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Chapter 7. Quantum Description of Matter on the 
Smallest Scales 
For reasons that will become clear in Chapter 11, in order to describe the universe on large scales, we 
need to understand it on the smallest scales as well. The quest to figure out the underlying structure of 
matter began in ancient times. In about 430 B.C., the Greek philosopher Democritus developed the 
concept of atoms, which he proposed to be tiny indivisible particles out of which all matter is composed. 
(The word “atom” derives from the Greek word “atomos,” which means “uncuttable.”) The idea was not 
universally accepted, however, until the 20th century. 
 
During the Renaissance and the Enlightenment, scientists such as Robert Hooke, Robert Boyle, and Isaac 
Newton developed renewed interest in the possible existence of atoms. Boyle conducted an experiment in 
which he doubled the pressure of a sample of gas trapped in a sealed chamber and observed that this 
corresponded to cutting the volume in half. Hooke found that he could make sense of this if the force 
causing the pressure were the result of motions of individual atoms of gas contained in the chamber. The 
atomic theory was an example of the reductionistic approach that was becoming successful as a 
methodology for describing natural phenomena. 
 
Atoms as a Model for Chemistry 
 
From the late 18th through the 19th centuries, chemists sharpened the distinction between chemical 
reactions and simple mixing of substances. They accurately measured the weights of the substances 
before the reactions and of the products of the reactions. This allowed them to distinguish between 
elements — substances of uniform properties — and compounds, mixtures of materials that could be 
broken up. Chemical reactions could be explained in terms of atomic theory, but for a long time the 
theory was thought of as a useful abstract model that did not correspond to reality. There was no direct 
evidence for the existence of atoms, since they could not be resolved by the best microscopes of that 
period. 
 
The measurements of the chemists led to determinations of the relative weights of the atoms of the 
different elements. One of these chemists, John Dalton, studied the reactions between two types of atoms, 
such as hydrogen and oxygen to make water, and termed the products “compound atoms,” later dubbed 
molecules. These are the smallest units of substances that are not pure elements. Dalton considered 
(correctly) that molecules are composed of two or more atoms, bound together. However, many chemical 
reactions were complex and difficult to interpret, which we now know to be the consequence of many 
molecules being composed of considerably more than two atoms. 
 
In 1869, Dmitri Mendeleev made sense out of what had been a confusing collection of observed 
similarities in the chemical properties of different elements. For example, the element chlorine reacts 
readily with hydrogen, sodium, and potassium, as do the elements fluorine and bromine. Mendeleev 
organized the elements into a periodic table (presented in Appendix B of this book). Elements along any 
column of the table have chemical properties that are very similar to each other. For example, the 
elements in the rightmost column — which was missing from Mendeleev’s periodic table — do not react 
at all. These are the “noble gases” such as helium, neon, and argon, not discovered until the 1890’s. There 
were also holes in Mendeleev’s diagram when he drew it up, but these were filled as more elements were 
discovered. The periodic table was one of the crowning achievements of chemistry, although the 
explanation for it took more than half a century. 
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Atoms as a Useful Model in Physics 
 
The physicists of the 19th century considered atomic theory from a different perspective, mostly related to 
the connection among motion, heat, and pressure. In 1842, James Joule found that the heat produced by a 
rotating paddle wheel (a miniature version of the type used in steamboats) depends directly on the energy 
expended in making the wheel turn. In 1847, Rudolf Clausius realized that, at least for gases, this made 
sense if the temperature is a measure of the kinetic energy (see Ch. 4) of the individual atoms or mole-
cules. In other words, temperature is simply a measure of the thermal energy, which is the average 
microscopic kinetic energy of the sub-microscopic constituents of a substance (cf. Figure 7-1). 
 

 
 
For a gas in which the constituents collide frequently, a formula expresses the average thermal energy of a 
particle (an atom, ion, electron, or molecule): 
                                                             Ethermal = !

"
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 kT                                                   (7-1) 

 
Ethermal = thermal energy (in J), the angled brackets mean the average of the expression inside, m = 
mass (in kg) of the individual molecules, atoms, or particles in the substance, v = velocity of the 
individual molecules, etc., T = temperature (in K), and k = Boltzmann’s constant = 1.38´10-23 J/K. 

 
The concept of conservation of energy (see Ch. 4) became clearer after the association was made between 
heat and energy. Energy that is apparently lost from a system, as measured by its total potential and 
kinetic energy, is converted to thermal energy. So, if you drop a piece of clay onto the ground, you 
observe that it does not bounce despite considerable initial potential energy and, just before it hit, 
considerable kinetic energy. This is explained by the fact that it became hotter after striking the ground. In 
fact, if a measurement of the temperature of everything involved were made initially and immediately 
after impact, the increase in thermal energy (of the clay and its surroundings) would be found to equal the 
potential energy just before the clay was dropped. 
 
Because of the success of the atomic theory, by the end of the 19th century most chemists and physicists 
were convinced that atoms exist. Any doubt was removed when Albert Einstein developed a detailed 
molecular theory of microscopic (Brownian) motions in 1905. By that time, it was becoming clear that 
atoms were not indivisible particles, but had structure. We now know that atoms contain a tiny nucleus 
with protons and neutrons surrounded by “clouds” of electrons. Chapter 8 explores the structure of the 
nucleus. The remainder of this chapter is more concerned with the electrons and their relationship to light. 

Light Emitted and Absorbed by Atoms: Spectral Lines 
 
As mentioned in Chapter 5, opaque objects emit a continuous spectrum of light. In contrast, the light from 
hot, transparent gas appears in very narrow bands of wavelength, so thin that they are called spectral lines. 
In 1802, astronomer William Wollaston examined sunlight in detail with a high-quality prism and found 
that, rather than the completely continuous spectrum the eye perceives in a rainbow, the Sun’s spectrum 

Figure 7-1. Molecules in random, “Brownian” motion, 
each with different kinetic energy, the average of 
which is given by eq. 7-1. The arrows represent the 
velocities of the molecules. The thermal energy, 
which is directly proportional to the temperature, is 
the average kinetic energy of the molecules, 
individual atoms, and individual free (i.e., not bound 
inside an atom) particles present in the substance. 
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(Fig. 7-2) actually contains many very thin, dark lines superimposed on the continuous spectrum. Ten 
years later, the wavelengths of more than 600 of these lines were measured by Joseph Fraunhofer. 
 

