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In a psychophysical and computational study of perceptual learning we
showed that performance in a task of direction discrimination in dynamic
stochastic random dot displays improved with practice (Vaina et al., 1993).
The improvement was fast, and was specific to the stimulus parameters and
location in the visual field. The computational study, based on an
ulnsupervised learning model, simulated biologically plausible synaptic
weight changes that led to imprf,;ved performance in the task. In the current
study, we focused on obtaining a motion representation for this task, by
using a supervised model. Specifically, we used feed forward metworks of
neurons with a physiologically realistic spiking mechanism, trained using
the backpropagation rule. The spiking mechanism simulated neuronal noise
and a mean-rate coding mode of transmission from cell to cell with either
high or low spontaneous firing rates. Performance improvement
qualitatively similar to those of human subjects was achieved. We found
that (a) training these networks produced opponency between network units
tuned to opposite directions of metion, and (b) the learning was slower,

more stable, and more accurate for the high spontaneous firing rate. The



opponency is consistent with physiological results. The spontaneous rate
provides an alternative, stable means of controlling the learning rate in

bhackpropagation.

1 Introduction

With practice, human observers show dramatic and persistent improvement in
perceptual tasks involving detection or discrimination of visual features, including complex
gratings (Fiorentini and Berardi 1950), hyperacuity (McKee and Westheimer 1978; Poggio
et al. 1992), stereopsis (Ramachandran and Braddick 1973; Fendick and Westheimer
1978), discrimination of texture (Karni and Sagi 1991), direction of motion (Ball and
Sekuler 1987), line orientation (Vogels and Orban 1983; Shiu and Pashler, 1992), and
object features (Ahissar and Hochstein 1993). In a global motion task, we found that
human subjects showed rapid improvement and retention of the ability to discriminate
direction (Vaina et al. 1995). In this study, we model this perceptual learning by a feed

forward network using neurons with physiologiéally realistic spiking mechanisms.

There have been few aitempts to computationally model perceptual learning. Poggio et al.
(1992) pioneered this modeling, using radial basis functions to model performance
improvement in a hyperacuity task. Their network learned using a supervised mechanism to
alter the weights of the radial basis functions, to best approximate the input-output
relationship. For the same perceptual learning task, an unsupervised model was presented
by Weiss et al. (1993) who nsed orientation-selective basis functions. Peres and Hochstein
(1994) presented a neural network model for performance improvement in an odd-element
detection task (Ahissar and Hochstein 1994) based on reinforcement learning. In arecent

study, we presented unsupervised models of learning to discriminate global motion



direction (Sundareswaran and Vaina 1996). In that study, our goal was to model the
performance improvernent through Hebbian learning. In the current study, our objectives
were to identify the neuronal representation which is important for the learning, and to
exarnine the role of physiologically realistic spiking mechanisms in learning, We adopted
the backpropagation method because the symaptic weight patterns generated by
backpropagation may identify the representation used by the brain, even if the “brain
arrives at these patterns using an algorithm more realistic than backpropagation” (Crick,
1989). In addition, learning algorithms can be used to train networks that perform a certain
task, and one can then ask whether properties of the trained units in these networks
resemble those of neurons in the nervous system (Zipser and Anderson 1988; Lehky and
Sejnowski 1990). In this study, we were not interested in developing a more realistic
learning method (as for e.g. in Mazzoni et al. 1991), but to introduce a physiological

information transmission process in the forward path and study its effects on learning.

Although information transmission from layer to layer in a collection of neurons 18 still an
unresolved issue, the concept of rate coding as a plausible method of transmission 18
increasingly gaining acceptance among researchers interested in biologically based neural
networks (Softky and Koch 1993), The underlying distribution which governs the firing
rate of the neurons is an equally ambiguous area but there is increasing evidence that the
process is roughly Poisson with a non-stationary mean rate (Softky and Koch 1993;
Georgopoulos 1994). An important aspect of the transmission process is the spontaneous
rate (SR) of neuronal channels. In actual populations of peurons there is an intrinsic ‘noise’
to the neuron itself which is seen as spontaneous firing of the neuron without a causal
input. Generally two population types are considered: those with high SR that can be
viewed as more ‘sensitive’ and those with low SR that require greater input activity 1o

generate the output.



