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Bacterial resistance to antibiotics is becoming a global health-care problem. Bacteria are involved in many

diseases, and antibiotics have been the most effective treatment for them. It is essential to treat an infec-

tion with an antibiotic to which the infecting bacteria is sensitive; otherwise, the treatment is not effective

and may lead to life-threatening progression of disease. Classical microbiology methods that are used for

determination of bacterial susceptibility to antibiotics are time consuming, accounting for problematic

delays in the administration of appropriate drugs. Infrared-absorption microscopy is a sensitive and rapid

method, enabling the acquisition of biochemical information from cells at the molecular level. The com-

bination of Fourier transform infrared (FTIR) microscopy with new statistical classification methods for

spectral analysis has become a powerful technique, with the ability to detect structural molecular

changes associated with resistivity of bacteria to antibiotics. It was possible to differentiate between iso-

lates of Escherichia (E.) coli that were sensitive or resistant to different antibiotics with good accuracy. The

objective computational classifier, based on infrared absorption spectra, is highly sensitive to the subtle

infrared spectral changes that correlate with molecular changes associated with resistivity. These changes

enable differentiating between the resistant and sensitive E. coli isolates within a few minutes, following

the initial culture. This study provides proof-of-concept evidence for the translational potential of this

spectroscopic technique in the clinical management of bacterial infections, by characterizing and classify-

ing antibiotic resistance in a much shorter time than possible with current standard laboratory methods.

1. Introduction

The intensive use of antibiotics in both public health and
animal husbandry has promoted bacterial resistance to
antibiotics,1–4 to the extent that some bacteria have developed
resistance to virtually all of the commonly used antibiotics.1

Bacterial resistance to antibiotics may be conferred by the
exchange of chromosomal or genetic material via plasmids
and transposons in the bacteria.1,5,6 This can cause molecular

changes in the host genome that may lead to the expression of
specific enzymes that can attack and disassemble the anti-
biotic or that may cause the targeted enzyme (RNA poly-
merase 1, for example) to be stable when exposed and there-
fore resistant to the antibiotic. For example, specific mutations
that effect changes in the targeted enzyme can essentially
change its identity without altering its activity.7 Indeed,
hundreds of resistance genes have been characterized in both
Gram-negative and Gram-positive species.8,9 Most of these
mutations have developed as a result of repeated unnecessary
use of these antibiotics, particularly for a treatment time that
is insufficient to eliminate all of the bacteria. The end result of
this scenario is a return to the pre-antibiotics period, such that
many routine infections will be difficult to treat.10 Moreover,
simple surgeries, organ transplantation, and cancer chemo-
therapy are also endangered by the increase in bacterial resist-
ance to antibiotics.11

The early detection and identification of bacterial suscepti-
bility to antibiotic enables the clinician to select the most
effective antimicrobial agents to target the pathogen. Currently
used procedures for determining bacterial resistance to anti-
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biotics are divided between phenotypic and genotypic
methods. Classical phenotypic methods are routinely used in
hospitals, and they include broth microdilution12,13 and
manual methods, such as disk diffusion and gradient
diffusion.14 Each method has its advantages and limitations.
The antimicrobial gradient method is expensive,15 whereas the
disk diffusion test is simple, practical, and well standardized,
but its main disadvantages are a lack of mechanization or
automation, the non-quantitative result and the long times
required to obtain results.

These classical phenotypic methods rate the bacterium as
sensitive or resistant to a specific antibiotic, or as exhibiting
intermediate susceptibility. For a resistant or intermediate
susceptibility test result, the physician will seek an alternative
antibiotic treatment, if one exists. By the conservative
approach, the test classification combines resistant and inter-
mediate responses as one category. In the present study, we
adopted this conservative approach.

Using the classical methods, the time that elapses between
the receipt of patient material and the presentation of identifi-
cation results to the clinician is too long (at least 48 hours).
During this period of time, physicians typically begin treat-
ment with broad-spectrum antibiotics. If the time between
bacterial identification and a diagnosis of antibiotic resistance
could be shortened, patients can be treated with the appro-
priate antibiotics, which will significantly reduce the poor
health outcomes and costs associated with inadequately
treated infectious diseases.16

Genotypic methods for rapid identification of bacteria for
clinical diagnostic microbiology rely on the new application
of existing technologies.17,18 Although molecular methods
are used widely in academia and in reference laboratories,
and while they have a high potential to be used as valuable
infection control tools, they are not commonly used in
clinical diagnostic laboratories, due partially to their high
costs.19