 
                                       Wavelength l (nm) ® 
 
Later in that century, physicists found that a low-density, hot gas (in a glass tube) emits light with a 
spectrum of bright lines, with no continuous spectrum at all. They were able to study single isolated 
elements in this way, determining their emission-line spectra. Each chemical element has a distinctive 
pattern of colored emission lines (see Fig. 7-3), a sort of “fingerprint” of the element. In the 1880’s, 
Johann Balmer found that the spectrum of hydrogen, known by then to be the lightest and probably 
simplest element, follows a pattern in which the lines are more closely spaced at shorter wavelengths (i.e., 
from red to violet; see Fig. 7-3). The atomic physicists of the early 20th century realized that any 
successful model of the atom must explain this pattern of wavelengths. 
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The Bohr Model of the Hydrogen Atom 
 
In 1912, Niels Bohr, a young Danish theorist, endeavored to figure out how atoms generate emission 
lines. The best guess at the time was that negatively charged electrons orbit the positively charged 
nucleus. The energies involved in the orbits would naturally depend on the strength of the attractive 
electric force between each electron and the nucleus, which in turn would depend on the number of 
protons and hence the atomic number of the element. There were two other major clues: 
 
1. Electrons orbiting the nucleus should lose energy by making light. This would cause them to spiral into 
the nucleus in only a millionth of a second. Something must prevent them from doing so. 
 
2. The pattern of wavelengths of emission lines is always the same for each element. The visible-light 
spectrum of the hydrogen atom (see Fig. 7-3) is particularly simple, with 3 (or 4 for people whose eyes 
are sensitive to deep-violet light)  lines that are closer together at shorter wavelengths. 

Mercury (Hg) 

Neon (Ne) 

Helium (He) 

Sodium (Na) 

Hydrogen (H) 

Figure 7-3. Emission-
line spectra of five 
elements. [Note: the 
eye sees wavelengths 
between 380 and 430 
nm to be violet, not 
the dark blue of this 
reproduction.] Note 
that wavelength 
decreases to the 
right, opposite to Fig. 
7-2; there is no 
standard convention. 

Figure 7-2. The visible spectrum 
of the Sun. It is filled with dark 
(“Fraunhofer”) lines superposed 
on the continuous blackbody 
spectrum.  
[Source: hesperia.gsfc.nasa.gov] 
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Bohr’s solution was to combine the orbit model with the finding that light is grouped in packets (pho-
tons) of energy hf = hc/l, where h is Planck’s constant, f is the frequency, and l is the wavelength (see 
Ch. 5, eq. 5-3). That is, the energy of light is quantized. Bohr applied the concept of quantized energies to 
the orbits of electrons in an atom. The key idea was that an electron bound to an atom could only have 
certain discrete energies. The energies are negative because the electrons are bound to the atoms by the 
electric attraction to the nucleus. The lowest (most below zero) energy is called the ground state, while 
the higher (closer to zero) bound states are called excited states. The electron escapes from the atom if it 
absorbs enough energy to make its new total energy positive. The atom then becomes an ion (it becomes 
ionized). This additional energy can be supplied in one of two ways: 
1. Absorption of a photon with sufficient energy — high enough frequency/short enough wavelength. 
2. Transference to the electron of some of the kinetic energy of a particle — usually a free electron — that 

collides with the atom. 
 
In Bohr’s model, each excited state has a definite energy that is greater (closer to zero) than that of the 
ground state. If an electron absorbs a photon of just the right energy — exactly equal to the energy 
difference between two states — then the electron jumps up to the higher energy level. (The photon 
disappears since all of its energy has been used.) On the other hand, an electron that is already in an 
excited energy state will spontaneously “jump” to a lower (more deeply negative) energy level. It does 
this in a small fraction of a second.  This downward jump causes light to be emitted in the form of a 
photon with energy exactly equal to the difference between the energies of the two states. 
 
There are three ways for the electron to achieve an excited state: (1) it previously absorbed a photon, (2) it 
was free and then became “captured” by the atom, or (3) the atom gained energy from a collision, usually 
with a free electron. 
 

 
Bohr’s model thereby explained why the emission of light from atoms in a gas occurs in the form of lines: 
The atoms of a given element can only emit photons that have very specific energies and therefore very 
specific wavelengths. Each gaseous element has its own characteristic pattern of emission lines. 
 
But could Bohr’s model explain the values of the wavelengths of the emission lines? It is (by far) easiest 
to consider the hydrogen atom, since it contains only one electron. Bohr had suspected that Planck’s 
constant h must play an important role in the energy levels of the electrons. He formulated the wavelength 
of light emitted during a transition from energy level n2 (with energy E2, which is negative) to level n1 
(with energy E1, which is lower than zero by a greater amount), where n1 and n2 are integers (1, 2, 3, etc.), 
as 
 

-13.6 eV 

-3.4 eV 

E¥=
0 -1.5 eV 

UV lines 

Visible lines 

IR lines Figure 7-4. Energy levels in a 
hydrogen atom. The energies are 
marked for levels 1, 2, 3, and ¥, 
where the last is the level beyond 
which the electron becomes free of 
the atom. The longer arrows have 
higher frequencies and shorter 
wavelengths. The four visible lines 
are, from shorter to longer arrows, 
red, blue-green, violet, and deeper 
violet (which most people cannot 
see); refer to Fig. 7-2. 
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                                                                            f  = (E2-E1)/h                                                               (7-2a) 
or, in terms of wavelength,                             𝜆 = 	 )

*
= 	 +)

,-.,/
                                                             (7-2b) 

 
f = frequency (in Hz), E1 = (negative) energy of lower level (in J), E2 = (negative) energy of higher 
level (in J), h = Planck’s constant = 6.63´10-34 J s, l = wavelength (in m), c = speed of light (in m/s). 

 
Earlier, Balmer had noticed that the frequencies of visible emission lines of the hydrogen atom follow the 
equation 
                                                             𝑓 = 3.29×10!8 	 !
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and the wavelengths are 

                                                             𝜆 = 	 ;!.!8	nm/
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f = frequency (in Hz), n1 = number of lower energy level (integer, no units), n2 = number of higher 
energy level (integer, no units), l = wavelength (in nm). 
 

