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 Background: We compared the functional brain connectivity produced during resting-state in which subjects were not ac-
tively engaged in a task with that produced while they actively performed a visual motion task (task-state).

 Material/Methods: In this paper we employed graph-theoretical measures and network statistics in novel ways to compare, in the 
same group of human subjects, functional brain connectivity during resting-state fMRI with brain connectivity 
during performance of a high level visual task. We performed a whole-brain connectivity analysis to compare 
network statistics in resting and task states among anatomically defined Brodmann areas to investigate how 
brain networks spanning the cortex changed when subjects were engaged in task performance.

 Results: In the resting state, we found strong connectivity among the posterior cingulate cortex (PCC), precuneus, me-
dial prefrontal cortex (MPFC), lateral parietal cortex, and hippocampal formation, consistent with previous re-
ports of the default mode network (DMN). The connections among these areas were strengthened while sub-
jects actively performed an event-related visual motion task, indicating a continued and strong engagement 
of the DMN during task processing. Regional measures such as degree (number of connections) and between-
ness centrality (number of shortest paths), showed that task performance induces stronger inter-regional con-
nections, leading to a denser processing network, but that this does not imply a more efficient system as 
shown by the integration measures such as path length and global efficiency, and from global measures such 
as small-worldness.

 Conclusions: In spite of the maintenance of connectivity and the “hub-like” behavior of areas, our results suggest that the 
network paths may be rerouted when performing the task condition.
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Background

The characterization of brain function depends not only on 
the activity in specific brain regions, but also on understand-
ing the patterns of connectivity among them. Examining the 
brain as an integrative network of functionally interacting areas 
can provide new insights into large-scale neuronal communi-
cation [1]. Brain connectivity patterns are mostly described by 
two methods: structural connectivity, typically focusing on the 
large white matter tracts, describes the presence of physical 
links among brain areas, and functional connectivity ( fcMRI) 
which measures the functional association among brain re-
gions, that is, the degree to which the activity in one region 
resembles activity in another. fcMRI correlations among brain 
regions are likely to reflect a combination of direct anatomic 
connections as well as indirect connections that lead to func-
tional coupling [2].

fcMRI studies have shown that spontaneous, low-frequency 
variations (<.1 Hz) in blood oxygen level dependent responses 
(BOLD) exhibit correlations related to functional associations 
among brain areas (see [3] for a review). One prominent ex-
ample is the co-activation of a network of cortical regions of 
interest (ROIs) during rest (when the subject performs no ex-
ternal task), known as the default mode network (DMN) [4]. 
The DMN involves a set of cortical and subcortical regions, in-
cluding the posterior cingulate/precuneus cortices (PCC/PrCC), 
medial prefrontal cortex (MPFC), orbital frontal gyrus, and lat-
eral parietal cortex [5]. It has been defined as a network of ar-
eas engaged during mind wandering, prospective and retro-
spective self-reflection and memory retrieval, and it suggests 
that the ‘default mode’ involves on-going processing of infor-
mation relevant to the self [6].

The cognitive tasks associated with the DMN raise the ques-
tion of whether this network is exclusively engaged at rest, 
and whether its properties fundamentally change when sub-
jects participate in active, external tasks. Previous studies have 
explored several hypotheses in an attempt to explain task vs. 
rest connectivity. For example, it has been suggested that tasks 
which are not trivially easy [7], or that contain behavioral and 
memory-related components (instead of simple action-per-
ception) [8], result in a higher default mode network activity. 
Other studies have using ROI-to-voxel correlations argued that 
the DMN is attenuated and the signal fluctuations persist and 
reorganize with the workload during task [9]. Yet other stud-
ies have suggested that DMN activity is anti-correlated be-
tween rest and cognitive task performance [10–12]. Here, we 
use a combination of ROI-to-voxel, ROI-to-ROI and graph the-
oretical approaches to investigate how functional brain net-
works, both those restricted to the DMN and those spanning 
the entire cortex, change between rest-state and active-task 
fMRI. By using established and robust neuroimaging analysis 

methods, we were able to explore the overall structure of the 
brain network with a high level of spatial detail [13,14]. We 
conducted a whole-brain analysis of connections among an-
atomically defined ROIs and compared network statistics in-
cluding path length and efficiency, regional measures such as 
degree (number of connections) and betweenness centrality 
(number of shortest paths of which an ROI is a member), and 
global measures such as small-worldness. We found that con-
nections among the DMN areas were enhanced, rather than 
suppressed, during active task processing, and that global re-
gional measures across the cortex such as degree and between-
ness centrality were stronger during task processing than at 
rest, suggesting increased inter-regional coupling. Despite the 
higher regional connectivity present during task processing, we 
found no increase in global or local efficiency, which suggests 
that increased connectivity does not imply a more efficient pro-
cessing system, and instead supports the view that the brain 
switches between several similarly efficient cognitive states 
in response to whatever are the current behavioral demands.

Material and Methods

Subjects

Eight, right-handed, healthy volunteers (3 female, mean age 
19.8±2.0) with normal or corrected-to-normal vision and  naïve 
as to the purpose of the study, participated in fMRI scans of 
resting state and a high-level visual motion task. None of the 
subjects had any history of neurological or psychiatric diseas-
es, and were not on any recreational drugs. The study was ap-
proved by the ethics committees at the Boston University and 
the Martinos Center for Biomedical Imaging at Massachusetts 
General Hospital and all subjects gave written informed consent.

Stimulus and tasks

Resting state

In the resting state scans, subjects were shown a gray screen 
without fixation and were instructed to keep their eyes open 
while blinking normally, keep their head as still as possible, 
and stay awake throughout the data acquisition. Five of the 
eight subjects had 2 resting state runs.

