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Abstract
Antimicrobial drugs have an important role

in controlling bacterial infectious diseases.

However, the increasing resistance of bacte-

ria to antibiotics has become a global health

care problem. Rapid determination of antimi-

crobial susceptibility of clinical isolates is

often crucial for the optimal antimicrobial

therapy. The conventional methods used in

medical centers for susceptibility testing are

time-consuming (>2 days). Two bacterial culture steps are needed, the first is

used to grow the bacteria from urine on agar plates to determine the species of

the bacteria (~24 hours). The second culture is used to determine the susceptibil-

ity by growing colonies from the first culture for another 24 hours. Here, the

main goal is to examine the potential of infrared microscopy combined with mul-

tivariate analysis, to reduce the time it takes to identify Escherichia coli suscepti-

bility to antibiotics and to determine the optimum choice of antibiotic to which

the bacteria will respond. E coli colonies of the first culture from patients with

urinary tract infections (UTI) were examined for the bacterial susceptibility using

Fourier-transform infrared (FTIR). Our results show that it is possible to deter-

mine the optimum choice of antibiotic with better than 89% sensitivity, in the

time span of few minutes, following the first culture.
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1 | INTRODUCTION

Although most of Escherichia coli strains are known as
harmless bacteria that are commonly found in the lower
intestine of endotherms, many E coli strains have been
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implicated in a broad range of human diseases that extend
from the gastrointestinal tract to extra-intestinal sites such as
the urinary tract, bloodstream and central nervous system. E
coli pathotypes cause much morbidity and mortality world-
wide [1, 2].

Urinary tract infections (UTIs) are considered to be the
most common bacterial infection, affecting 150 million peo-
ple each year worldwide [3, 4], and the incidence is espe-
cially high in the places that suffer from lower
socioeconomic status. UTIs occur four times more fre-
quently in females than males [3]. Various studies have
highlighted the importance of the medical and financial bur-
dens associated with UTIs [5]; it was reported that the
annual societal cost of these infections in the United States
is approximately 3.5 billion US dollars [3]. Moreover, many
patients with UTIs experience considerable impact related to
quality of life [6].Treatment of UTIs is also necessary to
reduce the risk of sequence to pyelonephritis [7].
Uropathogenic Escherichia coli (UPEC) is considered as the
most common causative agent for both uncomplicated and
complicated UTIs, since it constitutes 75% of these infec-
tions [8–12]. UPEC isolates have multiple implicated factors
that promote colonization of the bacteria and infection in the
urinary tract, such as toxins, fimbrial, adhesins and capsular
polysaccharides [13, 14]. Multiple resistance to antimicro-
bial agents is increasing quickly in E coli isolates, leading to
serious public health consequences, including increased
mortality and morbidity, and complications associated with
the therapeutic strategies for UTI [15, 16]. Uncontrolled use
of antibiotics is considered to be the leading factor in the rise
of multidrug resistance (MDR) in UPEC isolates [17]. UTI
disease causes several complex symptoms, which induce
physicians to begin experiential antibiotic treatments prior to
obtaining culture results because urine culture susceptibility
results take at least 48 hours [11, 18, 19]. Several studies
reported that the prevalence of MDR E coli causing UTIs is
increasing in Saudi Arabia [20], China [21], Japan [22] and
the United States [23]. Therefore, reducing the time for sus-
ceptibility testing would lead to more timely determination
of appropriate therapy and would reduce the emergence of
antibiotic resistance.

There are several methods for testing bacterial suscepti-
bility available today. These include the disk-diffusion
method, the minimum inhibitory concentration (MIC) E-test
and genotypic methods such as polymerase chain reaction
and DNA hybridization methods [24]. The disk-diffusion
test is the most common method used widely in clinical bac-
teriology labs. Although this method has advantages, like
low cost and efficiency, a significant disadvantage of this
method is that it is slow (requiring ~48 hours to obtain
results) [24]. The genotypic methods are expensive and are
not practical for routine clinical use [25].

Fourier-transform infrared (FTIR) microscopy is a pow-
erful tool frequently used for chemical analysis, given its
potential to provide detailed information on the chemical
composition of materials at the molecular level [26]. It has
been used in various disciplines, including material science,
biochemistry and biomedical science due to the benefits of high
sensitivity (SE), rapidity, simplicity and low cost [26, 27]. This
technique has been proven to be sensitive for the identification
of cancer cells and cancers [28–33], stem cells [34], virally
infected cells [35, 36] and microorganisms [37].