In this study, we used these two types of SRs and analyzed their effects on local and long-
term learning trends. To understand the internal representation useful in performing the
global motion task, we examined the weight patterns generated in the backpropagation

network trained to improve in this task.

<Figure 1 about here>

2. Methods

The stimuli were random dot kinematograms with 100 dots, in which 75% of the
dots were displaced in random directions, and the remaining 25% were displaced in a
single (coherent) direction. The stirulus is shown in Figure 1, for three different levels of
coherence (15%, 25%, and 75% of the dots moving in the coherent direction). In a task to
discriminate between two opposite directions in stimult with a low proportion of coherently
moving dots, observers’ performance improved rapidly (200-400 trials), stabilized quickly,
and was retained for days and even months (Vaina et al. 1995). Newsome and Paré (1988)
first showed that this is a global motion task since to discriminate motion direction, the

observer must spatially integrate information from the whole field.

To model the performance improvement, we used a standard feed forward network
consisting of a four unit input layer, a two unit hidden layer, and a single unit output layer.
The activity of a unit was computed as the weighted combination of the actvities of units in
the previous layer, transformed by a sigmoidal activation function. The input to the
network were the measurements of a set of four directionally-tuned units with Gaussian

tuning curves; each unit was tuned to one of the four cardinal directions of motion, ie.



right, ulp, left, and down. Each directionally-tuned unit integrated motion information from
a large area (the “receptive field”) of the input images. by summing responses of local units
with the same directional tuning. This global motion information was used to regulate the
activity of the neural network’s first layer. The output of the network signaled one of the
two possible directions of global motion. The performance of the network was assessed by
comparing the network output with the known direction of global motion of the input. The
error in the output was used to modify the weights of the network using the

backpropagation rule with mormentum:
Wi, /) = W(i,])+n*Emor *Input + p* [(W(LJ) - We(l, )]s (1)

where:

W(ij) : Weight value from unit i to unit j

i) : Learning rate

Emmor  : Network output error

Input  : Value being passed from unitito unit j
1l : Momentum value

Woll) : The previous weight value

<Figure 2 about here>

In contrast to standard feed forward nerworks, the transmission from the input units
to the hidden units was performed by mean-rate coding of input unit activity (see Figure 2).
In our model, both temporal and firing rate encoding were unified into a simple spike

generation scheme. We used a sifnple approximation to a transmission model inspired by



Softky and Koch (1993) and Georgopoulos et al.(1994a, 1994b). When choosing a
temporal "window” size for each stimulus presentation, both the computational time
constrainrs and the number of spikes needed to transmit information through a variable
mean firing rate were considered. The window size used was a maximum of 25 spikes per
stimulus field presentation (for a detailed discussion of window size choice, sec Heller et
al.. 1095). The spike arrival time was a Poisson random process. The spiking process was
simulated using a Gaussian distribution of random numbers with a firing threshold
regulated by the activity of the directionally tuned units (a similar threshold adjustment
based on noise level has been used by McAuley and Stampfli, 1994). If the random
pumber generated was greater than the threshold, the cell produced a spike (see Figure 2).
The initial threshold was determined by the cell type chosen, either a high or low SR. Low
SR threshold level was 1.65 or approximately 1 to 2 spikes per time window; high SR
threshold level was 1.25 or approximately 3 to 4 spikes per time window, The activity of

the neuron was measured by the number of spikes in the temporal window.

3. Simulations

Consistent with the psychophysical experiment (Vaina et al, 1995), here too we
used a 2AFC (two-alternative forced-choice, e.g., feft vs right) global motion direction
discrimination task. A simulation run consisted of 1000 trials, divided into 40 blocks of 25
trials each. In each trial, motion of the 100 dots was simulated, with 15%, 25%, or 75%
coherence. At the beginning of each run the network weights were randomized to small
values following roughly a Gaussian distribution with zero mean and 0.2 unit standard
deviation. Learning was supervised and implemented by standard delta rule back-
propagation with momentum which exploits weight gradients to alter connections between

units (1). The weight values were checked at the end of each run so that they never became



smaller than +/- .0001 to ensure that a zero weight value, which would cause 4 permanent

cessation of leaming, doas not occur.