Task (gap closure)

The stimulus used for this task was based on a previous psy-
chophysical study in carried out in our laboratory [15]. As seen 
in Figure 1, the stimulus consisted of two spheres, 1.5° in di-
ameter, positioned along the horizontal midline at randomly 
chosen eccentricities ranging between 2.8 and 9.5° on either 
side of a central red dot (20×20 arcmin). During each trial, 
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the spheres moved towards the fixation mark such that they 
would reach fixation 1.0 sec and 1.3 sec after stimulus onset 
respectively. The object which would arrive first was selected 
randomly on each trial. The stimulus was visible for 500 ms, 
so that the collision with the fixation mark occurred 500–800 
ms after the completion of the trial, forcing subjects to inter-
polate the motion in order to determine which would collide 
first (i.e., the collision itself was not shown). Spheres had a 
mean luminance of 28 cd/m2 on a background of 0.3 cd/m2. 
Subjects were instructed to fixate on a central red dot and re-
port which of the two spheres would have crossed the medial 
plane first. Subjects completed two 5 minute runs, consisting 
of 80 trials each. Trials were presented based on event relat-
ed timing sequence, generated using the optseq2 tool [16,17], 
with the time between trials varying from 2 to 14 sec. Overall, 
subjects performed the task with 91.1% accuracy (with a stan-
dard deviation among subjects of 5.4%).

Imaging data acquisition

All structural and functional images were acquired at 
Massachusetts General Hospital – Martinos Center for 
Biomedical Imaging on a 3-Tesla whole-body scanner (Siemens, 
Trio, Erlangen, Germany) and a standard 8 channels head coil. 
Earplugs were used to reduce the acoustic scanning noise. A 
capsule of vitamin E was taped to the subject’s right temple 
in to enable definitive determination of the right side in the 
image data. Head motion was minimized using tightly packed 
foam pads on either side of the head.

Resting-state functional images (the imaging protocol was 
provided by Randy Buckner) were acquired using a gradient 
echo, echoplanar (EPI) sequence (repetition time TR=5000 ms, 
echo time TE=30 ms, flip angle=90°, T1=–1 msec, 128×112×55 
matrix/2×2×2 mm, field of view 128 mm) for measurement of 

BOLD signal. Acquisitions consisted of 76 time points, for a to-
tal duration of 380 sec.

Task functional volumes were acquired using an interleaved, 
gradient echo EPI sequence every 2 seconds for each 5 min 
acquisition (TR 2000 ms, 150 TRs; TE 30 ms, flip angle 90°, 
distortion factor=20%, phase=100). At the least, two acquisi-
tions were obtained for each subject. We acquired 33 slices 
of 3.6 mm thickness with in-plane sampling of 64×64 (reso-
lution of 3.125×3.125 mm). Slice positions were based on the 
AutoAlign sequence [18].

Structural MRI images were acquired through two T1-weighted 
magnetic resonance (MR) images, magnetization-prepared rap-
id-acquisition gradient echo (MPRAGE; TR=2.53 s, TE=3.28 ms, 
flip angle=7°, T1=1, 100 ms, 128 slices with a 256×256 ma-
trix; voxel size 1.00×1.00×1.33 mm3).

Data pre-processing

Pre-processing of both rest and task state data was performed 
using Freesurfer 4.5 (http://surfer.nmr.mgh.harvard.edu/). The 
technical details of these procedures are described in sever-
al publications [19–32]. Briefly, the first 4 volumes of each 
scan were discarded to allow for T1-equilibration effects. Pre-
processing included motion correction, slice time correction, 
volume based intensity normalization and removal of non-
brain tissue using a hybrid watershed/surface deformation 
procedure, segmentation of the subcortical white matter and 
deep gray matter volumetric structures along with automated 
topology correction. Normalization to the MNI 305 space was 
achieved by first registering the functional runs with a 6 DOF 
linear (affine) transformation matrix to map between the in-
dividual’s functional data and the Freesurfer structural/ana-
tomical data. The functional data was then resampled to the 
MNI 305 brain with 2mm thickness and registered to the MNI 
305 space using a 12 DOF transformation matrix. No addition-
al spatial smoothing was applied in order to minimize artificial 
local spatial correlations in the whole-brain analysis [33–37]. 
Both rest and task state data sets were upsampled to a TR of 
1 and band-pass filtered to allow for the timecourses to be 
compared directly. We were interested in comparing the rest-
ing state frequencies in both the data sets. Since there is high-
er frequency information available in the task signal compared 
to the rest-state signal, we applied the same filtering to both 
the upsampled rest-state and task signals, thus ensuring the 
same frequency content in both the data. For the resting state 
and gap-closure fMRI data, we used a band-pass temporal fil-
tering to remove constant offsets and linear trends over each 
run while retaining frequencies between 0.009 Hz< f <0.08 Hz. 
There is broad agreement that low frequencies are typical for 
revealing connectivity in resting state fMRI data [11]. However, 
since the temporal characteristics of event-related data may 

Figure 1.  Gap-closure stimulus schematic. Screen shot of the 
gap-closure psychophysical motion test, showing two 
spheres on either side of a central fixation mark.

Observer

Which object will pass the �xation mark �rst?
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change the frequency profile of the BOLD signal (likely in-
creasing the high frequency content), we investigated the im-
plications of filtering fcMRI timecourses. Overall, connectivity 
in the DMN and in whole brain networks was stronger in the 
fullband (unfiltered) condition compared to the bandpass ver-
sion of the analysis (see Supplement Tables 2 and 3). For con-
sistency, and for using a conservative method that prevents 
any increase in task connectivity to be attributed to less re-
strictive temporal filtering, in all subsequent analyses we used 
the band-pass filtered fcMRI data, identical to the filter used 
with the resting state data. This also ensured that any inter-
polated data due to the upsampling step was accounted for.

We used the CONN functional connectivity toolbox (version 
12p http://web.mit.edu/swg/software.htm) [38] to imple-
ment noise reduction, segment the gray matter/white mat-
ter/Cerebrospinal Fluid (CSF) and to isolate the areas of BOLD 
signal. These steps are implemented by CONN toolbox using 
SPM8 (Wellcome Department of Imaging Neuroscience, London, 
UK; www.fil.ion.ucl.ac.uk/spm).