In the field of bacteriology, FTIR spectroscopy has been
successfully applied for detection, identification and classifi-
cation of bacteria belonging to different species, particularly
foodborne pathogens such as Listeria [38], E coli and Sal-
monella [39], Staphylococcus [40], Yersinia [41] and Bacil-
lus [42]. Additionally, FTIR spectroscopy has a potential as
a diagnostic tool in agricultural research, and has been used
for classification, identification and discrimination of fungal
isolates [43–45]. These studies have clearly indicated that
FTIR microcopy, combined with multivariate analysis
methods, has great potential for the identification and detec-
tion of biological samples [31]. Recently, we reported on the
use of FTIR microscopy for assessing the susceptibility of
bacteria to several antibiotics [46, 47]. In another previous
study, FTIR-ATR (attenuated total reflection) was also used
for the classification of E coli susceptibility into sensitive
and resistant to cephalothin, utilizing classification by artifi-
cial neural network [48].

In this research, we continued evaluating the potential of
the FTIR microscopy technique in tandem with multivariate
analyses for rapid detection and identification of resistance
of E coli isolates to all the antibiotic that are commonly used
in the Soroka University Medical Center (SUMC), some of
these being new and not previously published: co-
trimoxazole, piperacillin/tazobactam, fosfomycin, amikacin,
meropenem and ertapenem. Furthermore, we include in this
manuscript updated data of E coli isolates; 791 samples
compared to 496 samples used in the previously published
results for ampicillin, cefuroxime, ceftriaxone, ciprofloxacin,
sulfamethoxa, trimeth, amoxicillin clavulA, gentamicin,
ceftazidime, nitrofurantoin, nalidixic acid and ofloxacin.
Increasing the number of samples shows that the earlier
classification results are reproducible, and that the method is
rigorous, providing another step toward demonstrating proof-
of-concept of the translational potential of this technique.

2 | MATERIALS AND METHODS

2.1 | Bacterial samples collection

Bacterial samples of E coli derived from patients with UTIs,
from midstream specimens of urine, were examined by FTIR
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microscopy for their susceptibility to all the antibiotics com-
monly used to treat these infections at SUMC. This study
was carried out under the approval of the Institutional Ethi-
cal Helsinki Board (reference number 0398-15-SOR). These
antibiotics are ampicillin, cefuroxime, ceftriaxone, ciproflox-
acin, sulfamethoxa, trimeth, amoxicillin clavulA, gentami-
cin, ceftazidime, nitrofurantoin, nalidixic acid, ofloxacin,
cotrimoxazole, piperacillin/tazobactam, fosfomycin, amikacin,
meropenem and Ertapenem.

A total of 791 urine samples were obtained from 791 dif-
ferent patients with E coli UTI and sent to the bacteriology
laboratories in SUMC for identification of their species by
matrix-assisted laser desorption/ionization-time-of-flight
(MALDI-TOF MS) methods and for determination of sus-
ceptibility to antibiotics by MIC. These samples were sup-
plied to us as colonies on MacConkey agar plates (first
growth) from the bacteriology laboratories in SUMC.

2.2 | Sample preparation for FTIR
microscopy measurements

Samples were taken directly from bacterial colonies on the
plates and placed on zinc selenide slides using a sterile bac-
teriological loop under sterile conditions, dried at room tem-
perature for ~15 minutes and examined by FTIR
microscopy.

2.3 | FTIR measurements

FTIR microscopy was performed using a liquid-nitrogen-
cooled, mercury-cadmium-telluride (MCT) detector, coupled
to an FTIR spectrometer (Nicolet-i10 Infrared Microscope).
To achieve a high signal-to-noise ratio (SNR), 128 co-added
scans were collected in each measurement in the 600 to
4000 cm−1 wavenumber region in the transmission mode,
with a spectral resolution of 4 cm−1. These acquisition
parameters enable us to obtain high quality and reproducible
spectra.

