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ABSTRACT

Skin cancer is the most prevalent cancer, and its assessment
remains a challenge for physicians. This study reports the
application of an optical sensing method, elastic scattering
spectroscopy (ESS), coupled with a classifier that was devel-
oped with machine learning, to assist in the discrimination of
skin lesions that are concerning for malignancy. The method
requires no special skin preparation, is non-invasive, easy to
administer with minimal training, and allows rapid lesion
classification. This novel approach was tested for all common
forms of skin cancer. ESS spectra from a total of 1307 lesions
were analyzed in a multi-center, non-randomized clinical
trial. The classification algorithm was developed on a 950-le-
sion training dataset, and its diagnostic performance was
evaluated against a 357-lesion testing dataset that was inde-
pendent of the training dataset. The observed sensitivity was
100% (14/14) for melanoma and 94% (105/112) for non-me-
lanoma skin cancer. The overall observed specificity was
36% (84/231). ESS has potential, as an adjunctive assessment
tool, to assist physicians to differentiate between common
benign and malignant skin lesions.

INTRODUCTION
Skin cancer is the most prevalent cancer, and its clinical diag-
nosis remains a challenge for physicians (1,2). The incidence of
both melanoma and non-melanoma skin cancer (NMSC) is
increasing, especially in individuals with fair skin (3–6). In the
United States, there are an estimated 5.4 million new cases of
skin cancer every year (7). Early diagnosis of suspicious lesions
is critical in reducing morbidity and mortality related to skin
cancers, especially to melanoma (7–9). However, the identifica-
tion of skin cancers requires expertise and experience. Clinical
signs of early melanoma can be ambiguous, even to the most
experienced dermatologist. As a result of this clinical need, vari-
ous devices have been developed to aid the clinician in

deciding whether a lesion requires biopsy or follow-up care
(10–14). While many of those diagnostic aids have shown
promising results, there are still challenges to their widespread
implementation (14). These devices have focused on either mel-
anoma or NMSC, rather than all common cancer types. The
narrow clinical scope, high cost of some technologies, slow
speed and/or complicated output have limited their usefulness to
dermatologists, and no such device has been developed and
approved by the FDA for use in the primary care setting. As
value-based interventions drive healthcare delivery strategies,
the goal of effective lesion triage will likely increase in impor-
tance (15–17). To encourage widespread use, especially at the
primary care level, new tools are needed that provide accurate
information in a simple, cost-effective, and time-efficient
manner.

Elastic Scattering Spectroscopy (ESS) is a specific form of
sub-diffuse reflectance spectroscopy (18), in which the spectral
recording of photons scattered back from refractive-index gradi-
ents is associated with the micro- and nano-scale structures in
tissue (19). The backscattered intensity is plotted against wave-
length for a broad spectral range (330–850 nm for the work
reported here); the spectrum is altered by the disease-associated
changes that occur within tissue, both at a cellular and a subcel-
lular level (19). ESS requires no skin preparation and is easy to
administer, requiring minimal practitioner training. Due to its
ability to translate tissue morphology into spectral features at the
cellular and sub-cellular levels, ESS relates directly to the
observed tissue architecture and structure of histopathologic fea-
tures (20,21). Different tissue types and histopathological status
exhibit specific optical signatures, and ESS has been demon-
strated clinically to assess malignancy in multiple tissue types
(20–27). Spectral correlation with histopathologic diagnosis using
variations of ESS has also been reported by other groups
(28,29).

Here, we describe the development of an unsupervised, statis-
tical classification approach for the development of a machine
learning algorithm to be used on ESS measurements to assess
melanoma and NMSC skin cancers. The results demonstrate that
a spectroscopic algorithm can evaluate all common types of skin
cancer simultaneously.*Corresponding author email: holly.christman@dermasensor.com (Holly Christman)
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MATERIALS AND METHODS

Ethical conduct. The guidelines of the revised Declaration of Helsinki,
the Guidelines of Good Clinical Practice (ISO-14155), and the
requirements of national and data protection laws were followed. The
study was approved by the Western Institutional Review Board (Protocol
#20150755).

Objectives. The aim of this clinical study was to develop a spectral
classification algorithm using ESS measurements to distinguish between
the most common types of malignant and benign skin lesions.

