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Abstract

This paper examines the perception of first- and second-order motion in human vision. In an extension of previous work by Boulton
w Ž .and Baker J.B. Boulton, C.L. Baker, Motion detection is dependent on spatial frequency not size, Vision Res., 31 1991 77–87; J.B.

Ž .Boulton, C.L. Baker, Different parameters control motion perception above and below a critical density, Vision Res., 33 1993
x1803–1811 , the direction of two-frame apparent motion is measured for stimuli composed of Gabor or Gaussian micropatterns. Three

conditions are investigated. Condition 1 is that used by Boulton and Baker, in which motion is defined by the displacement of Gabor
micropatterns. In condition 2, motion is defined by the displacement of Gaussian micropatterns. In condition 3, the envelopes of Gabor
micropatterns are displaced while their carriers remain static. Using sparsely distributed micropatterns, direction judgements in all three
conditions are determined by the spacing of the micropatterns. With a dense stimulus, direction judgements vary as a function of
displacement in qualitatively different ways for the three conditions. The psychophysical results are predicted by a two-channel
computational model. In one channel, motion is calculated directly from stimulus luminance, while in the other it is preceded by a
texture-grabbing operation. The relative activities of the two channels dictates which governs direction judgements for any given stimulus.
q 1998 Elsevier Science B.V.
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1. Introduction

w xBraddick 4 proposed that two processes, which he
termed short- and long-range, underlie motion perception
in humans. The short-range process was presumed to be
mediated by simple motion selective filters with limited
spatiotemporal support, while the long-range process was
thought to operate by matching features over greater dis-
tances and longer time intervals. The use of the short-
rangerlong-range distinction has been criticised on the
grounds that the dichotomy might lie in the different types
of stimuli that have been used to study motion perception

w xrather than in distinct processing mechanisms 6,7 . Ca-
w xvanagh and Mather 7 argued for an alternative classifica-

tion which rests on the distinction between first- and
w xsecond-order 8 . First-order motion is defined by spa-

tiotemporal changes in luminance, second-order motion by
stimulus attributes such as contrast, flicker and spatial
frequency. However, much of the evidence supporting the
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existence of separate first- and second-order motion chan-
nels also involves a dichotomy in stimulus type, this time
between stimuli in which motion is defined by changes in
luminance and those in which motion is perceived in the
absence of luminance cues.

To demonstrate that the first-orderrsecond-order di-
chotomy genuinely reflects the operation of distinct pro-

w xcessing mechanisms, Boulton and Baker 2,3 devised a
stimulus containing both first- and second-order informa-
tion. Their stimulus consists of an array of Gabor mi-
cropatterns which are displaced between frames in a two-
frame sequence, generating a percept of apparent motion.
Boulton and Baker found that, for a dense stimulus array,
direction judgements appear to be governed by first-order
information, and for a sparse array by second-order. They
also found that direction of motion can be reliably discrim-
inated over only short ranges in the dense stimulus, but
over much longer ranges in the sparse.

It has subsequently been proposed by Lu and Sperling
w x13 that there are in fact three motion systems in human
vision: a first-order system that uses a motion energy
computation to extract motion from luminance modula-

0926-6410r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
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tions; a second-order system computing motion energy
from texture and contrast modulations; and a third-order
feature-tracking system. Lu and Sperling state that the
nature of the motion computation in their third-order chan-
nel is as yet undetermined, but that motion energy analysis
is a plausible candidate. We question the need to posit the
existence of a dedicated second-order motion channel, in
which motion extraction is preceded by texture grabbing,
in addition to a feature tracking channel sensitive to mo-
tion defined by texture and contrast. As observed by Taub

w xet al. 16 , many of the attributes which distinguish Lu and
Sperling’s second-order system from their third-order sys-
tem are actually common to their first- and second-order
systems. Rather than there being two short-range channels,
extracting motion with and without a preceding full-wave
rectification, Taub et al. propose that there is a single
short-range channel preceded by a more subtle non-linear-
ity.