From (1) it is clear that the order of the input values must be comparable to that of
the error values to obtain quick and stable leaming. To achieve this, the activities of the
directionally-tuned units were normalized to a sum value of one. This was necessary due to
the small input values (on the order of 1012 at 25% signal) relative to the output error
values (on the order of 1). The nonmalized input was used to regulate the transmission

mechanism (detailed below) from input to hidden units.

We examined network performance using three measures: the final weight pattern,
the percent correct by block, and the cumulative percent correct. After each run, we
inspected the final weights to determine if there was a consistent pattern across runs. After
each block, percent correct by block-the percentage of correct decisions in a block-was
used to study the local learning trend. To study the long-tezm learning trend, after each trial
we computed the cumulative percent correct, defined as the total number of correct

decisions divided by the total number of trials.

The learning rate 1] was not kept constant throughout a run, but at the end of a block

it was diminished if the average error in that block decreased at least by 10% compared to

the average error value at the instant of the previous alteration of the 1 value. This damping

of the learning rate promoted a monotonically decreasing average error value.

A run was considered to have converged if the last percent correct by block was
above 70%, and if the cumulative percent correct was above 80% (these thresholds were

chosen empirically based on observing the output error progression patterns). It should be



noted that not all runs converged; however, the non-convergent runs were infrequent (less

than 5%) and no consistent cause could be identified for the non-convergence.
4. Results

4.1 Opponeney: There was a consistent pattern of weights across runs. We found that
thé input to hidden layer weights corresponding to the two directions used in the 2AFC task
had opposite signs, and had magnitudes greater than for the other directions. In Figure 3(a)
we show the weight pattern corresponding to a left-right discrimination task: for example,
the weight for the unit tuned to the left direction was -1.8, while the weight for the unit
tuned to the right direction was 2.1, for the low SR, 15% coherence case, This weight
distribution is equivalent to having an opponent connection between the units tuned to the
left and right directions. This opponent connection was a general solution to the forced
choice single output node neural network. The opponency is consistent with suggestions
made in the literature about inhibitory connection between neurons sensitive w different

directions (the waterfall illusion, Newsome et al. 1989; Qian and Andersen 1994),

The extent of opponency was measured by the magnitude of the weights of the
opponent units. We observed that the extent of opponency depended on the stimulus
coherence. As stimulus coherence decreased (i.e., the task became more difficult), the
extent of opponency increased. Thus, the network weights seemed to compensate for the
weak signal.

<Fig. 3 about here>

4.2 High and Low Spontaneous Rate Networks: The high and low SR networks
had different speeds of convergence and final levels of accuracy. The low SR network

converged quickly to its final state, while the high SR network converged more slowly, as



seen in Figure 3(b) where the long-term learning trends are plotted. At steady state of
performance, the accuracy of the decisions, as demonstrated by short-term learning trends
(plotted in Figure 3(c)), was higher for the high SR networks than for the low SR

networks.

We repeated the learning experiments with either one or two hidden units, and the
learning curves remained qualitatively similar, indicating that the number of hidden units

did not have a noticeable influence on performance.

5. Discussion

The backpropagation network learned the global motion task successfully while

incorporating mean-rate coding and neuronal noise.

What properties of MT neurons may be involved in leaming? Direction selectivity
enables MT neurons to respond selectively to motion. By grouping responses from a set of
neurons selective to the cardinal directions, we obtained a population coding of the global
motion. Opponency in direction selective responses emerged out of training, snggesting
that opponency may be a crucial property for leaming to discriminate opposite directions in

global motion.

Learning induced a pattern of opponent weights for opposing directional neurons
for both high SR and low SR networks at all signal levels. The pattern of opponent weights
(i.e., weights of opposite signs) is not a novel observation. Indeed, for a large number of
classification problems, opponency is the optimal solution, and backpropagation normally

arrives at this solution. A substantial body of data supports opponent connections in the



motion pathway that includes psychophysical evidence (Stromeyer et al. 1984; Qian et al,,
1994) and physiological evidence (Newsome et al. 1989; Qian and Andersen 1994), The
waterfall illusion and the perception of counterphase gratings are attributed to opponent
connections of motion mechanisms. Our backpropagation representation suggests that
human subjects may exploit this opponency in successful performance of the 2AFC task of
global motion discrimination. An alternative proposal for coherent motion direction
computation was made by Nowlan and Sejnowski (1995}, in which regions of maximal
motion information are selected through a mechanism trained to recognize such regions. It
is likely that a mechanism of this type operates at the V1 level, implying learning at a stage
different from representation of the global motion. The exploration of this possibility is the
focus of our current research.