The wavelength 91.15 nm (frequency of 3.29´1015 Hz) is the maximum wavelength that an absorbed 
photon needs to have in order to ionize a hydrogen atom whose electron was initially in the ground state 
(n1=1). 
 
Bohr recognized that these two formulas would be the same if the energy levels of the hydrogen atom 
obeyed the equation 
 
                                  En= -h(3.29´1015 Hz)/n2 = (2.18´10-18 J)/n2 = (13.6 eV)/n2. 
 
As indicated above, since 2.18´10-18 J is not a very convenient number, it is often converted to 13.6 
electron volts (eV, a unit of energy), where 1 eV = 1.60´10–19 J is the energy gained by an electron after 
passing through a 1-volt change in electric potential. 
 
The energy levels of Bohr’s model of the hydrogen atom is illustrated in Figure 7-4. Although the model 
was based on the wrong picture of the atom — the electron is not like a tiny charged ball orbiting the 
nucleus — the energy levels are correct for the hydrogen atom. Bohr realized that the model could not be 
a close representation of reality, since it could not explain why an electron must occupy one of the 
discrete energy levels rather than spiral into the nucleus. His model worked well only if it were simply 
assumed that electrons must occupy energy levels with integer values of n and that they emit no light 
while they stay at the same level. In addition, the values of the energy levels only worked for atoms or 
ions with a single electron. Bohr was, however, able to express the energy of level 1 in terms of the mass 
and electrical charge of the electron and Planck’s constant h.1 Quantum Mechanics, which we describe 
later in this chapter, provides the modern model of the atom as well as explanations for other phenomena 
on extremely small scales. Bohr’s model was an important step toward the development of this more 
complete theory. 

Light Emitted and Absorbed by Atoms: The Rules (Kirchoff’s Laws of 
Spectra) 

                                                
1 For convenience, many scientists prefer to use the quantity = h/(2p) = 1.06x10-34 J s; when spoken, this constant is 

called “h bar”. 
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In 1859, Gustav Kirchoff2 formulated three laws that describe the type of spectrum that is observed when 
the light from an object is viewed through a prism or diffraction grating (a flat piece of glass or 
transparent film etched with fine lines). This causes light to separate according to its wavelengths, thereby 
forming a spectrum. Here we state these rules, along with the explanation according to Bohr’s model of 
the atom. Figure 7-5 illustrates the three situations governed by Kirchoff’s Laws. All of these play 
important roles in analyses of astronomical observations of stars, galaxies, and cosmic clouds of gas and 
dust. 
 
1. The light from an opaque object has a continuous spectrum, that of a blackbody. This was discussed in 
Chapter 5. If the temperature is hot enough (more than about 1000 K), the object will glow in visible 
light; at lower temperatures almost all of the radiation is in the infrared or, for very low temperatures, the 
radio portion of the electromagnetic spectrum. If the temperature is hotter than about 10,000 K, most of 
the radiation will be in the ultraviolet part of the spectrum, although it will still shine at visible 
wavelengths as well. The visible color of an opaque object depends only on its temperature (unless it is 
viewed through some medium that changes the color). 
 
 
Box 7-1. How a continuous spectrum forms in an opaque object 
 
How does a continuous spectrum form from emission by atoms? A high temperature causes the atoms of 
the object to collide frequently with free electrons. The energy of a collision is often absorbed such that a 
bound electron jumps to an excited energy level. This electron then emits a photon as it returns to a 
lower, less excited energy state. If the object is opaque, the vast majority of such photons are absorbed 
by other atoms. The wavelengths of the photons are changed by the Doppler effect (see Ch. 5 and later 
in this chapter), since the atoms and electrons are moving at high speeds in the hot object. The light that 
emerges is the result of emission and absorption of photons at many wavelengths, with the wavelengths 
shifted by varying amounts through the Doppler effect caused by the random motions of the atoms. The 
net result of this complex set of interactions is that the emission lines all blend together, and the 
brightness of the light that escapes from the object changes smoothly with wavelength. 
 
 
2. The light from a hot, transparent gas has an emission line (or “bright line”) spectrum. (This assumes 
that there is no hotter solid object behind it — see item 3 below.) As in the case of the opaque object 
discussed above, the high temperature of the gas causes many high-speed collisions, which result in the 
electrons in many of the atoms jumping to excited energy states. When they spontaneously jump back 
down to lower energy levels (usually within a small fraction of a second), light is emitted. Since the gas is 
transparent, the light escapes, maintaining its original wavelength (perhaps altered by the Doppler effect; 
see below). The light therefore appears as colored lines in the spectrum, with a pattern of wavelengths 
that corresponds to the element that the atom represents (see Figs. 7-3 & 7-6). If more than one element is 
present in the gas, then the lines from all of these elements appear in the spectrum. The brightness of each 
line depends on the number of atoms of the corresponding element that are present in the gas, as well as 
on the temperature (which affects the level of excitation of the electrons in the atoms of each element). 
 

                                                
2 Kirchoff was also famous for his laws describing the behavior of electric circuits. 
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3. A hot, opaque object whose light passes through a foreground transparent gas that is cooler than the 
opaque object will have a (dark) absorption line spectrum. In such a situation (see, e.g., Fig. 7-2), the 
continuous spectrum that the opaque object emitted has dark lines in it. These lines have the same 
wavelengths as do emission lines from the same atoms in a hot gas (i.e., case 2 above). The spectra of 
most stars are of this absorption-line type. This is because the light from the hot, opaque surface must 
pass through a transparent, cooler atmosphere before escaping into space. What happens is that the elec-
trons in the atoms of the foreground gas absorb those photons from the continuous spectrum that have 
exactly the right energies for electrons in the atoms to jump up to higher energy levels. 
 
The frequency and wavelength of the emission or absorption line resulting from a transition between lev-
els n2 and n1 (or vice-versa) are given for a hydrogen atom by eq. (7-3). 
 