w xWe extend Boulton and Baker’s study 3 to investigate
the effects of using stimuli whose motion is defined by
purely first-order or purely second-order information. Here,
the first-order stimulus consists of luminance-defined
Gaussian micropatterns rather than Gabor micropatterns. In
the second-order stimulus, only the Gaussian contrast en-
velopes of the Gabor micropatterns are displaced, while
their luminance-defined sinusoidal carriers remain static.
We put forward a computational model which predicts
psychophysical direction judgements. The model is a vari-

w xant of those proposed by Chubb and Sperling 9 and
w xWilson et al. 18 , consisting of two distinct channels.

Motion in both channels is extracted by a motion energy
w xcomputation 1 . The filtering in the short-range ‘first-

order’ channel is linear up to the point of motion energy
computation, so it is able to extract first-order motion but
is blind to second-order. In the long-range ‘second-order’
channel the stimulus is pre-processed by a low-pass texture

w xgrabber 10,17 , rendering it sensitive to first- and second-
order motion. The activities of the two channels are com-
pared to establish which governs direction judgements for
a given stimulus. In the rest of the paper, we will use the
terms first- and second-order channels in this way, refer-
ring to: a linear channel, operating at fine scales and
sensitive only to first-order motion; a channel computing
coarse scale motion energy subsequent to the action of a
texture grabber. It should be noted that the second-order
channel thus defined is different from the second-order

w xsystem of Lu and Sperling 13 in that it analyses motion at
a coarser scale than the first-order channel.

2. Psychophysics

2.1. Methods

The following methods were adapted from Boulton and
w xBaker 3 . The stimuli were generated on a Macintosh

Centris 650 computer and presented on a Platinum Two
Page Display SuperMac monitor which had a refresh rate
of 75 Hz. A lookup table derived from photometer mea-
surements was used to compensate for the nonlinear volt-
age-luminance characteristic. The stimulus raster size was

Ž .880=680 pixels 29.0=22.4 cm , with 80 pixels subtend-
ing 1 degree of visual angle at the viewing distance of 150

Ž .cm. The Macglib software package Micro M-L was used
for developing the stimulus.

The stimulus used in conditions 1 and 3 was an array of
Gabor micropatterns, each formed by the multiplication of
a sinusoidal carrier and a two-dimensional Gaussian win-
dow:

2 2L x , y sL 1qC exp y x r2sŽ . � Ž0

2 2qy r2s cos 2p xrl ,Ž . 4.

where L smean luminance; Cscontrast; ssGaussian0

width parameter; lswavelength of the cosine wave. The
Gabor functions used had a mean luminance of 9.2 Cdrm2,
a contrast of 0.20, a Gaussian width parameter of 0.338,
and a wavelength of 0.448. These stimuli were presented in
six rows, three above and three below a central fixation
point. The individual micropatterns were positioned on a
notional grid and jittered horizontally and vertically to
prevent periodicity and clustering effects. The dense stimu-
lus was made up of 11 micropatterns per row, giving a
mean centre-to-centre spacing of 2.25l between micropat-
terns. The sparse stimulus contained six micropatterns per
row at a spacing of 4.5l. For condition 2, the stimulus was
an array of Gaussian micropatterns:

2 2 2 2L x , y sL 1qC exp y x r2s qy r2s ,Ž . � 4Ž .0

with parameters as for the Gabor micropatterns described
above.

Each frame of the two-frame apparent motion stimulus
Ž .was presented for 187 ms 14 screen refreshes with an
Ž .onset asynchrony of 187 ms i.e., no interframe interval .

Between stimuli the mean luminance of L was main-0

tained. Subjects viewed the stimulus from a distance of
150 cm, and were required to report the direction of
apparent motion in a two alternative forced-choice proce-
dure. In conditions 1 and 2, the second frame of the
stimulus was simply a displaced version of the first, with
wraparound at the screen edges. In condition 3, the second
frame of the stimulus was drawn such that the envelope of
each Gabor micropattern had been displaced but its carrier
remained in the same position.