Selection of regions of interest (ROIs)

For the DMN analysis, we used the FMRIB Software Library (FSL), 
[39] to define a 12-mm diameter spherical seed in the Precuneus 
(centered at MNI: 0, –53, 26), which has been consistently dem-
onstrated as being a part of the DMN [3]. We also used five ad-
ditional pre-defined DMN seeds in order to compare the relative 
correlation strengths of the ROIs in the DMN during resting-
state and task performance [3]. Since the choice of coordinates 
for a seed can affect the results of seed-correlation analysis, 
we picked the seeds from a study which validated the choice of 
seeds using ICA [3,6]. In the whole brain analysis, 90 ROIs based 
on Brodmann Areas were chosen using the WFU_PickAtlas tool 
[40, 41] implemented in Statistical Parametric Mapping (SPM) 
package. ROIs were resampled into the MNI 305 2mm space 
from the ICBM 152 space using FSL and Freesurfer (http://surf-
er.nmr.mgh.harvard.edu/). For every subject and every ROI, the 
representative time series of each ROI was obtained by averag-
ing the BOLD time series of all voxels in that ROI.

There could be co-activation confounds from task activation/co-
activation because the BOLD signal may have a similar shape 
between different ROIs and therefore a correlation may be ob-
served even if there is no communication between those ROIs. 
However, our study was not designed to account for this co-
activation/activation in the task condition. Consequently, we 
do not make any claims about the significance or strength of 
correlation of either the resting state or task conditions. Our 
interest in this study was to conduct a comparative analysis 
between connectivity in the rest-state and task and, there-
fore we investigated the relative connectivity between rest-
ing state and task in DMN and in the whole-brain networks.

Connectivity: Bivariate correlation

We used the CONN toolbox (version 12p http://web.mit.edu/
swg/software.htm) [38] to calculate the strength and signifi-
cance of bivariate Pearson correlation among pairs of ROIs with-
in each subject’s data. For ROI-to-ROI connectivity, significant 
connections were identified by computing the FDR-corrected 
two-sided p-value (q) at q<0.05 thresholds. The resulting con-
nections were then converted to a normal distribution using 
Fisher’s z transform and averaged across subjects to produce 
a single measure characterizing the average correlation [42].

To perform a correlation analysis between a given ROI and 
every other voxel (ROI-to-voxel maps), the beta (Fisher trans-
formed z-score) maps were converted to z-scores by dividing 
by the square root of the variance (1/sqrt (n-3), where n is the 
number of degrees of freedom in the measurement) [11]. Since 
individual time points in the BOLD signal are not statistically 
independent, the degrees of freedom were corrected using the 
Bartlett correction factor [42], which is computed as the mean 
(across voxels) of the sum (across TRs) of the squares of the 
autocorrelation functions [3]. The Bartlett correction factors 
were 3.4197 and 4.0143 for task and rest respectively. This 
process was used to correct individual z-scores, after which 
the group z-score significance map was generated by calcu-
lating a voxel-wise two-tailed t-test on the z-scores of the 8 
participants and computing a -log(p-value) score for each vox-
el in the corrected z-score map. Volume clusters based on the 
z-score maps (minimum cluster-size=200 contiguous voxels, 
minimum significance threshold p<0.05) [11] were generated 
using the cluster detection tools included in the FreeSurfer 
software package.

Graph theory analysis

To analyze the characteristics of the whole brain networks, we 
computed several graph theoretical measures for task and rest-
ing-state data. We first computed degree, which is a measure 
of the number of connections incident upon a specific node 
(ROI). The degree distribution shows how many nodes exist 
in the network with each degree value. The existence of high-
degree nodes may indicate nodes that are of critical impor-
tance to the flow of information within the network. Second, 
the closeness centrality (CC) of a given ROI was computed as 
the inverse of the sum of the lengths of the shortest paths 
starting from a given ROI and is normalized by a fraction of 
the maximum possible CC – the given ROI connected to all 
other ROIs 2*(N-1). Third, we computed betweenness centrali-
ty (BC), which considers the fraction of the shortest paths con-
necting every pair of ROIs (geodesics) that contain a given ROI 
[43]. For computing BC, the geodesic for every pair of ROIs is 
identified, and an ROI’s BC is defined as the number of geode-
sics of which the ROI is a member. To normalize for network 
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size, we present BC as a fraction of the maximum possible BC 
(N-1)*(N-2), where N is the number of nodes in the network; 
i.e., a BC=1 would indicate that the node falls along the geo-
desic between every pair of nodes in the network).

We further computed global efficiency, which is the average of 
the inverse shortest path lengths for all ROI-ROI pairs in the 
network and provides a measure of the network’s overall con-
nectedness. A network with a low characteristic path length is 
characterized by short distances between any pair of nodes, 
and would therefore have a high global efficiency. To compute 
global efficiency, we found the lengths of all shortest paths and 
took the mean of their inverses. We also computed the local 
efficiency defined as the average of the inverse shortest path 
lengths among the ROIs in the immediately connected neigh-
borhood of a ROI. The mean local efficiency between all the 
ROIs in a network is used for measuring how well, on average, 
the network communicates when one of the ROIs is eliminat-
ed [34]. It is important to note that local efficiency and close-
ness centrality (CC) are directly proportional to each other by 
a constant scaling factor and therefore these measures can 
be used interchangeably. Both these measure give us a qual-
itative measure of the spread of information in the immedi-
ate neighborhood from a given ROI.

Efficiency as a function of “cost” (K) of a graph is defined as 
the inverse of the mean of the minimum path lengths between 
each pair of nodes normalized by the maximum possible num-
ber of (undirected) edges (N2-N)/2, where N is the number of 
brain regions. Comparing efficiency among networks with dif-
ferent numbers of edges (connections) is problematic because 
increasing the number of edges in a network would likely re-
sult in shorter path lengths, and therefore higher values of ef-
ficiency. Thus, we compared efficiency for each value of cost 
(number of connections), such that the number of edges was 
constant, rather than for each significance threshold (which 
would produce different numbers of edges in each network). 
The efficiency of each network is measured as a function of 
variable cost in the range 0.01<K<0.5 (i.e., 1–50% of all possi-
ble edges in a fully connected).

Taking into account the graph theory measures described 
above we computed the small-worldness of the network. A 
network is defined to be small-world when it has a global ef-
ficiency greater than a regular lattice network with the same 
number of vertices, but less than a random network, and lo-
cal efficiency greater than a random network, but less than a 
regular lattice in the connection cost range of 0.34£K£0.5 [34]. 
Thus a small-world network has both high local and global ef-
ficiencies. This reflects highly clustered networks with a small 
characteristic path length, allowing for fast communication be-
tween any two ROIs in the network.