2.4 | Spectral preprocessing

Various manipulations of the spectra must be performed to
enhance the spectral features, facilitate spectral interpretation
and analysis, and enable comparison between spectra from
cultures with different thicknesses [26]. The acquired spectra
were manipulated as follows: (a) atmospheric compensation
was applied to eliminate influences of CO2 and air humidity.
(b) The spectra were smoothed using Savitzky-Golay algo-
rithm with 13 points. (c) The spectra were cut into two
regions, 900 to 1800 and 2800 to 3010 cm−1, to exclude the
water region 3010 to 4000 cm−1 and the region 1800 to
2800 cm−1 where there are no vibrational modes in

biomolecules. (d) The spectral segments were then baseline-
corrected using the concave rubber-band method [49], with
64 consecutive points and five iterations. (In using the con-
cave rubber-band correction method, we divided the spec-
trum into 64 equal size ranges to construct the baseline.)
(e) For absorbance spectra, the minimum ordinate-value of
the ranges is determined. A polynomial function is fitted
according to these minimum points. (f) Then we subtract
this function from the spectrum to extract the baseline-
corrected spectrum. This procedure was repeated for each
iteration. (g) The corrected spectra were then normalized
using vector normalization followed by offset correction.
Using vector normalization, the average intensity in the
spectral range is calculated and subtracted from the spectrum
itself, and then the resulting spectrum is treated as vector that
is normalized to unity.

Normalization of spectra eliminates the path-length varia-
tion [45, 50] and is a prerequisite to facilitate advanced sta-
tistical analysis of bacterial spectra [51]. All spectral
manipulations were performed using the standard tools of
(OPUS software version 7, Bruker, Germany).

2.5 | Statistical analysis

The multidimensional classification was performed using
linear support vector machines (SVM) [52, 53]. Leave-one-
out cross-validation (LOO) was used to estimate the success
rate. Using LOO, all the spectra except one are used to train
the system; the remaining spectrum's type is classified and
compared to the known category (based on standard disc-
culture methods). The LOO procedure is repeated for every
individual sample spectrum, to estimate the statistical accu-
racy. It is important to mention that each spectrum included
in the database represents a different isolate, which was
obtained from different patient; thus leave-one-spectrum-out
means leave-one-isolate-out.

The sensitive bacteria were defined as the “positive” state
while the resistant bacteria were defined as the “negative”
state in our analysis. The performances of the preliminary
tests of the developed classifier were described using the fol-
lowing medical statistical terms: Specificity (SP) is defined
as the probability to determine a known resistant isolate
(using MIC) as resistant (by FTIR); and SE is defined as the
probability to determine a sensitive isolate (using MIC) as
sensitive (by FTIR). Accuracy (Acc) is defined as the com-
bined probability to identify correctly resistant isolates as
resistant and sensitive isolates as sensitive. Positive-
predictive value (PPV) is defined as the probability that of
the classifier correctly predicting an isolate to be sensitive to
a specific antibiotic, while negative-predictive value (NPV)
is defined as the probability of the classifier correctly deter-
mining an isolate to be resistant to a specific antibiotic.
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2.6 | Ensemble analysis

Based on the fact that a number of antibiotics are available,
and that the important issue is to help the physician in
choosing one antibiotic that is most likely to work against
the specific bacterial sample, an ensemble strategy of analy-
sis was developed. The ensemble analysis is based on the
combination results of a few antibiotics that have the best
performance, and the main point is to choose one that has a
high confidence level to treat the E coli isolate.

In the ensemble analysis, we ranked how sensitive a par-
ticular bacterial sample was to each antibiotic tested on
it. This was accomplished by sorting in descending order the
available antibiotics for a particular sample, based on the
confidence levels obtained from each antibiotic's classifier.
As a reminder, the confidence level output by each classifier
provides a measure of how likely a sample is to be sensitive
to a specific antibiotic. Thus, the higher the value of the con-
fidence level, the higher the likelihood that the sample is
sensitive to that particular antibiotic. Conversely, if, after
ranking all available antibiotics, the highest ranking has a
confidence level of 0.5 or less, it would mean that the sam-
ple is resistant to all those antibiotics.

In order to measure the performance of this type of analy-
sis, we redefined SE and SP in this context. This is what is
meant by “modified sensitivity and specificity.” Ensemble
SE is the probability of correctly identifying one (or more)
“sensitive” antibiotic(s) from the available ones, based on
the classical method gold standard. Ensemble SP is defined
as the probability that the sample is determined to be resis-
tant to all the available antibiotics that are also determined to
be resistant by MIC.

