X1 HANDLE)}
EETWEEN X1 AND X2 TQ AFFORD ((R-O EXTENSION))

CONCLUSION IS (1.0 0.5)

(FUNCTTONAL-MATCH ' TO~53CREW-3 'SCREWDRIVER=1)
TO=-SCREW-3 = TYPE-OBJECT: GRASPABLE
‘ TYPE-PART:
NAME: X3
SCREWING (SHAPE FLARED) (LENGTH SHORT)
CONNECTION X2 =X (R-0 EXTENSION)
SCREWDRIVER-1 HANDLE --> (GRASPABLE)
BLADE --> (BCREWING (SHAPE FLARED) (LENGTH MEDIUM))

MESSAGES:
1 «>>= A PART IS5 REQUIRED FOR (TYFE-FPART (NAME X2 SCREWING
(SHAPE FLARED) (LENGTH SHORT)) (CONNECTION X2 =X
(R-0 EXTENSION)]) ‘ :
LOOK FOR A PART AMONG (IIANDLE DLADE) TO AFFORD
((SCREWING (SHAPE FLARED) (LENGTH SHORT))
(CONNECTION X2 =X (R-O EXTENSION)))

2 -=> A CONNECTION IS REQUIRED
LOOK FOR A CONNECTION AMONG ((X2 BLADE))
BETWEEN X2 AND =X TO AFFORD ((B-0 EXTENSION))

3 -> LOOK FOR A PART AMONG (BLADE) TO AFFORD
{ (SCRRWING (SHAPRE FLARED) (LENGTH SHORT))
(CONNECTION X2 =X (R-0 EXTENSION)))

"4 = A CONNECTION I5 REQUIRED
LOOK FOR A CONNECTION AMONG ((X2 BLADE))
BETWEEN X2 AND =X TO AFFORD ({(R-0O EXTENSION})
. LOOK FOR A CONNECTION AMONG ((X HANDLE) (X2 BLADE))
BETWEEN X2 AND X TO AFFORD ((R-0 EXTENSION)}

CONCLUSION IS5 (1.0 Q.EB)
(FUNCTIONAL-MATCH 'TO-SCREW-1 'SCREWDRIVER-1-BIS)

TO-SCREW-1 = TYPE-OBJECT: GRASPABLE o
. SCREWING (SHAFPE FLARED) (LENGTH SHORT}

g

FUNCTIONAL RECOGNITION 399

SCREWDRIVER-1-BIS
BL.ADE —--= (GRASPABLE)) '
-== (BCREWING (SHAPE FLARED) :(LENGTH MEDIUM))
HANDLE ~-= {GRASPABLE)

MESSAGES: NONE

The system found directly the Blade part to be good for thc two required
functionalities. CONCLUSION IS (1.0 0.33)

(FUNCTIONAL-MAJCH 'TO-SCREW-2' 'SCREWDRIVER-1-RBIS)
TO-SCREW-2 = TYPE-OBJECT: : : .
TYPE-PART: NAME X1
GRASPABLE
TYPE-PART: NAME X2
SCREWING (SHAPF FLARED) (LENGTH SHORT)
" CONNECTION X1 X2 (R-O EXTENSION)
SCREWDRIVER-1-BIS
BLADE =--2 (GRASPABLE)
-_> (SCREWING (SHAPE FLARED) (LENGTH MEDIUM))
HANDLE --> (GRASPABLE)

MESSAGES:
1 -= A PART I3 REQUIRED FOR (TYPE-PART (NAME ¥1) (GRASPABELE))

L.OOK FOR A PART AMONG (BLADE HANDLE) TQ AFFORD ((GRASFABLE))

9 .2 A PART IS REQUIRED FOR (TYPE-PART (NAME X2) (SCREWING
(SHAPE FLARED) (LENGTH SHORT))) .
LOOK FOR A PART AMONG (BLADE HANDLE) TO AFFORD
{ (SCREWING (SHAPE FLARED) (LENGTH SHORT)))
2 «- #**BLADE IS ALREADY AFFECTED --> SKIP IT

g —> LOOK FOR A PART AMONG (HANDLE) TO AFFORD
- ((SCREWING (SHAPE FLARED) (LENGTH SHORT)))
5 ‘<~ BACKTRACKING

The Handle cannot afford the required functionality so the system will look
into already located parts.

4 —> LOOE FOR A PART AMONG (BLADE) TOQ AFFORD
((SCREWING (SHAPE FLARED) (LENGTH SHORT)))
BACKTRACKING NEEDED FOR ({TYPE-PART (NAME X1)
{GRASPABLE)) ‘

An already located part is relocated but the previous functionality has to be
re-examined.

e e mamta e B e e A

[

. ;';-5"'; i

400 JAULENT AND VAINA

5 -= A PART IS REQUIRED FOR (TYPE-PART (NAME X1)
(GRASPABLE))
5 —= #*BLADE I3 ALREADY AFFECTED --3» SKIP IT

& - LOOK FOR A PART AMONG (HANDLE) TO AFFORD
{ (GRASPAELE))