Ž .Subjects were two of the authors CC and JF and two
Ž .naive subjects JC and PD . CC and JF were tested with

auditory feedback as to the correctness of the response,
while JC and PD were tested without feedback. All ob-
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servers had normal or corrected to normal acuity and
viewed the stimulus binocularly.

2.2. Results

Subjects’ performance on the 2AFC direction discrimi-
nation task was measured for a range of displacements at

two stimulus densities in each of three stimulus conditions.
The percentage error as a function of displacement is
shown in Fig. 1A–F. Zero percent error indicates that the
subject was able to report the correct direction of displace-
ment with complete accuracy; 100% error corresponds to a
consistent perception of direction in the reverse direction;
50% error indicates that the subject was unable to perceive

Fig. 1. The percentage error in direction judgements is plotted as a function of stimulus displacement for each of four subjects. Displacement is expressed
Ž . Ž . Žin terms of the wavelength lambda of the carrier of the Gabor micropatterns. The lefthand plots A–C show the results obtained using sparse stimuli 36

. Ž . Ž .micropatterns , the righthand plots D–F show the results for dense stimuli 66 micropatterns . The sparse stimuli were made up of six micropatterns per
row, giving a mean centre-to-centre spacing of 4.5l between micropatterns. The dense stimuli contained 11 micropatterns per row at a spacing of 2.25l.

Ž . Ž .The top plots A, D show data from condition 1, in which motion is defined by the displacement of Gabor micropatterns. The middle plots B, E show
Ž .data from condition 2, in which motion is defined by the displacement of Gaussian micropatterns. The bottom plots C, F show data from condition 3, in

which the envelopes of Gabor micropatterns are displaced while their carriers remain static.
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a consistent direction of motion and was responding at
chance. Data obtained using the sparse and dense stimuli
are shown on the left and right of Fig. 1, with conditions
1–3 going from top to bottom.

For sparse stimulus presentation, results in all three
conditions were very similar: below a displacement of

Ž .2.25l half the centre-to-centre micropattern spacing , sub-
jects reported the direction of motion with few or no
errors; at a displacement of 2.25l, error rates were around
50%; at displacements above 2.25l, subjects predomi-
nantly reported motion in the reverse direction. For the
dense stimuli, results varied considerably between the
three conditions. For three of the four subjects, the graphs

Ž .of the data in condition 1 Fig. 1D have a cyclical
appearance with peaks in percentage error at displacements
of 1.0l and 2.0l and troughs at 1.5l and 2.5–2.75l. The

Ž .data from the fourth subject JF shows a monotonic rise in
percentage error to a peak at 2.0l, and then drops in line
with the other subjects. For the dense stimulus in condition
Ž .2 Fig. 1E , all four subjects were able to discriminate the

Ž .direction of motion accurately at small up to 1.0l and
Ž .large 2.5–3.0l displacements. At intermediate displace-

ments error rates were close to 100%. For condition 3, the
Ž .results at short displacements from 0.25–1.0l showed

Ž .some intersubject variability, with one subject JF record-
ing around 30% errors while for the others errors were
around 50%. However, in the range from 1.25–2.25l all
four subjects consistently perceived motion in the reverse
direction.

The results for condition 1 are consistent with those
w xreported by Boulton and Baker 3 . In the dense case, they

found that percentage error increased from zero at the
shortest displacements to a peak of around 75% just below
1.0l, and then dropped back to around 5–10% for dis-
placements greater than 1.0l. They did not report data for
displacements greater than 1.5l. In the sparse case they
reported data for displacements less than 2.0l. Their data
showed errors of less than 10% for displacements less than
1.75l, with slightly higher rates at larger displacements.

