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ABSTRACT 

 Methods for frequent non-invasive surveillance of the in-vivo tumor state may assist 

in detecting whether a patient is responding or developing resistance at an early stage of 

treatment. This would allow physicians to adapt and personalize treatment strategies in 

real-time. Multiple studies have demonstrated that clinical diffuse optical imaging (DOI), 

which can provide structural and hemodynamic profile of tumor, can reveal treatment 

induced changes that correlate strongly with patient response determined by pathology. 

While encouraging, there are many unknowns as to how DOI optical markers manifest for 

different treatment regimens and dosing. Additionally, a deeper understanding of the 

underlying cellular and molecular changes that contribute to DOI markers is needed to 

provide a mechanistic context to these clinical observations. This project addresses these 

issues at the preclinical level with Spatial Frequency Domain Imaging (SFDI). SFDI is a 

wide-field and non-invasive DOI modality that provides the same optical and 

hemodynamic information as the clinical tools and is more suitable for preclinical imaging, 

and so is the right tool for such exploratory study. To this end, the work presented in this 

dissertation was focused on establishing SFDI as a new preclinical monitoring tool for 
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cancer. For the first time, the feasibility of using SFDI for frequent longitudinal monitoring 

of chemotherapy and targeted therapy efficacy in small animal oncology models was 

established. The SFDI optical property extraction accuracy was then improved in 

subcutaneous tumors by the development of a new two-layer Monte Carlo based inversion 

model. SFDI optical and functional metrics were then validated in the context of cellular 

and molecular correlates using immunohistochemistry. The treatment prediction ability of 

SFDI was also compared to simple tumor volume measurements in multiple tumor models. 

Finally, a custom-made LED-based SFDI system was developed to measure tissue water 

content in addition to hemodynamic features. Overall, this body of work helps to establish 

SFDI in the field of preclinical cancer treatment monitoring. Knowledge gained from this 

work may assist in the clinical translation of DOI tools as important feedback methods in 

the applications of treatment monitoring, drug testing, and personalization of treatment 

strategies. 
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CHAPTER ONE 

Background and Significance 

1. 1 Chemotherapy response monitoring 

1.1.1 Chemotherapy: an important treatment option for cancer 

Despite considerable progress in diagnosis and treatment strategies, cancer remains among 

the leading causes of morbidity and mortality worldwide. According to the American 

Cancer Society, it is the second most common cause of death in the US, exceeded only by 

heart disease is the US 2. Approximately 39.3 percent of men and women will be diagnosed 

with cancer of any site at some point during their lifetime, based on 2014–2016 data 3. 

Although the 5-year relative survival rate for all cancer sites combined has increased 

substantially from 49% (1975-77) to 69% (2008–14) for all races in the US, there are 

substantial differences in survival based on tumor site, race, and most importantly tumor 

stage at diagnosis 2. Unfortunately, treatment outcome is worse for patients diagnosed with 

distant metastasis, for which the 5-year relative survival rate (%) can be as low as 2–5% in 

liver, lung, pancreas, stomach and urinary bladder cancers 2. 

In terms of treatment, cytotoxic chemotherapy continues to be the primary weapon 

for combating the death toll, and is used against local and advanced cancers from almost 

all organ sites 4,5. Cytotoxic regimens are often accompanied by other available therapies, 

(i.e., hormonal, antiangiogenic, targeted, radiation, etc.) as well as surgery in order to 

improve patient response and prevent future relapse. For instance, in 2011 more than 30% 

of the all early- and late-staged breast cancer patients underwent surgeries followed by 

radiation and chemotherapy to combat clinical remission 6. More recently, combining 



2 
 

 

cytotoxic therapy with various other treatment regimes, i.e., antiangiogenic, targeted or 

immunotherapy, has also gained significant interest in clinical settings 4,7,8. Also, novel 

mechanisms are currently under investigation to improve chemotherapeutic efficacy, in the 

context of optimal dosing, better tumor targeting and improved delivery to the tumor 

location 9,10. 

1.1.2 Importance of early and long-term monitoring of chemotherapy response 

Although chemotherapeutics has led to improved survival and quality of life for cancer 

patients, therapy failures are still common due to numerous reasons. First of all, 

chemotherapy is associated with serious side effects resulting from cytotoxicity, which 

limits the amount of drug administered systemically and thus causing a narrow therapeutic 

window 11. Added to that is the absence of specific tumor targeting mechanisms in most 

cytotoxic drugs, which may lead to insufficient drug delivery. Additionally, therapeutic 

failure may be caused by multiple other factors including drug resistance, Cancer Stem 

Cells (CSCs), and intra-tumor heterogeneity 5,11,12.  

All these factors collectively lead to limited treatment response with clinical 

benefits only affecting a subset of patients. In consequence, patients who do not show a 

positive response may undergo lengthy drug regimens that in turn burden them with 

substantial treatment side effects while providing little or no curative benefits. This 

problem is exacerbated by the fact that physicians have a limited toolset for determining 

when to continue or when to stop and alter treatment. Long-term in vivo surveillance of the 

tumor state is regarded as imperative for predicting patient response relatively early during 

treatment, eventually guiding adaptive treatment decisions, including when to continue or 
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when to stop and alter treatment. This knowledge can potentially improve overall treatment 

efficacy, while at the same time significantly reduce treatment cost and burden. 

1.2 Current methods are inadequate for early and long-term monitoring 

Despite the urgency, physicians lack an appropriate toolset for inspecting in vivo tumor 

status in order to address important therapeutic questions. Presently, there are few clinically 

viable, cost effective, non-invasive and non-harmful tools for anatomic and functional in 

vivo imaging. Current anatomic modalities include Magnetic Resonance Imaging (MRI), 

Computed Tomography (CT), Positron Emission Tomography-CT (PET-CT), and 

Ultrasonography (US). Though these modalities have the advantage of high spatial 

resolution, they suffer from high expense and safety issues from the use of radioactive 

tracers and ionizing radiation 13–15. Most importantly, they rely on accurate assessment of 

tumor size and so remain ineffective in indicating any signs of response until significant 

tumor debulking occurs, usually after weeks or months for many cancers 16,17. 

Recently, functional imaging modalities, such as functional MRI (fMRI), Magnetic 

Resonance Spectroscopy (MRS), Dynamic Contrast Enhanced MRI (DCE-MRI), 18F-

Fluorodeoxyglucose-PET (18F-FDG-PET), 18F-Fluorothymidine-PET (18F-FLT-PET), 

Single-Photon Emission Computed Tomography (SPECT), are making their way in the 

clinic, although, mostly for diagnostic applications. In the context of therapy monitoring, 

DCE-MRI, MRS, 18F-FDG-PET, 18F-FLT-PET have successfully linked early changes in 

functional markers to t long term treatment response 18–22. 

These findings highlight the potential of functional imaging modalities for 

surveillance of treatment response in vivo, but these tools have significant practical and 
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technical limitations when used at frequent time points longitudinally. Even if the issues 

of safety and cost, as mentioned earlier, can be overcome, practical and technical 

limitations such as poor portability and discomfort from the procedures, impair their ability 

to perform frequent and longitudinal patient monitoring throughout treatment 13–15,23,24. 

1.2.1 Potential of Diffuse Optical Imaging for therapy monitoring 

 

Diffuse Optical Imaging (DOI) techniques are ideally suited to the purpose of longitudinal 

therapy monitoring as they have favorable safety profiles, are relatively inexpensive, do 

not require dedicated infrastructure, and provide important metabolic and functional 

information related to the in vivo tumor state. 

1.2.2 Diffuse Optical Imaging (DOI)  

Clinical DOI tools, i.e., Diffuse Optical Tomography (DOT) and Diffuse Optical 

Spectroscopy (DOS), are receiving significant interest as emerging non-invasive functional 

imaging techniques to study biological tissues in vivo on macroscopic scale 25. DOI tools 

typically utilize red and near-infrared (NIR) light (~600 to 1000 nm) to extract optical 

properties (OP: absorption: 𝜇𝑎 and reduced scattering: 𝜇𝑠
′ ) in centimeter thick living tissue. 

Light encounters relatively low absorption in human tissue at this wavelength range, 

enabling deeper penetration into the tissue, up to several centimeters 26. At distances greater 

than 1 to 2 mm from a source, photons lose their directionality as they undergo multiple 

scattering events within the complex tissue structure, and hence described as a diffusive 

process 25,27. The photon diffusion process in tissue has been previously described using 

the Radiation Transport Equation (RTE) model which accounts for both photon absorption 
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and scattering. Since the RTE is difficult to solve analytically, an approximated diffusion 

equation is often used in practice. The diffusion equation can be easily solved for 𝜇𝑎 and 

𝜇𝑠
′  dependent on measurement conditions, boundary conditions, measurement domain (i.e. 

frequency versus time domain), forming the basis of a variety of DOI tools 25,26. Absorption 

values, measured at multiple wavelengths, provide access to tissue hemodynamic status 

and metabolic properties 25; whereas, scattering measurements relate to tissue structural 

properties and provides knowledge about cell and organelle density as well as the 

extracellular matrix 26. 

1.2.3 Clinical DOI tools for monitoring treatment response 

A growing number of reports over the last decade demonstrate the utility of DOI 

methodologies for tracking changes in tumor functional and metabolic properties during 

chemotherapy in breast cancer patients 28–30. Several reports have shown that decreases in 

hemoglobin content, decreases in water, and/or increases in lipids correlate with pathologic 

complete response (pCR) in breast cancer patients receiving presurgical neoadjuvant 

chemotherapy (NAC) 31–34. In 2011, it was reported that a rapid gain in tumor 

oxyhemoglobin (HbO2) concentration within the first day of therapy is predictive of NAC 

outcome, suggesting frequent tumor monitoring may reveal important early markers of 

response 35. 
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1.2.4 Spatial Frequency Domain Imaging (SFDI): A potential pre-clinical chemotherapy 

monitoring tool 

While these clinical findings by DOI tools underline their tremendous potential for clinical 

therapy monitoring, there has been relatively little work to date in trying to better 

understand the cellular, molecular, and physiological origins of these clinical observations. 

A small number of recent studies have correlated DOI derived metrics to 

immunohistochemical markers of blood vessel density and metabolism measured from 

clinical biopsies or surgical specimens 36,37. By further exploring the underpinnings of 

response, it may be possible to not only track treatments more effectively and early, but 

better schedule multi-agent regimens, test new drugs or detect early signs of therapy 

resistance based on DOI feedback. This will require careful control over treatments and 

imaging, with regular access to tumor tissue for correlative measurements. The preclinical 

setting is ideal for testing these ideas, but it is necessary to track the same DOI-derived 

parameters in small animal models in order to translate potential findings to the clinical. 

Here we investigate Spatial Frequency Domain Imaging (SFDI), a DOI technique 

more suitable for the preclinical set up, as a new tool to monitor the in vivo tumor state in 

small animal oncology models. SFDI provides equivalent information to many clinical 

DOI modalities at a relatively shallower tissue depth (typically mm’s) 38, is non-contact, 

and provides wide-field spatial mapping of tumor OP. To date, SFDI has been explored for 

a number of preclinical and clinical applications including vascular occlusions, 

reconstructive tissue status, monitoring burn wounds, tracking the progression of 

Alzheimer’s disease and imaging drug delivery to the brain 39–47. However, there are only 
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a small number of reports in which SFDI has been used for applications in oncology. These 

include studies for diagnosing human skin carcinomas, mapping breast lumpectomy 

specimens, developing tomographic reconstruction of brain tumors in small animals, and 

PDT dosing monitoring 48–51. 

1.3 Goal of this dissertation 

This work explores the feasibility of using SFDI for frequent longitudinal monitoring of 

cancer chemotherapy efficacy in small animal oncology models. Towards that goal, chapter 

2 establishes the feasibility of SFDI for optically characterizing a subcutaneously planted 

preclinical oncology model 52, and chapter 3 improves SFDI accuracy in subcutaneous 

tumor by introducing a new inversion model 53. Chapter 4 explores cellular and molecular 

correlates of the SFDI metrics, and test which SFDI optical parameters are able to predict 

treatment response earlier than tumor volume or improve predictability in combination 

with tumor volume. Lastly, in chapter 5, a light-emitting diode (LED) based SFDI system 

was custom built to improve on the scope of the system, by introducing the capability of 

the measuring tissue water content.  
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CHAPTER TWO 

Feasibility of Spatial Frequency Domain Imaging (SFDI) for optically 

characterizing a preclinical oncology model 

The work in Chapter Two is published in the journal of Biomedical Optics Express 

with the following contributing authors 52: 

Syeda Tabassum,1 Yanyu Zhao,2 Raeef Istfan,2 Junjie Wu,3 David J. Waxman,3 and 

Darren Roblyer2 

1Electrical and Computer Engineering, Boston University 

2Biomedical Engineering, Boston University 

3Division of Cell and Molecular Biology, Department of Biology and Bioinformatics 

Program, Boston University 

 
2.1 Introduction 

This section explores the feasibility of using SFDI for frequent longitudinal monitoring of 

chemotherapy efficacy in a small animal oncology model. A mouse tumor xenograft model 

based on the human prostate tumor cell line PC3/2G7 was used which produces highly 

vascularized tumors 54, and responds strongly to the antiangiogenic DC101 and the 

cytotoxic agent cyclophosphamide (CPA). In order to validate SFDI as an appropriate 

modality for label-free in vivo longitudinal studies, first a range of spatial frequencies was 

tested for their ability to accurately extract tumor optical properties. Intratumor 

heterogeneity and average values of SFDI parameters were assessed on individual tumors 

prior to treatment. Repeatability of mouse tumor measurements was evaluated under three 

varying procedural conditions that mimic user induced variations in mouse positioning 
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from measurement-to-measurement. Finally, a proof-of-concept preclinical study was 

performed with frequent and long-term therapy monitoring on a small number of mice.  

 

2.2 Materials and methods 

2.2.1 Spatial frequency domain imaging (SFDI): Image acquisition, processing and 

analysis 

Detailed descriptions of SFDI instrumentation and data analysis are reported in literature 

52,55. Briefly, SFDI utilizes projections of spatially modulated visible and/or NIR light to 

extract intrinsic tissue optical properties, 𝜇𝑎 and 𝜇𝑠
′ , over a wide field of view (FOV), in 

this case 15×20 cm. For this study, the OxImager RS SFDI system (Modulim Inc., Irvine, 

CA) was used for all measurements, and is shown in Fig. 1.1A. Digital micromirror device 

(DMD) or other spatial light modulator is used to project sinusoidal or more exotic patterns 

onto an object of interest (e.g. tissue, calibration phantom) and the reflected light is imaged 

with a camera, shown in Fig. 1.1B and 1.1C. Projections are typically made at multiple 

wavelengths (λ) and spatial frequencies (fx) between 0 mm−1 (DC) and 0.5 mm−1. A 

generalized example of the SFDI image processing in shown in Fig. 1.1C. AC projections 

are captured at three offset phases (0°, 120°, and 240°) and demodulated to obtain a single 

AC image using established algorithms. In this work, the DC and AC demodulated images 

were corrected for height and angle of the object surface respectively using a previously 

developed height-correction algorithm and a modified Lambertian Correction (MLC) angle 

correction algorithm 56,57. The instrument response is then removed from the demodulated 

images (Mac) using a calibration phantom with known OPs. A Monte-Carlo (MC) based 
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look-up-table (LUT) or analytical forward model is used to extract the diffuse reflectance 

(Rd) of the calibration phantom from known OPs at each measurement wavelength and fx 

(shown in Fig. 1.1C). This allows sample Rd maps to be extracted using Eq. (2.1), where 

subscripts sample and phantom refer to the tissue and calibration phantom, respectively.    

𝑅𝑑_𝑠𝑎𝑚𝑝𝑙𝑒(𝑓𝑥) =
𝑀𝑎𝑐_𝑠𝑎𝑚𝑝𝑙𝑒(𝑓𝑥)

𝑀𝑎𝑐_𝑝ℎ𝑎𝑛𝑡𝑜𝑚(𝑓𝑥)
∗ 𝑅𝑑_𝑝ℎ𝑎𝑛𝑡𝑜𝑚(𝑓𝑥)                           (2.1) 

 

Tissue Rd maps are generated at each fx and λ and represent the turbid media optical 

Modulation Transfer Function (MTF). The tissue MTF is used as input to an inverse model 

to extract OPs on a pixel-by-pixel basis. The 𝜇𝑎  values extracted at each measurement 

wavelength were used to determine tissue chromophore concentrations using the Beer-

Lambert Law, as shown in Eq. (2.2). This equation utilizes the measured 𝜇𝑎 values as well 

as known chromophore extinction coefficients, ε(λ), for oxyhemoglobin (HbO2) and 

deoxyhemoglobin (Hb) and is generated for each measured wavelength and solved as a 

linear system of equations to yield tissue-level chromophore concentrations of HbO2 and 

Hb. From these, total hemoglobin content (THb: HbO2 + Hb) and oxygen saturation (StO2: 

HbO2 /THb × 100) are also determined 25. Wavelength dependent 𝜇𝑠
′  data was fit to a power 

law using a least square fitting approach to extract scattering amplitude (a) and scattering 

slope (b) for each spatial location within the FOV, as shown in Eq. (2.3). A reference 

wavelength, λo, of 800 nm was used for the power law fitting. Upon completion of 

processing, maps of each SFDI parameter (𝜇𝑎(𝜆), 𝜇𝑠
′ (𝜆),  a, b, HbO2, Hb, THb and StO2) is 

generated.  

𝜇𝑎(𝜆) = 𝜀𝐻𝑏𝑂2
(𝜆) ∗ 𝐶𝐻𝑏𝑂2

+  𝜀𝐻𝑏(𝜆) ∗ 𝐶𝐻𝑏                                 (2.2) 
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𝜇𝑠
′ = 𝑎 (𝜆

𝜆𝑜
⁄ )−𝑏                                                       (2.3) 

 

The SFDI system used in this work typically accommodated up to 3 mice at a time. Mice 

were imaged on a diffuse silicone background phantom. For this section, five spatial 

frequencies (fx = 0, 0.05, 0.1, 0.15 and 0.2 mm−1), and four wavelengths (659, 691, 731 

and 851 nm) were collected sequentially. Each SFDI measurement was repeated thrice and 

averaged to minimize breathing artifacts. Typical acquisition times were less than 1.25 

minutes for this acquisition setup. Raw imaging data was processed using a custom Matlab 

code that performed demodulation, height and angle corrections, calibration, optical 

property extractions, and chromophore extractions. For this section, a two-fx-look-up table 

(LUT) based homogeneous inverse model was used to extract maps of 𝜇𝑎 and 𝜇𝑠
′  for each 

of the acquisition wavelength. Data processing took approximately two minutes for each 

measurement. 
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Figure 2.1: A, Mouse imaging set up with OxImager RS SFDI system (Modulim Inc., Irvine, 

CA). B, SFDI schematic. C, SFDI image processing pipeline using a single representative 

PC3/2G7 tumor measurements at baseline timepoint. The intensity images (I) and Rd maps 

are shown at λ=731nm for two spatial frequencies (fx: 0 mm−1 (DC) and 0.1 mm−1 (AC)). The 

absorption and scattering maps are shown at λ=731nm. Edge artifact is clear around tumor 

margin in the absorption image, which is addressed through several automated and/or 

manual segmentation steps. The oxyhemoglobin image shows HbO2 map from the final tumor 

area of interest superimposed on a DC intensity image. The scattering amplitude image shows 

a map from the final tumor area of interest superimposed on the same DC intensity image. 
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2.2.2 Selection of spatial frequencies 

 

The choice of SFDI spatial frequencies is important for accurate separation of absorption 

and scattering. Generally, DC and lower spatial frequencies are sensitive to both absorption 

and scattering, while higher spatial frequencies are preferentially sensitive to scattering. 