In recent years, new developments in the applications
of optical technologies to biomedical problems has
provided important new insights into the world of micro-
organisms. Infrared (IR) microscopy has advanced signi-
ficantly, with improved spectral and spatial resolutions,
enabling the acquisition of unprecedented biochemical
information at the molecular level for both prokaryotic and
eukaryotic cells.20–25 More relevant to clinical laboratory
applications, microscopic implementation of Fourier trans-
form infrared (FTIR) spectroscopy, with its ability to
provide detailed information on the spatial distribution of
chemical composition at the molecular level, has emerged as a
powerful tool for biochemical analysis.26 FTIR can distinguish
a wide range of biomolecules based on spectral signatures
in the mid-IR absorption range: i.e., 600–4000 cm−1

(wavenumbers).
Matrix Assisted Laser Desorption/Ionization (MALDI) Time

of Flight Mass Spectrometry (TOF-MS) is a spectroscopic
method that is used for taxonomic identification and rapid
characterization of bacteria at the genus, species, and isolate

level.27 Despite the demonstrated value of MALDI-TOF,
species like Escherichia coli, Shigella spp., some strains of
Stenotrophomonas maltophilia, Streptococcus pneumonia or
Propionibacterium acnes, and members of the S. oralis/mitis
group can be misidentified by MALDI-TOF MS because of the
low rate of differences in their ribosomal protein sequences.
Nonetheless, the detection of the bacteria at the species level
using MALDI-TOF is becoming a routine test at some hospitals
(such as Soroka University Medical Center (SUMC), in Beer
Sheva, Israel).

While using MALDI-TOF for the identification of bacteria at
the species level has become a routine test, it is a long way
from being applied for detection of antibiotic resistance of
bacteria. Recently a few studies have been carried out to assess
the potential of detecting antibiotic resistance of bacteria by
MALDI-TOF.28,29 Although Sparbier et al. reported some
success in the detection of bacterial resistance to β-lactam
antibiotics, their analysis was based only on nine strains.29

Also, conflicting results have been published regarding
the ability of mass spectrometry to distinguish between
methicillin-susceptible and resistant S. aureus.30–33

Given the considerations presented here, it remains impor-
tant and worthwhile to search for an appropriate method for
rapid and reliable detection and identification of antibiotic-
resistant bacteria. As stated above, IR spectroscopy is one of
the most promising techniques to be exploited for its potential
to rapidly detect and identify resistant bacteria.

A range of disciplines, including medicine, materials
science, forensics, biochemistry, biomedical science, and
geochemistry, with both basic and applied research goals,
employ IR spectroscopy.23,26,34–43 The biomolecular com-
ponents of the cell yield characteristic spectra that provide
rich structural and functional information.26,44,45 This
includes the demonstrated utility of IR spectroscopy to
distinguish the genotypic and phenotypic changes
that accompany tumorigenic transformation of cells to
cancer,48,55 changes that are similar to those related to devel-
opment of antibiotic resistance. Our previous studies have
shown that IR spectroscopy can detect diseases in the early
phases of development or cell transformation at a stage when
cell morphology is still normal.41,42 We also demonstrated
the use of FTIR spectroscopy to classify Phytophthora infestans
isolates into mefenoxam resistant and non-resistant types,
with 95% specificity and 88% sensitivity.46 In another
study,47 we used IR spectroscopy with principal component
analysis (PCA) and linear discriminant analysis (LDA) to
classify 35 isolates of Colletotrichum coccodes fungus into
eight vegetative compatibility groups (VCGs), with high
success rate. Based on our encouraging results in previous
studies,36 in this study bacterial samples were classified
according to their susceptibility to antibiotics using this
spectroscopic technique.

Despite the great promise shown by IR-spectroscopy, its
true potential in routine clinical diagnosis has not been estab-
lished. The present work thus aims to provide proof-of-concept
of the translational potential of this underexploited spectro-
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scopic technique in objective clinical identification of bacterial
susceptibility to antibiotics.

2. Materials and methods
2.1 Identification of patient bacterial samples

Specimens of de-identified patients were provided by the
microbiology laboratory at SUMC under the approval of the
Institutional Review Helsinki Board. Samples were grown over-
night on selective agar plates at 24 °C. Pure bacterial colonies
were examined by classical methods, for species type
(MALDI-TOF) and susceptibility (disk diffusion) to a number
of antibiotics. In addition, small amounts from the same colo-
nies were sampled by bacteriological needle and placed on a
zinc–selenium slide (transparent to IR radiation), air dried for
15 min at room temperature, and then examined by FTIR
microscopy.