Results

To determine how functional brain networks change when partic-
ipants actively perform a perceptual task relative to their resting 
state in which they have no goal-directed behavior, we investigat-
ed the similarities and differences in the functional connectivity 
between resting state data and the gap-closure motion task. We 
compared connectivity within the default mode network (DMN) 
in resting state and task networks, by first using a seed-based 
connectivity approach applied to both conditions. In order to 
compare resting state and task networks beyond the DMN and 
to capture the task-dependent global tendencies of connectivi-
ty, we applied a whole-brain connectivity analysis to each con-
dition (rest and task). We characterize each network by com-
paring measures of integration such as path length, global and 
local efficiency, regional measures such as degree and between-
ness centrality, and global measures such as small-worldness.

Connectivity of the Default Mode Network during task 
processing

We performed a seed-based DMN analysis, by defining a seed 
ROI on the precuneus and then we computed the correlation 
of this seed ROI to every voxel in the cortex (see Connectivity: 
Bivariate Correlation section in Methods). The clusters of vox-
els significantly correlated to the Precuneus matched previous 
descriptions of the DMN [4,11], and were present in both the 
rest and visual task conditions (see Supplement Table 1 and 
Supplement Figure 1, and Figure 2). These data suggest that 
the activation of the DMN network is not specific to the resting-
state condition, but that a similar set of voxel clusters are cor-
related to the Precuneus (the seed used) in the task (Figure 2).

To quantitatively assess how the strength of connections among 
DMN areas changed when observers actively performed the gap-
closure psychophysical task, we computed the Fisher transformed 
(r-to-z) correlation strengths among the six pre-defined DMN 
ROIs regions as reported in a previous study (see Connectivity: 
Bivariate Correlation section in Methods) [3]. This resulted in a 
network with 15 possible ROI-ROI connections. Figure 3 shows 
the Fisher transformed correlation strengths among the DMN 
ROIs for both the task and the resting state data. Each value in 
Figure 3 represents the z-score correlation strength between 
two DMN ROIs. The black dotted line is a reference line with 
slope 1 and represents equal functional connectivity between 
the resting state and task networks. There was a positive cor-
relation between resting state and task (R2=0.83, t28=12.0041, 
p<0.001, 95% confidence interval of the slope 0.8354 to 1.1792), 
which suggests that the more connected a pair of ROIs was at 
rest, the more connected it was in the task (Figure 3). Most of 
the z-score correlation strengths were greater in task condition 
than in resting state condition (i.e., they fell above the slope=1 
line), as indicated by a significant offset (t28=7.3135, p<0.001) 
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in Figure 3. This suggests an increase in connectivity within the 
DMN during task-related processing with correlation strengths 
significantly greater in the task data than at rest. These results 
suggest a more general-purpose role for the DMN, not limited 
to resting state modes, such as introspection, or mind wander-
ing in the absence of an active task.

Changes in whole-brain connectivity networks between 
task and rest

In the previous section we addressed how connections within 
the DMN network change with rest state and task. Here, we are 
interested in determining how large-scale networks spanning 
the entire cortex are altered in the task-condition compared to 
the resting state-condition. Identifying properties of the “whole 
brain” network allows us to examine the overall structure of 
neuronal communication among spatially precise regions. To 
study connections spanning the cortex, we defined 90 anatom-
ical ROIs based on Brodmann Areas spanning both the right and 
left cortical hemispheres using the WFU_PickAtlas toolbox [44]. 
Connections among these ROIs were used to compute network 
statistics to capture global tendencies of connectivity in resting-
state and task networks, and to characterize the consistencies 
and differences in the behavior of individual cortical areas us-
ing graph theoretical measures. Figure 4 illustrates the whole-
brain networks of the resting state (Figure 4A), and task (Figure 
4B) networks with Brodmann areas as the ROIs. The connections 
represent bivariate correlations with p<0.05 (FDR Corrected), and 
node color indicates the difference between the positive and 
negative connections (green to dark blue indicating increasing 
negative total connections respectively, green to dark red indi-
cating increasing positive total connections). In the following sec-
tions, we discuss the quantitative properties of these networks.

Degree distribution

Degree measures the number of connections at a particular 
node, and the mean degree across all nodes (referred to as 
the average degree) measures the extent to which the graph 
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is connected [45]. To illustrate changes in connection density 
(i.e., network connectedness), we computed the mean degree 
in both resting state and task networks by selecting connec-
tions passing an FDR-corrected bivariate correlation thresh-
old of p<0.05. The connectedness, as assessed by the aver-
age degree across nodes, increased during the task-condition 
with nodes having, on average, more than double the number 
of significant connections during task than at rest (4.24±2.24 
connections per node in resting state to 9.88±4.24 in task pro-
cessing; 2-sample, 2-tailed t-test comparing connections for 
each node between rest and task showed these were signifi-
cantly different: t178=11.16, p<0.001).

In addition to the mean of all nodes’ degrees, we also comput-
ed the degree distribution of the network, i.e., a histogram of 
the frequency of every degree value [13]. Degree distributions 
provide a summary of the connectivity in networks by pro-
viding a snapshot of the connectedness of all nodes. Figure 5 
shows the degree distribution of both the resting state (red) 
and task (green) networks. Consistent with the increase in 
mean degree shown in Figure 4, we found that in task pro-
cessing the distribution of degree values are shifted higher, 
indicating that the overall whole-brain network is more con-
nected during task processing. This can be interpreted as an 
overall increase in the significance of connections, more con-
nections reached the significance threshold, thus resulting in 
a more densely connected network.

This result has implications on other network measurements 
such as centrality and global efficiency, since those metrics de-
pend on the network size and number of edges [46]. For ex-
ample, increasing the number of connections in a network will 
likely decrease the average path length in that network, even 
if it does not increase its global efficiency (see Graph Theory 
Analysis section of Methods). Due to the increase in average 
degree of the task-network, in the following sections, instead 
of applying a fixed significance threshold which considers a 
limited (and variable) number of connections in the network, 
we used a threshold of p<=1 (i.e., all connections included), or 
computed network properties for all values of cost (i.e., com-
puted as a function of the number of connections in the net-
work, rather than as a function of a fixed significance thresh-
old), as appropriate.