Additionally, the effective photon penetration depth is a function of spatial frequency, and 

higher spatial frequencies probe more shallow tissue depths 55. Loosely speaking, if both 

very low and very high spatial frequencies are used to extract optical properties, partial 

volume effects may cause errors in OP and chromophore extractions if the measured tissue 

is not homogeneous in depth. The methods outlined here were designed to determine a two 

frequency pair that balances accurate OP extractions while minimizing the difference 

between the two frequencies, and subsequently the difference in probing depth. A range of 

spatial frequencies was tested for their ability to accurately extract OPs using a two-fx-

LUT. For all tests, DC (fx = 0 mm−1) was paired with a second, higher AC spatial frequency 

(fx = 0.025, 0.05, 0.1, 0.15, 0.2, 0.3, or 0.5 mm−1). Each combination of DC and AC spatial 

frequency was compared over a physiologically relevant range of OPs. First, a 𝜇𝑎 and 𝜇𝑠
′  

pair was chosen. Then, the forward LUT model was used to determine Rd values at the DC 

and AC spatial frequencies. Next, Gaussian noise was added to these Rd values to simulate 

experimental measurement noise. Then the two-fx-LUT was used to back calculate the OP 

pair. Error was calculated between the original and the estimated OP pair. This process was 

iterated 1000 times for each OP pair (4 total) and each spatial frequency pair (7 total). The 

average OP error was calculated and compared for all of the fx pairs tested and over the 

range of OPs. 
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The magnitude of the added Gaussian noise at each spatial frequency was 

determined by taking 10 repeat measurements on 3 different tumors from 3 different mice 

(using tumor model and mouse strain used in this work) and calculating the average 

standard deviation in Rd over the 4 measurement wavelengths. The noise levels from DC 

and four AC spatial frequencies (0.05, 0.1, 0.15, and 0.2 mm-1) were fit to an exponential 

curve, and fit and extrapolated noise values were then used as estimates of noise for all 

eight spatial frequencies. OPs were chosen from 10 evenly distributed 𝜇𝑎 values (0.003 - 

0.055 mm−1) and 10 𝜇𝑠
′

 values (0.5 - 3 mm−1); this range in OPs was based on tumor OP 

measurements from 3 mice measured with SFDI at 47 longitudinal time points over 45 

days. 

2.2.3 Spectral chromophore fitting 

 

The agreement in broadband spectral fits to the four extracted 𝜇𝑎 values was calculated for 

a set of pixels in several tumor measurements to confirm the ability to accurately fit HbO2 

and Hb. First, HbO2 and Hb tissue concentrations were determined using the Beer-Lambert 

Law and the four 𝜇𝑎 values, as described in section 2.1. Then, these HbO2 and Hb tissue 

concentrations were multiplied by their corresponding extinction spectra; this was done for 

every nm increment from 600 to 1000 nm. Tissue 𝜇𝑎 values at each of these wavelengths 

was determined by summing the 𝜇𝑎  contribution from both HbO2 and Hb, providing a 

broadband tissue 𝜇𝑎  spectrum. This 𝜇𝑎  spectrum was plotted with the original four 𝜇𝑎 

values, and the % difference between these values at the 4 wavelengths was determined. 

This same procedure was repeated for scattering, using the a and b scattering parameters 



15 
 

 

to generate the broadband 𝜇𝑠
′  spectrum (see Eq. (3)). This procedure is useful for 

confirming chromophore fitting and for finding outliers in OP extractions. 

2.2.4 Average tumor values and intratumor heterogeneity 

 

For analysis of all mouse tumor data in this section, a region of interest (ROI) was manually 

chosen over the tumor. This ROI was chosen from the extracted 𝜇𝑎  map; pixels at the 

extreme edge of the tumor were excluded. A software mask was used to keep only pixels 

at or below a 70° angle relative to the to the camera axis. This angle mask typically rejected 

less than 10% of pixels within a tumor ROI. The 70° threshold was chosen based on the 

working range of the angle correction algorithm 57. Additionally, pixels with very low 𝜇𝑎 

values (𝜇𝑎< 0.0001 mm−1) were also masked. The average and standard deviation of all 

remaining pixels within a tumor ROI were calculated for all SFDI parameters. Average 

tumor values and intratumor heterogeneity in SFDI parameters were assessed using 25 

tumor data from 13 different mice measured at baseline (prior to any treatment). For 

average values, first the mean parameter value over each tumor ROI was calculated. Then 

the average and standard deviation of these values was calculated over the 25 tumors to get 

typical values and ranges for this xenograft tumor model. For intratumor heterogeneity, 

first, the % standard deviation was determined for each tumor ROI. Then, the mean tumor 

heterogeneity was calculated over the 25 tumors. The average tumor values are useful for 

comparisons to other literature values, and the heterogeneity quantifies the variation in 

SFDI parameters within single tumors and provides a context for which longitudinal 

changes can be analyzed. 
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2.2.5 Repeatability 

 

High measurement repeatability is essential for high quality longitudinal chemotherapy 

monitoring studies. Repeat measurements were taken on individual mouse tumors under a 

variety of conditions to assess device and user procedure repeatability. To evaluate device 

repeatability, 10 repeat measurements were taken on individual tumors without making any 

changes in the instrument or experimental setup between measurements. This condition 

will be referred to as stationary. User repeatability was assessed in two ways. First, 10 

repeat measurements were taken with the mouse removed from the imaging FOV and 

replaced in similar manner after each measurement. This condition will be referred to as 

move & replace. Secondly, to assess the effects of angular changes in mouse position 

between measurements, similar to those which might unintentionally occur during the 

course of a longitudinal study, a custom made tilting platform was used to collect 11 repeat 

measurements on individual tumors tilted at 11 different angles (0°, ± 3°, ± 6°, ± 9°, ± 12°, 

± 15°) with respect to horizontal, as shown in Fig. 2.2A. The tumor was carefully placed 

at center of rotation of the tilting platform. Then, the platform was gradually tilted to higher 

angles, one side at a time. This condition will be referred to as tilt. In the case of stationary 

measurements, the tumor ROIs and all data analysis procedures were kept identical for all 

repeat measurements. For move & replace and tilt measurements, each repeat measurement 

was treated as a separate and unique measurement, and a separate ROI was manually 

chosen each time. The ROI area between repeat measurements were kept within 

approximately ± 150 total pixels of each other to ensure that variations over measurements 

were not dominated by different ROI selection sizes. For each of the repeat measurement 
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conditions, the variation in OPs was determined by evaluating the % standard deviation of 

the mean ROI values. This was done for n = 12 tumors for stationary, n = 12 tumors for 

move & replace and n = 10 tumors for tilt. The average % standard deviation was calculated 

over the four wavelengths for all tumors. For tilt measurements, average variations were 

determined over all tilt angles (up to ± 15°), over the first 7 angles (up to ± 9°), and over 

the first 5 angles (up to ± 6°). 

Figure 2.2: A, Schematic of tilt measurement. B, Example of a tilt measurement. 

2.2.6 Mouse tumor xenograft 

The PC3/2G7 prostate tumor xenograft model was used for all tumor experiments 54. 

PC3/2G7 cells were grown and expanded at 37°C in a humidified 5% CO2 atmosphere in 

RPMI-1640 culture medium containing 7% fetal bovine serum, 100 Units/ml penicillin and 

100 μg/ml streptomycin cells were split in 1:3 or 1:4 when cells reached 70-80% 

confluence to maintain holoclone-forming ability (approximately one passage every 3 

days). Severe combined immunodeficient (SCID) hairless outbred mice (SHO 

MouseCrl:SHOPrkdcscidHrhr), age 5 to 6 weeks old (21-23 gram), were purchased from 
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Charles River Laboratories, and housed in the Boston University Laboratory Animal Care 

Facility in accordance with an institutionally approved protocol (IACUC 16-003) and 

federal guidelines. Autoclaved cages containing food and water were changed once a week. 

Mouse body weight was measured every 3 to 4 days. On the day of tumor cell inoculation, 

4 × 106 PC3/2G7 cells were injected on one or two posterior flanks subcutaneously in 0.2 

ml serum-free RPMI using a U-100 insulin syringe with a 28.5 gauge needle. Tumor length 

(L) and width (W) was measured daily starting from 5 days before treatment, every 3 days 

during treatment, and twice weekly after treatment using digital calipers (VWR 

International). Tumor volume was calculated as Vol = (π/6) × (L× W)3/2. When average 

tumor volume reached ~500 mm3, mice were treated with either the cytotoxic anticancer 

drug CPA or the antiangiogenic agent DC101, both given i.p. CPA interferes with DNA 

replication by forming DNA crosslinks, whereas DC101 is an antagonist monoclonal 

antibody to mouse VEGF receptor 2 (VEGFR-2). Mice were given CPA on a metronomic 

schedule at a dose of 140.3 mg/kg every 6 days for 3 cycles. DC101 was administered at a 

dose of 28.6 mg/kg every 3 days for 6 cycles. CPA was purchased from Sigma Chemical 

Co. (St. Louis, MO), and DC101 was a gift from Eli Lilly and Company, Indianapolis, 

Indiana. During SFDI measurements, mice were anesthetized using isoflurane by 

inhalation (5% induction); except for tilt measurements when mice were anesthetized using 

ketamine at 50-100 mg/kg + xylazine at 10-15 mg/kg. Mice were euthanized as they 

approached the tumor size limit using cervical dislocation according to the approved 

protocol.  
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2.2.7 Longitudinal monitoring of tumor xenograft 

SFDI was used to measure tumors in two mice, one treated with CPA and one with DC101. 

Mice were treated longitudinally for a total of 57 days, including 5 timepoints during the 7 

days of tumor growth. SFDI measurements were taken everyday during the 18 days of 

treatment, and every 2 days during the 22 days after treatment (tumor growth rebound 

period). In addition to general data processing steps as described in subsection 2.1, a fine 

tuning algorithm was applied to tissue Rd maps prior to OP extraction. This fine tuning 

algorithm was developed to correct for changes in system response during warm-up, which 

we found cause as much as a 5% change in OPs measured at 659 nm in the first 40 minutes 

the system was powered on. This algorithm relies on the fact that same background imaging 

phantom was used for all mouse measurements. The Rd of this phantom at all relevant 

wavelengths and spatial frequencies was determined by an SFDI measurement taken after 

the system stabilized over a 2-hour timeframe. These Rd values were then used as a gold 

standard to fine-tune Rd extractions with each imaging field for all mouse measurements. 

For each new measurement during a longitudinal study, the extracted Rd values at each 

wavelength and spatial frequency were compared to the gold standard Rd values, and small 

variations were corrected using Eq. (2.4). 

𝑅𝑑_𝑓𝑖𝑛𝑒_𝑡𝑢𝑛𝑒𝑑(𝑥, 𝑦, 𝑤𝑣, 𝑓𝑥) = 𝑅𝑑(𝑥, 𝑦, 𝑤𝑣, 𝑓𝑥)
𝑅𝑑_𝑔𝑜𝑙𝑑_𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑(𝑤𝑣,𝑓𝑥)

𝑅𝑑(𝑤𝑣,𝑓𝑥)𝑅𝑂𝐼
               (2.4) 

Here, Rd_gold_standard (wv, fx) are the average Rd values of the background phantom measured 

after 2 hours of instrument warmup over a 100 × 150 pixel ROI. Rd (wv, fx) ROI is the 

current measurement Rd, extracted from the average values over the same 100 × 150 pixel 

ROI on the background phantom. Rd (x, y, wv, fx) is the uncorrected Rd values at each pixel 
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in the FOV, and Rd_fine tuned (x, y, wv, fx) are the corrected, or fine tuned, Rd values at each 

pixel in the FOV. The fine-tuning algorithm was evaluated by taking 25 repeat phantom 

measurements over a 41-day period. Optical property precision values were calculated with 

and without fine tuning. 

2.3 Results 

2.3.1 Selection of spatial frequencies 

 

In order to visualize how different choices of SFDI spatial frequencies affect the accuracy 

of optical property extractions, a range of spatial frequencies was tested using simulated 

data. Figure 2.3 shows visualizations of four different two-fx-LUT’s. For each, the 

horizontal axis represents Rd at DC (fx = 0 mm−1) and the vertical axis represents Rd at an 

AC frequency (fx = 0.025, 0.1, 0.2, or 0.5 mm−1). Rd values are plotted for 10 evenly 

distributed 𝜇𝑎 values (0.003 – 0.055 mm−1) and 10 evenly distributed 𝜇𝑠
′ ,  values (0.5 - 3 

mm−1). Differences in the orthogonality of the LUT’s are visually apparent, and in some 

cases, there is significant coupling between 𝜇𝑎 and 𝜇𝑠
′  (e.g. Fig. 2.3A). In cases where OP 

isolines collapse on each other the sensitivity to small errors in Rd measurements is likely 

to manifest as a large error in OP extractions.  
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Figure 2.3: Two-fx-LUT’s using 10 evenly distributed 𝝁𝒂 values (0.003 – 0.055 mm−1) and 10 

evenly distributed 𝝁𝒔
′  values (0.5 - 3 mm−1) for DC and 0.025 mm−1 (A), DC and 0.1 mm−1 (B), 

DC and 0.2 mm−1 (C), DC and 0.5 mm−1 (D) fx pairs. 

 

Figure 2.4 shows OP extraction errors induced by noise added to Rd values in simulation 

for seven different choices of SFDI spatial frequency pairs. Errors are shown for four 

different OP pairs representing the four quadrants of the LUT in Fig. 2.3. In all cases, 

relatively high OP extraction errors occurred when DC was paired with a low AC fx (e.g. 

0.025 mm−1, 0.05 mm−1). For this study, DC and 0.1 mm−1 were chosen for all subsequent 

OP extractions. OP extractions errors were low for this pair (< 2.4% for the range of OPs 

tested), and this pair minimized depth probe differences better than combinations that 
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included a higher AC fx. 

 

Figure 2.4: Extraction error of 𝝁𝒂 (A) and 𝝁𝒔
′  (B), where low 𝝁𝒂 = 0.005 mm−1, low 𝝁𝒔

′   = 0.73 

mm−1, high 𝝁𝒂 = 0.035 mm−1, and high 𝝁𝒔
′   = 1.89 mm−1. 
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2.3.2 Spectral fitting 

Figure 2.5B,D shows 𝜇𝑎 and 𝜇𝑠
′  values extracted at the four SFDI acquisition wavelengths 

as well as the broadband 𝜇𝑎 and 𝜇𝑠
′  spectra after chromophore fitting and power law fitting, 

respectively. Data is shown for a single pixel located on the tumor of a mouse treated with 

the antiangiogenic agent DC101. Figure 2.5A and Fig. 2.5C displays the pixel location, on 

the same tumor, at a pretreatment (baseline) and a posttreatment timepoints (day 32 after 

initial DC101 injection, 17 days after the final DC101 injection). In general, there was good 

agreement between the extracted 𝜇𝑎 and 𝜇𝑠
′

 values and the broadband fits. Fitting errors 

were less than 5% for 𝜇𝑠
′  in all tumors measured. Fitting errors for 𝜇𝑎 ranged between 5% 

up to 20%, with larger errors often observed at 731 nm. Overall absorption throughout the 

measured spectral range decreased by posttreatment compared to baseline, whereas 

scattering amplitude increased. This was a common trend for most measured tumors. It 

should be noted that lipids and water were not included as chromophores in this study, and 

therefore 𝜇𝑎 values are likely underreported in the 900–1000 nm range in Fig. 2.5. 
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Figure 2.5: Locations of pixels on a DC101-treated tumor at pretreatment (A) and 

posttreatment (C) timepoints. Broadband fitting of absorption (B) and scattering (D) for pre- 

and posttreatment timepoints. 

 

2.3.3 Average tumor values and intratumor heterogeneity 

Table 1 shows the average tumor values measured over 25 tumors from 13 mice. All 

measurements were taken prior to any drug treatment. The average tumor volume for the 

25 tumors was 801 ± 785 mm3. 

SFDI acquired parameters 
Tumor 

Average ± std  

a 0.9 ± 0.1 mm-1 

b 0.7 ± 0.1 

HbO2 69.8 ± 18.7 µM 

Hb 45.1 ± 5.3 µM 

THb 114.9 ± 22.3 µM 

StO2 59. 9 ± 5.1 % 
Table 2.1. Average SFDI parameters for tumors 
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Table 2 shows the percent intratumor heterogeneity in SFDI parameters measured over 25 

tumors from 13 mice. Tumor heterogeneity was approximately 9–10% for OPs at all 

wavelengths. Heterogeneity was higher (15.1%) in the b parameter, and substantially lower 

(3.7%) in StO2. In order to explore what effect tumor size has on heterogeneity, the largest 

five and smallest five tumors were analyzed separately. The largest five tumors had an 

average volume of 2023 ± 722 mm3 and the smallest five had an average volume of 181 ± 

76 mm3. Heterogeneity in optical properties in the largest tumors was 11.0% on average 

compared to 8.4% for the smaller tumors. StO2 heterogeneity was 4.3% in the largest 

tumors compared to 2.6% in the smallest tumors. These average and heterogeneity values 

can help provide context to any observed longitudinal changes in future studies. 