3 | RESULTS

3.1 | Infrared absorption spectra of E coli
bacteria

In this work, 791 isolates of UPEC were obtained from the
microbiology lab, with all the information regarding their
susceptibility to the different antibiotics as determined by
MIC assay. These samples were analyzed using FTIR
microscopy, combined with SVM classification to determine
their susceptibility.

A representative infrared absorption spectrum of one of
the E coli isolates after spectral manipulation is shown in
Figure 1, for the high-wavenumber (2830-3000 cm−1) and
low-wavenumber (900-1790 cm−1) regions.

The centroids of the major infrared absorption bands are
labeled in the plot. These bands are attributed to the various
vibrational modes of the different biomolecules that com-
prise the examined E coli bacterial samples. The absorption-
bands centered at ~1079 cm−1 are mainly due to nucleic

acids. Proteins are the main contributors to the absorption
bands in the range 1590 to 1727 cm−1; fatty acids are the
main contributors to the absorption bands centered at
1402 cm−1; and the absorption bands in the range 900 to
1200 cm−1 are mainly due to carbohydrates. Table 1

FIGURE 1 A representative FTIR absorption spectrum of an
Escherichia coli isolate after manipulation in two regions: high
wavenumber region (2830-3000 cm−1) and low-wavenumber region
(900-1800 cm−1)

TABLE 1 Assignments of the functional groups associated with
major vibrational bands in mid IR spectra of bacteria

Wavenumber
cm−1

Molecular vibrations of functional groups
and biomolecule contributor

2955 C-H asymmetric stretching of -CH3 in fatty
acids

2930 C-H asymmetric stretching of >CH2 in fatty
acids

2870 C-H symmetric stretching of -CH3 in fatty acids

2850 C-H symmetric stretching of >CH2 in fatty
acids

1739 >C=O stretching of lipid esters

1590-1727 Amide I band components of proteins

1655 Amide I of α-helical structures of proteins

1637 Amide I of β-pleated sheet structures of proteins

1480-1590 Amide II band of proteins

1452 C-H deformation of >CH2 in lipids proteins

1402 C=O symmetric stretching of COO- group in
amino acids, fatty acids

1310-1240 Amide III band components of proteins

1243 P=O asymmetric stretching of phosphodiesters
in phospholipids

1200-900 C-O-C, C-O dominated by ring vibrations in
various polysaccharides

1079 P=O symmetric stretching in DNA, RNA and
phospholipids
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summarizes the functional groups associated with major
vibrational bands in the mid-IR of bacteria that appear in
Figure 1 [27, 37, 54–59].

3.2 | The reproducibility of the spectra

The differences among the spectra acquired from sensitive
and resistant bacterial isolates are subtle; thus, it was impor-
tant to have high a SNR and highly reproducible measure-
ments in order to classify them with reasonable accuracy.
For these reasons, the transmission mode was used to per-
form the measurements with 128 scans. At least 16 spectra
from different sites on each sample were measured to exam-
ine the reproducibility of the spectra (Figure 2) and were
averaged to increase the accuracy. The average of these
spectra was used as the representative spectrum of each sam-
ple in the analysis. As can be seen from Figure 2, the spectra
are almost overlaid, illustrating the high reproducibility of
the measurements.

3.3 | FTIR spectra of different sensitive and
resistant E coli isolates to the tested antibiotics

Figure 3 represents the spectra of 20 different isolates of E
coli that were found to be variously sensitive or resistant to
piperacillin/tazobactam. It can be seen that the spectra are
similar, with significant overlap, but with a significant
degree of variation of certain spectral components.

3.4 | Multivariate analysis

Advanced computational methods were used to analyze the
pretreated spectra, and classify them based on the sample's
susceptibility, as resistance or sensitive to a specific

antibiotic. The classification was based on the small spectral
differences resulting from the outcome of bacterial isolate's
mutations, which are associated with the development of
resistivity.