Betweenness centrality and degree

Betweenness centrality measures the influence a particular re-
gion has over the spread of information throughout the net-
work [47]. In order to investigate the relative importance of 
particular areas between the resting state and task networks, 
and how the role of an area changes between conditions, we 
computed for both conditions the weighted degree, which is 
the sum of the strengths of connections from one ROI to ev-
ery other ROI, and the betweenness centrality, that is the num-
ber of weighted shortest paths that pass through a certain ROI 
from all the ROIs towards all other ROIs. These measurements 
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# Negative

38

0

–15

15

0

–2

A B

Figure 4.  Whole-brain networks of the resting state (A) and task (B) networks. 90 Brodmann Areas were chosen spanning the whole 
brain. The networks were generated using the CONN-fMRI toolbox. The node color indicates the difference between the 
positive and negative connections (green to dark blue indicating increasing negative total connections respectively, green to 
dark red being indicating increasing positive total connections).
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provide an indication of how well connected each ROI is, and 
of its importance to the information flow through the network. 
To obtain a value invariant to network size, both degree and 
betweenness centrality (BC) were normalized by the maximum 
possible value, 2*(N-1) for degree, i.e., connected to all other 
ROIs, and (N-1)*(N-2) for BC, i.e., falling along the route from 

every ROI, except the one being considered, to every other ROI. 
To characterize how similar each ROI’s behavior was in task 
and resting state conditions, we calculated the linear regres-
sion and variance (correlation coefficient of the line) of the re-
lationship between task and resting state networks. For ex-
ample, a slope of 1 with no variance in the regression would 
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indicate that nodes that were highly connected or central in 
the resting state network are equally connected/central in the 
task state network. Figure 6A, 6B show the scatter plots of the 
percent of the log of the percent betweenness centrality and 
the weighted degree for every ROI between the resting state 
and task network respectively. The blue dotted lines represent 
the 95% confidence intervals of the slope of regression fit.

We found a significant positive correlation between task and 
resting state for both degree (slope=0.55, 95% confidence inter-
val=0.41 to 0.6975, t88=7.655, p<0.001, Figure 6A) and between-
ness centrality (slope=0.20, 95% confidence interval=0.0182 to 
0.3824, t88=2.1862, p=0.0314, Figure 6B). These positive corre-
lations suggest that ROIs highly connected (degree) or highly 
central (BC) maintain these properties during both, resting state 
and task processing. While the degree data had a high corre-
lation coefficient between the resting state and task (R2=0.39, 
Figure 6A), the correlation coefficients for betweenness cen-
trality were weak (R2=0.05, Figure 6B). This suggests that al-
though number of synchronized brain areas through each node 
(degree) was increased linearly, the influence of a particular 
ROI on the flow of information in a network becomes irregu-
lar, likely indicating a shift in the most efficient paths through 
the network. Furthermore, since the slopes for both task and 
resting state data were significantly less than 1, the volume of 
information flow and influence of an ROI over the flow of in-
formation were observed to be higher during task than at rest.

Measures of integration

Measures of integration allow the determination of how ef-
ficiently information travels through a network [13]. We 

computed global and local efficiency measures to determine 
how integration among cortical ROIs changes in task and 
resting state networks. Global efficiency is a measure of the 
network’s capacity for parallel information transfer between 
nodes via multiple series of edges, while local efficiency is a 
measure of how fault tolerant the network is, (i.e., by indicat-
ing the efficiency of the network when one ROI is removed) 
[34]. To control for the number of connections, we computed 
the global and local efficiency with respect to the connection 
cost of the network, the average edge density across all ROIs 
and subjects for all possible significance thresholds. By com-
puting these measures as a function of the number of edges, 
rather than the significance threshold for each particular edge, 
differences in efficiency cannot arise simply due to changes 
in the number of connections in the network (as we have al-
ready observed in the task data). Instead, this computation 
provides an assessment of the network’s efficiency that is in-
dependent of the significance threshold selected and applied 
to individual connections. As illustrated in Figure 7, we com-
pared task and rest states and found no significant differenc-
es in either local or global efficiency (two-tailed, two-sample 
t-test for global efficiency: t40=–0.02, p=0.98; and local effi-
ciency: t40=0.09, p=0.92). The variance of local efficiency (error 
bars in Figure 7B) among subjects was lower in the task net-
work than resting state for every cost value (two-tailed, two-
sample t-test, 11.29<t14 <21.95, 0<p<20.4e-9 across all values 
of cost), indicating that there was more inter-subject variabili-
ty in the effectiveness of short-range communication between 
brain regions at rest condition than during task processing. 
However, we did not find a similar trend in the inter-subject 
variance of global efficiency (–1.21<t14<1.18, 0.25<p<0.86) (er-
ror bars in Figure 7A).

1.0

0.8

0.6

0.4

0.2

0.0

Gl
ob

al 
effi

cie
nc

y

Lo
ca

l e
ffi

cie
nc

y

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.1 0.2

Connection cost (K)

Task
Resting state

Task
Resting state

0.3 0.4 0.5 0.0 0.1 0.2
Connection cost (K)

0.3 0.4 0.5

A B

Figure 7.  (A) global efficiency vs. connection cost (K), and (B) local efficiency vs. connection cost (K) of the task network shown in 
green, and the resting state network shown in red. The lines represent the mean connection cost at each node across all 
subjects, and the error bars represent the standard error across all subjects calculated at p>1.

1032
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS] [Index Copernicus]

Goparaju B. et al.: 
A computational study of whole-brain connectivity in resting state and task fMRI

© Med Sci Monit, 2014; 20: 1024-1042
DIAGNOSTIC TECHNIQUES

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License



Small worldness

Small-world networks are a class of networks that exhibit effi-
cient long-distance communication and tightly interconnected 
local neighborhoods [48]. A small-world network has a global 
efficiency greater than a regular lattice but less than a random 
network in the range 0.34< cost (K) <0.5 [34]. Figure 8 shows 
the global and local efficiency vs. connection cost of the task 
and resting state networks. Both networks exhibit small-world-
ness characterized by high global and local efficiency, thus en-
abling an efficient model of communication with low cost of 
transmitting information from one ROI to another.