SFDI acquired parameters 
Average Tumor  

Heterogeneity 

𝜇𝑎 

w
av

el
en

g
th

 

659 nm 9.0 ± 2.7 % 

691 nm 9.3 ± 3.0 % 

731 nm 9.6 ± 3.3 % 

851 nm 9.7 ± 3.6 % 

𝜇𝑠
′ 

w
av

el
en

g
th

 

659 nm 9.2 ± 2.9 % 

691 nm 9.3 ± 3.0 % 

731 nm 9.3 ± 3.0 % 

851 nm 9.8 ± 3.2 % 

a 9.5 ± 3.1 % 

b 15.1 ± 4.6 % 

HbO2 11.6 ± 4.6 % 

Hb 9.3 ± 2.7 % 

THb 9.6 ± 3.6 % 

StO2 3.7 ± 1.9 % 
Table 2.2. Intratumor heterogeneity 

 
2.3.4 Repeatability 

 

Figure 2.6 shows example 𝜇𝑎 and 𝜇𝑠
′  extractions at 851 nm for a representative tumor for 
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10 stationary, 10 move & replace, and 11 tilt repeat measurements. Small changes in OPs 

were observed during stationary repeat measurements; this example had a precision of 

0.57% and 0.61% for 𝜇𝑎 and 𝜇𝑠
′

 respectively. There was slightly larger variability for the 

move & replace measurements, with precisions of 3.30% and 1.13%. For tilt 

measurements, the precision was 5.51% and 1.42%, but improved when only the first 7 tilt 

angles (0 to ± 9°), were analyzed (precision = 2.75% and 1.30%), or first 5 tilt angles (0 to 

± 6°) were analyzed (precision = 2.61% and 1.49%). 

 
Figure 2.6: Absorption (left axis) and scattering (right axis) at 851nm for a representative 

tumor over 10 stationary (A), 10 move & replace (B), and 11 tilt (C) repeat measurements. 

 
Table 2.3 shows average precision (repeatability) values from 8 mice for stationary (n = 

12 tumors), move & replace (n = 12 tumors), and tilt conditions (n = 10 tumors). In general, 

high repeatability (precision ≤ 5.2%) was achieved for most repeat measurements except 

for those conducted at tilt angles larger than 9°. High repeatability for stationary 



27 
 

 

measurements helps to confirm instrument stability. High precision for move & replace 

measurements helps to confirm the repeatability of the user to position and image the 

mouse in a similar manner. High precision in the tilt measurements helps to confirm that 

even with small changes in the placement of the mouse, repeatable longitudinal 

measurements are possible. Taken together, these results suggest OP changes larger than a 

few percent observed over the course of a longitudinal study are likely to be from intrinsic 

changes in the tumor rather than from small changes in instrument or user procedures. The 

tilt results suggest that care should be taken to position the animal/tumor as consistently as 

possible during each imaging session. 

Optical Properties 

 

Average repeatability  

Stationary 

n = 12 

Move 

& 

replace 

n = 12 

Tilt 

n = 10 

0 to ±15° 0 to ±9° 0 to ±6° 

𝜇𝑎 1.88 % 3.52 % 10.14 % 5.22 % 4.44 % 

𝜇𝑠
′ 0.98 % 2.30 % 3.70 % 2.43 % 2.13 % 

Table 2.3. Repeatability (Precision) 

 

2.3.5 Longitudinal monitoring of tumor xenografts 

The fine-tuning algorithm improved measurement precision by as much as 17-fold. The 

measurement precision at 659 nm improved from 3.1% to 0.3% for 𝜇𝑎, and from 1.7% to 

0.1% for 𝜇𝑠
′  with the use of the fine-tuning algorithm over 25 repeat phantom 

measurements. Fine tuning was used for all longitudinal mouse measurements. 

Two mice were tracked longitudinally during the course of chemotherapy as a 

proof-of-principle demonstration of SFDI for treatment monitoring. Figure 2.7A shows 
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changes in tumor 𝜇𝑠
′  at 659 nm from a single tumor over the course of 45 days. This mouse 

received the antiangiogenic DC101 (6 total injections; injections were given every 3 days, 

injection dates are indicated by the vertical dashed lines). The mean and standard deviation 

of 𝜇𝑠
′  values extracted over a manually chosen ROI are shown. Tumor volume 

measurements are shown for reference. During treatment, the average tumor 𝜇𝑠
′  increased 

by approximately 50%. This upward trend continued until treatment ~day 22, with a 

maximum increase of approximately 70% from baseline, followed by a substantial 

decrease. These trends do not appear to be related only to tumor volume changes, as 𝜇𝑠
′  

both increases and decreases during periods of tumor growth. It is plausible that the change 

from decreasing to increasing 𝜇𝑠
′  at day 3 is predictive of treatment response, but this must 

be confirmed with additional studies. Figure 2.7B shows tumor 𝜇𝑠
′  colormaps overlaid on 

a planar mouse image at day 0 and day 24. Substantial changes in 𝜇𝑠
′  values are apparent 

throughout the tumor region at these timepoints. 
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Figure 2.7. 𝝁𝒔
′  (left axis) and tumor volume (right axis) over days of DC101 treated tumor (A), 

𝝁𝒔
′  colormaps overlaid on the DC101 treated planar mouse image at day 0 and day 24 (B), 

StO2 (left axis) and tumor volume (right axis) over days for CPA treated tumor (C), StO2 

colormaps overlaid on the CPA treated planar mouse image at day 0 and day 24 (D). 

 

Figure 2.7C shows tumor StO2 changes during the course of treatment. This mouse was 

treated with CPA (3 total injections; injections were given every 6 days), followed by a 

rebound period. In this tumor, StO2 initially appears to decrease during rapid tumor growth, 

but then increases by approximately 25% compared to baseline as CPA treatment takes 

effect. StO2 decreases again during the treatment rebound stage correlating with rapid 

tumor growth.  Figure 2.7D shows the substantial increase in StO2 from day 0 to day 24. 

Again, these changes are apparent throughout the tumor area.  
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2.4 Discussion 

 

Diffuse Optical Imaging is a promising in vivo technique for clinical tumor therapy 

monitoring in cancer patients. The development of complementary preclinical imaging 

modalities that can track the same optical markers may allow for the exploration of more 

advanced treatment regimens, multi-agent therapy scheduling, and a better understanding 

of the biological underpinnings of treatment effects. Towards this aim, this section 

demonstrated the feasibility of using SFDI to measure mouse tumor xenografts with high 

repeatability and to longitudinally monitor therapy efficacy 52. High in vivo measurement 

precision was demonstrated using a two-frequency LUT inverse model. Average OP and 

chromophore values, as well as intratumor heterogeneity were reported for a highly 

vascularized subcutaneous xenograft prostate tumor model. A proof-of-concept 

longitudinal study demonstrated that SFDI was able to track changes during treatment and 

rebound with both the cytotoxic drug CPA and the antiangiogenic agent DC101. In general, 

tumor OP values showed contrast between pre- and posttreatment days, and the changes in 

optical parameters tracked were substantially larger than the variation expected from 

instrument precision, measurement-to-measurement differences in mouse positioning, and 

intratumor heterogeneity.   

Several important SFDI acquisition parameters and measurement procedures were 

tested in this section, including the choice of spatial frequencies for OP extractions, and 

the effects of instrument and repositioning errors for repeat measurements. For spatial 

frequency comparisons, various fx pairs were tested for accuracy in OP extractions. While 

all fx pairs tested provided <10% OP extractions errors, it was found that combinations of 
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DC plus low (0.025 mm-1 and 0.05 mm-1) AC fx choices produced larger relative extraction 

errors. For this study, the DC plus 0.1 mm-1 pair was chosen for all data analysis based on 

small extraction errors (~2.4%) and the avoidance of partial volume probing effects likely 

to occur from the use of more disparate fx pairs. While higher dimension LUTs could 

accommodate more spatial frequencies in the inversion process, the use of only a pair 

minimizes data acquisition time, which may reduce breathing motion artifacts, reduce the 

time mice are under anesthesia, and reduce user burden, which can be substantial for 

studies incorporating multiple treatment groups over long timescales (i.e. months).  

Instrument and user placement repeatability were generally high (precision ≤5.2%) 

for all tested cases except for measurement at large tilt angles (±15°) where μa precision 

was as high as 10%. This is likely due to the capture of a different tumor field-of-view at 

large tilt angles. Tumor heterogeneity is a well-known phenomenon 12,58 and intratumor 

heterogeneity was shown to be as high as 10% for optical properties extractions in this 

study. Measurement of a different region of the same tumor is likely to yield different 

results, suggesting that care must be employed when positioning mice for repeat 

measurements.  

Broadband 𝜇𝑠
′  power-law fitting errors were typically small (<5%) and broadband 

chromophore μa fits were also generally small, except at 731nm, where μa fitting errors 

typically ranged from 15% to 20%. These errors may occur in part due to spectral 

bandwidth of the LED source (~20nm), which spans the dip in the Hb extinction coefficient 

near 731nm 59. Although the choice of acquisition wavelengths was not tested here, it was 

previously shown that 670 nm and 850 nm is an optimal two-wavelength choice for oxy- 
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and deoxyhemoglobin extraction using SFD 60. These wavelengths closely match two of 

the four wavelengths used in this study (i.e. 659, 691, 731, and 851 nm). 

Despite expected variation in metabolism, vascular density, and tissue architecture 

between different murine tumor models, baseline optical property and chromophore values 

reported here are in agreement with several other small animal tumor values reported in 

the literature.  For example, the average baseline 𝜇𝑠
′  value at 630nm was found to be 1.064 

mm-1 (this value was calculated using the average of the a and b values from Table 2.1 and 

Eq. (2.3)). This agrees well with the reported 𝜇𝑠
′  value of 1.048 mm-1 at 630 nm in a 

radiation-induced fibrosarcoma tumor model in C3H mice measured with a fiber-optic 

probe-based continuous-wave Diffuse Reflectance Spectroscopy (DRS) system prior to 

any treatment 61. Average tumor StO2 values reported here (59.9 ± 5.1 %) were somewhat 

higher than StO2 values (40% – 55%) reported in K1735 malignant mouse melanoma 

subcutaneous tumors measured before treatment by DRS 62. The increasing trend in both 

𝜇𝑠
′  and StO2 during treatment mimics those reported by Karthik et. al. who used a DRS 

point probe to monitor 4T1 flank tumors (n = 25) treated with a single maximum tolerated 

dose of doxorubicin over a 13 day treatment period 63. We hypothesize that changes in 

SFDI parameters during treatment may be related to a reduction in tumor vasculature and 

tissue remodeling, but this must be confirmed with future studies. Parameters such as tumor 

heterogeneity and average optical parameters are specific to the PC3/2G7 xenograft model 

tested here, and other tumor models are likely to have different properties. 

While the results from this study are promising, there are several challenges and 

limitations to the use of SFDI for small animal imaging. Correction for height and surface 
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angle were essential for accurate optical property extractions due to the small mouse feature 

size and the large relative surface angles of the tumors; substantial edge artifacts occurred 

prior to the applications of appropriate corrections 56,57. Depth penetration and partial 

volume effects are also important considerations. In this study, attempts were made to 

reduce differences in penetration depth by choosing a pair of spatial frequencies that 

accurately separated absorption and scattering effects while minimizing the difference in 

spatial frequency and thus depth penetration, but additional modeling studies are needed to 

better determine the implications of these effects. Tomographic reconstructions using SFDI 

have previously been demonstrated and would assist in providing depth resolved 

information for this application in the future 64. An additional limitation was that only oxy- 

and deoxyhemoglobin were extracted in this study and there may be prognostically relevant 

information content in other chromophores including lipids and water. Finally, a better 

understanding of the biological origins of treatment-induced changes observed in SFDI is 

necessary to take full advantage of this technique.   

2.5 Conclusions 

In conclusion, SFDI is a promising technique for high precision, longitudinal non-contact 

and label free metabolic imaging of small animal tumor models. In comparison with 

intravital techniques including confocal and multiphoton microscopy, SFDI does not 

require invasive procedures such as skin-flap removal or window chamber implantation, 

and does not require exogenous agents, parameters which limit their suitability for long 

term therapy monitoring 65. SFDI complements other non-invasive diffuse optical 

techniques such as DRS and Diffuse Correlation Spectroscopy (DCS), which are also under 
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investigation for monitoring hemodynamic response in a variety of preclinical models 

62,63,66,67. Knowledge learnt from this section, in the long term, will help establish SFDI as 

important feedback methods during cancer treatment.  
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CHAPTER THREE 

Two-layer inverse model for improved longitudinal preclinical tumor imaging in the 

Spatial Frequency Domain Imaging (SFDI) 

The work in Chapter Three is published in the Journal of Biomedical Optics with the 

following contributing authors 53: 

Syeda Tabassum,1 Vivian Pera,1 Gage Greening,2 Timothy J. Muldoon,2 Darren Roblyer1 

 
1Boston University, United States 

 
2University of Arkansas, United States 

 
3.1 Introduction 

SFDI is a wide-field DOI modality, capable of tracking the same non-invasive and label-

free metrics measured using clinical DOI modalities, and is well suited for preclinical 

oncology work given its shallower penetration depth (typically mm’s) 68. Much of the prior 

published works using SFDI for both small animal and clinical research have utilized the 

assumption of homogeneity in depth when extracting optical properties from tissue 

40,41,43,48. For example, in our prior preclinical monitoring study, we modelled mouse tumor 

tissue as a semi-infinite homogeneous medium, and used the results of a Monte Carlo (MC) 

simulation to create a look-up table (LUT) inversion algorithm to recover optical property 

estimates from SFDI measurements of diffuse reflectance 52. However, tissue geometry is 

complex, and in the case of subcutaneous tumors in mice, a thin skin layer is located above 

the tumor which remains unaccounted for in a homogeneous model. While there are several 

prior studies that have described inversion algorithms that utilize a layered-tissue structure 
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69–72 or utilize tomographic reconstructions with SFDI 49,64, we describe in this work the 

first use of Monte Carlo simulations conducted natively in the spatial frequency domain to 

make a two-layer LUT inversion algorithm that closely matches the true physiology and 

optical characteristics of preclinical tumor models. First, we describe the Monte Carlo 

simulation parameters and methods used to generate a two-layer LUT. We then compare 

its performance to two different homogeneous LUTs. We then validate the two-layer LUT 

algorithm using experimental measurements made on custom two-layer tissue-simulating 

phantoms. Next, we conduct a sensitivity analysis to determine how sensitive the two-layer 

LUT is to imperfect knowledge of the top (skin) layer parameters, including optical 

properties and layer thickness. Then, we utilize the two-layer LUT to re-analyze an in vivo 

data set from a previously published longitudinal treatment monitoring study, and compare 

the results to those obtained with a homogeneous LUT 52. Finally, we conclude this section 

by discussing the advantages and limitations of the new two-layer methodology, and its 

potential for future applications in preclinical oncology. 

3.2 Materials and methods 

3.2.1 Monte Carlo simulations for the generation of LUT-based inverse models 

3.2.1.1 Prior work and the implementation of the Gardner method for estimating Rd in 

the spatial frequency domain 

 
Several prior publications from our group and others have utilized a two-frequency LUT 

inversion algorithm to extract optical properties from SFDI-derived Rd values 42,52,57,73. At 

the core of this LUT algorithm is a single conventional MC simulation for a semi-infinite 
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homogeneous medium. The simulation results are post-processed to provide Rd values for 

arbitrary 𝜇𝑎  and 𝜇𝑠
′  combinations using the methods described in Martinelli et al. 74. A 

discrete Hankel transform is then used to transform the spatially resolved Rd values to the 

spatial frequency domain. A LUT is constructed by scaling (i.e., post-processing) the MC 

results for a desired range and step size of 𝜇𝑎  and 𝜇𝑠
′  values. In this work, a linear 

interpolation method is then implemented using Matlab’s “griddata” function, whose input 

is measured Rd values and the LUT, and whose output is best fit optical properties. 

This method has several limitations. First, the scaling method in Martinelli et al. is 

only described for homogeneous media, thus making it currently inapplicable for modeling 

multi-layer tissue geometries 74. Additionally, the discrete Hankel transform is sensitive to 

discretization errors, which may lead to inaccuracies and artifacts depending on the density 

of the spatial sampling used 75. A new method for obtaining multi-layer MC results in the 

spatial frequency domain was recently described by Gardner et al. 75. The Gardner method 

obtains Rd estimates natively in the spatial frequency domain and is therefore not subject 

to the same discretization errors caused by taking a discrete transform of spatially resolved 

Rd. The Gardner method computes a frequency-dependent photon weight, as shown in Eq. 

3.1, for a two-layer medium and a spatially modulated source in the x-direction:  

                                     𝑊𝑛 = exp (−𝜇𝑎,1𝑑1,𝑛 − 𝜇𝑎,2𝑑2,𝑛)exp (−2𝜋𝑖𝑓𝑥𝑥𝑛).                   (3.1) 

This expression was obtained by taking the spatial Fourier transform of the time-

independent radiative transport equation over the transverse directions (i.e. x and y 

dimensions). It provides the final weight of the n-th detected photon originating from a 

point source at 𝑥𝑜= 0 with unity initial weight. Here, 𝑑𝑖,𝑛 stands for the total photon path 
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length in the i-th layer, and subscripts 1 and 2 refer to the top and bottom layers, 

respectively, of the two-layer tissue model. In addition to the effect of absorption (first 

exponential term), as in the case of a conventional continuous absorption-weighted MC 

simulation, the photon weight exhibits the effect of spatial modulation as a frequency-

dependent phase accumulation (second exponential term), which is sensitive only to the 

net lateral displacement (𝑥𝑛) of the photon’s exit location relative to the source. Equation 

3.2 can then be used to compute Rd as a function of 𝑓𝑥, where N is the total number of 

photons simulated:   

𝑅𝑑(𝑓𝑥) =
1

𝑁
∑ 𝑊𝑛

𝑁
𝑛=1 .                                                        (3.2) 

Provided that 𝑑1,𝑛, 𝑑2,𝑛, and 𝑥𝑛 are stored, it is possible to compute Rd for various 

spatial frequencies and 𝜇𝑎 values from a single MC simulation. This method of scaling for 

𝜇𝑎 is more accurate than applying Beer’s law to Rd 
68,74. A separate MC simulation must 

be run to obtain results for each 𝜇𝑠
′  value of interest. 

In this work, we compare Rd and optical property extractions from LUT inverse 

models based on both the conventional MC simulations scaled with the methods described 

in Martinelli et al., as well as MC simulations conducted with the methods described in 

Gardner et al. For convenience, we will refer to the MC methods used to generate LUTs as 

either the “Martinelli method” or “Gardner method”. Similarly, the different LUTs used to 

produce Rd and optical property extraction will be referred to as “Martinelli homogeneous,” 

“Gardner homogeneous,” and “Gardner two-layer.” 
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3.2.1.2 Monte-Carlo simulation parameters for generating homogeneous and two-layer 

LUTs  

The Martinelli method was used to construct a homogeneous LUT, and the Gardner method 

was used to construct both a homogeneous LUT and a two-layer LUT. The geometries of 

the MC simulations used to produce these LUTs are shown in Fig. 3.1A and Fig. 3.1B. 