 

The Doppler Effect (Revisited) 
 
Chapter 5 introduced the Doppler effect: the wavelength of light is shortened (frequency is increased) if 
the source of the light is moving toward the observer (or the observer is moving toward the source of 

Figure 7-5. The three types 
of spectra. Top: Continuous 
spectrum from a hot, 
opaque object. Middle: 
Absorption-line (“dark line”) 
spectrum from a hot, 
opaque object whose light 
passes through a cooler, 
transparent gas (e.g., from 
a cloud or an atmosphere). 
The spectra of most stars 
are absorption-line spectra; 
see Fig. 7-2. Bottom: 
Emission-line (“bright line”) 
spectrum from a hot, 
transparent gas.  

Figure 7-6. An emission-line spectrum 
of a hot, transparent cloud of gas in our 
Galaxy, in the form of a graph of 
brightness vs. wavelength. Lines from 
several elements – hydrogen (H), 
helium (He), oxygen (O), nitrogen (N), 
and sulfur (S) are prominent. These can 
be identified by the wavelengths of 
their emission lines. The same is true 
for an absorption-line spectrum, e.g., 
that of the Sun (Fig. 7-2). [Source: 
www.atlasoftheuniverse.com/nebulae/ 
ngc3372.html] 
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light), and lengthened if it is moving away. In the case of a continuous spectrum, this is extremely 
difficult, if not impossible, to measure, because there is no distinctive feature in the spectrum that one can 
observe to shift. However, a line spectrum is ideal for observing the Doppler effect (see Fig. 7-7), and 
thereby for determining the velocity of the object relative to the observer.  
 

 
 
 
The Doppler effect shifts the pattern of all lines from an element by the same multiplicative factor, so that 
the ratios of wavelengths (which correspond to the pattern of the spectrum) remain the same. 
It is therefore usually easy to identify the element that corresponds to a given set of emission or 
absorption lines, even if there is a large Doppler shift. The rest wavelengths of spectral lines of all the 
different elements are determined by experiments in Earth-based laboratories. If the characteristic pattern 
of lines of an element is observed in a cosmic object but the wavelengths are different from those in the 
laboratory, then astronomers can determine quite accurately the velocity of the object relative to the 
Earth3 from the equation 
                                                      𝑣 = 	 Aobs

AE
− 1 𝑐                                                                              (7-4) 

 
v = velocity (negative toward, positive away from observer, in m/s), lobs = observed wavelength,      
l0 = rest wavelength, c = speed of light = 3.0´108 m/s. 

 
Note: The Doppler effect does not alter the colors of stars in our own Galaxy — the speeds are not fast 
enough. However, there are certain types of objects, e.g., quasars, in which gas clouds can move so fast 
that the colors of the emission lines are altered (for example, from green to yellow). 
 
The Doppler effect is used by police to measure the speed of vehicles on the highway. A beam of radio 
waves of known frequency is emitted by the police radar gun. The beam then reflects off the vehicle, with 
an increase in frequency according to the Doppler effect. A radio receiver then measures the frequency of 
the reflected waves and a computer determines the speed of the vehicle required to reflect the waves at 
that frequency. A similar technique is used by meteorologists to measure the velocities of clouds in order 
to determine the speed of advancing storm fronts. 

 

 

                                                
3 The velocities of rotation and orbital motion of the Earth, and in some cases even the velocity of the Sun as it moves through 

the Galaxy, are usually calculated and subtracted since these change during the day or year. 
 

Figure 7-7. Illustration of 
the Doppler effect applied 
to an absorption-line 
spectrum. Top: Motion 
away from the observer 
shifts the lines to longer 
wavelengths (nicknamed 
“redshift”). Bottom: Motion 
toward the observer shifts 
the lines to shorter 
wavelengths (“blueshift”). 
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De Broglie’s Particle Waves 
 
After developing his “cartoon” model of the hydrogen atom in 1913, Niels Bohr felt that he was riding the 
wave of a revolution in science. Where would this new way of thinking lead? There were two main tasks: 
to determine why the electron could only occupy certain specific energy levels, and to expand the theory 
to include atoms more complex than hydrogen. Unfortunately, the progress of pure science in Europe was 
essentially halted by the devastating world war that soon engulfed the continent. It was therefore not until 
the 1920’s that progress was again possible. Despite the delay, the research of that decade would indeed 
revolutionize our concept of matter. In the process, the consensus among scientists that the universe is a 
predictable, deterministic system would come unraveled. 
 
The first breakthrough came in 1924, from a young French nobleman, Louis de Broglie. He considered 
the dual wave and particle nature of light, and how it might apply to Bohr’s model of the atom. In a 
brilliant leap of intuition, he wondered whether electrons, which up to this point had been considered as 
tiny, solid particles, might also behave as waves. Since the momentum of a photon is the energy divided 
by the speed (eq. 5-4), perhaps one can use the same formula to express a particle’s momentum in terms 
of its wavelength as p = mv = h/l. The wavelength of a “particle wave” is then 
 
                                                               l = h/p = h/(mv)                                                                        (7-5) 

 
l = wavelength (in m), p = mv = momentum (in kg m/s), m = mass (in kg), v = velocity (in m/s),        
h = Planck’s constant = 6.63´10-34 kg m2/s = 6.63´10-34 J s. 

De Broglie’s idea received experimental confirmation through the discovery of interference patterns of 
electron waves. 
  
The wave description explains why an electron can only occupy certain energy levels inside an atom: 
when it is bound to an atom, an electron must be a standing wave. Recall from Chapter 5 that standing 
waves occur when, for example, a vibrating string is bound at both ends, as on a guitar. Waves reflect 
back and forth off the boundaries. The standing waves are those with wavelengths that are integer 
multiples of the “fundamental” wavelength. These preferred wavelengths, called harmonics, can persist 
because of constructive interference. That is, crests of a wave moving in one direction coincide with the 
crests of a reflected wave moving in the opposite direction. All the oscillations at other wavelengths die 
out because of destructive interference. This is because the crests of waves passing in opposite directions 
are offset by random distances, so the average amplitude approaches zero after many reflections. 
 
The energy levels of Bohr’s model could be explained as the energies of the standing waves that can exist 
in an atom. But the cost of this advance was to abandon the picture of particles as tiny solid balls in favor 
of waves. There is, however, one reassuring aspect to equation (7-5): the mass of any macroscopic object 
(you, for example) is so high — and therefore the wavelength is so tiny — that the wave nature is not 
apparent. So, objects in our everyday experience do not appear wavy. 