7 -» A CONNECTION IS REQUIRED
LOOK FOR A CONNECTION AMONG { (X1 HANDLE) (X2 BLADE))
BETWEEN X1 AND X2 TO AFFORD ((R-O EXTENSION))

CONCLUSION IS (1.0 0.3}

(FUNCTIONAL-MATCH 'TO-SCREW-3 'SCREWDRIVER-1-BIS)
TO-SCEEW-2 = TYPE-OBJECT: GRASPABLE
TYPE-PART:

NAME X2

SCREWING (SHAPE FLARED) (LENGTH SHORT)
CONNECTION X2 X (R=0 EXTENSION)

SCREWDRIVER-1-BIS
BLADE --> ((GRASPABLE)
== (BCREWING (SHAPE FLARED) (LENGTH MERTUM))
HANDLE --> (GRASPAELE)

MESSAGES:
1 —= A PART IS REQUIRED FOR (TYPE-PART (NAME X2) (SCREWING
(SHAPE FLARED) (LENGTH SHORT)) (CONNECTION X2 =X
(R~0 EXTENSION)))
LOOK FOR A PART AMONG (BLADE HANDLE) TO AFFORD
((SCREWING (SHAPE FLARED) (LENGTH SHORT))
(CONNECTION X2 >X (R-0 EXTENSION)))

2 -= A CONNECTION IS REQUIRED
LOOK FOR A CONNECTION AMONG ((X2 BLADE})
BETWEEN X2 AND =X TO AFFORD ({R-0 EXTENSION))

CONCLUSION IS (1.0 0.32)

{FUNCTIONAL-MATCHE 'TO-SCREW-1 'SCREWDRIVER-2)
TO-SCREW-1 = TYPE-OBJECT: GRASPABLE
SCREWING (SHAPE FLARED) (LENGTH SHORT)
SCREWDRIVER-2 HAWDLE --> (GRASPABLE)
BLADE --> (SCREWING (SHAPE TORX) (LENGTH SHORT))

MESSAGES:

1 -> SET A PARTIAL RESULT
{ (PARTIAL-AFFORD (1.0 1.0) SCREWDRIVER-
2 IN HANDLE FOR (GRASPABLE)))

The match failed globally but a functionality has been found at the concepma.l
level and will not be checked again at the structural level.

CONCLUSION IS FAIL --> TRIGGER INTERFACE MODULE

" @R? (BCREWING (SHAPE FLARED) (LENGTH SHORT)) IN SCREWDRIVER-2
A = (0.6 0.3]

CONCLUSION IS (0.6 0.3)

e

FUNCTIONAL RECOGNITION 401

{FUNCTTONAL~MATCH 'TO-SCREW-2 'SCREWDRIVER-2)
TO-SCREW-2 = TYPE-OBJECT:
TYPE-PART: NAME X1
GRASPABLE
TYPE-PART: NAME X2
SCREWING (SHAPRE FLARED) (LENGTH SHORT)
CONNECTION X1 X2 (R-O EXTENSION)
SCREWDRIVER-2 HANDLE --> (GRASPAELE)
BLADE --3> (SCREWING (SHAPE TORX) (LENGTH SHORT))

MESSAGES:
1 -> A PART IS REQUIRED FOR (TYFE-PART (NAME X1)
(GRASPAELE))
LOOK FOR A PART AMONG (HANDLE BLADE) TO AFFORD
((GRASPABLE))

2 - A PART IS REQUIBRED FOR (TYPE-PART (NAME X2) (SCREWING
(SHAPE FLARED) (LENGTH SHORT)))
LOOK FOR A PART AMONG (HANDLE BLADE) TO AFFORD
((SCREWING (SHAPE FLARED) (LENGTH SHORT)))
2 <. *%HANDLE IS ALREADY AFFECTED --= SKIP IT

3 ~> LOOK FOR A PART AMONG (BLADE) TO AFFORD
((3CREWING (SHAFPE FLARED) (LENGTH SHORT)))
3 <~ BACKTRACKING

4 -> LOOK FOR A PART AMONG (HANDLE) TO AFFORD
{ (3CREWING (SHAPE FLARED) (LENGTH SHORT)))
SET A PARTIAL RESULT
{ (PARTIAL-AFFORD (1.0 1.0) SCREWDRIVER-2Z IN HANDLE
FOR (TYPE-PART (NAME X1) (GRASPABLE))))

5 -= A CONNECTION IS REQUIRED
LOOK FOR A CONNECTION AMONG ((X2 NIL) (X1 HANDLE))
BETWEEN X1 AND X2 TO AFFORD ((R-0 EXTENSION))

CONCLUSION IS FAIL --= TRIGGER INTERFACE MODILE
Q7 (TYPE-PART (NAME X2) (5CREWING (SHAFE FLARED)
(LENGTH SHORT))) IN (BLADE)

A= (0.6 0.3)

WHERE? Blade
Q7 CONNECTION HANDLE BLADE IS ((R-0O EXTENSION))
A= (0.50.5) ‘
CONCLUSION I& (0.5 0.3)

References

1. L.M. Vaina and M.C. Jaulent, “Object structure and action requirements: A compat-
ibility model for functional recognition,”’ Intelligent System Journal, 6, 313336

(1991).