Both models were constructed for the purpose of extracting optical properties from a 

subcutaneously implanted tumor on the mouse flank. For the homogeneous case, the tumor 

was modeled as a semi-infinite geometry, and the effects of the superficial skin layer were 

ignored. For the two-layer case, the top layer represents the skin layer, with fixed (i.e. 

known) 𝜇𝑎 , 𝜇𝑠
′  and thickness (d), and the bottom layer represents a semi-infinite tumor 

layer. For all LUTs, the tumor optical properties are the free parameters of the inversion 

algorithm. Below we describe the properties of each layer in more detail. 

Skin layer: Optical properties of the upper (skin) layer of the MC simulations were 

adapted from Sabino et al. 76, who recently reported 𝜇𝑎 and 𝜇𝑠
′  of skin from BALB/c male 

mice using a Kubelka-Munk model of photon transport and spectrophotometric 

measurements for the wavelength range of 400 - 1400 nm. The authors used skin from the 

mouse dorsal region and shaved any excess hair before measurements. We utilized the 

average 𝜇𝑎  and 𝜇𝑠
′  values of the reported skin properties calculated over the four SFDI 

wavelengths (659, 691, 731 and 851 nm) for the upper layer properties in our two-layer 

MC simulations: 𝜇𝑎 = 0.096 mm-1 (SD: 0.0075 mm-1) and 𝜇𝑠
′  = 0.78 mm-1 (SD: 0.12 mm-

1).  

The thickness of the skin layer was estimated using caliper measurements of eight 
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excised tumor skin samples from C57BL/6N female mice. The average skin thickness, 

which included the epidermis, dermis, and hypodermis, was 312.5 µm. H&E staining of 

representative tumor skin cross sections was conducted to validate this skin thicknesses 

(agreement was within 3.1 % for n = 2 samples). The C57BL/6N mouse strain was used to 

estimate thickness since it is commonly used for mouse tumor imaging 77 and we plan to 

utilize this strain in future studies of mammary carcinoma. Our thickness measurements 

were similar to past reports of C57BL/6N skin thickness, where female mice were found 

to have a skin thickness of 371 µm 78, 300 µm 79, and 364 µm 76. We note that data collected 

from male SCID mice were used in section 3.3.5 of this chapter as well as in our prior study 

in chapter 1 52. The thickness of male SCID mouse skin was determined by measuring 18 

skin samples taken prior to treatment (n = 6), during treatment with either DC101 or CPA 

(n = 6), and after treatment (n = 6) using brightfield microscopy of frozen tissue sections. 

The average skin thickness was found to be 326.9 µm, which is within 5 % of the thickness 

used in the two-layer model (312.5 µm). The difference between the thickness of samples 

taken before and during or after treatment was within 11 %. These results suggest the two-

layer model is appropriate for subcutaneous tumor models in both female C57BL/6N and 

male SCID mice. Other mouse strains have somewhat similar skin thickness, including the 

commonly used BALB/c mouse strain (336 µm for female and 393 µm for male) 76, 

immunocompetent albino mice (441 µm) 80, immunocompromised athymic Nude mice 

(420 µm) 79, and female SCID mice (220 µm) 81.  

Tumor layer: In all three LUTs, the bottom (tumor) layer contains 400 𝜇𝑎 values, 

ranging from 0.0005 to 0.2 mm-1 (Δ𝜇𝑎 = 0.0005 mm-1) and 192 𝜇𝑠
′  values ranging from 0.1 
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to 3.58 mm-1 (Δ𝜇𝑠
′  = 0.018 mm-1).  A separate MC simulation was run for each 𝜇𝑠

′  value 

for both the homogeneous and two-layer Gardner LUTs. The tumor layer depth in all 

simulations was set to be at least 20 times the maximum 𝑙∗ (= 1 [𝜇𝑎 +  𝜇𝑠
′ ]⁄ ) to mimic a 

semi-infinite tissue geometry, where 𝑙∗ was determined using the lowest 𝜇𝑎 value (0.0005 

mm-1). Based on this criterion, a tumor layer thickness of 100 mm was used for all MC 

simulations except for the lowest sixteen 𝜇𝑠
′  values (0.1 to 0.37 mm-1), for which the 

thickness was increased to 200 mm.  

3.2.1.3 Monte Carlo simulations at Boston University Shared Computer Cluster (SCC) 

All MC simulations were conducted at the Boston University SCC located in Holyoke, 

MA. Previously developed command-line implementation of the Gardner method was used 

for the MC simulations (software developed by and implemented with the assistance of the 

Virtual Photonics Technology Initiative at the Beckman Laser Institute, University of 

California, Irvine). In all simulations and for both layers, the index of refraction and 

anisotropy factor (g) were set to 1.4 26 and 0.9 82 respectively, except for simulations 

performed in Sec. 3.3.1, in which the index of refraction and g for both layers were set to 

1.33 and 0.71, respectively to match those used in Cuccia et al. 55. We launched 1x107 

photons for each simulation 55. A total of 192 MC simulations were conducted to generate 

the Gardner LUTs, one for each 𝜇𝑠
′  value of the tumor layer. In these 192 simulations, 𝜇𝑎 

was set to a value of 0.0005 mm-1 for the tumor layer. The 192 simulations were divided 

into 12 groups, each with 16 simulations which were run in parallel. Each MC simulation 

required 2 CPUs, and runtime was dependent on optical properties and ranged from 2.5 – 

4 days. The total photon path length in each layer and the photon exit position were stored 
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for each simulation. The results from each simulation were post-processed using Beer’s 

law (as in Eq. 3.1) to achieve results for all values of 𝜇𝑎. Post-processing runtime was 2 - 

3 days, depending on the specific optical properties.   

 

 

Figure 3.1: A, Schematic of tissue model for the homogeneous case. B, schematic of the tissue 

model for the two-layer case. C, an example of a custom-made two-layer silicone phantom 

used to validate the accuracy of the resulting two-layer inverse algorithm. 

3.2.2 Two-layer tissue-simulating optical phantoms 

A set of two-layer solid silicone phantoms was fabricated to optically simulate 

subcutaneous tumors in a mouse with a range of optical properties. These phantoms were 

used to test the accuracy of the Gardner LUT inversion algorithms. The phantoms consisted 

of a thin skin layer above a tumor layer. The top layer thickness and optical properties were 

fabricated to closely match the parameters described for MC simulations in Sec. 3.2.1. Four 

different two-layer phantoms were fabricated, all of which used the same skin layer. In all 

phantoms, silicone was used as the base solvent, nigrosin as the absorber, and titanium 

dioxide as the scatterer. The optical properties of the phantoms were adjusted by varying 

the amount of absorber and scatterer during fabrication as described in previously 83. 

The thin upper layer phantom was made by adapting a previously described 
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technique 84. First, an aluminum phantom mold was fabricated by machining a well that 

was 330 µm in depth and 1.5" by 1.5" in the lateral dimensions using a computer-controlled 

milling machine (SV-2414S-M, Sharp Industries). After the phantom ingredients were 

mixed together, the liquid mixture was poured into the aluminum mold. A microtome blade 

was used to draw and spread the mixture evenly across the well, and the edges of the blade 

remained in contact with the top surface of the mold at all times. The phantom was then 

left to cure, uncovered, overnight. During curing, the silicone layer was observed to shrink 

in the center of the well. Once cured, the thin silicone layer was removed from the mold 

and cut to the size of 1" by 1" to remove the uneven and thicker edge. The thickness of the 

phantom was confirmed using caliper measurements by confining the thin layer between 

two microscope slide coverslips for stability and consistency. Because the top layer 

phantom was too thin for accurate optical property measurements with diffuse imaging 

techniques, a much larger, 2.5 cm thick homogeneous phantom was made from the same 

batch of material and SFDI was used to extract the optical properties.  

Similarly, for the bottom (tumor) layer, four homogeneous phantoms were 

fabricated in collaboration with Dr. Muldoon’s group 85 and measured with SFDI. The 

thickness of each phantom was 2.5 cm, and the 𝜇𝑎 and 𝜇𝑠
′  values of each phantom were 

targeted to span known mouse tumor optical properties. The skin layer and tumor layer 

phantoms were stacked to create the two-layer phantoms. First, the thin skin layer phantom 

was cleaned using an alcohol wipe. Then, a small amount of ethanol was poured on a thick 

tumor layer phantom, and the thin layer was directly placed on top of the tumor layer, 

making sure that no visible air bubbles remained. The two-layer phantom was left under 



44 
 

 

the chemical hood overnight to allow the ethanol to evaporate without leaving any air 

pockets between the layers. An example of one of the two-layer phantoms is shown in Fig. 

3.1C. The procedure was repeated 4 times to generate the four two-layer phantoms.  

3.2.3 Longitudinal monitoring of a mouse tumor xenograft during cancer treatment 

In chapter 1, we conducted SFDI longitudinal monitoring of the PC3/2G7 prostate tumor 

xenograft model during treatment with anti-cancer agents 52. We have reprocessed a portion 

(n = 2 mice) of this longitudinal data using the new LUT inversion algorithms presented in 

this work in order to visualize the effect of using the multi-layer model in a relevant 

physiologic system. Details of the animal and tumor model, tumor cell preparation, tumor 

cell inoculation, animal handling and care, treatments schedule and dosing, and SFDI 

image acquisition and processing and tumor ROI selection can be found in chapter 1. All 

animal procedures and measurements were conducted under an institutionally approved 

protocol. 

3.3 Results 

3.3.1 Comparison between MC simulation results and LUT inversion algorithms: Rd 

We first compared the results of the three different MC simulations methods (i.e. Martinelli 

homogeneous, Gardner homogeneous, and Gardner two-layer) and then compared how the 

LUT inversion algorithms based on these simulations differently map Rd values to optical 

property values.  

Figure 3.2 shows an illustrative example of the differences and similarities in the 

MC simulation results. Rd is shown as a function of fx for varying 𝑙∗ values at a constant 
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ratio of 𝜇𝑠
′ 𝜇𝑎⁄ = 100. The optical properties corresponding to each 𝑙∗ value are as follows: 

For 𝑙∗ = 0.5 mm: 𝜇𝑎 = 0.0198 mm-1, 𝜇𝑠
′  = 1.98 mm-1; 𝑙∗ = 1 mm: 𝜇𝑎 = 0.0099 mm-1, 𝜇𝑠

′  = 

0.99 mm-1; 𝑙∗ = 2 mm: 𝜇𝑎 = 0.005 mm-1, 𝜇𝑠
′  = 0.5 mm-1; and 𝑙∗ = 4 mm: 𝜇𝑎 = 0.0025 mm-

1, 𝜇𝑠
′  = 0.25 mm-1.  For the two-layer simulations, the skin layer properties were as 

previously described (𝜇𝑎= 0.096 mm-1, 𝜇𝑠
′    = 0.78 mm-1, d = 312.5 µm). From Fig. 3.2, it 

is evident that there is very little difference in MC simulation results between the Martinelli 

homogeneous and the Gardner homogeneous methods. However, the incorporation of the 

skin layer introduces a significant alteration in these results, as expected. Note that the 

effect of the skin layer is to sometimes shift Rd values higher than the homogeneous results 

and to sometimes shift them lower. This effect is dependent on spatial frequency as well 

as the specific optical properties of the tumor and skin layers. Because the Martinelli and 

Gardner homogeneous results are nearly identical, the remainder of the analysis will focus 

on the Gardner homogeneous and Gardner two-layer MC results and the LUT inversion 

algorithms based on these results.  
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Figure 3.2: Comparison of Monte Carlo simulation results from the Martinelli homogeneous, 

the Gardner homogeneous and the Gardner two-layer methods. Diffuse reflectance (Rd) is 

shown as a function of spatial frequency (fx) for varying values of 𝒍∗ at a constant ratio of 

𝝁𝒔
′ 𝝁𝒂⁄ = 𝟏𝟎𝟎. The Martinelli homogeneous and Gardner homogeneous results are nearly 

identical, while the introduction of the top (skin) layer introduces significant shifts in Rd that 

are dependent on fx and the 𝒍∗ of the bottom (tumor) layer. 
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Figure 3.3: Comparison of LUT inversion algorithms based on Gardner homogeneous and 

Gardner two-layer methods. Rd values are shown both in the color dimension and as labeled 

isolines for the entire range of simulated 𝝁𝒂 and 𝝁𝒔
′  values. A and B show optical properties 

versus DC Rd for the homogeneous and two-layer LUTs respectively. C and D show optical 

properties versus AC Rd for the homogeneous and two-layer LUTs respectively. 

 

Figure 3.3 shows differences between the Gardner homogeneous and Gardner two-layer 

LUT inversion algorithms for two spatial frequencies: fx = 0 mm-1 (DC Rd) and 0.1 mm-1 

(AC Rd). Here, the x-axis displays 𝜇𝑎, the y-axis displays 𝜇𝑠
′ , and the color axis displays 

Rd. Isolines of constant Rd are displayed as an aid to visual comparisons between the 

subplots. As shown in Fig. 3.3, these plots visually show the substantial impact that the 
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skin layer has on the mapping between diffuse reflectance and optical properties. 

3.3.2 Comparison between LUT inversion algorithms: optical property extraction 

In practice, the LUT inversion algorithms accept experimentally measured Rd values as 

inputs and provide optical property extractions as outputs. We investigated the extent to 

which the LUTs provide different optical property extractions for the same input 

measurements (i.e. Rd values). To do this, we first chose 30 DC Rd values evenly spaced 

between 0.0419 - 0.749, and 30 AC Rd values, evenly spaced between 0.0289 - 0.4514. 

This range of Rd values was chosen as they are present in both the homogeneous and two-

layer LUTs. For all combinations of the chosen DC and AC Rd values, 𝜇𝑎 and 𝜇𝑠
′  were 

extracted using both LUTs, and the difference in 𝜇𝑎  and 𝜇𝑠
′  extractions was computed. 

Absolute differences in optical properties between the LUTs are shown in Fig. 3.4A and 

Fig. 3.4C for 𝜇𝑎  and 𝜇𝑠
′ ,  respectively, and the percent differences (relative to the 

homogeneous LUT values) are shown in Fig. 3.4B and Fig. 3.4D. For some DC and AC 

Rd combinations, the differences in optical property extractions are substantial. For 

example, from Fig. 3.4B, we see that percent differences for 𝜇𝑎 are larger (approximately 

60 – 80 %) at higher DC Rd values. In Fig. 3.4D, larger differences in 𝜇𝑠
′  extractions occur 

at higher AC Rd values. This analysis shows that the two LUTs differently map optical 

properties from Rd inputs. In the following section we demonstrate that the two-layer LUT 

improves the accuracy of tumor layer extractions. 
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Figure 3.4: The impact on optical property extractions of the Gardner two-layer LUT 

inversion algorithm shown as absolute and % differences compared to the Gardner 

homogeneous case. A, Absolute and B, percent differences in 𝝁𝒂 extractions. C, Absolute and 

D, percent difference in 𝝁𝒔
′  extractions.  

3.3.3 The two-layer LUT improves the accuracy of tumor layer optical property 

extractions using SFDI 

Experimental measurements were conducted to determine if the Gardner two-layer LUT 

inversion algorithm improves the accuracy of tumor layer optical property extractions 

compared to the Gardner homogeneous LUT. This accuracy test utilized the four two-layer 

phantoms described in Sec. 3.2.2. Each of the two-layer phantoms used the same top (skin) 

layer. The measured thickness of the skin layer was 310 µm at its center, which is within 
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0.8 % of the skin layer thickness defined in the MC simulations used to generate the 

Gardner two-layer LUT. Absorption of the skin layer was 0.0936 mm-1 at 659 nm, which 

is within 2.52 % of the MC absorption parameter, and the 𝜇𝑠
′  value was 0.780 mm-1 at 659 

nm, which is within 0.063 % of the MC value. For the tumor layer, four different pairs of 

optical properties were utilized, spanning a range of optical properties observed in our prior 

work in which we monitored PC3/2G7 mouse xenografts over 45 days using SFDI 52. These 

pairs are labelled as tumor 1 through tumor 4 in Fig. 3.5. The optical property pairs, 

reported at 659 nm, are as follows: For tumor 1: 𝜇𝑎 = 0.0244 mm-1 and 𝜇𝑠
′  = 2.054 mm-1; 

tumor 2: 𝜇𝑎 = 0.002 mm-1 and 𝜇𝑠
′  = 2.314 mm-1; tumor 3: 𝜇𝑎 = 0.0039 mm-1 and 𝜇𝑠

′  = 0.714 

mm-1; and tumor 4: 𝜇𝑎 = 0.0301 mm-1 and 𝜇𝑠
′  = 0.676 mm-1.  

Each two-layer phantom was measured with SFDI, and the bottom (tumor) layer 

optical properties were extracted using both the Gardner homogeneous and Gardner two-

layer LUTs. Since these phantoms have flat surfaces, no corrections for height or angle 

were implemented. The absolute differences between the measured and true 𝜇𝑎  for the 

tumor layer are shown in Figs. 5A and 5B. The absolute differences between the measured 

and true 𝜇𝑠
′  for the tumor layer are shown in Figs. 5C and 5D. In both cases, the right 

subfigures (i.e. 5B and 5D) recapitulates the data in the left subfigures (i.e. 5A) and 5C) 

but with a zoomed-in y-axis to allow visualization of the small error values obtained for 

some phantoms. Table 3.1 shows the percent error in tumor layer optical property 

extractions for both the homogeneous and two-layer LUTs. In the worst case, the 𝜇𝑎 and 

𝜇𝑠
′  extraction errors were 20.33 % and 10.87 % for the two-layer LUT. 
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In all cases, the error in tumor layer optical property extraction is substantially 

lower for the two-layer LUT versus the homogeneous LUT. This effect is not as 

pronounced in 𝜇𝑠
′  for tumors 3 and 4, as 𝜇𝑠

′  values in these tumors are very similar to that 

of the skin layer (𝜇𝑠
′    = 0.78 mm-1). Note that the decrease in error by the two-layer LUT is 

between 7 to 256 times for 𝜇𝑎 and between 2 to 24 times for 𝜇𝑠
′ . Taken together, these 

results confirm that the two-layer LUT provides a better estimate of the true tumor layer 

optical properties than the homogeneous LUT.  

Figure 3.5: Comparisons in bottom (tumor) layer optical property extraction errors for the 

Gardner homogeneous and Gardner two-layer LUT inversion algorithms. Diffuse reflectance 

measurements of four two-layer tissue simulating optical phantoms were made with SFDI, 

and both inversion models were used to extract the bottom (tumor) layer optical properties 

(labeled as tumor 1 - 4). A shows the absolute extraction error compared with the known 

tumor layer 𝝁𝒂. B shows the same data but with a zoomed-in y-axis so that small extraction 

errors can be visualized. C shows absolute errors in tumor layer 𝝁𝒔
′  extractions and D shows 

the same data with a zoomed-in y-axis. Optical properties were measured at 659 nm. 
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 % error 

 𝝁𝒂 𝝁𝒔
′ 

  

 homogeneous two-layer homogeneous two-layer 

tumor 1 35.45 2.46 16.77 10.87 

tumor 2 277.03 20.33 23.98 7.62 

tumor 3 97.72 13.88 4.05 0.17 

tumor 4 21.65 0.08 0.03 0.02 

Table 3.1: Accuracy of optical property extractions in four two-layer tissue simulating optical 

phantoms. Each two-layer phantom is designated as tumor 1 - 4. 