Schrödinger’s Wave Equation 
 
In 1925, Erwin Schrödinger of Austria developed the primary formulation of Quantum Mechanics by 
expanding de Broglie’s result to the three dimensions of an atom. The equation that Schrödinger derived 
is the equivalent of Newton’s 2nd Law (see eq. 4-3), but for waves instead of solid objects. It is more 
complex in form because the description of waves requires the use of calculus (as does Newton’s theory 
in the case of changing acceleration). The properties of a wave (of a particle such as an electron) are 
represented mathematically by the wave function, given the symbol y (Greek letter “psi”).  Schrödinger’s 
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equation4 shows how the wave function changes with position and time under the influence of a force. It 
is therefore equivalent to (but, alas, not as simple as) Newton’s 2nd Law that gives the change in motion 
of macroscopic bodies in the presence of a force. The connection of Schrödinger’s equation to obser-
vations is through the square of the wave function (actually, the square of its absolute value), which is the 
amplitude of the wave at any given position and time. 
 
When Schrödinger applied his equation to the hydrogen atom, he obtained Bohr’s result for the energies 
of the allowed energy levels. But his formulation is much more powerful, for it allows the calculation of 
the energy levels of atoms that contain more than one electron. Furthermore, Schrödinger’s theory 
indicates that electrons should not radiate light as long as the energy level remains the same. 
 
This then answered the perplexing question of why electrons in orbit around a positively charged nucleus 
do not lose energy and spiral into the nucleus: the planetary model is not the proper way to visualize 
atoms. The electrons do not “orbit,” they instead exist in 3-D standing wave patterns surrounding the 
nucleus (see Fig. 7-8). A photon is emitted only when that pattern changes to one that requires less 
energy. Schrödinger’s equation indicates that that the electron does not instantaneously jump from one 
level to another — a feature of Bohr’s model that seemed contrived. Instead, the wave pattern of one 
energy level fades out while that of the new level gradually appears. (“Gradually” here is a relative term: 
the process occurs over only about 10 billionths of a second!) 
 

 
 

Wave-Particle Duality: Particles as Wave Packets 
 
We are now ready to confront one of the great problems of modern science: how can a photon, electron, 
or any other type of tiny entity behave as both a particle and a wave? Each description explains some of 
the phenomena that occur on the smallest scales. For example, the common mass and electric charge 
shared by all electrons and the discrete energy of photons correspond to the particle picture, while 
diffraction and interference suggest waves. The solution of Schrödinger’s equation in the “free” particle 
case — when no binding forces are present — provides the answer to the above question. A free particle 
is a wave packet, a wave whose amplitude decreases with distance from some central location (Fig. 7-9). 

                                                
4 We will not reproduce the equation here, since it involves higher-level mathematics that is unfamiliar to most of the 

readers. 
 

Figure 7-8. Examples of standing wave patterns of an 
electron in an atom. These are 2-D representations of 
3-D patterns. Each corresponds to a distinct energy 
level. The probability of finding the electron at any 
particular location is proportional to the intensity of the 
wave at that location. There is zero probability of 
finding the electron in the dark regions. When there is 
no detector, the electron is spread across the entire 
wave pattern. [From wikipedia.org] 
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We have discussed in Chapter 5 pressure waves in air (sound), waves of vibrating strings, and the more 
abstract electromagnetic waves that we call light, which can even propagate through a vacuum. What kind 
of wave is a particle like an electron? The answer to this question is not at all obvious and indeed gave 
Schrödinger and the other quantum theorists considerable conceptual problems. In 1926, Max Born 
postulated that the wave function y in Schrödinger’s equation represents information about the location 
and other variable properties of the particle. The square of the displacement is the probability that the 
particle will be found — using some appropriate detector — at a particular position at a given time. 
[Note: the wave function can represent other physical states of the particle as well, such as its spin.] If we 
imagine that the wave packet represents some physical quantity, such as “particle juice,” then most of the 
“juice” would be found at the center of the wave packet. The physical state of the particle is a 
combination (a “hybrid”) of all the possible physical states. This view of the particle as being spread-out 
is valid when there is no attempt to detect the particle’s position or physical state. 
 
When a detector locates the position of the particle, however, the wave function needs to change.  Its 
wave function “collapses” to a very small region, which corresponds to the place where the particle is 
detected. [Note that there is always some uncertainty in the measurement of the position, as with any 
other scientific measurement, so the wave function does not collapse down to a point.] After the 
detection, though, the solution to Schrödinger’s equation indicates that the wave packet of the electron 
will subsequently spread out from this position as time advances. Figure 7-9 illustrates this expansion of 
an electron wave packet. 
 

 
 
Since the concept that a particle is really a wave of probability is so abstract, it is very appropriate to 
question whether this idea actually corresponds to reality. In fact, the predictions of Schrödinger’s 
equation and other principles of Quantum Mechanics have been verified by many experiments to a high 
degree of accuracy. A vivid representation of an electron wave is shown in Figure 7-10, which is the 
result of an experiment in which physicists “imprisoned” an electron inside a “corral” of iron atoms. The 
electric field of the electron was measured over a period of time to determine the places where the 
electron was located. In keeping with Schrödinger’s wave mechanics, the electron was more likely to be 
present at some locations than at others, with the pattern following that of a standing wave. 

 

Figure 7-9. Sketch of a wave packet at three times. The 
square of the displacement of the wave is proportional 
to the probability that a detector will locate the wave at 
that position. Top: shortly after the particle is located 
by a detector, the wave is confined to a small region. 
Middle and bottom: the wave packet spreads out with 
time if there is no detector measuring its location. Note 
that a real wave packet is 3-dimensional. 