The dichotomous categories of “high risk” and “low risk" were used
to group the output of the ESS classifier, combining all sub-types of skin
cancer and benign lesions as two classifications. The sensitivity and
specificity of the ESS measurements and classifier were validated against
histopathologic diagnosis.

Safety. The Western Investigational Review Board designated the ESS
system as non-significant risk due to the non-invasive nature of the
optical measurements and the low levels of radiant exposure. The safety
of the ESS device was evaluated by recording all adverse events reported
for study participants. No adverse events were reported for study
participants in the course of the study.

Study design and data acquisition. Recruitment into this investigator-
blinded multi-center study was conducted at four private-practice
investigational dermatology sites between 2015 and 2018. Potential study
participants were screened according to the study’s inclusion and
exclusion criteria described in Table 1. Subsequent to written informed
consent, a medical history was completed and a clinical evaluation
including full body skin check was performed. Each lesion was
photographed prior to ESS measurements, and the photos were stored for
future research. Eligible lesions were biopsied, following standard
practice, and assessed histopathologically. Up to five ESS measurements
were made in all lesions, regardless of size. Each measurement was
classified separately, and their aggregate score was used to classify the
lesion. The variability of spectra within individual lesions was not
assessed in this study. ESS measurements were then correlated with
histopathologic diagnosis. In a procedure implemented later in the study,
dermatologist-identified unbiopsied benign lesions from consented
patients were also measured with ESS, for classifier training on a dataset
that is representative of the lesions commonly encountered in clinical
practice. Expert-diagnosed benign lesions were also included in the
testing set on which the algorithm’s performance was determined.

Inclusion and exclusion criteria. Patients with skin lesions suggestive
of risk for skin cancer were invited to participate in the study. To
minimize selection bias, all lesions for which biopsy or excision was
clinically indicated were eligible for inclusion in the study. From
consented patients, other lesions that were deemed by the dermatologist
to be benign without biopsy confirmation were measured with the ESS
system and included in the machine-learning training or testing dataset.
The inclusion and exclusion criteria are listed in Table 1.

Blinding. The study was blinded for both patients and investigators,
as no classifier output was displayed on the device.

Elastic scattering spectroscopy measurements. The ESS device uses a
broadband xenon light-source (Perkin Elmer, Inc. or Hamamatsu, Inc.)
that emits short pulses of light (~30 microseconds in duration) that span
wavelengths from near-ultraviolet, through visible, to near-infrared (300–
900 nm). The spectrometer invokes a detector array (Hamamatsu, Inc.)
incorporating a fast electronic shutter. The short pulse, coupled with
time-gated detection, enables system performance that is not affected by
room light, thus not requiring a dark environment for recording the
optical spectra.

The fiber-optic probe comprises two adjacent optical fibers, enclosed
in a small tip that is placed in contact with the lesion surface. The fiber
probe tip, which only transfers and collects light and does not invoke
any electrical elements, is the only component that makes contact with
the subject’s skin. The skin-specific optical geometry for ESS measure-
ments was determined by preliminary studies in an animal model (30)
and with Monte Carlo simulations of light propagation in skin. A 400-
micron diameter illumination fiber is coupled to the pulsed light source
to illuminate a small volume of the tissue. An adjacent 200-micron diam-
eter fiber collects backscattered light from the tissue and is coupled to
the optical spectrometer to record the wavelengths that are backscattered.
The illumination and collection fibers are bonded in the tip of the probe
and have a ~360-micron center-to-center separation.

Data processing and analysis. All ESS spectra were pre-processed
prior to analysis. Raw measurements consist of 1347 bands,
corresponding to the pixel density of the detector in the spectrometer,
between the wavelength range of 300–900 nm. Before analysis, each
spectrum was smoothed and down-sampled by averaging blocks of ~2
bands, resulting in a spectrum of 601 bands in the wavelength range of
300–900 nm. Dimensionality was further reduced by limiting the
spectral range to be analyzed to 360–820 nm and by using smoothing
Gaussian filters with 15-nm full-width-half-max every 10 nm in the
360–820-nm range, resulting in a spectrum of 47 bands. These pre-
processing steps were performed to reduce high-frequency noise
variations and to remove the regions of the spectra with low signal-to-
noise ratios arising from combined detector sensitivity and lower source
light intensity at the extremes of its output spectrum. Finally, individual
spectra were then normalized to the area under the trace, to enable
analysis based on spectral shape, independent of relative intensities (see
Fig. 1).