Discussion

We used connectivity derived from fMRI data to characterize 
and compare in the same subjects the brain networks under-
lying both task and resting state brain activity. We first inves-
tigated the implications of applying narrow bandpass filtering 
(0.009 Hz <f<0.08 Hz) to event-related task connectivity data 
similar to that typically used in the analysis of resting state 
data. We found that the fullband task data showed stronger 
connectivity than its bandpass counterpart (see Validation sec-
tion of the Supplement). This suggests that bandpass filtering 
might cause some task-relevant connections to be lost, thus 
reducing the filtered network connectivity compared to the un-
filtered network connectivity. Since we were interested in com-
paring task and rest state networks, we used only the bandpass 
filtered data in order to maintain methodological consistency 

(for comparison with the full band task network data, see 
Supplementary Table 4 and Supplementary Figures 3–6).

Bivariate correlations among time courses extracted from 
brain regions involved in the default mode network (DMN) 
showed that the interregional correlations was greater dur-
ing task processing than during the resting state (Figure 3). 
There are several possible explanations for this finding. First, 
the activity in the DMN may persist through both task and 
rest conditions if the experiment is not sufficiently challeng-
ing [7]. We chose task conditions based on previous data and 
the difficulty of the task was chosen so that subjects’ perfor-
mance was good (91.6% accuracy), albeit not perfect, but it 
may not have been difficult enough to prevent activation of 
the DMN. Thus, the connectivity we observe during the task 
may be a superposition of both rest and task state connec-
tivity. An alternative explanation may be that the DMN areas 
may play a role in the gap-closure psychophysical task. It has 
been shown that the resting DMN areas PCC and MFG/vACC 
are functionally connected when subjects perform a working 
memory task, possibly to facilitate or monitor performance 
[49]. Likely, working memory is involved in the gap-closure 
task, in which subjects simultaneously monitor and compare 
the trajectories of two objects in order to make their deci-
sion. All the above explanations support a framework in which 
the DMN is not fully suppressed during task processing, but 
either continues to operate, or is even actively engaged by 
task demands. Although our data do not specifically indicate 
any one of these explanations, they do support the general 
point that the DMN continues to operate even while subjects 
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Figure 8.  Local efficiency (left) and global efficiency (right) vs. connection cost (K) of the task network shown in green (A), and the 
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are actively engaging in a perceptual task. Yet, there could 
be another explanation for our results, which is methodolog-
ical. We compared rest state data that is continuous to task, 
which was an event related design and hence it alternates 
between stimulus and blank periods. This could not be ruled 
out on the basis of the experimental paradigm we used in 
this study, and we plan to carefully investigate this possibili-
ty in a study, which is underway.

To explore changes in the global behavior of brain networks 
associated with the cognitive state, we used a graph theo-
retical approach similar to those described in recent studies 
[8,36,37,50]. We assessed the relationship in the regional net-
work measures between the rest-state and task, by comput-
ing the line of best fit through linear least squares (Figure 6). 
A significantly positive slope would indicate that ROIs with a 
relatively high network measure value in rest-state would tend 
to remain unchanged during task. Similar to previous stud-
ies which showed a correlation in voxel-wise degree between 
task and rest [8], we found a significantly positive slope of the 
ROI-wise degree line (Figure 6B). Similarly, there was also a 
significant positive slope of the betweenness centrality mea-
sure line (Figure 6A). The positive slope indicates that regions 
that exhibit “hub-like” behavior (i.e., highly connected) tend 
to remain “hub-like” independent of the cognitive brain state 
(rest state or task). However, the R-squared correlation mea-
sure in the BC between the rest-state and task conditions is 
lower than that in the degree, suggesting that in spite of the 
maintenance of connectivity and the “hub-like” behavior of 
areas, the network paths may be rerouted when performing 
the task condition.

In order to explore whether the increases in the correlation 
strengths in the DMN connectivity were proportionally similar, 
or whether the DMN connectivity increased to a proportionally 
smaller or larger extent compared to whole-brain connectivity 
between the resting state and task conditions, we computed 
a permutation test between the z-score correlation strengths 
of the two experimental conditions. The permutation test pro-
duces a distribution of the slope and intercept values of ran-
dom combinations of the correlation strengths between con-
ditions. The results showed that the DMN intercept value was 
significantly larger than the permuted population revealing 

that the DMN has a proportionately larger increase in connec-
tivity compared to the connectivity among whole brain areas.

Our results show an overall higher level of connection strength 
and network density during task processing than rest, yet we 
found that when controlling for connection cost (i.e., number of 
connections) there was no change in local or global efficiency 
of the networks (Figure 7). We also found that both networks 
(rest-state and task) demonstrated small-worldness, which 
implies the coexistence of both modular and distributed pro-
cessing dynamics [50]. Although the efficiency measures and 
small-worldness of the two networks (rest-state and task) are 
very similar, the finding that centrality is less correlated than 
the degree between task and rest state conditions suggests 
a rewiring of the brain network between rest-state and task 
while maintaining efficiency and the small-world topology.

Conclusions

We computed the functional brain connectivity among brain 
areas in a resting state, and during active performance of a vi-
sual motion psychophysical experiment (gap closure). A com-
parison of connectivity within the DMN and across the entire 
cortex showed increased communication during the visual mo-
tion task, suggesting a superposition of task and resting state 
networks. Graph theoretic measures computed for the whole 
brain network suggest that although the brain recruits more ar-
eas during task processing leading to greater connectivity, the 
efficiency of the network does not differ significantly between 
rest state and gap-closure task processing. One commonali-
ty between the function of the rest state DMN and the neu-
ronal network underlying the gap-closure task is that both in-
volve areas involved in working memory. This is consistent with 
the increase we have seen in the connectivity of DMN areas.