2.2 FTIR measurements

Because the spectral changes in the bacteria associated with
the development of resistivity to antibiotics are subtle, spectra
with a high signal-to-noise ratio (SNR) are required. The
spectra were therefore obtained using the transmission mode,
which is known to give high SNR (compared to other IR
sensing techniques), and measured with a cooled mercury
cadmium telluride (MCT) detector. Data were collected at
4 cm−1 spectral resolution from 600 to 4000 cm−1. For the ana-
lysis, the range of 900 to 1800 cm−1 was used, because studies
have shown that this spectral range provides the most infor-
mation about cell activity and proliferation.36,48

2.3 Spectral manipulation

All spectra were manipulated using commercial OPUS 7 soft-
ware (Bruker, Germany). First, the spectra were smoothed
using a Savitzky–Golay algorithm with 13 points. Then the
spectra were cropped to the range 900–1800 cm−1, and base-
line correction was employed using the Concave Rubber Band
method with 64 points and five iterations.49,50 The spectra
then were normalized using the Vector Normalize method,

and the minima were shifted to zero using Offset normaliza-
tion. Using Vector normalization, we subtract the intensity
average of the whole spectral range from the spectrum itself.
The resulting spectrum is normalized to 1.0.

2.4 Data analysis

The computational classifiers and machine learning algor-
ithms were developed in our laboratories, based on method-
ologies developed for classification of optical spectroscopy at
visible wavelengths.51 The obtained IR spectra were used to
train classifiers and test their performances.

A variety of statistical tools (including sequential forward
feature selection and principal component analysis) were used
to extract spectral features, from the high-dimensionality
spectra, for the training.

All spectra were pre-processed prior to analysis. The spectra
were then normalized to unit area, to facilitate analysis of spec-
tral shape, independent of relative intensities. Additionally,
the spectra were down sampled by a factor of two to further
smooth the signal. To classify measured spectra, we developed
a diagnostic algorithm based on multidimensional pattern-
recognition/machine learning. Given the high-dimensional
nature of the data, we used a framework consisting of dimen-
sionality-reduction followed by classification. Sequential floating
forward selection (SFFS) was used for dimensionality-
reduction,52 followed by multidimensional classification using
linear support vector machines (SVM).53,54 For a given antibiotic,
the diagnostic algorithm was designed to distinguish between
spectra found to be sensitive to the antibiotic from spectra that
were found to be resistive, based on the gold standard. Leave-
one-out cross-validation was used to optimize classifier para-
meters and obtain classification performance estimates.

3. Results

In the work reported here, we investigated 496 different
isolates of E. coli. These isolates were identified for their
species using MALDI-TOF and classified for their susceptibility
as resistant or sensitive, for a range of specific antibiotics

Table 1 Bacterial susceptibility preliminary results for bacterial susceptibility of ten isolates of E. coli (as examples) using phenotypic disk diffusion
method for six different antibiotics

Isolate numbers as they
appear in the medical files Ampicillin

Antibiotics

Cefuroxime Ceftriaxone Ciprofloxacin
Sulfamethoxa
Trimeth

Amoxicillin
ClavulA

848430431 R R R R R S
314205 R S S R
314206 R S S S
314203 R S S R
848445709 S S S S S S
848429823 R S S S S S
848461277 R S R S S R
314133 S S S S
848441653 R S R S R S
315050 S S S S
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using the phenotypic disk diffusion method. As an example,
we list the details of ten of these isolates and their classifi-
cation results for six different antibiotics in Table 1.

Fig. 1a shows the infrared absorption spectrum of one of
the E. coli isolates included in this research, before spectral
manipulation. The main spectral features in the high wave-
number region (2800–3200 cm−1) are the bands detected at
2859 and 2926 cm−1. These bands correspond mainly to phos-
pholipids absorbance.55 Water absorbance bands in this
region were excluded from the spectra as part of the analysis
procedure. The main features in the low wavenumber region
(715–1800 cm−1), after spectral manipulation, are the amide
I and amide II absorption bands with centroids at 1654 cm−1

and 1543 cm−1, respectively (Fig. 1b).56 A large absorbance
band at 1080 cm−1 is mainly attributed to carbohydrate and
nucleic acid vibrations. The centroid of the amide III band is
detected at 1238 cm−1. The glycogen C–O stretching vibration
is detected at 1034 cm−1.55,57 The centroids of the absorption
bands were determined using second-derivative spectra.