2. R.A. Brooks, “*Symbolic reasoning among 3-D models and 2-D images,” Artificial

Intelligence, 17(1-3), 285-348 (1981).

3. A. Gimson, “*Binocular shading and visual surface reconstruction,” Computer Vi-

sion Graphics and Image Processing, 28(1), 19-43 (1984).

4. B. Bhanu, ‘‘Representation and shape malching of 3-I> objects,”” IEEE Fattern

Anal. Mach. Intell., PAMI, 6(3), 340-350 (1984).

402

5.

=]

o et

10.

11.

12.
13,

14.

16.
17.
18,
19,
20.
21,

22.
23.
24,
25.
26.

JAULENT AND VAINA

D.M. McKeown and J.F. Pane, *‘Alignment and ¢onnection of fragmented linear
features in aerial imagery,” in Proceedings, IEEE Conf. Computer Vision and
Pattern Recogniiion, Ban Francisco, June 1985,

. L.M. Vaina, “From shapes and movements to objects and actions: Design con-

straints on the representation,”” Synthese 54, 3-36 (1983).

D’ Arcy Thompson, On Growth and Form, Cambridge University Press, 1961.
L.A. Zadeh, “'Fuzzy sets as a basis for a theory of possibility,”” Furzy Sets and
Systems 1, 328 (1978),

- M. Di Manzo, F. Ricei, A. Batistoni, and C. Terrari, “Using functional knowledge

in computer vision,"” IEEE Proceedings, T4(7), 1013-1025 (July 1986).

P. H. Winston, T. O. Binford, B. Katz, and M. Lowry, ‘‘Learning physical descrip-
tions from functional definitions, examples and precedents”” MIT Al Memo 679,
MNovember 1982, ‘

G. Ardoni, M. Di Manzo, F. Giunchiglia, and F, Ricci, “*Building functional descrip-
tions,”” Proceeding ROVISEC 5, Amsterdarm_ 1985

L.M. Vaina, Semiotics of With, Versus, 17 Bompiani, Milano, 1978, pp. 96—112.
L.M. Vaina, “Towards a computational theory of semantic memory,”” in Cognitive
Constraints on Communication, L. Vaina and J. Hiatikka, Eds., 1984, pp. 97-113,
H. Blum, “*Biological shape and visual science,” J. Theor. Biol., 38, 205-287 (1973).

. T. Binford, **Visual perception by computer,” IEEE Conference on Systems and

Control, Miami, 1971. : C _
J. Koenderink and A. van Doorn, ‘““The shape of smooth ohjects and the way
contours end,” Perceprion, 11, 129-137 (1982),

D. Hoffman, and W. Richards, *Parts for recognition,”” Cognition 18, 65-96 (1984),
B. Bennett and D. Hoffman, “‘Shape decompositions for visnal recognition: The
role of transversatility," in fmage Understanding, W. Richards and 8. Ullman,
Eds,, MIT Press, 1987, pp. 231-241. '

L.M. Vaina and 5.D. Zlateva, 'A convexity-based method for extracting object
from 3-D surfaces ™ Proceedings SPIE, 1001, to appear. o

5.D. Ziateva and L.M. Vaina, “*From object structure to object function,’’ Proceed-
ings SPIE, 1991, to appear. o K

J. Koenderink, “*An internal representation for solid shape based on the topological
properties of the apparent contour,” in fimage Understanding, W. Richards and S.
Ullman, Eds., MIT Press, 1987, pp. 257-283,

T. Paviidis, ““Algorithms for shape analysis of contours and waveforms,” IEEE
Trans. PAMI, 2(3), 121-147 (1980).

D.H. Ballard and C.M. Brown, Computer Vision, Prentice-Fall, Englewood Cliffs,
NI, 1982, a -

D. Marr and H.K.., Nishihara, “*Representation and recognition of the spatial organi-
zation of three-dimensional shapes,” Proc. R. Soc, Lond., B 200, 269-294 (1978).
E. Rosch, C.G. Mervis, W. Gray, D. Johnson, and P. Boyes-Braem, “‘Rasic objects
in natural categories,” Cognitive Psychology 8, 382-439 (1976).

A, Tversky, “‘Features of similarity,” Psychological Review, 84, 327-352 (1977,

. D.L. Medin, W.D. Wattenmaker, and $.E. Hampson, **Family resemblance, con-

ceptual cohesiveness and category comstruction,” Cognitive Psychology, 19,

242279 (1987).

28,
29.
30.

31.

£.H. Winston, “Learning structural descriptions from examples,™ in The Psychol-
ogy of Computer Vision, MeGraw-Hill, New York, 1975

D, Dubois and H. Prade, Théorie des Possibilités: Applications a la Représentation
des Connaissances en Informatique, Masson, Paris, 1985,

M.C. Faulent, “*Un systéme souple pour identifier des objects géométriques plans
décrits par un opérateur humain,” Doctorat INP, Toulouse, France, 1986.

L.A. Zadeh, “Fuzzy sets,” Information and control, 8, 3-28 ‘