The global statistics of the network (efficiency, relative degree, 
relative centrality) were similar between rest-state and task. 
Our results support a view of cognitive processing in which al-
though the underlying network structure does not fundamen-
tally change with the subject’s cognitive state (rest-state or 
task), the brain switches among several pathways of compa-
rable efficiency as required by the current cognitive demands.
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Supplement  Figure 1. Voxels significantly correlated to the precuneus ROI (circled in green) for (A) resting state data, (B) bandpass 
filtered task data, and (C) fullband filtered task data.

Supplement

Validation

In order to determine whether our resting state data is consistent 
with previous studies, we investigated the presence and detect-
ability of the Default Mode Network (DMN). The DMN has been 
defined as the areas showing correlated activity during resting 
state (no task), and includes the posterior cingulate cortex (PCC), 
precuneus, medial prefrontal cortex (MPFC), lateral parietal cor-
tex, and the hippocampal formation [3]. Using the method de-
scribed in VanDijk et al. [3] we computed a spatial map of the 
correlation between a seed placed on the precuneus (average 
BOLD time course from a 12 mm diameter sphere centered on 
MNI co-ordinate: 0, –53, 26) and every other voxel in the cortex. 
The population based -log(p) z-score significance map was com-
puted by applying a t-test on the subject-wise z-score maps ob-
tained from Beta correlation values (see Methods). The Freesurfer 
fMRI data analysis package was used to generate volume clus-
ters from the correlation maps (minimum cluster-size =200 con-
tiguous voxels, minimum threshold =-log(0.05)) [11]. As seen in 

Supplemental Figure 1A, positive values, shown in an orange to 
yellow scale, represent areas significantly correlated with the 
Precuneus, whereas negative values, shown on a light to dark 
blue scale represent areas significantly anticorrelated with the 
Precuneus. The resting state fMRI correlation maps shows cor-
relation with the Superior Temporal Gyrus, Medial Frontal Gyrus, 
and the Angular Gyrus. Our results are consistent with those re-
ported by other studies [3,11].

Presence of DMN ROIs during task

Previous studies have reported that the default mode net-
work (DMN) shows correlations in task conditions, but at an 
attenuated level relative to resting state [9]. In order to find if 
brain regions in the DMN (correlated to the Precuneus) were 
also correlated during task processing, we identified clusters 
of voxels with significant Fisher-transformed correlations to 
precuneus signal during the task (using the same statistics as 
described above). Significance maps (Supplement Figure 1) 
show the –log(p) values after applying a two-tailed t-test 
on the z-scores obtained from each subject. The columns in 
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Supplement  Figure 2. Shows the task fullband and task bandpass vs. resting state connectivity in DMN seeds. (A) and (B) shows 
the task fullband vs. resting state and task bandpass vs. resting state Fisher Transformed Z scores of the DMN seeds as 
chosen from Van Dijk et al. [3] respectively. The black dotted line in each figure is a line with slope=1 representing equal 
connectivity.

Supplement Table 1. Shows the clusters found in the default mode network connectivity maps in the resting state network.

Size 
(n)

Size 
(mm3)

MNI X MNI Y MNI Z TAL X TAL Y TAL Z
Max 

-log(p) 
value

Cerebrum Lobe
Anatomical 

area
Brodmann 

area

1 1707 13656 –10 –51 27 –10 –48 27 5.83732
Left 

cerebrum
Parietal 

lobe
Precuneus

Brodman 
area 31

2 772 6176 –42 –57 27 –42 –54 28 5.10571
Left 

cerebrum
Temporal 

lobe

Superior 
temporal 

gyrus

Brodman 
area 39

3 708 5664 –12 65 7 –12 63 3 4.71252
Left 

cerebrum
Frontal 

lobe

Media 
frontal 
gyrus

Brodman 
area 10

4 602 4816 52 –65 31 51 –62 32 4.07893
Right 

cerebrum
Parietal 

lobe
Angular 
gyrus

Brodman 
area 39

5 319 2552 56 –45 41 55 –42 40 –3.88219
Right 

cerebrum
Parietal 

lobe

Inferior 
parietal 
lobule

Brodman 
area 40

6 313 2504 –8 25 27 –8 25 24 –3.78081
Left 

cerebrum
Limbic 
lobe

Anterior 
cingulate

Brodman 
area 32

Supplement Figure 1 represent the significance of correla-
tion with the precuneus-seed (circled in green) for the same 
slices (Z=42, 27 and 16) for the resting state and task data. 
Supplement Tables 1–3 show the significantly correlated an-
atomical areas found in resting state, as well as task data af-
ter clustering. The anatomical areas were defined through a 
lookup of the mean Talairach coordinate of the cluster (http://
www.talairach.org, [51] using Freesurfer. We found that the 

DMN areas were more significantly correlated to the Precuneus 
seed in the task condition as compared to resting state. This 
result is different from the usually reported anti-correlations 
between resting state and task conditions [11]. In Supplemental 
Figure 1, we illustrate the significance of the connections with 
the precuneus (circled in green), and not the strengths of the 
connections, and hence we only show the areas that are con-
nected during resting state and task.
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Size 
(n)

Size 
(mm3)