At least 16 spectra of each sample were measured, and the
average spectra were used for analysis to increase the accuracy.
Fig. 2 shows an overlay of ten spectra that were acquired from
different sites of the same bacterial sample, as a way to
examine the reproducibility of the spectra. As can be seen

from the figure the spectra closely overlay each other, demon-
strating good reproducibility.

The averages of spectra representing twenty different iso-
lates of E. coli that were found to be sensitive or resistant to
ampicillin are plotted in Fig. 3. As can be seen from the figure,
the spectra are similar and overlapped, but with a significant
degree of variation. The spectra of the 496 different isolates of
E. coli that were examined in this study are also similar,
exhibiting subtle variations in shape and intensity of various
spectral features, as shown in Fig. 3, a scenario that dictated
our use of sophisticated multivariate and statistical methods
to achieve a good level of classification.49

To classify FTIR spectra, we developed a diagnostic algori-
thm based on multidimensional pattern-recognition/machine
learning. Given the high-dimensional nature of the data, we
used a framework consisting of dimensionality-reduction
(feature selection),52 followed by multidimensional classi-
fication using linear support vector machines (SVM).53,54 We
considered a binary classification problem with spectra from
isolates being grouped based on susceptibility, to a specific
antibiotic, as resistant or sensitive.

Fig. 1 (a) IR absorption spectra in the range 675–4000 cm−1, of E. coli
before manipulation. The main features and their assignments are
labeled in the figure. (b) IR average spectra of E. coli, in the fingerprint
region (675–1780 cm−1).

Fig. 2 Ten FTIR microscope absorbance spectra (1800–900 cm−1) of
one E. coli sample.

Fig. 3 Infrared absorption spectra of E. coli isolates sensitive
(10 spectra) and resistant (10 spectra) to ampicillin in the region
900–1800 cm−1 after spectral manipulations.
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For this analysis, we focused on the low-wavenumber spec-
tral region (900–1800 cm−1), as an interim analysis revealed
this region to allow better bacterial susceptibility discrimi-
nation. Leave-one-out cross-validation was used to optimize
classifier parameters and obtain classification performance
estimates. Fig. 4 shows the average low-wavenumber spectra
grouped based on the isolate susceptibility to cefuroxime
(Fig. 4a) and the resulting receiver operating characteristic
(ROC) curve for this case (Fig. 4b). The ROC curve illustrates
the accuracy of the tests in terms of the probability for cor-
rectly determining whether a sample is resistant or sensitive,
quantitatively represented by the area under the curve (AUC) of
the ROC plot. An area of 1 represents a perfect test; an area of
0.5 represents random chance (akin to classification by
flipping a coin). Similar figures are shown for two other anti-
biotics: ciprofloxacin (Fig. 5) and ceftriaxone (Fig. 6).

For each antibiotic, we used sensitivity (SE) and specificity
(SP), balanced accuracy (Acc_bal = (SE + SP)/2), positive-predic-
tive value (PPV) and area under the curve (AUC) as perform-
ance metrics for our preliminary tests of classification of
E. coli susceptibilities. We defined bacterial resistance to an

antibiotic as the “negative” state, and the sensitive condition
as the “positive” state. Thus, for each specific drug, if culture
assay deemed the bacteria to be sensitive, then SE refers to the
probability that the algorithm will correctly classify the FTIR
spectra as sensitive; and SP corresponds to the probability of
correctly identifying the bacteria as resistance to the drug. The
PPV is the probability that the culture test will confirm the
bacteria to be sensitive to a specific drug, if the algorithm pre-
dicts sensitivity. Exemplary results of preliminary classifications
(for six of the tested antibiotics) are summarized in Table 2.

Another statistical result of high potential clinical relevance
is the agreement rate of the classification with the standard
test in identifying an effective antibiotic from among the available
options. Using the data, a different classification algorithm was
developed for each of the tested antibiotics. Each of those indi-
vidual classifiers has its own performance statistics for the
whole dataset (Table 2), but for any individual patient sample,
the confidence level for a classification (related to the
“distance” from the multidimensional class boundary, or risk
of misclassification) may be higher or lower for different classi-
fiers (antibiotics).

Fig. 4 (a) Average spectra grouped based on the isolate susceptibility to Cefuroxime. (b) Resulting ROC for classifying bacterial susceptibility to
cefuroxime using FTIR spectra. The inset shows detail of some of the spectral features (for E. coli and for this antibiotic) that lead to the
classification.