Tt could be argued that the network naturally reaches an "opponent” solution
because of either or both of the following: discrimination between opposite directions of
motion, and the forced choice paradigm. To test whether the opponency was a result of
using opposite directions in the task, we tested with two additional stimuli: left vs up, and
left vs noise (0% coherence). As before, we obtained opponency for these stimuli, even
though the extent of opponency was reduced. The left vs. up task resulted in opponency
between the left and up nodes while for the left vs. noise case the opponency was between
left and all the remaining directions. The extent of opponcncy was the lowest for the left vs.
noise case. The possible influence of the forced choice paradigm was eliminated by using
two output nodes, and allowing for four output choices. This had no effect on the

opponency resuit.

In the literature, the information transnission process has been approached in two ways:
temporal coding in which the exact temporal position of a neuronal spike encodes
information (see for e.g., Kruglyak and Bialek 1993), and rate coding in which the average

firing rate encodes information. A duplex approach to information transmission considers



both temporal and rate coding aspects of the process (Bialek et al. 1991; Licklider 1951
Skaggs and Cariani 1994),

The low and high SR networks, arising out of the physiological modifications,
have interesting properties. A high SR network was slower to learn but obtained a more
accurate solution while a low SR network learned quickly but reaches a less accurate
solution. The SR of this network construction preduced results similar to changing the
learning rate, namely the 1 in classical backpropagation. The physioclogical spiking process
added to the network creates a more physiologically plausible means of controlling network
learning rate as compared to the 'magic number’ 1. The SR also provides a more stable
way of controlling learning using parameters in the feed-forward path, since changes in SR
do not result in the instability associated with changes in 1. The use of SR to control the
learning rate is not restricted to the supervised learning network presented here since the

spiking process is independent of the learning algorithm.

In the psychophysical experiments, we found no difference in performance whether
feedback was provided or not. We modeled the performance improvement using
unsupervised learning mechanisms (Vaina et al. 1995; Sundareswaran and Vaina 1996).
The objective in that modeling was to explain the performance improvement through
physiologically plausible mechanisms. In the current study, the objectives were to
determine the representation useful in learning global motion direction discrimination, and
to study the effects of physiological modifications on the performance of the
bhackpropagation algorithm. We found that opponency is important for learning direction
diserimination, and that spontaneous rate provides an altcrnative, stable means of

controlling the learning rate in backpropagation.



A classical peural network with physiological modifications such as those proposed

here may prove useful for more in-depth work on learning vision tasks.
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Figure Legends

Figure 1. - Schematic depiction of the stimulus used for both the psychophysical and
neural network experiments. The three examples represent different levels of coherence-
defined as the percentage of the dots that move in the coherent (signal) direction-used in the

simulations (15%, 25%, and 75%). Filled circles represent signal dots while open circles

represent noise dots. The arrow for each dot shows the direction of motion of the dot.

Figure 2. - The neural network structure and physiological modifications applied to the
network are shown. On the left, the randomly fluctuating cell potential is modulated by the
activities of the directionally tuncd units. The spontaneous rate of each neural channel,
shown on top, is increased as the firing threshold is depressed with directional stimulation.
At the network summation nodes the spikes in each "time window" are integrated to create
the values passed to the neural network input nodes. The network consists of a 4 unit input

layer, a 2 unit hidden layer, and a single unit output layer.

Figure 3. - (a) The opponency of the network weights are shown for both high and low
SR networks for all coherence levels. The figure shows the magnitude of the weights for
each directional unit and its polarity with respect to the other units. (b) The curmilative
responses for the high and low SR networks are shown. The results have been averaged
over three simulations. (c) The percent correct by block, averaged over three simulations,

for the high and low SR networks.
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