Given that these spectral changes associated with resis-
tance to a specific antibiotic are subtle, statistical and multi-
variate analysis methods were used to develop a diagnostic
algorithm based on multidimensional pattern-
recognition/machine learning, enabling us to classify the
spectra. As examples, in Figure 4, show the average spectra,
in the low-wavenumber region, of the different E coli iso-
lates, based on their susceptibility to different antibiotics:
Cotrimoxazole (a), Piperacillin/tazobactam (c), Ceftriaxone
(e) and Ceftazidime (g) are presented. The resulting receiver
operating characteristic (ROC) [60] curves for these antibi-
otics are shown respectively in Figures 4b,d,f,h.

The ROC curves demonstrate graphically the accuracy of
the tests (the probability for correct determination of the
tested samples as resistant or sensitive), quantitatively repre-
sented by the area under the curve (AUC) of the ROC plot.

Due to the high similarity among the spectra of the differ-
ent E coli isolates regardless to their susceptibility to antibi-
otics, our classification problem is binary, by which the
spectra should be differentiated into resistant or sensitive
spectra to a specific antibiotic. For optimization of the classi-
fier parameters, the LOO validation approach was used.

The classification results of the developed classifiers for
the examined antibiotics are summarized in Table 2.

All the classification results that appear in Table 2 were
derived using different classifiers for each of the examined anti-
biotics; thus, each has its own performance statistics in the
dataset. An important issue is the confidence level of the

FIGURE 2 Sixteen IR microscopic absorbance spectra of one
Escherichia coli isolate after preprocessing in the region 900 to
1800 cm−1

FIGURE 3 Infrared absorption spectra of Escherichia coli
isolates sensitive (10 spectra) and resistant (10 spectra) to
piperacillin/tazobactam in the region 900 to 1800 cm−1 after spectral
manipulations
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FIGURE 4 As exemplary for some of the investigated antibiotics, the average Escherichia coli IR spectra grouped based on the isolate
susceptibility to (A) Cotrimoxazole, (C) Piperacillin/tazobactam, (E) Ceftriaxone and (G) Ceftazidime. The resulting ROC for classifying the
bacterial samples based on their susceptibility to the same exemplary antibiotics respectively are shown in (B), (D), (F) and (H). The insets show
detail of some of the spectral features (for E coli and for this antibiotic) that lead to the classification
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determination of an isolate as sensitive or resistant. The confi-
dence level is related to the “distance” of the spectral feature
values of the sample from the multidimensional class boundary.

Most of the misclassified isolates are near the boundary;
thus, the confidence level of the classification for a specific
sample may be high for one antibiotic and low for another.
The ensemble analysis was carried out based on identifica-
tion of an effective antibiotic, when N antibiotics exist.

As examples:
SE (1/1)—the probability of identifying the top-ranked

antibiotic, when the top-ranked antibiotic is effective as
determined by MIC. From a clinical perspective, in this case
the performance achieved would be based on administering
only the top-ranked antibiotic.

SE (1/2)—the probability of identifying at least one of
the best two ranked antibiotics as effective when the top two
are effective as determined by MIC. From a clinical perspec-
tive this case the performance achieved would be based on
administering both top-ranked antibiotics.

SE (at least 1) measures the SE in correctly stating that
the patient is sensitive to at least one antibiotic from the
available ones. It does not, however, describe the perfor-
mance of choosing a specific antibiotic. In a practical set-
ting, this result lets you know whether your pool of available
antibiotics has an antibiotic that can work or whether you
need to look for other antibiotic.

Using this novel ensemble analysis, the individual classi-
fiers were optimized for either Acc, or for PPV. The term
“weighted” means that the classifier was optimized for either
Acc or PPV, when the incidence of the SE and resistance are
not equal and are weighted by the fraction of sensitive sam-
ples for a given antibiotic (a priori probability).

4 | DISCUSSION

FTIR microscopy is a rapid and powerful tool for the detec-
tions of small biochemical changes in cells and tissues [61].
Previous studies have used this technique successfully for
taxonomic classification of different bacterial and fungal
strains resulted from minor molecular changes [38–40, 42,
43, 62, 63]. Bacterial susceptibility to antibiotics may be
manifested in minor molecular and biochemical changes in
the bacterial cells [64]. Recently, Lechowicz et al, reported
that FTIR microcopy combined with multivariate analysis
methods has a great potential for classification UPEC strains'
susceptibility to cephalothin [48]. In their study, they tested
only one antibiotic and estimated their results for 109 sam-
ples by using the ATR/FTIR technique. Although they had
high success rate, the number of samples used is deemed to
be low, since multivariate analysis generally requires a large
number of samples to yield reliable statistics.