Fig. 5 (a) Average spectra grouped based on the isolate susceptibility to Ciprofloxacin. (b) Resulting ROC for classifying bacterial susceptibility to
ciprofloxacin using FTIR spectra. The inset shows detail of some of the spectral features (for E. coli and for this antibiotic) that lead to the
classification.
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Since the clinical need is to be able to provide the physician
with recommendations for antibiotics that are most likely to
work, a new analysis was performed. This analysis is based on
the combined (ensemble) results of individual antibiotic sensi-
tivity classifiers, to yield the choices of one, two or three anti-
biotics with highest combination of classification performance
and classification confidence for the specific patient sample.58

Posterior probabilities of the output of each classifier for a
given patient were used to rank antibiotics to which the patho-
gen is most likely to be sensitive. Here, the definition of sensi-
tivity and specificity of the ensemble analysis was modified.
Sensitivity is defined as the accuracy of the ensemble in cor-
rectly identifying one effective antibiotic, when one or more
effective antibiotics exist, based on the gold standard.
Specificity is defined as the accuracy of the ensemble in cor-
rectly identifying all antibiotics (of a test group) to which the
pathogen is resistant, when those antibiotics are ineffective,

based on the gold standard. The sensitivity performance was
also analyzed based on identifying effective antibiotics from
the first N antibiotics, as ranked by the posterior probability of
the output of each classifier for a given patient. For example:

• Sen (1/1) – the sensitivity in identifying the top-ranked
antibiotic as effective when it is effective by the gold standard

• Sen (1/2) – the sensitivity in identifying one of the top two
ranked antibiotics as effective when the top two are effective
based on the gold standard.

• Sen (2/2) – the sensitivity in identifying the top two
ranked antibiotics as effective when both are effective based
on the gold standard.

The results of ensemble classification performance are
summarized in Table 3.

As can be seen from Table 3, the agreement rate for the
case of the highest statistical sensitivity to be 90% and 94%
for one of the top two choices of antibiotics.

Table 2 Classification performance

Resistant spectra Sensitive spectra SE SP Acc_bal PPV AUC

Ampicillin 164 329 0.74 0.62 0.70 0.49 0.69
Cefuroxime 316 160 0.80 0.73 0.75 0.86 0.84
Ceftriaxone 256 146 0.79 0.73 0.75 0.84 0.82
Ciprofloxacin 273 138 0.84 0.75 0.78 0.87 0.87
Sulfamethoxa Trimeth 228 142 0.64 0.67 0.66 0.76 0.67
Amoxicillin ClavulA 326 56 0.72 0.77 0.76 0.95 0.79

Fig. 6 (a) Average spectra grouped based on the isolate susceptibility to Ceftriaxone. (b) Resulting ROC for classifying bacterial susceptibility to cef-
triaxone using FTIR spectra. The inset shows detail of some of the spectral features (for E. coli and for this antibiotic) that lead to the classification.

Table 3 Ensemble classification performance

SP SE (at least 1) SE (1/1) SE (1/2) SE (2/2)

Ensemble (balanced accuracy) 0.6 0.99 0.93 0.97 0.79
Weighted ensemble (balanced accuracy) 0.6 0.99 0.96 0.98 0.84
Ensemble (PPV) 1 0.98 0.90 0.94 0.69
Weighted ensemble (PPV) 1 0.98 0.94 0.96 0.75

Where. • Ensemble (balanced accuracy) = individual classifiers optimized for balanced accuracy. • Weighted ensemble (balanced accuracy) =
individual classifiers optimized for balanced accuracy weighted by the fraction of sensitive samples for a given antibiotic (a priori probability).
• Ensemble (PPV) = individual classifiers optimized for PPV. • Weighted ensemble (PPV) = individual classifiers optimized for PPV weighted by
the fraction of sensitive samples for a given antibiotic (a priori probability).
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4. Discussion

In this study, the potential of the FTIR microscopy technique
for rapid assessment of bacterial susceptibility to antibiotics
was examined. A number of previous studies published in
rigorous journals have reported that the development of anti-
biotic resistance can be a result of identifiable genetic changes
in bacterial strains5,6 and exchange of chromosomal or genetic
material via plasmids and transposons in the bacteria,1 thus
the vibrational spectral differences between resistant and
sensitive isolates are expected to be subtle. Consequently, bio-
chemical changes occur during development of resistance to
antibiotics, and we sought to be able to detect spectral
changes that correlate with those molecular changes. In this
study, our motivation was not to identify these biochemical
changes but, rather, we looked for their manifestation in the
mid-infrared spectra, regardless of the mechanism of develop-
ment of resistance to any specific antibiotics.