3.3.4 Sensitivity analysis of the two-layer LUT  

We conducted a sensitivity analysis to characterize how mismatches in the skin layer 

optical properties and thickness affect the results of the Gardner two-layer LUT. Stated 

another way, the sensitivity analysis provides an indication of how well one must know the 

true skin layer properties in order to obtain accurate tumor layer optical property 

extractions. Additional MC simulations were conducted of a two-layer medium in which 

the properties of the skin layer (𝜇𝑎, 𝜇𝑠
′ , d) were varied to introduce a mismatch to those 

used to generate the Gardner two-layer LUT. The skin layer 𝜇𝑎 value was varied by up to 

± 40 % of the original Gardner two-layer value, 𝜇𝑠
′  was varied by up to ± 40 %, and d was 

varied from – 40 % to + 80 %. Unlike optical properties, d was varied by up to + 80 % in 

order to simulate large skin thickness values, such as d = 530 µm, reported previously in 

athymic nude mouse 79. For this analysis, four tumor layer optical property pairs were 

chosen to span a physiologically relevant range, and extraction errors are reported for each 

pair. The tumor layer optical property pairs at 659 nm are listed here: For tumor 1: 𝜇𝑎 = 

0.031 mm-1 and 𝜇𝑠
′  = 2.025 mm-1; tumor 2: 𝜇𝑎 = 0.004 mm-1 and 𝜇𝑠

′  = 2.2 mm-1; tumor 3: 

𝜇𝑎 = 0.005 mm-1 and 𝜇𝑠
′  = 0.676 mm-1; and tumor 4: 𝜇𝑎 = 0.033 mm-1 and 𝜇𝑠

′  = 0.645 mm-1.  
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In order to compute extraction errors induced by the mismatched skin layer, the Rd 

values at the DC and AC spatial frequencies produced from each of the new MC 

simulations (which each had mismatched skin layer properties) were fed to the original 

Gardner two-layer LUT and resulting optical property extractions were recorded. The 

absolute error was then computed, defined as the difference between the known tumor layer 

optical properties and the recorded optical property extractions. These errors are shown in 

Figs. 3.6A-F. As expected, the errors in 𝜇𝑎 and 𝜇𝑠
′  extractions increase as the mismatch in 

skin layer properties increases. For example, as described Dodig et al. reported that female 

SCID mice had a skin thickness of approximately 220 µm 81. This is an approximately - 30 

% mismatch with the skin thickness used for our model (312.5 µm). As shown in Figs. 6E 

and 6F, assuming the skin optical properties match, this - 30 % mismatch in skin layer 

thickness may induce an error in 𝜇a of as much as - 0.0023 mm-1 and a 𝜇𝑠
′  error of as much 

as 0.29 mm-1 (these are the worst-case errors observed from this analysis, substantially 

smaller errors were observed for some tumor optical property combinations).  

Additional MC simulations were conducted in which the properties of the skin layer 

( 𝜇𝑎 , 𝜇𝑠
′ , d) were varied simultaneously to explore the effect of combining these 

mismatches. The maximum errors observed when all three parameters were mismatched 

in the negative direction (i.e. all three parameters decreased by 40 %) was - 0.0078 mm-1 

for 𝜇𝑎 and 0.44 mm-1 for 𝜇𝑠
′ . The maximum errors observed when all three parameters 

were mismatched in the positive direction (i.e. 𝜇𝑎, 𝜇𝑠
′  increased by 40 %, d increased by 

80 %) was 0.021 mm-1 for 𝜇𝑎 and - 0.51 mm-1 for 𝜇𝑠
′ . Whether errors of this magnitude are 

tolerable depends on the specific application and biological questions posed.  
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Figure 3.6: Results from a sensitivity analysis for the two-layer Gardner LUT inversion 

algorithm. Errors in tumor layer 𝝁𝐚  and 𝝁𝒔
′  extractions are shown for various skin layer 

property mismatches A-F. In F, the inset image has a zoomed in y-axis. Optical properties 

were measured at 659 nm. 
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3.3.5 The Gardner two-layer LUT reveals larger therapy-induced optical scattering 

dynamics and a more hypoxic tumor environment during longitudinal monitoring of 

tumor xenografts  

The homogeneous and two-layer LUT inversion algorithms were used to re-analyze a prior 

data set in which SFDI was used to monitor mice longitudinally during the course of anti-

cancer therapy 52. The details of the data acquisition and analysis, including the methods 

for ROI selection, are described in detail in Tabassum et al. 52. Briefly, each SFDI 

measurement was repeated thrice and averaged to minimize breathing artifacts. The 

demodulated images were corrected for height and angle 57. Two-by-two binning of the 

CCD was applied to improve the SNR. Mice were monitored longitudinally for a total of 

45 days. Rd data acquired with SFDI were analyzed with both the Gardner homogeneous 

and Gardner two-layer LUT inversion algorithms for comparison. 

Figure 3.7A shows changes in tumor 𝜇𝑠
′  at 659 nm from a DC101-treated tumor 

over the course of 45 days. Injection dates are indicated by vertical dashed lines. The mean 

and standard deviation of 𝜇𝑠
′  values extracted over a manually chosen ROI are shown. The 

two-layer LUT reveals higher 𝜇𝑠
′  values throughout the study compared to the 

homogeneous LUT, and the changes in 𝜇𝑠
′  over time are also larger. Figure 3.7B shows 

tumor 𝜇𝑠
′  colormaps overlaid on a planar mouse image at day 0 and day 30 for both LUTs. 

The increase in 𝜇𝑠
′  is apparent throughout the tumor region at these time points.  
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Figure 3.7: An example of the Gardner homogeneous and the Gardner two-layer LUT 

inversion algorithms applied to SFDI data collected during a longitudinal treatment 

monitoring study of PC3/2G7 prostate tumor xenografts. A, 𝝁𝒔
′  extractions from both LUTs 

are shown during and after DC101-treatement. B, 𝝁𝒔
′  colormaps overlaid on DC101-treated 

planar mouse images at day 0 and day 30. A, B plot mean with standard deviation over tumor 

ROI. C, StO2 values determined using four wavelength optical property extractions from 

both LUTs for a CPA-treated tumor. D, StO2 colormaps overlaid on CPA-treated planar 

mouse images at day 0 and day 30.  
 

Figure 3.7C shows changes in tumor StO2 from a CPA-treated tumor on a 

metronomic schedule, followed by a rebound period. Mean and standard deviation of StO2 

values extracted over a manually chosen ROI are shown. The two-layer LUT reveals lower 
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StO2 values over the entire study period compared to the homogeneous LUT; the values 

decrease by roughly the same extent throughout the study. Figure 3.7D shows tumor StO2 

colormaps overlaid on planar mouse images at day 0 and day 30 for both LUTs. A decrease 

in StO2 is apparent throughout the tumor region at these time points. 

3.4 Discussion 

In this work, a new two-layer LUT inversion algorithm was introduced to more accurately 

account for the tumor and skin layered physiology in a small animal oncology model when 

imaging with SFDI. The LUT was constructed using Monte Carlo simulation results 

conducted natively in the spatial frequency domain with the recently developed method by 

Gardner et al., which avoids the discretization errors associated with Fourier or Hankel 

transforming conventional spatially-resolved Monte Carlo results 75. The two-layer tissue 

LUT was superior in its ability to extract both 𝜇𝑎 and 𝜇𝑠
′  from the tumor layer, decreasing 

errors by as much as a factor of 256 for  𝜇𝑎  compared to a homogeneous LUT. The 

magnitude of the improvement was highly dependent on both the optical properties of the 

tumor layer and spatial frequencies considered. When applied to a longitudinal data set, the 

two-layer LUT revealed larger antitumor therapy-induced changes in tumors and a more 

hypoxic tumor environment.  

One important characteristic of the two-layer model developed here is that the top 

(skin) layer optical properties and thickness ( 𝜇𝑎 , 𝜇𝑠
′ , d) were fixed rather than free 

parameters. Estimates for these parameters were based on a prior report of male BALB/c 

albino mice mouse skin optical properties and our own mouse skin thickness measurements 

76. Unfortunately, there are limited reports of mouse skin optical properties in the literature, 
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and skin thickness reports vary by mouse strain and gender 76,79. A sensitivity analysis was 

conducted to evaluate the impact of imperfect top layer assumptions on the extraction of 

bottom (tumor) layer optical properties. This analysis is useful for understanding the impact 

of using this two-layer LUT for mouse strains and genders with different optical properties 

or thicknesses, or for measurements in different wavelength regions. Care should be taken 

when this model is applied to other mouse strains and genders, as each application will 

have a different threshold for acceptable error.  

The utility of the two-layer LUT was demonstrated by re-analyzing a prior 

longitudinal data set with the new model and comparing the results to a homogeneous LUT. 

The two-layer LUT revealed substantial differences compared to the homogeneous LUT 

during treatment with two anticancer therapies: DC101, a targeted antiangiogenic, and 

CPA, a cytotoxic agent. For example, larger increases in 𝜇𝑠
′  (up to 2.75X) were observed 

in the DC101-treated tumor when analyzed with the two-layer LUT, and the optical 

contrast between pre- and post-treatment time points was enhanced significantly. In the 

CPA-treated tumor, the two-layer LUT revealed lower tumor StO2 throughout the study, 

including before baseline, during treatment, and during a rebound period. In both of these 

scenarios, the differences between the two-layer and homogeneous results are presumably 

due to the fact that the two-layer LUT is better able to isolate the tumor layer optical 

properties, whereas the homogeneous LUT convolves the changes in the tumor layer with 

the skin layer. It is of note that in some cases the two-layer LUT provides better agreement 

with other reported tumor values compared with the homogeneous LUT. For example, the 

baseline StO2 in the CPA-treated tumor was 60.2 % with the homogeneous LUT and 53.9 
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% with the two-layer LUT. In this case, the two-layer LUT StO2 value better matches the 

StO2 values of 40 - 55 % reported for K1735 malignant mouse melanoma subcutaneous 

tumors measured using diffuse reflectance spectroscopy 62.  

There have been other reports of multi-layer inversion models for SFDI, but they 

have largely focused on clinical applications in human skin in which layer thicknesses, 

chromophores, and optical properties may be substantially different than those for mice. 

For example, Weber et al. developed an analytic two-layer model based on photon 

diffusion theory in the spatial frequency domain 69. The model had five fit parameters (i.e. 

top and bottom layer 𝜇𝑎 , 𝜇𝑠
′ , and top layer thickness), and provided bottom layer 𝜇a 

extractions with an accuracy of 25 % when the top layer thickness was constrained to 

within 25 % of the true value. This model was tested for top layer thicknesses of 2 - 4 mm, 

which are substantially larger than the 312.5 µm top layer thickness used in the present 

work. Saager et al. utilized Hankel-transformed conventional (i.e. spatially resolved) 

Monte Carlo simulations to develop a two-layer model of human epidermis (containing 

melanin) and dermis (containing melanin and hemoglobin) 70,86. This model also provides 

estimates for top layer thickness constrained within a range of 80 - 300 µm. Yudovsky et 

al. also utilized Hankel-transformed conventional Monte Carlo to create a two-layer model 

of human skin, with special attention to skin pigmentation and epidermal thickness 72,87. 

The authors used the Monte Carlo results to train an artificial neural network in order to 

develop their inversion algorithm. The work presented here differs from these prior works 

in that the model parameters were specific to small animal tumor models, and the Monte 

Carlo simulations used to generate the LUT-based inversion model were conducted 
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natively in the spatial frequency domain. 

While this work demonstrated that a two-layer LUT model improves the optical 

property extraction accuracy of the bottom (tumor) layer for a mouse tumor model, there 

are some limitations that the reader should bear in mind. For example, it is currently 

unknown to what extent skin optical properties or thickness changes during treatment in 

different mouse tumor models, which could affect the ability to accurately extract tumor 

optical properties. Additionally, as previously discussed, this model assumed a fixed set of 

upper layer optical properties and thickness. This limits the applicability of the two-layer 

LUT to substantially different mouse models and different wavelength ranges. It is of note 

that the general methodology described here can be utilized to construct multi-layer LUTs 

for other SFDI applications, including for different mouse models or clinical applications 

with different layer thicknesses and optical property ranges, but this requires additional 

MC simulations and data post processing. An additional limitation is that the two-layer 

model only accounted for skin as a single layer, whereas a more complex model might 

include separate epidermis, dermis, and hypodermis layers in addition to the tumor layer. 

It is conceivable that a more complex layered model would improve optical property 

extraction accuracy, but there are challenges associated with isolating and measuring the 

optical properties of each of these layers for use as fixed model parameters. It is possible 

to allow upper layer thickness and optical properties to be free parameters in the inverse 

model, but this substantially increases the solution space and may reduce the ability to 

accurately extract bottom-layer optical properties 69. It can also lead to underdetermined 

problems 72. Finally, we reported results only for spatial frequencies of DC and 0.1 mm-1. 
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While the Monte Carlo results can be post-processed for arbitrary spatial frequencies, the 

choice to use this frequency pair was made based on our recent work utilizing Cramér-Rao 

lower bounds to determine optical property uncertainty estimates for SFDI 73. This analysis 

revealed DC and 0.1 mm-1 as excellent choices to reduce optical property extraction 

uncertainty for similar optical property ranges.  

3.5 Conclusions 

In conclusion, the two-layer LUT model presented was shown to substantially improve the 

ability of SFDI to extract bottom (tumor) layer optical properties, and this revealed larger 

treatment changes in tumor optical properties and a more hypoxic tumor environment in a 

mouse tumor model. Since therapy-induced optical changes may be subtle for some drugs 

and tumor models, the ability of the two-layer LUT to provide more accurate and enhanced 

pre- and post-treatment tumor contrasts may substantially increase the utility of SFDI as a 

preclinical imaging tool for monitoring cancer treatments.  
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CHAPTER FOUR 

 
Early chemotherapy and antiangiogenic response revealed by tumor optical 

scattering using label-free Spatial Frequency Domain Imaging 

 

The work in Chapter Four will be submitted to a cancer journal with the following 

contributing authors: 

Syeda Tabassum1, Anup Tank2, Fay Wang2, Cameron Vergato3, Kavon Karrobi2, David 

J. Waxman3, and Darren Roblyer2 

1Electrical and Computer Engineering, Boston University, Boston, Massachusetts 

2Biomedical Engineering, Boston University, Boston, Massachusetts 

3Division of Cell and Molecular Biology, Department of Biology and Bioinformatics 

Program, Boston University, Boston, Massachusetts 

 

4.1 Introduction 

Surveillance of in vivo tumor state with methods that can detect chemotherapeutic response 

and resistance may help to maximize overall treatment efficacy while sparing patients from 

the cost and burden of overtreatment. Unfortunately, current standard of care imaging tools 

(e.g., MRI, PET/CT, mammography, ultrasound) have been shown to be limited in their 

ability to monitor treatment response in solid tumors 15,23,24. Over the last decade clinical 

Diffuse Optical Imaging (DOI) techniques have emerged as a powerful alternative to these 

techniques. DOI provides a metabolic and molecular profile of tumors while being label-

free, non-invasive, safe, and generally low cost 25,28,30,35,88. Although prior efforts have been 
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made to correlate in vivo DOI clinical measurements with histopathology results from 

clinical biopsies or surgical specimens 36,37, obtaining tissue samples during treatment 

remains a challenge in the clinic. Alternatively, the preclinical setting provides 

opportunities for testing new treatment regimens in well characterized tumor models and 

patient derived xenografts while simultaneously allowing better access to tumor tissue 

samples for histological correlations. This provides a means of placing DOI metrics in a 

biological context for a variety of treatment strategies. Preclinical optical monitoring also 

makes it possible to correlate clinically observed DOI parameters with underlying tumor 

and host biology at the cellular and molecular levels, during treatment with a wide variety 

of drug regimens or combination treatments.  

In this work we sought to accomplish two goals: 1.) investigate the biological 

correlates of SFDI optical and functional metrics, and 2.) characterize the ability of SFDI 

to identify early optical markers of treatment response. We first demonstrated that SFDI 

can track both absorption and scattering based contrast in a prostate xenograft model in 

response to a cytotoxic and an antiangiogenic treatment for over one month. We next show 

correlation between SFDI metrics and tumor physiological markers by 

immunohistochemical analysis in a cross-sectional large-scale animal study. We focused 

on optical scattering as a marker of treatment response since prior work has linked optical 

scattering and micro-architectural changes in cellular density and size and thus cellular 

death and proliferation 89–91. Tumor markers of apoptosis, proliferation, vessel density, 

glucose uptake, macrophage, and vessel patency are analyzed. 

While the clinical studies with DOI so far have largely focused on absorption based 
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parameters like hemoglobin, water and lipid 28,30,35,88, only recently has SFDI enabled the 

ability to measure optical scattering over a wide field 64. Here we show that optical 

scattering is able to provide substantial contrast in treated versus controls at early 

timepoints during treatment, and that specific changes is scattering are highly correlated to 

apoptosis and proliferation. We also show results from a classification analysis that optical 

scattering along with tumor anatomic information, can provide a very strong predictive 

ability for both cytotoxic and antiangiogenic treatments. Together, these results suggest 

that optical scattering with DOI may be an underappreciated imaging biomarker for 

treatment response monitoring.   

4.2 Materials and Methods 

4.2.1 SFDI data acquisition and processing 

Descriptions of SFDI instrumentation, data acquisition and analysis are similar to those 

described in section 2.2.1, 2.2.7 and 3.2.3 and references (1,2), except for several 

differences in image processing that will be described here. Here, tumor regions of the 

images were segmented, and edge artifacts were removed using a combination of 

automated and manual segmentation steps. First an area of interest was manually chosen 

over the tumor using the μa map; pixels at the extreme edge of the tumor were excluded 

due to edge effects 52. An automated mask was then applied to the area of interest in order 

to exclude pixels on the tissue surface greater than 40° relative to the camera axis 52. 