Convolutional neural networks (CNN, or ConvNet) were used to build
dichotomous classification algorithms that differentiate measured ESS
spectra as corresponding either to a malignant or benign lesion. The
malignant/benign designations were obtained from histology of the biop-
sied lesions and were correlated with spectral measurements for algorithm
design and validation. The dichotomous classifier category of “high risk”
lesions included histologically-proven melanoma and NMSC; the “low
risk” category included all other lesions. The method does not differenti-
ate between melanocytic/non-melanocytic or pigmented/non-pigmented
lesions. All malignant lesions and all benign lesions were combined for
the sensitivity and specificity analyses. The ConvNet consisted of four
convolutional layers, with 5 9 1 filters in the first three layers and a
3 9 1 filter in the last layer, leaky rectified linear unit (ReLU) activation
with gradients of 0.5, maxpooling sub-sampling, with stochastic gradient-
descent with momentum (SGDM) optimization. The output consisted of a
fully-connected layer, with dropout applied to minimize over-fitting. A
training dataset consisting of over 4200 ESS measurements from 950
skin lesions was used to tune classifier parameters, including the re-
ceiver-operating-characteristic (ROC) curve operating point. Sensitivity
and specificity were the primary performance measures. Exact binomial
confidence-intervals of 95% are provided with reported performance esti-
mates.

RESULTS

Lesions for testing and training

The training dataset contained 950 lesions contributing more than
4200 spectra. The 787 patients enrolled in the study were pre-
dominantly male (64.7%) with a mean age of 61.3 years.
Patients had Fitzpatrick Skin Type 1 or 2 in 63.9% of cases, and
35.1% had Fitzpatrick Type 3 skin. For the algorithm testing
dataset, presented here, 357 lesions from this study (not included

Table 1. Study inclusion and exclusion criteria.

Inclusion criteria:

• Subjects undergoing a skin biopsy or excision of a
suspicious lesion (skin cancer).

• Subjects with lesions clinically deemed benign, and not
biopsied or excised.

• Both sexes and adults above age 16 years.
• Able to give informed consent

Exclusion criteria:

• Recent intense UV exposure, e.g. sunburn, tanning, in the
week prior.

• Pregnancy.
• Unable to give informed consent.
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in the training set) were used. That is, the training and testing
datasets were independent, and were chosen randomly. A total of
23 patients contributed more than one malignant lesion to the
testing set –one with six malignant lesions and 22 with up to
four malignant lesions. The maximum number of biopsied
lesions contributed by a single participant was six. All lesions
were considered independent for this study.

Performance results

The dichotomous outputs of the ESS algorithm were compared
with the histopathologic diagnoses. Of the 357 lesions (Table 2),
126 were histologically classified as malignant. Of these malignant
lesions, 14 (11%) were melanoma and 112 (89%) were NMSC.
The classifier for ESS correctly identified 14 of the 14 melanomas
and 105 of the 112 NMSCs as “high risk”. The combined sensitiv-
ity of the classifier was 94%. Four severely dysplastic melanocytic
lesions were reported separately in the final performance tables
and excluded from the analysis, due to the low number of lesions
and the fact that there was significant inconsistency of diagnosis
among the histopathologists. The classifier reported two of the four

of this sub-set as “high risk”. Of the 231 benign lesions, the classi-
fier correctly identified 84 as “low risk”, yielding an overall speci-
ficity of 36%. Classifier specificity for histology-proven mildly
atypical melanocytic lesions was 69% (18/26).

DISCUSSION
Melanoma and non-melanoma skin cancer represent an increas-
ing public health challenge (7). Early detection of melanoma
remains the most effective strategy to reduce morbidity and mor-
tality (31). Nonetheless, the equivocal nature of many lesions
can make early clinical diagnosis difficult (30,32,33).