Here, for all conditions of the sparse stimulus, and
condition 2 of the dense stimulus, we find perceived
direction is determined by the displacement of the Gauss-
ian envelope. For displacements of less than half the
average centre-to-centre micropattern spacing, or greater
than the whole spacing, motion is perceived predominantly
in the direction of displacement. Motion is generally per-
ceived in the reverse direction for intermediate displace-
ments. For sparse stimuli, this is the case whether the
Gaussian envelope is defined by contrast or by luminance
Ž .compare conditions 2 and 3, Fig. 1BC . This is true for
contrast envelopes whether or not the carrier is also dis-

Ž .placed compare conditions 1 and 3, Fig. 1AC . For the
dense stimulus, however, we find that perceived direction

Žis influenced by both the carrier compare conditions 1 and
. Ž3, Fig. 1DF and the nature of the envelope compare

.conditions 2 and 3, Fig. 1EF .

3. Computational modelling

3.1. Methods

We propose a two-channel model for the perception of
first- and second-order motion. The first-order channel
processes short-range motion information, while the sec-
ond-order channel operates only at coarse resolution
Ž .long-range . The first-order channel analyses motion ac-
cording to a simple first-order luminance-based scheme. In
the second-order channel, the stimulus is first passed
through a spatially and temporally low-pass filter and
full-wave rectified. It is then analysed at coarse spatial
resolution by a first-order mechanism identical to that used
in the first-order channel. The first-order channel is insen-
sitive to second-order motion, while the second-order
channel responds to both first- and second-order stimuli.
The architecture of the model is illustrated schematically
in Fig. 2.

The initial stage of processing common to both chan-
nels is the removal of the mean luminance of the stimulus,

Fig. 2. Schematic diagram of the operation of the proposed two-channel
model. The initial stage of processing, common to both channels, is the
removal of the mean luminance of the image. The signal in the first-order
channel is then subjected to motion energy analysis. Prior to motion
analysis, the signal in the second-order channel is pre-processed by a
texture grabber. The texture grabbing operation consists of low-pass
spatiotemporal filtering, followed by full-wave rectification, followed by
further low-pass spatial filtering. The output of the texture grabber is then
subjected to motion energy analysis. The mechanism of motion analysis
in the two channels differs only in the scale at which it operates:

Ž . Žfine-scale short-range in the first-order channel and coarse-scale long-
.range in the second-order channel.
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which is assumed to occur at the retinal level in the human
w xvisual system 15 . This mean zero signal serves as the

input to the short-range motion detectors in the first-order
channel.

The pre-processing stage in the second-order channel
w xacts as a texture grabber 10 , converting variations in the

spatial and temporal frequencies of the image signal into
variations in the magnitude of the pre-processed signal.
Since the output of the second-order channel also varies
with image contrast, it necessarily confounds spatial fre-
quency and contrast by encoding their variations in a

w xsingle response. Werkhoven et al. 17 provide psy-
chophysical evidence that human perception of texture-de-
fined motion is subject to the same confusion. Here we
extend the spatial texture grabber proposed by Werkhoven
et al. into the spatiotemporal domain by introducing a
low-pass temporal filter.

Motion is extracted by a standard first-order motion
w xenergy computation 1 using Gabor filters in space and

time. Gabor filters were chosen to provide a measure of
the amount of motion information available from the stim-
ulus, not necessarily as an accurate model of the motion
analysis filters in the human visual system. While there is
evidence of spatial filters with receptive fields resembling

w xGabor functions in the primary visual cortex 14 , the
visual system’s temporal filters will necessarily be causal
and are likely to be better described by the modulation of
an asymmetric temporal envelope than by a Gabor func-

w xtion 12 .
Full details of the implementation of the model are

given in Appendix A.

3.2. Results and discussion

Fig. 3 shows the model’s responses to sparse and dense
two-frame apparent motion stimuli in each of the three
stimulus conditions. The direction index of the response
from each channel of the model is shown as a function of
displacement. A direction index of q1 denotes motion in
the direction of displacement; y1 denotes reverse motion;
0 indicates no net motion. Details of the calculation of the
direction index are given in Appendix A. The layout of
Fig. 3 corresponds to that of Fig. 2, with sparse and dense
cases on the left and right and conditions 1–3 going from
top to bottom. Data points from the first-order channel are
represented by circles, second-order by squares. To facili-
tate comparisons with the psychophysical data, solid lines
are used to graph the response of the first-order channel to
sparse stimuli and of the second-order channel to dense
stimuli.