Finally, pixels with very low μa values (μa < 0.0001 mm−1) were excluded and any 

remaining minor artifacts at the tumor edge were manually removed. Lastly, a manual mask 

was applied to the tumor region to remove extreme edge artifacts at the tumor periphery.  
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4.2.2 Cell lines, animals, and treatment details 

Details of preparation and inoculation of the PC3/2G7 prostate tumor xenograft model can 

be found in sections 2.2.6 and 3.2.3 of the previous chapters. Briefly, in this chapter, severe 

combined immunodeficient (SCID) hairless outbred mice (SHO-PrkdcscidHrhr), 5 to 6 

weeks old male (21-23 gram), were purchased from Charles River Laboratories, and 

housed in the Boston University Laboratory Animal Care Facility in accordance with an 

institutionally approved protocol (IACUC 16-003) and federal guidelines. Tumor length 

(L) and width (W) were measured throughout the study using digital calipers every 2 or 3 

days. Mice bearing PC3/2G7 tumors were assigned to three groups once the average group 

TV reached ~500 mm3. Mice were treated with either cyclophosphamide (CPA) or DC101 

(both given intraperitoneally) or left untreated as control. Mice were given CPA on a 

metronomic schedule at a dose of 140.3 mg/kg every 6 days for 3 cycles. DC101 was 

administered at a dose of 28.6 mg/kg every 3 days for 6 cycles. An additional imaging 

experiment was conducted where syngeneic E0771 tumors were grown in 6 weeks old (15-

18 g) female C57BL/6 mice purchased from Taconic Biosciences (model B6-F, Rensselaer, 

New York) under an institutionally approved protocol (IACUC 16-013). E0771 cells were 

grown in RPMI 1640 media supplemented with 10% fetal bovine serum and 1% 

penicillin/streptomycin under 37C 5% CO2 conditions. Immediately prior to inoculation, 

cells were collected via trypsinization, washed and subsequently resuspended in PBS. 

Prepared cells were stored on ice until injection. 2x105 cells in 100µL PBS were implanted 

in the fourth mammary fat pad of each mouse. TV was measured every 3 days. Mice were 

randomized to 3 groups, Control, CPA and DC101, as average TV reached ≥250 mm3. 
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CPA was administered on a metronomic schedule at a dose of 130 mg/kg every 6 days for 

2 cycles. DC101 was administered at a dose of 40 mg/kg every 3 days for 3 cycles. The 

Control group received non-specific mouse IgG (mIgG) (Jackson Immuno Research 

Laboratories) solutions at a dose of 40 mg/kg every 3 days for 3 cycles. All treatments were 

implemented via intraperitoneal injections. During SFDI measurements, all mice were 

anesthetized using isoflurane by inhalation (5% induction). Although we have not tested 

the effects of isoflurane on SFDI parameters, a prior study using Diffuse Reflectance 

Spectroscopy (DRS), a point probe DOI tool which is similar to SFDI, showed that 

decreases in THC, StO2, and HbO2 occurred with increasing isoflurane concentrations, 

while having no effect on 𝜇𝑠
′  92. Mice were euthanized using cervical dislocation according 

to the approved protocols. 

4.2.3 Longitudinal Monitoring with SFDI 

SCID mice bearing PC3/2G7 tumors were monitored longitudinally with SFDI for 22 days 

of initial tumor growth + 27 days after the start of treatment. Mice were imaged every 3 

days during tumor growth, twice every 3 days during the 18 days of treatment, and every 

3 days following treatment in the rebound period. Some mice were monitored longer (up 

to 69 days after the start of treatment) for the purposes of movie visualizations. Mice were 

allocated to three groups at the start of treatment: Control, CPA and DC101. Several mice 

from each group were euthanized for tissue analysis at days 0, 1, 9, 18, and 26. Tumors 

were frozen or fixed for cross-sectional histological analysis using Immunohistochemistry 

(IHC). The C57BL/6 mice bearing E0771 tumors were imaged with SFDI for a total of 10 

days, including day 0, 3, 6, and 9.  
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4.2.4 Immunohistochemistry (IHC) 

The DNA-binding dye Hoechst 33342 has been widely used to study the patency of the 

tumor vasculature 93,94. In this study, stock solutions of 16 mM Hoechst 33342 in PBS were 

stored at 4°C in the dark. Two minutes after tail vein or retro-orbital injections at 15 mg 

Hoechst 33342/kg body weight (40–50 µl/mouse with a 29 gauge needle), mice was 

euthanized and the entire tumor was collected 94. A green tissue marking dye (cat 24110, 

Polysciences Inc.) was applied on the top surface of the tumor, and a yellow tissue marking 

dye (cat 24112, Polysciences Inc.) was applied to the bottom surface of the tumor to label 

entire tumor surface. Following that, tumor was snap frozen in isopentane pre-cooled with 

dry ice. The tumor was then cut in half such that each half contains tumor surface labeled 

with green and yellow dyes, and were stored in -80°c. One half of the frozen tumor was 

sectioned (5 μm) in microtome to look at Hoechst stain and were stored at -80°c. The other 

half of the frozen tumor was first thawed at room temperature, fixed in 4% 

paraformaldehyde overnight, dehydrated in 70% ethanol, and was sent to Maine Health 

Center (Portland, ME) for preparation of paraffin-embedded blocks, sectioning (5 μm), and 

staining 95. Paraffin sections were stained with 5 different immunohistochemical markers, 

CD31, Glut-1, cleaved Caspase-3, PCNA, Mac-1. Briefly, paraffin-embedded sections 

were baked, de-waxed and treated with 3% H2O2 for 10 min to inactivate endogenous 

peroxidases. Antigen retrieval was carried out by steaming in 10 mM Sodium citrate buffer, 

pH 6 for 30 min. The samples were cooled to room temperature and then incubated in 

normal serum blocking buffer for 30 mins. The slides were then incubated in Vector A/B 

kit (SP2001, Vector Laboratories) for biotin blocking for 30 mins, incubated in primary 
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antibody overnight at 4°C, incubated in secondary antibody for 30 mins, incubated in signal 

amplification reagent (TSA for 60 mins or ABC for 30 mins), and incubated in DAB 

substrate (SK-4100, Vector laboratories) for 2-10 min (checked every min after 2 min). 

TBS-T wash buffer (1x Tris buffered saline pH 7.6 with 0.05% Tween) was used for the 

intermediate wash steps. Following a thorough wash with tap water, the slides were 

dehydrated and sealed with synthetic resin (Ex. Permount mounting medium). More details 

on reagents for each IHC marker is given below:  

CD31:  

Primary antibody: Anti-CD31 (ab28364, ABCAM) diluted 1:250 in blocking buffer  

Secondary antibody: Biotinylated Goat anti-Rabbit (BA1000, Vector Laboratories) diluted 

1:500 in PBS 

Signal amplification reagent: Tyramide signal amplification TSA Biotin Kit (NEL700 or 

NEL700A, PerkinElmer)  

CC3:  

Primary antibody: Anti-cleaved caspase-3 (Asp175) (Cat. #9664L, Cell Signaling 

Technology) diluted 1:50 in blocking buffer 

Secondary antibody: Biotin-SP-conjugated Goat Anti-Rabbit IgG (H+L) (Cat. #111-065-

144, Jackson Immuno Research Laboratories) diluted 1:500 in PBS  

Signal amplification reagent: ABC kit (PK-6100, Vector laboratories)  

PCNA: 

Primary antibody: Anti-PCNA (Cat. #2586S, Cell Signaling Technology) diluted 1:2000 

in blocking buffer  
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Secondary antibody: Biotin-SP-conjugated Goat Anti-Rabbit IgG (H+L) (Cat. #111-065-

144, Jackson Immuno Research Laboratories) diluted 1:500 in PBS  

Signal amplification reagent: ABC kit (PK-6100, Vector laboratories)  

Glut1: 

Primary Antibody: Anti-Glut-1 (Cat. #07-1401, Millipore Sigma) diluted 1:400 in 

blocking buffer 

Secondary antibody: Biotin-SP-conjugated Goat Anti-Rabbit IgG (H+L) (Cat. #111-065-

144, Jackson Immuno Research Laboratories) diluted 1:500 in PBS  

Signal amplification reagent: ABC kit (PK-6100, Vector laboratories)  

Mac-1: 

Primary antibody: Anti-CD11-b (Mac-1) (Cat #133357, Abcam) diluted 1:400 in 

blocking buffer 

Secondary antibody: Biotin-SP-conjugated Goat Anti-Rabbit IgG (H+L) (Cat. #111-065-

144, Jackson Immuno Research Laboratories) diluted 1:500 in PBS  

Signal amplification reagent: ABC kit (PK-6100, Vector laboratories)  

4.2.5 IHC Image Analysis 

The frozen sections were imaged using the Olympus FSX100 Bio Imaging Navigator 

fluorescence microscope system (Olympus America Inc., Center Valley, PA) through a 

blue channel (excitation filter: BP360-370, DM400, emission filter: BA420-460). Liver of 

each mouse, sacrificed for IHC, was also sectioned (5 μm) and imaged to observe Hoechst 

stain which confirms proper injection. The same microscope was used in bright field to 

image the paraffin embedded sections. One representative tumor cross-section was imaged 



70 
 

 

for each of the six biomarkers. All images were captured with 4.2X magnification. 

Representative images for each marker taken with 20X objective are shown in Fig. 4.1.  

 Figure 4.2 shows the IHC image processing procedure. Image processing was 

performed using FIJI 96. IHC images were captured in a snaking pattern with ~10% overlap 

20, and then combined using the ‘stitching’ plugin. An example is shown in Fig. 4.2A with 

PCNA staining. The dotted region shows a single image and the inset shows a 20X 

magnification of a small represented area within the tumor, showing individual cells. The 

‘Region of Interest (ROI) manager’ tool was used to manually select an ROI for the entire 

tumor cross-section, shown with solid yellow line in Fig. 4.2B. The ‘H DAB filter’ was 

then applied from the ‘color deconvolution’ plugin to extract the DAB signal. The image 

was then binarized using an intensity threshold as shown in Fig. 4.2C. For Mac-1 and 

Hoechst biomarkers, the threshold value was kept same for all tumors. For the other 

biomarkers the threshold varied to address differences in DAB staining. The percent of 

pixels above the threshold and within the ROI was then calculated as positive staining area 

(%). 
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Figure 4.1: Representative images of the five IHC markers and Hoechst in a single PC3/2G7 

tumor. 
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Figure 4.2: Image processing steps shown for a representative PC3/2G7 tumor. A. The tumor 

cross section was imaged in a snaking pattern with ~10% overlap, and then combined using 

the ‘stitching’ plugin in FIJI software to produce the stitched image. The dotted region shows 

a single image and the inset shows a 20X magnification of a small represented area within the 

tumor, showing individual cells. Green dye indicates top surface and yellow dye indicates 

bottom surface of the tumor. B. The solid yellow line shows manually segmented region for 

the tumor cross-section obtained with the help of the ‘Region of Interest (ROI) manager’ tool 

in FIJI. C. Binarized image obtained with the application of an intensity threshold. The 

percent of pixels above the threshold and within the ROI was defined as positive staining area 

(%). This tumor sample was stained for the PCNA marker (proliferation) and resulted a 15% 

positive staining area. 

 

4.2.6 Statistical analysis 

The Mann-Whitney Wilcoxon rank sum test was used to test if longitudinal SFDI and IHC 

metrics were statistically different from their baseline (day 0) values (results shown in Fig. 

4.6, Fig. 4.8, and Fig. 4.9). Additionally, correlations were evaluated between each of six 

SFDI metrics (a, b, HbO2, Hb, THb, StO2) and each of six IHC metric (CC3, PCNA, CD31, 

Hoechst, Glut-1, MAC-1) using the Pearson correlation coefficient (ρP). Both unadjusted 
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P value and Tukey-Ciminera-Heyse (TCH) adjusted P values are reported in Fig. 4.6 and 

Fig. 4.8. 

The Wilcoxon signed rank test was conducted to test if treated vs. control contrasts 

were significant (results shown in Fig. 4.11 and Fig. 4.12). Contrasts at each day were 

compared to a hypothetical median of 0. The resulting P values were adjusted with the 

TCH procedure for 24 (8 days X 3 metrics) multiple comparisons in Fig. 4.11 and 40 (8 

days X 5 metrics) multiple comparisons in Fig. 4.12. 

Multivariate discriminant analysis was performed for determination of treatment 

prediction accuracy (Fig. 4.13 and Fig. 4.14). Two types of classification algorithms were 

utilized, a linear classifier and a quadratic classifier 30,97. 5 fold cross-validation was used 

for all classifiers to mitigate potential over-training 30. Receiver-Operating Characteristic 

(ROC) curves were generated using computed posterior probabilities calculated from the 

classifiers. The Area Under the Curve (AUC) of the ROC curve was used as performance 

metric for the classifiers. Statistical analysis was conducted using the Prism 8 (GraphPad) 

software. 

4.3 Results 

4.3.1 SFDI reveals dynamic changes in optical scattering in control and treated tumors  

Both CPA and DC101 treatments led to tumor regression in the PC3/2G7 tumors while 

control tumors grew exponentially during the course of the study (Fig. 4.3). Longitudinal 

visualizations of SFDI parameters were created to show the changes in optical parameters 

that occurred during the study, especially the changes in optical scattering, which tended 

to be the most dramatic. Figure 4.4 shows 𝜇𝑠
′   maps (λ=659 nm) for representative control, 
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CPA, and DC101 treated PC3/2G7 tumors on days 0, 1, 9, 18 and 27. The display range 

for each tumor was chosen so that day 0 values fell in the middle of the color bar. This 

visually highlights both increases (shown in red) and decreases (shown in blue) from 

baseline. For the control tumor, tumor volume increased while scattering decreased 

throughout the 27 days period of tumor growth. For the CPA tumor, volume increases were 

mitigated by treatment while scattering increased, in stark contrast to the control. Similarly, 

for the DC101 treated tumor, volume increase was minimal but 𝜇𝑠
′  increased dramatically 

up to day 27 in the rebound period. Although the 𝜇𝑠
′  longitudinal increase is smaller in this 

particular CPA tumor compared to the DC101, the group average changes are comparable 

for the CPA and DC101 groups (Fig. 4.6A). Time course videos highlight similar changes 

with finer temporal resolution (Fig. 4.5). Less prominent contrast was observed in 

absorption based hemodynamic parameters such as HbO2, THb and StO2.  
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Figure 4.3: Tumor volume normalized to baseline for PC3/2G7 tumors for CPA, DC101, 

and no treatment (control) groups. The shaded region represents the 18 days of treatment 

period, and the arrows represent treatment cycles. The n values in the legend shows tumor 

population for each group at baseline, which reduced with days as mice were sacrificed for 

IHC. Each point represents group mean with standard error (SE). Tumor volume group 

mean and SE at baseline was 915 ±76 mm3 for control, 805 ± 86 mm3, and 871±116 mm3 for 

DC101. 
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Figure 4.4: Longitudinal changes in reduced scattering maps at λ=659 nm for representative 

control, CPA, and DC101 treated PC3/2G7 tumors at days 0, 1, 9, 18 and 27. 
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Figure 4.5: Videos of scattering amplitude a parameter 𝜇𝑠
′  (λ=800 nm) for three 

representative PC3/2G7 tumors. Days, along with study periods, can be observed at the 

bottom of each image in the video. In the control tumor, tumor volume increased but a 

decreased continually until the mouse was euthanized on day 27. In contrast, in both CPA 

and DC101 treated tumors, a continued to increase before these mice were euthanized on day 

57.  

 

 

A B 
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4.3.2 SFDI scattering parameters correlate with apoptosis and proliferation  

Optical scattering is known to be sensitive to micro-architectural changes at the cellular 

and sub-cellular levels, and is likely to be correlated with treatment-induced biological 

changes 89–91. We explored how optical scattering and other SFDI parameters relate to the 

underlying tumor biology. To do this, in vivo SFDI imaging data of PC3/2G7 xenografts 

were interpreted in the context of IHC analysis of apoptosis (cleaved Caspase-3, CC3), 

proliferation (PCNA), vessel density (CD31), glucose uptake (Glut-1), macrophage 

infiltration (Mac-1), and vessel patency (openness) (Hoechst assay). Table 4.1 summarizes 

the SFDI optical parameters and their exploratory IHC biomarkers, along with our 

hypothesis for potential correlations and previous literature supporting the basis of 

potential correlations. For example, prior work in scattering spectroscopy and Optical 

Coherent Tomography (OCT) (integrated backscatter) demonstrated a positive correlation 

between scattering amplitude and apoptosis 89–91,98,99. Additionally, prior clinical diffuse 

optical clinical imaging studies and OCT preclinical work have shown a reduction in the 

wavelength dependence of scattering (i.e. scattering slope) as a marker of treatment 

response 31,33,90,99.  

Figure 4.6 shows longitudinal changes in the SFDI parameters paired with IHC 

results. The pretreatment baseline measurements are shown at day 0. Treatment continued 

to day 18; day 24, 26, and 27 were in the post-treatment rebound period. Correlations 

between key imaging and IHC metrics are also shown. The number of tumors at each 

timepoint decreased over the study as mice were sacrificed for IHC analysis (shown in Fig. 

4.7).  
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IHC and SFDI correlative analysis 

SFDI optical 

marker 

IHC marker  Physiological basis for correlation 

Scattering 

amplitude 

Apoptosis Cell break down during apoptosis may increase 

density of optical scattering events, resulting in an 

increase in scattering amplitude. This hypothesis is 

also supported by previous work98,99 

Scattering power Proliferation The increase in cell density during proliferation 

may alter the distribution of scattering particle sizes, 

which causes scattering power to change. This 

hypothesis is also supported by previous work31,33,99  

Oxyhemoglobin Vessel density, 

vessel patency 

A higher number of functional vessels is likely to 

result in increased blood distribution in the tumor, 

which will increase the Oxyhemoglobin parameter. 

This hypothesis is also supported by previous 

work31,33,37   

Deoxyhemo-

globin 

Proliferation, 

glucose uptake 

Increases in cell proliferation can potentially lead to 

increases in oxygen consumption due to higher 

metabolic activity in the tissue, causing an increase 

in Hb which can act as an indicator of tissue oxygen 

consumption. This hypothesis is also supported by 

previous literature31,33 

Total 

hemoglobin 

Vessel density, 

vessel patency  

A higher number of functional vessels is likely to 

result in increased blood volume in the tumor, 

which will cause Total hemoglobin parameter to 

increase. This hypothesis is also supported by 

previous work37,100,101 

Oxygen 

saturation 

Vessel density, 

vessel patency 

A higher number of functional vessels is likely to 

result in increased blood distribution in the tumor, 

which will cause the Oxygen saturation parameter 

to increase 

Table 4.1: Exploratory correlations between SFDI optical parameters and IHC biomarker. 
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Figure 4.6: Longitudinal changes in the SFDI parameters (A, D, G, J) paired with 

immunohistochemical results (B, E, H, K) at representative days in PC3/2G7 tumors and 

tumor volume in M. N presents a simple timeline of the study. Data in the bar plots represent 

mean and standard error in each group. Mann-Whitney Wilcoxon rank sum test was used to 

test if longitudinal SFDI and IHC metrics were statistically different from their baseline (day 

0) values. Relationships between SFDI and IHC metrics are shown in C, F, I, L using daily 

group means from the bar plots. The linear best fit and 95% confidence intervals are 

indicated. The Pearson's ρ (ρp) is reported for each plot, along with significance range using 

both unadjusted and TCH adjusted P values. *Denotes significance range with unadjusted, 

and Ϯ denotes significance range with TCH adjusted P values. Here, *, P < 0.05; **, P < 0.01; 

***, P < 0.001; ****, P < 0.0001; Ϯ, P < 0.0085; ϮϮϮϮ, P < 0.0000166. 
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Figure 4.7: A. The number of tumors in each group at specific timepoints used for plotting 

and statistical tests with SFDI parameters and TV. Number of tumors from each group used 

in the Wilcoxon One-Sample Signed Rank test are the same as those shown above except for 

TV at day 1 for which number of tumors were n(control)=17, n(CPA)=21, n(DC101)=25. The 

number of tumors from each group used in the classification test are the same as those shown 

above except for day 1, where the number of tumors were n(control)=17, n(CPA)=21, 

n(DC101)=25 for both SFDI and TV. B. The number of tumors in each group at specific 

timepoints used for plotting of IHC markers. 