Figure 7-10. Image of the wave pattern of an 
electron trapped inside a “corral” of iron 
atoms (the yellow spikes forming a circle). 
[Courtesy of M. Crommie] 
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Quantum Theory 
 
The Uncertainty Principle 
 
The successful predictive capability of Schrödinger’s equation stirred the imagination of the great 
physicists of the time, who puzzled over its implications. The theoretical interpretation that they devised 
is called “quantum theory.” One of these great minds was Werner Heisenberg, who in 1927 realized that 
there is a limit to the level of precision of measurements that can be made of basic physical quantities on 
tiny scales. He formulated his famous uncertainty principle: the uncertainty in the position of a particle 
(Dx) times that of its momentum (Dp) always exceeds Planck’s constant h divided by 4p [or /2; recall 
that =h/(2p)]:                                                                 
 
                                                         Dx Dp > h/(4p) = 5.3x10–35 kg m2/s                                               (7-6) 
 

“D” before a symbol means “the uncertainty in” that quantity, Dx = uncertainty in position (in m), Dp 
= uncertainty in momentum (in kg m/s), h = Planck’s constant = 6.63´10-34 J s = 6.63´10-34 kg m2/s. 

 
Since momentum is just mass times velocity, this means that the position and velocity of individual 
particles cannot both be measured exactly at the same time. 
 
The uncertainty principle underscores the difference between the description of a particle as a wave 
packet and the earlier notion of particles as tiny solid spheres. There are two ways of seeing why the 
position and velocity cannot both be known exactly at the same time: 
1. If both the position and velocity could be known precisely, then the future position and velocity could 

be predicted precisely from knowledge of the forces involved. But the wave function provides only 
probabilities of the location or state of a particle, so the future state cannot be specified exactly. This 
implies that there must be uncertainty in our knowledge of the current position and velocity of the 
particle. 

2. The detection of a particle involves a physical interaction with it. For example, an electron can be 
detected by beaming some light toward it. If a photon of that light reflects off the electron, we can 
determine where the electron was by observing the photon. But the photon then transfers some 
momentum to the electron. As a consequence, the detector interacts with the electron and changes its 
physical state. The uncertainty principle dictates that we will not know exactly both the position and 
momentum of the electron after this interaction. 

 
A second version of Heisenberg’s uncertainty principle, the time-energy inequality, is similar to the first, 
and has even broader implications. The product of the uncertainty in the energy (DE) of a particle and the 
interval of time (Dt) over which it is measured always exceeds Planck’s constant divided by 4p: 
 
                                                                   DE Dt > h/(4p) = 5.3x10–35 J s                                             (7-7) 
 
DE = uncertainty in energy (in J), Dt = time over which the measurement is made (in s), h = Planck’s 
constant = 6.63´10-34 J s. 
                                                             
The meaning of eq. (7-7) is that, when measured over a very short time interval, the energy of a particle 
has a value that is uncertain by at least h/(4pDt). This form of Heisenberg’s uncertainty principle has an 
important implication. Since the product of the uncertainty in energy and the time interval over which the 
energy is measured always exceeds some value h/(4p), then over a very, very short time interval the 
energy of a particle can be quite large (or very small) compared to its energy averaged over longer time 
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periods. It even allows for “virtual particles” to pop into and out of existence over extremely short 
intervals of time. This facet of quantum theory is very important for our understanding of particle physics 
(Ch. 8) as it applies to the very early universe (Ch.10). 
 
The Measurement Problem 
 
Since the measurement of the position of a particle “collapses” the wave function, it seems that an 
observation actually affects the wave function that provides information about the state of the particle. 
But does it affect the particle itself? The answer appears to be “yes!” In Chapter 5, we discussed what 
happens when a wave passes through a slit or hole in a barrier: waves with the same wavelength as the 
original wave, and centered on each slit, continue to propagate beyond the barrier (the process called 
diffraction). If there are two slits, then the waves pass through both slits. Beyond the barrier, these two 
waves interfere with each other. Since particles are actually wave packets, such an interference pattern 
should occur if, for example, a beam of electrons encounters a barrier with two slits. 
 

     
 
 
 
 
Indeed, this is exactly what is observed in experiments, but only if no attempt is made to determine 
through which slit any of the individual electrons passes. This is illustrated in the left panel of Figure 7-
11. However, as shown in the right panel, the result is quite different if a detector is placed at one (or 
both) of the slits. Instead of the interference pattern, the electrons behave almost as “bullets” rather than 
as interfering waves. That is, if no attempt is made to detect the electrons, they behave as waves that in 
fact pass through both slits. However, the presence of the detector collapses the wave functions by 
determining the positions of the electrons as they pass by the barrier. 
 
In other words, the act of observation changes the nature of the electrons! This occurs because the 
observation requires an interaction between the detector and the particle. For an electron, this requires the 
application of an electric or magnetic field. For such tiny particles, there is no such thing as a completely 
passive observer. This intimate connection between the act of observation and the outcome of the event 
being observed, called the “measurement problem,” is very disturbing from a philosophical viewpoint. It 
seems to require that an observation is a physical event that does not obey Schrödinger’s equation, since 
the equation describes a wave function that behaves in a smooth manner. There is also the unanswered 
question of who or what constitutes a valid “observer.” 
 

Figure 7-11. The result of 
shooting electrons toward a 
barrier containing a pair of slits. 
Electrons that pass through the 
slits light up a phosphorescent 
screen on the other side. The 
screen collapses the wave 
function so that each electron 
lights up a particular spot on the 
screen. Left: if no attempt is 
made to detect which slit each 
electron passes through, an 
interference pattern of alternating 
bright and dark strips occurs. 
Right: if an electron detector is 
placed at one or both slits, the 
resulting pattern on the screen 
contains two stripes. According to 
quantum theory, the detector 
collapses the wave function so 
that the electrons behave more 
as particles than as waves. 
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The Correspondence Principle 
 
The development of Quantum Mechanics was guided in part by Bohr’s correspondence principle: all the 
formulas should be consistent with the behavior of the macroscopic world when macroscopic phenomena 
are observed. Indeed, de Broglie’s wavelength of matter (formula 7-5) is very, very short for a massive 
particle. Therefore, the wave nature of macroscopic objects has utterly negligible consequences. The 
uncertainty in position or velocity (expression 7-6) of such an object is so small compared with its size or 
velocity that no device can measure positions and speeds with sufficient accuracy to notice the effect. 
Finally, Schrödinger’s wave equation is essentially the same as Newton’s 2nd Law (see Chapter 4) when 
applied to macroscopic phenomena. 