For the sparse stimulus, results from the second-order
channel in all three conditions are nearly identical: the
direction index is close to 1 up to a displacement of 2.0l,
and then changes smoothly, being exactly 0 at a displace-
ment of 2.5l and nearly y1 at a displacement of 3.0l.
The behaviour of the second-order channel can be under-

stood as establishing the shortest path of correspondence
between micropatterns in successive frames. At short dis-
placements, the second-order channel recovers motion in
the veridical direction, but at displacements greater than
half the average centre-to-centre spacing of the micropat-
terns the shortest correspondence path is actually in the
opposite direction, and the second-order channel thus re-
covers reverse motion. The texture grabbing operation
preceding motion detection in the second-order channel
renders it insensitive to the fine structure of the micropat-
terns, hence the close similarity between the results across
the three stimulus conditions.

The results from the first-order channel differ greatly
Žbetween the three sparse conditions. For condition 1 Fig.

.3A , the graph of the data from the first-order channel has
a cyclical form with peaks at displacements of 0.75l,
1.75l, and 2.75l and troughs at 0.25l, 1.25l, and 2.25l,
with the signalled direction of motion depending princi-
pally on the shortest correspondence path for the carrier.

Ž .For condition 2 Fig. 3B , the data from the first-order
channel are quite similar to those for the second-order
channel: since there is no carrier, the direction of recov-
ered motion depends on the centre-to-centre spacing of the

Ž .micropatterns. For condition 3 Fig. 3C , the direction
index varies smoothly from around y0.5 at small dis-
placements to around 0 at large displacements.

For the dense stimulus, the results from both channels
differ between the conditions. In condition 1, the response
of the first-order channel varies cyclically with peaks in
direction index at displacements of 0.75–1.0l and 2.0–
2.25l and troughs at displacements of 0.25–0.5l, 1.5–
1.75l, and 2.75–3.0l. The first-order motion energy in
the stimulus of condition 1 is determined principally by the
motion of the carriers, although the presence of the enve-
lope andror phase differences between the carriers causes
the first-order channel’s behaviour to deviate from the
simple dependence on carrier wavelength seen for the
corresponding sparse stimulus. The direction index of the
response from the second-order channel is positive at small
Ž . Ž .-1.25l and large )2.25l displacements, and nega-
tive at intermediate displacements, determined by the cen-
tre-to-centre spacing of the micropatterns. For condition 2,
the results given by the two channels are very similar to
one another: positive at short and long displacements and
negative in between, consistent with the shortest corre-
spondence path between micropatterns. For condition 3,
the direction index of the first-order channel is close to
y1 for displacements of 0.25–2.25l, and near q1 for
displacements of 2.75l and 3.0l. For the second-order
channel, the direction index is positive for displacements
less than 1.75l and greater than 2.5l, and small and
negative in between.

For all three conditions of the sparse stimulus, the
response of the model’s second-order channel has qualita-

Žtively the same form as the psychophysical data compare
.solid lines, Fig. 3A–C with Fig. 2A–C . The response of
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Fig. 3. The direction index of the responses of the model is plotted as a function of stimulus displacement. Circles represent the response of the first-order
channel, squares the second-order. The layout of the figure corresponds to that of Fig. 1. The Gabor micropatterns have a carrier wavelength, l, of 8

Ž . Ž .pixels. The mean centre-to-centre spacing of the micropatterns is 40 pixels 5l in the sparse condition and 20 pixels 2.5l in the dense. A direction index
of q1 corresponds to motion unambiguously in the correct direction, y1 to motion in the opposite direction, and 0 to no motion or equal and opposite
motions. Details of the calculation of the direction index are given in Appendix A.

the first-order channel, however, bears no relation to the
psychophysical data except in condition 2, where it is very
similar to the response of the second-order channel. We
suggest that subjects’ perception of direction in the sparse
stimuli is mediated by a second-order channel of the form
implemented in the proposed model.