The ESS device and a trained classification algorithm were
used to distinguish between benign and malignant skin lesions
based on the spectral features of elastically-scattered light,
demonstrating the potential to differentiate benign and malignant
lesions and to provide accurate, reproducible information to aid
physicians in assessing skin lesions for malignancy. We have
shown that the ESS measurements can be used as inputs for a
classification algorithm for the most common skin cancers. The
technology requires no skin preparation and generates a simple
dichotomous output in a non-invasive way. Importantly, this is
accomplished for all skin lesions, and is not limited to a pig-
mented subset. The statistical learning approach used here has
also been shown to perform well when assessing other skin
lesion datasets, based on photographic images (34,35).

Challenges remain to further develop the classifier algorithm.
Classifiers in general are limited by a less-than-perfect gold stan-
dard: a degree of discordance among dermatopathologists in the
evaluation of biopsy specimens of pigmented lesions. This well-
documented inconsistency can be significant when distinguishing
microscopic features of dysplastic nevi, melanoma in situ and
early-stage invasive melanoma (36–38). In this study, approxi-
mately one-third of lesions designated as severely dysplastic were
either downgraded or upgraded when overread by another der-
matopathologist, something not uncommon for this type of lesion.

The lack of universal agreement about the histopathologic
interpretation of certain categories of skin lesions is a special
concern, since published studies often rely on “known” histo-
logic diagnoses of biopsied lesions. This results in classifiers that
are undertrained on lesions unlikely to be biopsied, such as those
that appear to be clinically benign. Nonetheless, the inclusion of
dermatologist-identified unbiopsied lesions in the classifier

Table 2. Classifier performance on the testing dataset.

Histological assignment Se TP FN Total LCB UCB

Overall Sensitivity 0.94 119 7 126 0.89 0.98
Melanocytic – Malignant Melanoma 1.00 14 0 14 0.77 1.00
Non-Melanocytic – Malignant All NMSC 0.94 105 7 112 0.88 0.97

BCC 0.94 64 4 68 0.86 0.98
SCC 0.93 40 3 43 0.81 0.99

Melanocytic – Highly atypical 0.50 2 2 4 0.07 0.93

Sp TN FP Total LCB UCB

Benign Overall Specificity 0.36 84 147 231 0.30 0.43
Actinic keratosis 0.07 2 26 28 0.01 0.24
Seborrheic keratosis 0.30 11 26 37 0.16 0.47
Mildly atypical nevi 0.69 18 8 26 0.48 0.86
Clinically diagnosed benign lesions 0.42 46 63 109 0.33 0.52

TP = true positive; TN = true negative; FP = false positive; FN = false negative; LCB = lower confidence bound; UCB = upper confidence bound;
NMSC = non-melanoma skin cancer (includes one lesion that is not BCC or SCC); BCC = basal cell carcinoma; SCC = squamous cell carcinoma. CI: 95%.

Figure 1. Differentiated average spectral signatures for all training data-
set lesions grouped by histopathologic assignment.
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development creates a training dataset that is potentially more
representative of lesions encountered in clinical practice, and for
which such a technology would be clinically beneficial.

Another important aspect of this study is that all lesions were
selected for biopsy by dermatologists. This selects for a popula-
tion of lesions that are more likely to show some degree of cellu-
lar atypia even if they end up being classified histopathologically
as benign. In the analysis of the ROC curve for the classification
algorithm (Fig. 2) we can see a trade-off between sensitivity and
specificity. Given the importance of identifying skin cancers,
especially melanoma, the sensitivity of the device was purpose-
fully set to a high value with a final sensitivity of 94% and
specificity of 36%. In comparison, performance of physicians
can vary greatly according to expertise (39). In primary care,
performance was reported as 54.1% sensitivity and 71.3% speci-
ficity (39). Therefore, ESS may prove useful in primary care for
aiding in the assessment of lesions suggestive of skin cancer and
to improve referral of malignant skin lesions. Further studies are
necessary in this context.

In conclusion, ESS measurements are effective in translating
tissue morphology at the cellular and sub-cellular levels into
spectral features, and permit the development of a meaningful
classification algorithm for lesions with divergent pathological
features. The previously well-established technical basis of ESS
supports the findings of this study (20–29).

Further work is needed to refine the machine-learning classi-
fier, to assess the lesion spectrum encountered in clinical prac-
tice, and to compare the performance of the device with the
current standard of care. To validate these propositions, larger
prospective studies are necessary.
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