Even though the manifested differences between the
average spectra corresponding to resistant and sensitive E. coli
presented in Fig. 4, 5 and 6 are subtle, those changes are,
nonetheless, sufficiently repeatable to yield promising stat-
istics for the classifications. The high sensitivity of FTIR
microscopy to minor molecular changes in cells59,60 thus
renders the technique capable of detecting the molecular
changes that lead to resistance to a specific antibiotic, as can
be seen from Tables 2 and 3.

In our approach to this research (see details under
Methods), several points should be taken into account. First,
appropriate sample preparation invokes choosing a sufficient
concentration of the bacterial cells to yield samples mounted
on the ZnSe slides with optimum thickness, resulting in a
strong IR signal, but without saturating the IR detector.
Second, attention was addressed to the reproducibility of the
data, with at least 16 spectra measured from different sites of
the same sample, which were averaged to generate the spec-
trum representative of the sample. Thus, the SNR was high;
moreover, the reproducibility of the spectra was excellent as
can be seen in Fig. 2.

New methods and computational tools of pattern-
recognition were employed for statistical classification of the
optical spectra. In a retrospective analysis, these novel statisti-
cal tools have shown excellent classification statistics for the
FTIR spectra.

A novel element of our data treatment is the use of a new
classification paradigm relating to biological variability, which
improves current classification performance levels. In this
approach, the multidimensional classifier SVM identifies
samples at high risk of being misclassified. In most cases,
these samples lie near the multi-dimensional decision bound-
ary and, as such, the system would refrain from classifying
them, with the risk-tolerance being a controllable parameter.
In the literature, this type of approach is known as error-rejec-
tion, (or as high/low-confidence decisions in the clinical diagno-
stic literature), and the result is a lowering of the risk of
misclassification.51 This is not to be confused with the much

simpler task of rejecting “outlier” spectra, prior to classifi-
cation, which are due to easily-filtered problems such as poor
SNR (e.g., cell culture too sparse), instrumental failure (lamp
or detector), etc.

Briefly, the classification algorithm uses an ensemble of
decision rules obtained from different spectral regions, each
incorporating the high-/low-confidence decision paradigm.
A specimen is classified as sensitive or resistant to a specific
antibiotic if the decision is made with high confidence; the
third outcome is no decision, if the classification has low con-
fidence. The level of confidence is assessed in multi-dimen-
sional space, by which the algorithm identifies samples that
are close to the hyperspace decision boundary and thus could
lead to uncertain classification.61

The expected result, as demonstrated in earlier work for
spectroscopic cancer-risk assessment, is an improvement in
performance for those samples that are classified, since only
samples classified in high-confidence are considered, which
is, of course, at the expense of a small proportion of low-confi-
dence samples that will remain unclassified. This new
approach to spectral classification (machine learning)
methods is uniquely suited for assessment of antibiotic sus-
ceptibility, in that sensitivity to treatment can be intermediate,
with some resistance manifesting as slower response to treat-
ment. Thus, determination of a reduced level of confidence in
a dichotomous classification can represent the biologic varia-
bility of early genetic mutations, and can be used to improve
the probability of choosing an antibiotic that classifies as
effective with higher reliability. In eventual clinical deploy-
ment, the identification of low-confidence samples could
simply prompt the classifier to indicate the choice of a
different antibiotic, for which the classification confidence is
higher or, at worst, lead to the traditional (slower) laboratory
tests.

As the most important issue is to help the physician to
choose one antibiotic to which the infectious bacteria is sensi-
tive, the ensemble analysis is important, yielding high values
for the sensitivity classification rate (Table 3).

We hasten to note that these statistical results are for a ret-
rospective leave-one-out correlation. Retrospective analyses,
based on datasets that were used to train the algorithms, are
notoriously optimistic; a prospective study (testing a trained
algorithm on a naïve dataset) would not be expected to
perform as well. Nonetheless, we submit that the results of
these early studies motivate larger upcoming prospective
studies to assess the true potential for impact on the manage-
ment of patient care for bacterial infections.

5. Conclusions

Infrared-absorption microscopy and machine-learning classifi-
cation algorithms for pattern recognition have the potential
for identifying one or more antibiotics to which an infectious
bacterial species is sensitive with a high confidence level.
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We plan to expand the research and test the methods
prospectively, to produce a large database, including other
bacterial species, and to demonstrate the reliability of the
method.
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