For the dense stimulus, the situation is a little more
complicated. Of the two channels, the response of the

Ž .first-order Fig. 3D–F, solid line more closely resembles

the psychophysical data. However, there are two principal
discrepancies. Firstly, the model’s first-order channel has

Žan almost perfectly periodic response in condition 1 Fig.
.3D, solid line , with direction indices near "1 at all peaks

and troughs, while the amplitude of the cyclical variations
in the psychophysical data appears to increase with dis-

Ž .placement Fig. 2D . Secondly, in condition 3, the re-
sponse of the first-order channel to small displacements
Ž .-1.25l has a direction index near y1, corresponding to



( )C.W.G. Clifford et al.rCognitiÕe Brain Research 6 1998 263–271 269

Ž .motion in the reverse direction Fig. 3F, solid line , while
the psychophysical subjects were unable to report a consis-

Ž .tent direction of motion Fig. 2F . Interestingly, in the
regions where there are discrepancies between the first-
order channel and the data, we notice that the psychophysi-
cal data lies somewhere between that from the simulations
of the first- and second-order channels. This leads us to
suggest that the psychophysical subjects are basing their
responses on the outputs of both a first- and a second-order
channel. Furthermore, the data from subject JF more closely
follow the trends predicted by the second-order channel
than do the data of the other three subjects, suggesting that
the relative contributions of the putative first- and second-
order channels to judgements of direction in the dense
stimuli might be interindividually variable. Future work
with a larger number of subjects is planned to investigate
interindividual differences in the perception of second-order
motion.

Comparison of the psychophysical data and computa-
tional simulations suggests that perceived direction of mo-
tion in the sparse stimuli is mediated principally by a
second-order motion mechanism, while for the dense stim-
uli both first- and second-order channels are involved.
Why might the output of the second-order channel domi-
nate for sparse stimuli but not for dense? We propose that
the relative significance of the two channels’ responses in
determining the perceived direction of motion depends
upon the relative magnitudes of the two channels’ re-
sponses. In the model, we take as a metric of a channel’s
response its motion energy response summed over forward
and reverse directions. This measure is independent of the
direction index, as it depends upon the total motion energy
regardless of direction. Direct comparisons cannot be made
between the response magnitudes of the two channels as
they are computed independently. The level of the re-
sponse of the second-order channel depends upon the gain
of the filters which pre-process the image as well as on the
motion detection mechanism itself, and thus the absolute
values of the responses of the first- and second-order
channels cannot be compared. For this reason, we look at
the ratio of the response magnitudes of the first- and

Žsecond-order channels shown in Fig. 4 for each of the six
.stimulus types . The values on the y-axis of Fig. 4 may be

scaled arbitrarily, corresponding to changing the gain of
the texture grabber, without affecting the form of the
graph.

We see from Fig. 4 that, for conditions 1 and 3, the
ratio of the response of the first- to the second-order

Žchannel is higher for the dense stimulus filled squares and
. Žcircles than for the sparse corresponding unfilled sym-

.bols . This is consistent with our suggestion that the
perceived direction of motion in the dense stimuli reflects
the responses of both channels, while motion perception in
the sparse stimuli is governed by the second-order channel.
The response ratios for both the dense and sparse stimuli
in condition 2 are lower than for the sparse stimulus in

Fig. 4. The ratio of the magnitudes of the responses of the model’s first-
and second-order channels is plotted as a function of stimulus displace-
ment for each of the six types of stimulus. Solid symbols are used for
dense stimuli, open symbols for sparse. The magnitude of a channel’s
output is calculated as the sum of its motion energy responses in the
forward and reverse directions. The higher the response ratio, the more
significant the first-order channel is in determining the perceived direc-
tion of motion.

conditions 1 and 3, suggesting that the response of the
second-order channel determines perceived direction for
both stimulus densities in condition 2. However, the direc-
tion indices of the responses of the two channels to the
stimuli in condition 2 are very similar, so this latter point
cannot be tested experimentally.