 

The SFDI a parameter decreased in the control group but increased significantly in both 

CPA and DC101 groups during treatment and rebound (Fig. 4.6A). The SFDI b parameter 

displayed an opposite longitudinal trend in the treatment groups, with significant decreases 

observed during treatment and rebound (Fig. 4.6D). We note that in all of our previous 

preclinical tumor measurements with SFDI we have observed a and b to vary inversely 

with each other. More broadly, the relationship between the  a and b parameters have been 

shown to be context-specific in literature in prior work89–91.  
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The longitudinal patterns observed in the a parameter were broadly mimicked in 

CC3 as indicated by the large increases in both parameters in the CPA and DC101 groups 

(Fig. 4.6B). The changes in the b parameter were likewise mimicked in the PCNA trends, 

with significant decreases observed in both treatment groups (Fig. 4.6E). The correlations 

of the daily group means of these SFDI and IHC parameters were also strong for a versus 

CC3 (Fig. 4.6C, Pearson correlation coefficient (ρp) = 0.75 (unadjusted P < 0.01, TCH 

adjusted P < 0.0085)) and b versus PCNA (Fig. 4.6F,  ρp = 0.69 (unadjusted P < 0.01, TCH 

adjusted P < 0.0085)). CC3 and PCNA values at day 26 were plotted against a and b at day 

24 since no SFDI measurements were taken on day 26, and a and b at day 27 were not 

included in the correlation analysis due to the small number of tumors in the CPA group at 

this time point (n=2). It is of note that the drop in a and increase in b observed at day 27 in 

the CPA group coincides with the rebound period, and an increase in the average tumor 

size of that group (Fig. 4.6A and 4.6D, and Fig. 4.3). This may be an indication of tumor 

regrowth after treatment, although the small number of tumors at that timepoint (n=2) make 

this uncertain.  

Similar trends to those observed in PC3/2G7 model were also observed in the a 

parameter for the E0771 tumors grown in C57BL/6 mice in response to CPA treatment 

(Fig. 4.9). Although the b parameter did not show a statistically significant decrease in the 

treated groups, the CPA group means showed a decreasing trend compared to control. The 

DC101 group did not show a trend in the b parameter, likely because of the poor treatment 

response of the DC101 treated E0771 tumors (Fig 4.9C and D).  
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4.3.3 SFDI hemodynamic parameters correlate with patency and vessel density   

Prior clinical studies have demonstrated that both THb and HbO2 decrease during 

successful treatment in breast cancer patients treated with neoadjuvant chemotherapy 31,33 

and several prior works have shown a positive correlation between THb and mean vessel 

area in breast cancer patients 100,101. In this study, significant decreases in THb and HbO2 

were observed in both treated and control groups (Figs. 4.6G and 4.8A), and significant 

decreased in Hb were observed in the DC101 treatment group (Figs. 4.8B).  We 

hypothesized that the extent of functional vessels revealed by the Hoechst assay were likely 

to be correlated with blood volume and THb. This relationship was reflected to the largest 

degree in the DC101 group, where significant decreases in Hoechst staining were observed 

at day 9 and 18. The correlation between THb and Hoechst is shown in Fig. 4.6I (ρp = 0.54, 

unadjusted P < 0.05, insignificant TCH adjusted P value). 

While there were changes in StO2 over time, none of the changes were statistically 

significant except for day 24 in the CPA group. There were no significant changes in CD31 

staining. However, the trends in these parameters were similar for each group, with 

decreases observed in the control and DC101 groups, and a spike within the rebound period 

in the CPA group. The linear correlation between these parameters was very strong (Fig. 

4.6l. ρp = 0.92 (unadjusted P < 0.0001, TCH adjusted P < 0.0000166)). 

The remining longitudinal trends and correlations are shown in Fig. 4.8. The trends 

in both HbO2 and Hb mimicked the trends in THb, with decreases observed in control and 

DC101 treatment groups, as well as a spike during rebound in the CPA group. Decreases 

in the glucose transporter Glut-1 were observed in the CPA group while increases were 
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observed in the DC101 group. Large increases in macrophage infiltration were observed in 

the DC101 treatment group. It is also of note that StO2 and Glut-1 were strongly correlated 

ρp = 0.83 (unadjusted P < 0.001, TCH adjusted P < 0.0017), the b parameter and Mac-1 

were strongly correlated ρp = 0.8 (unadjusted P < 0.001, TCH adjusted P < 0.0017), and 

the Hb parameter and the PCNA were strongly correlated ρp = 0.72 (unadjusted P < 0.01, 

TCH adjusted P < 0.0017). The drop in StO2 with higher Glut-1 and increase in Hb with 

higher PCNA may both reflect the fact that an increased proliferation leads to increased 

oxygen consumption and a buildup of Hb 31. A detailed list of the Pearson's ρ (ρp) values 

for each SFDI and IHC marker are shown in Figure 4.10. Based on our stated mechanistic 

hypotheses and previous literature supporting the basis of these correlations, we propose 

that these correlations represent, at least in part, causative links rather than merely 

associations. 
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Figure 4.8: Longitudinal changes in the SFDI parameters (HbO2 in A, Hb in C) and 

immunohistochemical results (Glut-1 in B, Mac-1 in D) at representative days in PC3/2G7 

tumors. Data in the bar plots represent mean and standard error in each group. Mann-

Whitney Wilcoxon rank sum tests were conducted to test if longitudinal SFDI and IHC 

metrics were statistically different from their baseline (day 0) values. The relationships 

between SFDI and IHC metrics are shown in E, F and G using daily group means form the 

bar plots. The linear best fit and 95% confidence intervals are indicated. The Pearson's ρ (ρp) 

is reported for each plot, along with significance range using P values. *Denotes significance 

range using unadjusted P values, and Ϯ denotes significance range using TCH adjusted P 

values. Here, *, P < 0.05; **, P < 0.01; ***, P < 0.001; ϮϮ, P < 0.0017. 
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Figure 4.9: Longitudinal changes in the SFDI parameters a and b and TV in E0771 tumors 

in response to CPA and DC101. Data in A-C represent group mean along with individual 

tumor values, and in D represent group mean with SE. C and D both plot tumor volume but 

in different formats. Arrows represent treatment cycles. Mann-Whitney Wilcoxon rank sum 

test was used to test if longitudinal SFDI and TV metrics were statistically different from 

their baseline (day 0) values. *, P < 0.05. 
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Figure 4.10: Pearson's ρ (ρp) values for each SFDI and IHC marker. Ϯ Denotes significance 

range using TCH adjusted P values. Here, Ϯ, P < 0.0085; ϮϮ, P < 0.0017; ϮϮϮ, P < 0.000167; 

ϮϮϮϮ, P < 0.0000166. 
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4.3.4 Optical scattering provides high contrast between treated and control tumors 

Imaging parameters that provide high contrast between responding and non-responding 

patients at early timepoints during cancer therapies provide the highest clinical utility for 

treatment monitoring 35. Here we explored optical contrast between treated and untreated 

tumors as a surrogate for clinical response. All tumor values were first normalized to day 

0 (baseline) values. The Log2 ratio of tumor and control optical properties and tumor 

volume (TV) are plotted over the duration of the study (Fig. 4.11). Each data point 

represents the ratio of a single treated tumor’s value divided by the average value of the 

control group at that time point. The y=0 line indicates no contrast between treated and 

control whereas the y=2 represents a 4X contrast (log2(2
2)=4) and y=-2 represents a 0.25X 

contrast. The Wilcoxon One-Sample Signed Rank Test with a hypothetical median of 0 

was used to test if the contrast was different from 0 at each time point. The resultant p 

values were adjusted with the Tukey-Ciminera-Heyse (TCH) procedure to account for 

multiple comparisons 102.  

For CPA, TV provided the largest average contrast between treated and control 

tumors over the study, but the a and b scattering parameters also provided high contrast 

(Fig. 4.11A). The contrast in these parameters continued to increase throughout the 

duration of the study. These trends were similar for DC101, where b performed almost as 

well as TV (Fig. 4.11B). It is to note that, TV follows b, but inversely follows a in the 

contrast plots.  

Figure 4.12 shows contrast data for other SFDI hemodynamic parameters (HbO2, 

Hb, THb, StO2). The contrasts in these hemodynamic parameters were not statistically 
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significant for most days in the study. Based on the results from this analysis, we next 

explored how SFDI parameters could be used either as a stand-alone marker, or as a 

companion marker to anatomic tumor size to predict treatment response at early timepoints.  

Figure 4.11: A. Log2 ratios of CPA treated versus control for TV, a and b. B. Log2 ratio of 

DC101 treated versus control. Mean and standard errors are indicated. The Wilcoxon One-

Sample Signed Rank Test with a hypothetical median of 0 was used to test if the contrast 

(Log2 ratio) was different from 0 at each time point. The resultant P values were adjusted 

with the TCH procedure to account for multiple comparisons. Ϯ denotes significance range 

using TCH adjusted P values. Here, Ϯ, P < 0.0104; ϮϮ, P < 0.002; ϮϮϮ, P < 0.0002. 
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Figure 4.12: A. Log2 ratio of CPA treated tumor and control group average for TV and SFDI 

parameters (HbO2, Hb, THb and StO2) over the duration of the study. B. Log2 ratio of DC101 

treated tumor and control group average for TV and SFDI parameters. Mean and standard 

errors are shown. The Wilcoxon One-Sample Signed Rank Test with a hypothetical median 

of 0 was conducted to test if the contrast (Log2 ratio) was different from 0 at each time point. 

The resultant P values were adjusted with the TCH procedure to account for multiple 

comparisons. Ϯ denotes significance range using TCH adjusted P values. Here, Ϯ, P < 0.0081; 

ϮϮ, P < 0.0016; ϮϮϮ, P < 0.000158.  
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4.3.5 The combination of the SFDI scattering parameter a and tumor volume provides a 

superior early response prediction than either parameter alone 

Multivariate discriminant analysis was conducted to determine the prediction accuracy of 

SFDI parameters as either stand-alone imaging markers, or as companion markers to 

anatomic tumor size, which can be measured with a number of standard-of-care imaging 

modalities (e.g. ultrasound, mammography, MRI). In this analysis, tumor values were 

normalized to day 0 (baseline) and only timepoints within the treatment period (≤ day 18) 

were considered. Classification was conducted using single features and sets of two 

features. Classification for each individual feature and set of features was repeated 101 

times and the median performing classifier (determined by AUC) was used for 

comparisons at individual days. The single feature and feature combination that provided 

the highest average AUC over all measurement days were defined as the best feature sets.  

The scattering parameter a was the best performing single SFDI feature, with an 

average AUC across all days of 0.84 for CPA and 0.83 for DC101. TV had an average 

AUC of 0.86 for CPA and 0.80 for DC101. The combination of a and TV was the best 

performing dual feature, with an average AUC of 0.86 for CPA and 0.87 for DC101. 

A summary of classifier performance of several well performing single and dual 

features at different study days is shown in Fig. 4.13. For CPA, a provided better 

performance than TV at days 1 and 4 despite the fact that TV had a higher contrast on these 

days (Fig. 4.11A). This is due to the lower variation in a parameter across tumors within 

the treatment and control groups, providing a better separation of these groups by the 

classifier. When a was combined with TV (referred to as a+TV in Fig. 4.13), superior 
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performance occurred at days 3 and 4 when comparing to either parameter alone. For 

DC101, a provided better performance than TV at days 1, 4, 6, 7, and 9, and the 

combination of a and TV had superior performance over either single feature at days 3, 4, 

6, 7, and 9. The AUC for other well performing features such as b, a+b, b+TV are also 

shown. It is to note that at very early timepoints, such as day 1 and day 3, the stand-alone 

SFDI features a and b perform better than TV. This is also apparent in the ROC curves at 

day 1 and day 3.  

An additional analysis was conducted to compare how much earlier SFDI can 

predict response compared to TV.  Fig. 4.14A and Fig. 4.14B shows AUC values up to day 

7 along with linear regression lines for CPA and DC101. The number of days it takes for 

TV to reach the same AUC value obtained with the a or b parameter was computed for each 

day using the regression fits. The difference in days is plotted on y axis. Here, a positive y 

value means SFDI feature precedes TV by that many days, and negative y value means TV 

precedes the SFDI feature. For CPA, the a parameter exhibits a positive value close to 2 

days at day 1, meaning within just one day into treatment, a parameter can be a better 

predictor of treatment response than TV (Fig. 4.14C). This may be because the a parameter 

reflects ongoing apoptosis, but the resulting change in tumor volume likely takes longer 

due to the time it takes in clearance of cell debris. However, the b parameter exhibits only 

negative values meaning it doesn’t precede TV on any day. These results are consistent 

with the AUC values plotted in Fig. 4.13A at day 1. For DC101, the b parameter exhibits 

positive values of around 2 days up to day 4, meaning at these early timepoints b parameter 

can be a better predictor of treatment response than TV (Fig. 4.14D). The a parameter for 
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DC101 precedes TV starting at day 4. These results are consistent with the AUC values 

plotted in Fig. 4.13B. The fact that the a parameter is more effective in CPA and the b 

parameter is more effective in DC101 at early timepoints may be a result of the specific 

mechanism of each of these drugs. 
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Figure 4.13: Multivariate discriminant classification analysis for discrimination of treated 

versus control tumors. The AUC of the well performing stand-alone and dual features along 

with the best performing features are shown in A for CPA and in B for DC101. 

Corresponding ROC curves for CPA are shown in C for day 1 and in D for day 3. ROC curves 

for DC101 are shown in E for day 1 and in F for day 3. 
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Figure 4.14: A and B plots AUC values up to day 7 and the linear regression lines for CPA 

and DC101 respectively. In C and D, the TV regression equation from A and B was used to 

calculate how many days it will take for TV to reach the same AUC value obtained with a or 

b parameter on a certain day, and their difference is plotted on y axis for CPA and DC101 

respectively.  

 

4.4 Discussion  

In current clinical practice, NAC response assessment is determined predominantly by 

serial physical examination, mammography and/or ultrasound 16. Yeh et.al showed that 

palpation, mammography, ultrasound and MRI had 19%, 26%, 35%, and 71% agreement, 

with final pathological response respectively. These and other studies have shown that 

anatomical changes in tumor presentation are not reliable predictors of final pathological 

state 103–105. This leaves an opportunity for other modalities to measure response markers 

that provide different functional information than simply anatomic changes. Although 

functional measurements of tumors from contrast-enhanced MRI, MRS, and PET have 

shown substantial improvement over conventional anatomic imaging 106–110, the cost, 
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radiation exposure, and potential toxicities of contrast agents limit the frequency of these 

scans during treatment.  

DOI offers a low-cost and safe approach and thus a potential candidate to address 

this very clinical need. A growing number of reports over the last have shown that DOI 

derived hemodynamic parameters can correlate with treatment response in breast cancer 

patients receiving NAC 28–35. SFDI is a preclinical DOI tool that provides the same optical 

and functional information, and thus is a great candidate for in vivo tumor monitoring in 

small animal oncology models. Chapter 2 and 3 of this dissertation were focused on 

establishing the feasibility of longitudinally and frequently monitoring tumor xenografts 

and improving SFDI accuracy for preclinical tumor models 52,53. This chapter focuses on 

understanding the rationale behind changes in SFDI parameter and explored the ability of 

SFDI to predict treatment response early in the treatment. First, we demonstrated that SFDI 

can track both absorption and scattering based contrast in a prostate xenograft model in 

response to cytotoxic and antiangiogenic treatment for over a period of one month. Then 

using a large-scale cross-sectional animal study design, correlations were established 

between specific SFDI and IHC markers over the course of the study (up to day 27 after 

treatment). And lastly, the SFDI imaging parameters were tested to identify early optical 

markers of treatment response.  

Longitudinally, the a parameter decreased in the control group but increased 

substantially in CPA with the exception of day 27. The decrease in a at day 27 may result 

from the tumor rebound, which was apparent in the tumor volume data (Fig. 4.6M). The a 

parameter increases substantially in the DC101 groups during both treatment and rebound 
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(Fig. 4.6A). Unlike the CPA group, the DC101 tumors did not rebound rapidly after the 

end of treatment (Fig. 4.6M), which likely explain the continued increase in the a parameter 

up to day 27. The SFDI b parameter displayed an opposite longitudinal trend in the 

treatment groups, with substantial decreases observed during treatment and rebound (Fig. 

4.6D). It is of note that the drop in a and increase in b observed at day 27 in the CPA group 

coincides with the rebound period, and an increase in the average tumor size of that group 

(Fig. 4.6A, 4.6D, and Fig. 4.3). While, this may be an indication of tumor regrowth post 

treatment period (n=2), it needs to be tested in higher number of tumors. For the DC101 

group, tumor rebound is likely to take longer due to the vascular damage from the 

antiangiogenic treatment 111. 

In the correlation analysis, the scattering a parameter strongly correlated with cell 

apoptosis (CC3) (ρp = 0.75) and scattering power b parameter correlated strongly with cell 

proliferation (PCNA) (ρp = 0.69). Prior work utilizing modelling in and in vitro cell 

experiments with optical scattering methods have demonstrated distinct relationships 

between scattering amplitude (a) and the density of scattering events, as well as scattering 

power (b), and the distribution of scattering particles sizes 89,90. We hypothesize that as 

cells break down during apoptosis the density of optical scattering events increases, 

resulting in an increase in the a parameter. The increase in cell density during proliferation 

may in turn alter the distribution of scattering particle sizes, which causes b to decrease. 

Prior OCT work has also demonstrated an increase in integrated backscatter and decrease 

in scattering slope in response to treatment in preclinical tumors 98,99. Clinical DOI tools 

have also revealed a decrease in the b parameter in breast cancer patients responding to 
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treatment, similar to our observation in prostate xenograft 31,33. Similar trends were 

observed in the a and b parameters for the E0771 tumors (Fig. 4.9).  