Quantum Mechanics and the Periodic Table 

Among the great successes of Quantum Mechanics is that Schrödinger’s equation explains the entire 
periodic table of the elements. Application of the equation reproduces the energy levels of the hydrogen 
atom proposed by Bohr and those of every other type of atom. The interference of the 3-D wave functions 
of the different electrons in the atoms of elements beyond hydrogen leads to a fundamental principle of 
atomic physics and chemistry: the Pauli exclusion principle. As proposed by Wolfgang Pauli in 1925, the 
principle states that no more than two electrons can occupy the same energy level; these two must possess 
opposite spin values, one “up”, the other “down”. (Here “spin” is actually a quantum property that has 
some of the properties of spin, but it is not really a clockwise or counterclockwise rotation of the particle.) 
This provides structure to the occupation of the different energy levels by electrons. The natural tendency 
toward the lowest total energy makes certain combinations of atoms to form molecules more favorable 
than others. This is the reason why elements in columns I and II of the periodic table (reproduced in 
Appendix B) readily react with elements in columns VI and VII. In fact, all of chemistry is explained by 
Quantum Mechanics. 
 
 
Box 7-2. Quantum theory and the nature of reality 
 
Humans have an intuitive sense of what is meant by “reality” in our everyday, macroscopic world. A solid 
wall is real because we cannot walk through it, and if we try, we can experience pain and injury. But what 
is the basis of this reality? Quantum theory suggests that the tiny building blocks of matter – the particles 
– behave in a way that is alien to our everyday world. How can we reconcile what we experience with the 
behavior of the nanoworld? 
 
The primary answer comes from the correspondence principle and statistics. The wave nature of 
macroscopic objects is far too small to be measurable. And the number of events that occur in the 
nanoworld every second is so large that the uncertainty of probabilities on tiny scales becomes statistical 
certainty on larger scales. If you flip a coin, you know that there is a 50% probability of either head-up or 
tail-up, and if you predict which will occur, you will be right only half the time. But if you flip a coin a million 
times, it will land head-up very, very close to 50% of the time and tail-up the other 50%. The statistics of 
the large number of events allows very definite predictions of macroscopic phenomena. 
 
Quantum theory wreaks havoc with our concepts of reality only when we consider direct interactions with 
particles through an act of observation. Such an act causes the particle or event to take on a definite 
value, the probability of which is predicted by Schrödinger’s equation. Before the observation, the particle 
was in a hybrid state: a superposition of all the possible outcomes of the measurement. Albert Einstein 
opposed this interpretation, declaring that “God does not play dice [with the universe]!” 
 
Einstein, along with colleagues Boris Podolsky and Nathan Rosen, composed one of his famous 
gedanken (thought) experiments to try to demonstrate the absurdity of the “Copenhagen” interpretation of 
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quantum theory championed by Bohr and his colleagues. Imagine that two electrons with equal velocities 
in opposite directions collide head-on. We know from conservation of momentum (see Ch. 4) that the 
initial total momentum was zero (all electrons have identical masses), and so the final momentum must 
be zero as well. So, after the collision, the electrons must have equal and opposite momenta. But, 
according to the Copenhagen interpretation, until a measurement of momentum is made, each particle 
has a range of possible momenta. Einstein, Podolsky, and Rosen considered what would happen if the 
measurement of one electron’s momentum were made after it had become very distant from the other. 
For the other electron then to “know” that it must instantaneously have momentum with the same 
magnitude would require information to travel faster than the speed of light from the electron whose 
momentum is measured. This demonstrated to Einstein that the Copenhagen interpretation must be 
wrong. Instead, he thought, the momentum of each electron must have been determined when the 
particles collided, even if the observer did not yet have any knowledge of what that momentum is. In 
1962, John Bell showed that Einstein’s view corresponds to different probabilities of the outcomes of 
measurements than does the Copenhagen interpretation. The results of experiments from the 1970’s to 
the present have agreed with the predictions of the Copenhagen interpretation rather than those of more 
deterministic interpretations. Nevertheless, the Copenhagen interpretation requires that an act of 
observation is a special event, but it is not clear how that can be true. 
 
Schrödinger devised a thought experiment, referred to as the “Schrödinger’s Cat” conundrum, that he 
thought demonstrated the absurdity of the Copenhagen interpretation. His idea was to have a nearly 
direct interaction between a single event in the nanoworld and the macroscopic world. Schrödinger 
imagined the construction of a box that, when closed, caused the contents to be completely unobservable 
by the outside world. Inside the box are a cat, air, a radioactive atom, a Geiger counter, and a vial of 
poisonous gas. The gas will be released and kill the cat if the Geiger counter detects the products of the 
decay of the radioactive atom. We can imagine that the atom has a 50% probability of decaying within 1 
hour. Such a decay will emit a particle that triggers the Geiger counter. The decay is a physical state 
governed by the probability laws of Quantum Mechanics. The cat therefore has a 50% probability of being 
alive after that hour. According to the Copenhagen interpretation, while the box is closed, the radioactive 
atom is in a hybrid state of half decayed, half undecayed, at least as far as the outside observer is 
concerned. What then is the state of the cat – half alive and half dead? Schrödinger considered this to be 
silly and therefore rejected the Copenhagen interpretation. But the concept of hybrid states has since 
received experimental support. Does this mean that there are two different realities, one experienced by 
the cat and the other by the outside observer? 
 
A number of solutions to this dilemma have been proposed. Three that are currently still in contention are: 
1. The system of the atom, the cat, the Geiger counter, and the poisonous gas is too complicated to be 
described as a wave function. Instead, the quantum states are not “pure” (or “coherent”) but rather so 
complex that the statistical nature of quantum theory applies because so many atoms, electrons, etc. are 
contained in the box. This solution, called decoherence, now has some experimental support: the purity of 
a quantum state has been shown to decay with distance from the apparatus that put the particle into that 
quantum state. We do not, however, understand the theory of decoherence when the state of a single 
atom (the radioactive one) can affect directly the outcome of a macroscopic event. 
 