4. Conclusion

A two-frame motion stimulus was used to examine
human perception of motion from first- and second-order
cues. The psychophysical data obtained were modelled
using a variant of the two-channel models proposed by

w x w xChubb and Sperling 9 and Wilson et al. 18 . The concor-
dance between our model simulations and the psychophys-
ical data suggests that distinct mechanisms exist for the
fine scale analysis of luminance-based motion and the
coarse scale analysis of texture-based motion, with the
relative activities of the two channels determining which
mediates the perception of motion for a given stimulus.

An interesting possibility proposed recently by Taub et
w xal. 16 is that the parallel motion processing pathways

contain the same basic computational units and differ only
in the scale at which they operate. If motion extraction is
preceded at all scales by an asymmetric nonlinearity, then
Taub et al. speculate that the effective balance of the linear
and nonlinear contributions might vary over scale, giving
rise to apparent differences in the linearity of pre-processing
between coarse and fine scales. A model with such an
architecture has the attraction of parsimony, and cannot be
discounted on the basis of our data.
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Appendix A. Implementation of model and simulations

The initial pre-processing stage common to both first-
and second-order channels is the removal of the mean
luminance, or DC component, of the stimulus. The mean is
calculated over the entire image on a frame-by-frame
basis. The signal in the first-order channel is then operated
upon directly by the motion energy detectors.

A.1. Texture grabbing

Prior to the extraction of second-order motion, the
image signal is pre-processed by a texture grabber. The
operation of the texture grabber consists of three stages:
initial linear filtering, full-wave rectification, and further
linear filtering. Here, the first stage is low-pass filtering in
space and time using a space–time separable filter. The

Ž .spatial filter is a two-dimensional Gaussian, G x, y :

x 2qy 21 .yŽ
2G x , y s e .Ž . 2 s22ps

The spatial extent of the filter is governed by the parame-
ter, s , which here is set to 0.8 pixels. The two-dimen-
sional Gaussian is itself separable into two one-dimen-
sional Gaussians, so spatial filtering is carried out by
successive convolution with two 3=1 masks. The spatial
convolution wraps around at the edges of the image. The

Ž .temporal filter, E t , is a first-order low-pass filter with an
impulse response which decays exponentially over time:

yt
1

tE t s e , tG0Ž .
t

E t s0, t-0,Ž .
where t is the time constant. The value of t is necessarily
positive, and gives a measure of the duration of temporal
support. Here, t is set to 0.5 frames. For efficiency,
temporal filtering is implemented recursively using the
following recursion relation:

O T sbPO Ty1 q 1yb P I T ,Ž . Ž . Ž . Ž .
where T represents time sampled discretely in frames,
Ž . Ž .I T is the input to the filter at time T , O T is the output

of the filter, and b is a constant given by:

1
ybse .t

ŽFor a derivation of the recursion relation, see Ref.
w x.11 .

The signal is then full-wave rectified and the mean
removed. As above, the mean is calculated over the entire
image on a frame-by-frame basis. The signal is then
subsampled by a factor of two in both spatial dimensions,
and spatial and temporal filtering repeated with the same
filters. The fact that the signal has been spatially subsam-
pled means that convolution with the same filter kernels as
previously represents spatial filtering at a coarser scale.
The signal is then spatially subsampled and low-pass
filtered in space and time once more before being input to
the motion energy detectors.