For the absorption based parameters, the vessel density marker CD31 correlated 

strongly with the SFDI hemoglobin parameters (ρp (HbO2)=0.85, ρp (THb)=0.71 and 

ρp(StO2)=0.92), and the vessel patency marker Hoechst correlated fairly well (ρp 

(HbO2)=0.54, ρp (THb)=0.54 and ρp(StO2)=0.52) as expected (Fig. 4.5). Prior work also 

reported positive correlations between THb, HbO2 and mean vessel area marker (CD34) 

100,101. Our hypothesis behind these correlations is that a higher number of functional 

vessels is likely to result in increased blood distribution in the tumor, which will cause the 

hemodynamic parameters to increase. The Hb parameter was found to strongly correlate 

with PCNA (ρp = 0.72), and we hypothesize that increases in proliferation lead to increases 

in oxygen consumption, resulting in an increase in Hb 31.  The macrophage marker Mac-1 

was found to positively correlate with a (ρp = 0.58), likely due to macrophage recruitment 

caused by clearance of dead cells after substantial apoptosis112. In total, the correlation 

analysis both validated changes and correlated previously observed in preclinical and 

clinical studies, while strongly identifying the much less explored optical scattering 

parameters as potential non-invasive markers of apoptosis, proliferation, and overall 

treatment response.  

For CPA, both a and b scattering parameters and TV provided high contrast 

between treated and control tumors (Fig. 4.10A). These trends were similar for DC101 

(Fig. 4.10B). Changes in TV are likely related to the balance between cell death and cell 

proliferation. Since we found strong correlations between apoptosis and the a parameter, 
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and proliferation and the b parameter, these SFDI parameters may be a useful non-invasive 

way to track treatment response over time. The relatively poor optical contrast between 

treated and untreated in SFDI hemodynamic parameters (Fig. 4.11) may be a reflection of 

hypoxia within the control group induced by rapid tumor growth outpacing vascular supply 

113. This could result in similar decreasing hemodynamic trends in both treated and control 

groups, but with different biological origins. 

In the classification analysis scattering a parameter was the best performing single 

SFDI feature, and a+TV was the best performing dual feature considering days until the 

end of treatment (day 18). This suggests that the a parameter may substantially supplement 

or replace tumor volume as an indicator for treatment response. This is important as 

anatomic tumor size is currently the only available clinical marker for measuring treatment 

response in many cancers 16. However, at the early timepoints, the SFDI stand-alone feature 

a and b perform better than TV in treatment response prediction in CPA and DC101 

respectively. This might be a reflection of how these two drugs act against tumor and thus 

should be further investigated.  

4.5 Conclusions 

While DOI techniques have emerged as a powerful new tool aid to provide metabolic and 

molecular profiles of tumors, these tools so far have largely focused on absorption based 

endogenous parameters like hemoglobin, water and lipid 28,30,35,88. Optical scattering 

remains largely unexplored in the context of treatment monitoring in the clinic. We have 

shown here that scatting a and b parameters have the potential to indicate treatment 

response due to their sensitivity to apoptosis and proliferation respectively. Our findings 
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suggest optical scattering should be further investigated in the clinical setting for breast 

and other tumor types with clinical DOI tools. Upon successful clinical translation and 

validation, findings from this chapter may help clinical DOI tools develop as important 

feedback methods in the application of treatment monitoring, testing new drug, and 

personalizing treatments.  
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CHAPTER FIVE 

 
Develop a new Light Emitting Diode (LED)-based SFDI system to measure tissue 

water content in the VIS-NIR region 

A portion of the methods and text below are part of the article under review for the 

Journal of Biomedical Optics with the following contributing authors. There was no work 

related to IR-SFDI or water measurements in the article. I spearheaded the construction of 

the IR-SFDI device as well as the specific measurements and analysis presented in this 

chapter 5. 

openSFDI: An open-source guide for constructing a spatial frequency domain imaging 

system 

 

Matthew B. Applegatea, Kavon Karrobia, Joeseph Angelob, Wyatt Austinc, Syeda 

Tabassumd, Karissa Tilburyc, Rolf Saagere, Sylvain Giouxb, Darren Roblyera 

 
aBoston University, Department of Biomedical Engineering 

 
bUniversité de Strasbourg 

 
cUniversity of Maine 

 
dBoston University, Department of Electrical and Computer Engineering 

 
eLinköping University 

 

5.1 Introduction 

A limitation to most of the prior SFDI literature as well as the previous chapters of this 

thesis is that SFDI has largely been developed to monitor only tissue hemodynamics and 

optical scattering. Prior clinical DOI studies have also focused on water and lipid 

extractions, which have been shown to be important biomarkers for treatment response 
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monitoring 33,114. In this chapter we begin to address this limitation by expanding SFDI 

instrumentation to include spectral sensitivity to water content.   

 Insight into tumor water content can be derived from MRI studies of the apparent 

diffusion coefficient of water (ADCw). The ADCw correlates with cellular density in 

several tissues, including brain 115,116, breast 117, and bone marrow 118. Several research 

studies using breast tumor animal models 119 and human melanoma xenografts 120 have 

supported these findings. The ADCw also was shown to correlate with cellular pathology 

118. The concept that changes in the ADCw can reflect tumor therapeutic response was also 

supported by other studies in murine tumor models 121. Subtle variations in water content, 

optically detected, have also been show to relate to subtle changes in tumor cell density 

and edema, where reductions in tumor water content may represent diminished cellularity 

due to cell death 122. 

Over the last decade, in numerous studies with breast cancer patient receiving NAC, 

clinical DOI tools have found that the tissue concentration of water (H2O(%)) in tumors is 

important for treatment monitoring 31,33,35. For example, Soliman et al. showed that water 

decreased from 100% to 40.4% over 4 weeks of treatment in responders (n=5) compared 

to 84.6% in nonresponders (n=3) 33. We note here the reported H2O is the concentration of 

measured tissue water divided by pure water concentration (55.6 M). Thus, the reported 

water percentages are relative figures of merit compared to pure solutions of the substance. 

The value is not the measure of strict volume and doesn’t add up to 100% 33. The ability to 

quantify tissue water content also has significance for other conditions such as edema, 

burns, and wound healing 123,124. 
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These prior findings help demonstrate that water is an important prognostic biomarker for 

cancer. While hemoglobin absorption features span the VIS and NIR, most prior SFDI 

system utilize measurements below 850 nm 125,126. Water absorption features occur at 

wavelengths past this limit, with a prominent peak location at 970 nm (Fig 5.2). There are 

only a few prior reports where efforts were made to employ SFDI at water sensitive 

wavelengths 127–130, and these prior systems are expensive and lack portability due to the 

use of tabletop laser systems as illumination sources in the Short Wave Infrared (SWIR) 

region 129,130. To bridge this gap, in this work we developed an LED-based compact SFDI 

system that can measure water content as well as tissue hemodynamics, and thus improve 

on the scope and application of SFDI. The system will be referred to as Infrared-SFDI (i.e. 

IR-SFDI) in rest of the chapter.  

5.2 Materials and methods 

5.2.1 IR-SFDI Hardware 

There are three main components to IR-SFDI system: light source, method of spatially 

modulating the illumination field, and the detector 55. The specific components of the IR-

SFDI system were chosen to balance cost, and overall performance. A schematic of the 

system is shown in Fig. 5.1. The total cost of the IR-SFDI system was kept within $5000 

USD. 
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Figure 5.1: Schematic of the IR-SFDI system. CL: collimating lens, DCM: Dichroic mirror, 

AL: Achromatic lens, LP: Linear polarizers, M: Mirror, L: Lens, C: Camera. 

 
The system uses 4 high-powered near infrared LED on Metal-Core PCB with center 

wavelengths of 660 nm, 735 nm, 865 nm, and 970 nm purchased from Thorlab Inc. The 

first three wavelengths are very commonly used in the spectroscopic and diffuse optical 

community to measure tissue hemodynamics. It is the addition of the 970 nm LED that 

enables IR-SFDI to be sensitive to water. Although stronger absorption peaks for water lie 

in the SWIR region (near 1150, 1450, and 1900 nm), water has a smaller absorption 

features near 970 nm. Figure 5.2 shows tissue absorption spectra which shows that water 

has very low absorption below 900 nm, but peaks at 970 nm 131. 
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Figure 5.2: Water, lipid, oxyhemoglobin (HbO2) and deoxyhemogloin (Hb) absorption peaks 

in the VIS-NIR region.  

 

The system utilizes digital micromirror devices (DMD) to project patterns onto the 

sample. DMDs have an array of mirrors that can be individually addressed and tilted to 

direct and pattern the illumination field. The DMD chosen for IR-SFDI (LC4500, Keynote 

Photonics) is available as a small DMD chipset with a 0.45” WXGA DMD. The DMD 

controller is provided on a separate printed circuit board.  A pair of orthogonal linear 

polarizers was used in the illumination and imaging paths to reduce specular reflection 

from the sample surface 55.  

The camera used in the system (BlackFly-S BFS-U3-13Y3M-C, FLIR, Wilsonville, 

OR) is a 1280 X 1024 pixel, 10-bit, monochromatic CCD camera chosen because it is 

relatively low-cost and can easily interface with LabView. Additionally, it allows for low-

level control of the image acquisition which makes it possible to turn off automatic 
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corrections that might lead to nonlinear output. Although the camera only provided a 5% 

quantum efficiency at 970 nm LED, it will be shown that the camera, although low cost, is 

able to measure tissue absorption at this wavelength. 

5.2.2 IR-SFDI software: Image acquisition 

IR-SFDI was designed to make it easy to rapidly begin acquiring SFDI data. To that end, 

a LabView acquisition code was developed that will run out of the box with any camera 

supported by IMAQdx. The software has options for collecting multiple measurements, 

selecting wavelengths, choosing spatial frequencies, and allows users to choose the 

orientation of the spatially projected patterns, shown in Fig. 5.3. The Labview code controls 

LEDs through an Arduino, creates 1D sinusoidal pattern and projects that with the DMD, 

takes images with the camera and upon acquisition stores the SFDI images. Exposure time 

was kept within 50ms for each LED (660nm: 30ms, 735nm: 30ms, 865nm: 30ms, 970nm: 

50ms). Measurements were taken at DC (fx=0 mm-1) and 0.1 mm-1 spatial frequencies. 

Currently, the system field of view is 7.5 by 4.5cm. 

5.2.3 IR-SFDI data processing 

Data processing for IR-SFDI is in most cases was kept the same as SFDI measurements 

used in previous chapters, except for the calibration phantom and the use of an in-frame 

phantom. A 10% intralipid liquid phantom (10% lipid, 90% water) was used as calibration 

phantom for which optical properties were collected from the literature 132. Absorption and 

scattering of 100% water and 100% lipid were taken from literature 132,133. Like fine tuning 

described in section 2.2.7, here an additional 10% intralipid phantom (referred to as in-



107 
 

 

frame phantom) was used in the FOV during measurements. The measured calibrated 

reflectance (Rd) image was adjusted by a correction factor determined by the difference 

between the measured Rd of the 10% intralipid in-frame phantom and the expected Rd 

calculated from known optical properties found in the literature 132,133. 

Figure 5.3: IR-SFDI labview code for image acquisition and storage 1. The figure measured 

raw image of a 3D printed phantom in the field of view. 

 
5.3 Results 

5.3.1 LED power stability 

The LED optical output power can be unstable due to thermal effects and/or instability of 

the driving current. IR-SFDI utilizes heatsinks to stabilize the temperature of the LEDs, to 

account for overheating issues during longitudinal repeated measurements or long 
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exposure times. Both of these scenarios can lead to LED temperature fluctuations resulting 

in unstable light output. Figure 5.4 shows that the four LEDs used in the system-maintained 

good stability during 60 measurements over a 10 minutes period. Precision for the four 

LEDs, calculated as the standard deviation of the longitudinal measurements, were found 

as 0.046, 0.034, 0.133, and 0.33 mW respectively. 

 

Figure 5.4: Repeat power measurements every 10s for 10 mins for LEDs used in the 

system. 
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5.3.2 Reflected intensity 

 

Figure 5.5: A, Reflected intensity images for the 970nm LED acquired at the 3 phases. B, Line 

profile plots intensity vs. pixels. 

 

Figure 5.5A shows reflected intensity images for the 970nm LED acquired at the 3 phases. 

The line profile shown in Figure 5.5B shows that the projections at the 3 phases were 

implemented properly, with each phase having approximately equal amplitude and 

minimal shape distortion.  
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5.3.3 Demodulation 

Demodulation errors often occur with SFDI, and may be due to unstable illumination 

sources, non-linearity of projection patterns or camera sensitivity, and others. The 970 nm 

channel implemented here was challenging due to relatively low power of LED and the 

low quantum efficiency of the camera at this wavelength. Figure 5.6 shows successfully 

demodulated images at two 660 nm and 970 nm at two different spatial frequencies.  

Figure 5.6: Demodulated images at two different wavelengths at two different spatial 

frequencies. 
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5.3.4 Optical properties 

Figure 5.7 shows extracted optical properties (absorption and reduced scattering) for two 

LEDs, 865 and 970nm, measured from a 20% intralipid phantom. As expected, absorption 

at 970 nm is higher than at 865 nm due to the water peak at 970 nm.  

Figure 5.7: Extracted optical properties (absorption and reduced scattering) for two 

LEDs, 865 and 970nm, measured from a 20% intralipid phantom.  

 

5.3.5 In vitro intralipid testing 

Figure 5.9 shows measured absorption along with absorption fit for 10% and 20% intralipid 

phantoms. Due to very low absorption values at wavelengths less than at 970 nm, a portion 
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of the extracted optical properties were excluded from analysis due to unrealistic values. 

As expected, absorption is higher at 970 nm due to the water absorption peak at this 

wavelength. Scattering increased for the 20% phantom compared to the 10% phantom 

intralipid phantom due to higher scatterer density.  

 

Figure 5.8: Measured and spectral fits of absorption and scattering LEDs. 
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The absorption fit curves were generated by multiplying measured chromophore values 

with the 100% water and 100% lipid extinction spectra. Unfortunately, the measured 

absorption for the two different phantoms are not well discriminated in this case. 

5.4 Discussion 

In the last chapter of this thesis, we presented preliminary data collected from a new LED-

based, cost effective and simple IR-SFDI system. The goal of this new system was to add 

the capability of measuring water in tumors and other tissue locations. The 1D projection 

of sinusoids with an 970nm LED was properly implemented by the DMD. The three phase 

images of the reflected intensity showed that intensity along a line profile within field of 

view didn’t vary with phase, which is a critical factor in 3-phase demodulation. The 

extracted optical properties showed higher absorption and lower scattering at 970 nm 

compared to 865 nm, as expected. Spectral data collected from intralipid phantoms showed 

a higher measured scattering for 20% intralipid than 10% intralipid, as shown in Fig. 5.9, 

as expected. 

In terms of limitations, the accuracy plots showed that the measured absorption 

couldn’t separate 10% intralipid from 20% intralipid phantom, although the spectral shape 

of intralipid matched the expected shape. A number of issues may have caused the 

imperfect fitting of water and lipid, including limitations in the current phantom 

measurement setup or in the current inverse model, which has not yet been extensively 

tested for this wavelength range.   
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5.5 Conclusions 

 

The next steps in this project will be to improve absorption fitting for more accurate water 

and lipid concentration extractions. These is possibility to improve more on measurement 

accuracy by adding more LEDs in the VIS-NIR region. In future, this system will have 

multiple applications in our laboratory, including monitor changes in water and 

hemodynamics in small animal and/or human skin. 
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CHAPTER SIX 

Conclusions 

This final chapter summarizes the conclusions from this body of work and offers potential 

directions for related future work. 

6.1 Discussion 

SFDI is a wide-field Diffuse Optical Imaging (DOI) modality, capable of tracking the same 

optical metrics (absorption and scattering) measured using clinical DOI modalities and is 

well suited for preclinical oncology work. This work established the feasibility of using 

SFDI for frequent longitudinal monitoring of chemotherapy and targeted therapy efficacy 

in small animal oncology models. Following that, this work also improved SFDI optical 

property accuracy in subcutaneous tumor by introducing a new inversion model. This work 

later validated the SFDI optical and functional metrics in the context of cellular and 

molecular correlates and explored the treatment prediction ability of SFDI parameters 

earlier than tumor volume or improve total predictability in combination with tumor 

volume. Novel findings of this body of work is that SFDI scattering parameters solely, in 

a non-invasive and label-free manner, may track tumor volume changes by being sensitive 

to important tumor physiology such as apoptosis and proliferation. Although the scattering 

parameters were mostly unexplored in the context of treatment monitoring until now, 

findings of this work introduced these potential new optical markers for cancer to be tested 

in the clinic for breast and other tumor types with the clinical DOI tools. Another novelty 

of this work that the scattering a parameter can be combined with the tumor volume 

information to evaluate outcome of treatment response.  
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Lastly, this work described a custom light-emitting diode (LED) based SFDI 

system to acquire measurements in the VIS-NIR spectral region and measure tissue water 

content, referred to as IR-SFDI. The novelty of this system lies in proper intensity 

modulation and 3 phase demodulations of the 970nm LED and keeping the system cost 

within $5K. Overall, this work advances preclinical cancer treatment monitoring with 

SFDI. Upon successful clinical translation and validation, knowledge from this work may 

help clinical DOI tools provide better feedback in the application of treatment monitoring. 

6.2 Future directions 

Biological 

1. Explore if SFDI a and b parameter can track tumor volume changes in other 

subcutaneous preclinical tumor models 

2. Track tumor rebound post-treatment with a and b parameters in multiple preclinical 

tumor models 

3. Track tumor resistance post treatment with a and b parameters in multiple preclinical 

tumor models 

4. Adapt frequency and dosing of treatment in mice based on real-time feedback of SFDI  

5. Monitor tumor hemodynamics and water in subcutaneous preclinical tumor models 

using IR-SFDI 

Algorithmic 

1. A limitation of the two-layer LUT based inverse model is that it only accounted for 

skin as a single layer, whereas a more complex model might include separate epidermis, 

dermis, and hypodermis layers in addition to the tumor layer. A more complex layered 
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model might improve optical property extraction accuracy using the Gardner et al. 

method. 

2. Expand the scope of the two-layer LUT based inverse model to other tumor types 

and/or, by accounting the skin layer thickness and optical properties as free parameters.   

Technical 

1. Improve measurement accuracy and precision of IR-SFDI 

2. Expand scope of IR-SFDI and measure other endogenous markers by implementing the 

appropriate wavelengths in the system, including lipids (930nm, 1210nm) and collagen 

(1180nm) 

3. Design and develop IR-SFDI gen2 that can be portable 
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