MNI X MNI Y MNI Z TAL X TAL Y TAL Z
Max 

-log(p) 
value

Cerebrum Lobe
Anatomical 

area
Brodmann 

area

1 6190 49520 2 –45 29 2 –42 29 7.51287
Right 

cerebrum
Limbic 
lobe

Cingulate 
gyrus

Brodman 
area 31

2 12646 101168 0 57 15 0 56 11 6.4667
Left 

cerebrum
Frontal 

lobe

Media 
frontal 
gyrus

Brodman 
area 10

3 2011 16088 54 –65 31 53 –62 32 5.96842
Right 

cerebrum
Parietal 

lobe
Angular 
gyrus

Brodman 
area 39

4 312 2496 –6 –15 13 –6 –14 13 5.54662
Left 

cerebrum
Sub- 
lobar

Thalamus
Medial 
dorsal 

nucleus

5 2031 16248 –62 –15 –13 –61 –15 –10 5.47374
Left 

cerebrum
Temporal 

lobe

Middle 
temporal 

gyrus

Brodman 
area 21

6 1398 11184 –46 –75 31 –46 –71 32 5.22169
Left 

cerebrum
Temporal 

lobe
Angular 
gyrus

Brodman 
area 39

7 574 4592 26 –21 –17 26 –21 –13 4.78953
Right 

cerebrum
Limbic 
lobe

Parahip-
pocampal 

gyrus

Brodman 
area 35

8 366 2928 16 –69 45 16 –65 45 –4.7328
Right 

cerebrum
Parietal 

lobe
Precuneus

Brodman 
area 7

9 1782 14256 –44 –59 –31 –44 –58 –23 –4.45789
Left 

cerebrum
Posterior 

lobe
Tuber *

10 507 4056 –38 55 21 –38 54 17 –4.36372
Left 

cerebrum
Frontal 

lobe

Superior 
frontal 
gyrus

Brodman 
area 10

11 455 3640 44 –81 –25 44 –80 –17 –4.20093
Right 

cerebrum
Posterior 

lobe
Declive *

12 422 3376 64 –13 –13 63 –13 –10 3.9602
Right 

cerebrum
Temporal 

lobe

Middle 
temporal 

gyrus

Brodman 
area 21

Supplement Table 2. Shows the clusters found in the default mode network connectivity maps in the task (bandpass) network.
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Supplement Table 3. Shows the clusters found in the default mode network connectivity maps in the task (fullband) network.

Size 
(n)

Size 
(mm3)

MNI X MNI Y MNI Z TAL X TAL Y TAL Z
Max 

-log(p) 
value

Cerebrum Lobe
Anatomical 

area
Brodmann 

area

1 7528 60224 2 –55 27 2 –52 27 7.75249
Left 

cerebrum
Limbic 
lobe

Cingulate 
gyrus

Brodman 
area 31

2 1110 8880 44 –19 53 44 –16 50 7.07843
Right 

cerebrum
Frontal 

lobe
Precentral 

gyrus
Brodman 

area 4

3 10199 81592 6 57 31 6 57 26 6.10365
Right 

cerebrum
Frontal 

lobe

Superior 
frontal 
gyrus

Brodman 
area 9

4 973 7784 50 –59 35 50 –56 35 5.4246
Right 

cerebrum
Parietal 

lobe

Inferior 
parietal 
lobule

Brodman 
area 40

5 486 3888 –60 –15 –13 –59 –15 –10 5.08472
Left 

cerebrum
Temporal 

lobe

Middle 
temporal 

gyrus

Brodman 
area 21

6 2987 23896 42 19 3 42 19 2 –5.01401
Right 

cerebrum
Sub- 
lobar

Insula *

7 699 5592 28 –41 –31 28 –41 –24 –4.55969
Right 

cerebrum
Anterior 

lobe
Culmen *

8 229 1832 –6 –9 13 –6 –8 12 4.18239
Left 

cerebrum
Sub- 
lobar

Thalamus *

9 278 2224 –54 7 –29 –53 6 –25 4.05919
Left 

cerebrum
Temporal 

lobe

Middle 
temporal 

gyrus

Brodman 
area 21

10 374 2992 68 –31 –3 67 –30 –1 4.04834
Right 

cerebrum
Temporal 

lobe

Middle 
temporal 

gyrus

Brodman 
area 21

11 383 3064 –48 41 19 –48 41 15 –3.84668
Left 

cerebrum
Frontal 

lobe

Middle 
frontal 
gyrus

Brodman 
area 46

12 407 3256 –20 –59 –31 –20 –58 –23 –3.59756
Left 

cerebrum
Anterior 

lobe
* Dentate

13 665 5320 52 43 9 51 42 6 –3.41915
Right 

cerebrum
Frontal 

lobe

Inferior 
frontal 
gyrus

Brodman 
area 46

14 269 2152 –54 –57 –9 –53 –56 –5 –3.29778
Left 

cerebrum
Temporal 

lobe

Inferior 
temporal 

gyrus

Brodman 
area 37

15 265 2120 62 –13 –13 61 –13 –10 3.27451
Right 

cerebrum
Temporal 

lobe

Middle 
temporal 

gyrus

Brodman 
area 21

16 395 3160 –22 –17 –21 –22 –17 –17 3.16681
Left 

cerebrum
Limbic 
lobe

Parahip-
pocampal 

gyrus

Brodman 
area 28
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Supplement  Table 4. Shows the mean degrees of the resting state, gap closure task (fullband) and gap closure task (bandpass) 
networks.

Networks Mean degree

Task (fullband) 10.5243

Task (bandpass) 9.8876

Resting rate 4.2447

# In degree -
# Out degree

15

0

–2

# In degree -
# Out degree

38

0

–15

# In degree -
# Out degree

45

0

–7

0

A B C

Supplement  Figure 3. (A–C) show the whole-brain networks of the Resting state, Task bandpass, and task fullband networks 
respectively. 90 Brodmann Areas were chosen spanning the whole brain and the CONN-fMRI toolbox was used to 
generate the networks. The node color indicates the difference between the positive and negative connections (green 
to dark blue indicating increasing negative total connections respectively, green to dark red being indicating increasing 
positive total connections).

Nu
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8

6

4

2

0
1 3 5 7 9 11 13 15 17 19 21

Degree

Task (fullband)
Task (bandpass)
Resting state

23 25 27 29 31 33 35 37 39 41 43

Supplement  Figure 4. The degree distribution of three networks that were explored. Degree is a measure of the number of 
connections at a particular node. Degree distribution plots show the number of nodes with a particular degree. The red, 
green and blue bar plot shows the degree distribution of the task (fullband), task (bandpass) bandpass and the resting 
state network respectively.
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Supplement  Figure 5. The figures below show the % weighted degree and % weighted betweenness centrality of each node of the 
resting state, gap closure task (bandpass), and gap closure task (fullband) networks plotted against each other for each of 
the 90 Brodmann Areas. The degree centrality was normalized by the total number of degree possible, and betweenness 
centralities were normalized by the total number of connections possible in the network. In (A, C, and E) – the axes 
represent the % Degree; whereas in (B, D, and F), they represent the log of the% betweenness centrality. The blue line 
represents linear least-squared regression best-fit line, and the dotted black line represents a reference slope=1 line. In 
(B, D, and F), the best-fit line and reference slope=1 line are calculated in linear space, but plotted in log-log space.
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