A.2. Motion energy computation

Motion energies are computed from the outputs of
quadrature pairs of filters oriented in space–time. Here,
sine and cosine phase Gabor filters are used to approxi-
mate quadrature. The initial stage of filtering involves
spatiotemporally separable filters, with space–time ker-

Ž .nels, C x, y,t , given by:

3
2 2 21 x y t1 2 Ž .y q q
2 2 2c x , y ,t s PeŽ . 2 s s sx y tž /2ps s sx y t

Pcos k xqf Pcos v tqf ,Ž . Ž .x x t

where s , s and s define the extent of the three-dimen-x y t
Žsional Gaussian envelope, k and v are the spatial hori-x

.zontal and temporal carrier frequencies, and f and fx t

define the phase of the carrier relative to the envelope.
Here, the preferred spatial and temporal frequencies, k x

and v, of the filters are set to 0.1 pixels and 0.1 frames,
respectively, giving a carrier vertically oriented in space.
The values of s , s are 2.5 pixels, and s is 2.5 frames,x y t

implemented in 15=1 convolution masks. The phases, fx

and f , are set to either 0 or pr2 to give the cosine andt

sine members of each quadrature pair. The outputs of these
filters are then combined using trigonometrical identities to

Ž w x.give space–time oriented filters see Ref. 1 .

A.3. Direction index

The direction index is calculated as a summary statistic
of the directional responses of the horizontal motion detec-
tors. The direction index is used to facilitate comparison of
the output of the model with the response of psychophysi-
cal observers. A direction index of q1 denotes horizontal
motion unambiguously in the correct direction, y1 unam-
biguously in the opposite direction, and 0 totally ambigu-
ous motion or no net motion. To convert the responses of
the model into a formal psychophysical decision would
require additional assumptions about the neural substrate

Ž w x.of perceptual decisions see Ref. 5 .
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Ž .A local directional response, D x, y,t , is calculated for
each point from the leftwards and rightwards motion ener-

Ž . Ž .gies, L x, y,t and R x, y,t , according to the following
equation:

L x , y ,t yR x , y ,tŽ . Ž .
D x , y ,t s ,Ž .

L x , y ,t qR x , y ,t qaŽ . Ž .
where a is a constant given a small positive value to
condition the quotient. The value of a is set at 10y7. If a

was given a large value then this would qualitatively affect
Ž .the form of D x, y,t , as with low motion energies the

directional response would be biased towards zero. How-
ever, in the simulations here the value of a was not
manipulated as a parameter but fixed at a low value purely
to prevent arithmetic exceptions in the execution of the
model software.

Leftwards and rightwards motion energies are calcu-
lated for each point in the ninth frame of the pre-processed
image sequence. The ninth frame was chosen to minimise
temporal edge effects from the beginning and end of the
image sequence. To obtain a single direction index from
the output of the model, the signed directional responses
are simply summed over space and divided by the sum of
their moduli to give a number between "1. This value is

Žmultiplied by the sign of the correct response leftwards
.defined as positive to convert from a left-right index into

a correct–incorrect index:

Direction Index

D x , y ,tŽ .Ý
x , y

ssign Correct response P .Ž .
< <D x , y ,tŽ .Ý

x , y

A.4. Stimulus parameters

Stimuli for the model simulations are sequences of
128=128 images of 16 frames duration. The Gabor array
stimulus is constructed as follows. The first image in the
two image sequence consists of three rows of Gabor

Ž .patterns, P x, y :

x 2qy 21 .yŽ
2P x , y s Pe Pcos k x .Ž . Ž .2 s x22ps

The Gabor functions have a carrier wavelength, ls
2prk , of 8.0 pixels and the standard deviation, s , of thex

Gaussian envelope is 6.0 pixels. The centre-to-centre spac-
ing of the Gabor patterns is 20.0 pixels in the dense
condition, and 40.0 in the sparse. These values are in direct

proportion to those used in the psychophysical experi-
ments. The first image is present for eight frames. The
second image is simply a shifted version of the first, with
wraparound at the edges, again presented for eight frames.
Jittering the positions of the micropatterns was found to
affect the value of the direction index by a negligible

Ž .amount -0.05 , so the simulations were run without
jitter.
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