MALDI-TOF mass spectrometry (MS) is one of the new
methods, and many studies consider it to be an effective
method for rapid testing of antibiotic susceptibility [65], and
even for direct identification of bacteria causing extreme
UTIs [66]. This technique depends on a database of known
mechanisms of resistance; therefore, it is not powerful for
the new, unknown mechanisms of resistance, and it cannot
estimate the new resistant isolates. In addition, this technique
may miss identification of mutant proteins with similar
molecular weight to other cellular proteins.

In our previous publications, we reported that FTIR
microscopy with multivariate analysis by SVM is a potential
technique for rapid determination of UPEC susceptibility to
several antibiotics [46, 47]. In this study, we have extended
our research, examining the potential of this method for

TABLE 2 Classification performance for Escherichia coli

E coli Resistant spectra Sensitive spectra SE SP Acc PPV AUC

Ampicillin 530 258 0.67 0.56 0.60 0.43 0.65

Cefuroxime 249 522 0.77 0.69 0.75 0.84 0.80

Ceftriaxone 221 470 0.76 0.71 0.75 0.85 0.80

Ciprofloxacin 219 482 0.83 0.73 0.80 0.87 0.84

Sulfamethoxa Trimeth 142 227 0.58 0.48 0.54 0.64 0.55

Amoxicillin ClavulA 119 529 0.70 0.55 0.67 0.87 0.66

Gentamicin 125 662 0.69 0.65 0.69 0.91 0.71

Ceftazidime 218 222 0.74 0.73 0.73 0.74 0.80

Nitrofurantoin 445 17 0.88 0.88 0.99 0.22 0.91

Nalidixic acid 73 34 0.81 0.82 0.91 0.67 0.89

Ofloxacin 80 25 0.87 0.92 0.97 0.70 0.94

Cotrimoxazole 269 514 0.71 0.61 0.68 0.81 0.68

Piperacillin/tazobactam 28 296 0.73 0.5 0.72 0.95 0.59
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successful determination of UPEC susceptibility to further
antibiotics, to include all the antibiotics commonly used to
treat these infections at SUMC. Some of these antibiotics are
relatively new and are not prescribed frequently by physi-
cians in clinics; thus, most of the E coli samples are sensitive
to them: fosfomycin (662 sensitive and 6 resistance),
amikacin (394 sensitive and 1 resistance), meropenem
(419 sensitive and no resistance) and ertapenem (141 sensi-
tive and no resistance). Unfortunately, it is a matter of time
until E coli strains that are resistant to these new antibiotics
will develop. Due to this situation, these antibiotics were
excluded from our machine-learning analysis up to this point
of time. We performed the analysis on two new antibiotics,
cotrimoxazole and piperacillin/tazobactam, using 791 sam-
ples. For the other antibiotics (ampicillin, cefuroxime, ceftri-
axone, ciprofloxacin, sulfamethoxa, trimeth, amoxicillin
clavulA, gentamicin, ceftazidime, nitrofurantoin, nalidixic acid
and ofloxacin) we performed new analysis to incorporate the
larger number of the tested samples. The results revealed that
when the number samples was increased from 495 samples to
791, the performance of our analysis method slightly decreased
(Table 3) compared to our previous published results [46, 47].
In this study, a linear classifier was used to avoid overfitting.
The classification results obtained using LOO are over-
optimistic, since the training and testing datasets are statistically
dependent. Testing a classification algorithm directly on naïve
data (validated by classical tests) will require larger datasets, but
increasingly sophisticated classifiers can be tested.

Thus, this study may be considered as an initial step
toward providing proof-of-concept of the translational poten-
tial of this technique in clinical management of E coli bacte-
rial infections in UTI.

5 | CONCLUSIONS

1. Infrared spectroscopy combined with machine-learning
classification algorithms for pattern recognition is a
powerful tool to determine the susceptibility of E coli
bacteria to commonly used antibiotics.

2. The method can help physicians with a high confidence
level to choose one or more antibiotics that are effective
against the infecting E coli species, in time span of
~30 minutes, following the first culture.

3. Enlarging the database will enable using a nonlinear
classifier that may improve the performance of the
method.
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