 

Figure 7-12. Sketch of the set up imagined by 
Schrödinger to demonstrate the absurdity of the 
Copenhagen interpretation of Quantum Theory. A cat is 
placed inside a sealed box, along with a Geiger counter, 
a vial of poisonous gas, and a radioactive atom having 
a probability of 50% of decaying within 1 hour. If the 
atom decays during the hour, it will release a particle 
that will trigger the Geiger counter, which will send a 
light beam into a machine that causes a hammer to 
swing and break open the vial of toxic gas. The box is 
opened after one hour, revealing the cat to be either 
dead or alive. But what was the state of the cat before 
this observation was made? [Source: 
http://www.dhushara.com/ book/quantcos/penrose/cat.jpg] 
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2. Hugh Everett’s many worlds hypothesis. The act of measurement does not actually collapse the wave 
function. For example, if the radioactive atom can either decay or not, it does both! At that point, the 
universe splits into two parallel universes: in one, the cat is dead after one hour, while in the other, the cat 
remains alive. Neither logic, mathematics, nor the spirit of quantum theory is violated. Schrödinger’s 
equation is obeyed at all times, since there is no collapse of the wave function. However, many people 
think that this proposal comes at the expense of adding complexity to the world, since it requires that 
another parallel universe be created each time that an event happens that has more than one possible 
outcome, as is the case many, many times every second. Nevertheless, the mathematical simplicity of the 
many worlds hypothesis and its possible application to the question of where the universe came from 
(discussed in Chapter 11) have made it popular with a number of theorists. 
 
3. One of God’s roles in the universe is to act as the observer whose measurements collapse all the wave 
functions when an event occurs on tiny scales. This is familiar, since Newton proposed that God interacts 
continuously with the universe to prevent gravitational collapse. Most scientists reject this notion, 
preferring instead to rely on natural explanations for natural phenomena. 
 
 

Summary 
 
Although it took a long time to establish, the theory that matter is composed of atoms explains many of 
the properties of substances. The periodic table devised by Mendeleev organizes the elements according 
to their chemical properties. The theoretical basis for the periodic table was understood with the 
development of Quantum Mechanics in the 1920s. The temperature of a substance is a measurement of 
the average kinetic energy of the microscopic motions of the atoms, molecules (two or more atoms bound 
together), ions, and electrons inside it.  
 
Niels Bohr developed a simplistic picture of the hydrogen atom in which the electron can only occupy 
certain “quantized” energy levels. This model provided very accurate predictions of the wavelengths of 
emission lines from hydrogen atoms. But it was unsatisfactory because there was no theoretical basis to 
explain why only these energy levels are allowed. The solution required a revision in our concept of the 
nature of a particle such as an electron. 
 
When an observer views a hot, transparent gas (e.g., from a clear fluorescent light tube or a hot cloud in 
space), the spectrum consists of bright emission lines with a pattern of wavelengths — which at visible 
wavelengths correspond to specific colors — that is specific to the element(s) in the gas. This is called an 
emission-line spectrum. When the same elements are present in a cold gas cloud (or atmosphere) that lies 
in front of a hot, opaque source of light (e.g., the surface of a star), the entire blackbody spectrum (see Ch. 
5) will be observed, except for dark lines. This is called an absorption-line spectrum. The dark lines have 
exactly the same pattern of wavelengths as the emission lines from those elements. The Bohr model 
explained the emission and absorption of light as the consequence of electrons changing energy levels, 
with the energy of the photon corresponding to the energy lost (for emission lines) or gained (absorption 
lines) by the electron. The spectrum of the gas contains a line for every possible transition between two 
energy levels in the atom, although most of these lines have wavelengths outside the visible range (e.g., at 
infrared or ultraviolet wavelengths). When there is relative motion between the observer and the gas, the 
entire pattern of the wavelengths of the lines is shifted toward longer wavelengths — redshift — if the 
motion is away from the observer and toward shorter wavelengths —  blueshift — for motion toward the 
observer. The faster the motion is, the greater the shift of wavelengths is. 
 
At the beginning of the 20th century, physicists conceived of particles as tiny solid spheres. However, 
after Bohr and others developed a model that could reproduce the observed spectra of atoms, it became 
clear that many phenomena on tiny (“nano”) scales could be explained better if particles were instead 
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waves. De Broglie wrote down a simple formula (7-5) that relates the wavelength to the momentum of the 
particle. Schrödinger formulated an equation that specifies the behavior of the wave function that 
describes the state of either a free particle or an electron bound to an atom. The wave is, in essence, a 
wave of information about the physical state of a particle, e.g., its position or spin. The mathematical form 
of the wave function of a free electron (or a photon of light) leads to a picture (Fig. 7-9) in which a 
particle is a wave packet, a spherical wave whose amplitude decreases from the central position. The 
behavior of particles and the outcomes of events on the smallest scales can only be determined 
probabilistically rather than calculated precisely. This means that the exact same measurement of two 
systems with the exact same initial conditions will not always produce an identical result. When there is 
no active measurement of the physical state of the particle, it possesses a combination of all the possible 
states. However, when the position, spin, or other variable physical property of a particle is observed, the 
act of measurement disturbs the state of the particle. This causes the particle to behave more as a tiny 
solid object (the old view of a particle) than as a wave. The inability to observe a particle without 
disturbing it is known as the “measurement problem.” 
 
The modern model of an atom contains a tiny, positively charged nucleus at the center, surrounded by 3-
D standing waves representing the possible positions of the electrons (see Fig. 7-8). Different geometries 
of the standing waves correspond to different energy states. This Quantum Mechanics model accounts not 
only for the wavelengths of photons that are emitted or absorbed when an electron changes its energy 
state, but also for the chemical properties of the elements. 
 
Heisenberg’s uncertainty principle states that a particle’s position and momentum (and therefore velocity) 
cannot both be measured exactly at the same time. Similarly, the time-energy inequality dictates that the 
uncertainty in the measurement of energy of a particle is inversely proportional to the time interval over 
which it is measured. The uncertainty in energy and time allows a particle to have a very large energy 
over an extremely short time period. It can even cause particles to “pop” in and out of existence. 
 
The strangeness of the tiny “nanoworld” governed by Quantum Mechanics can be reconciled with the 
macroscopic world that we experience. In accordance with Bohr’s correspondence principle, the 
extremely short wavelengths of massive objects means that their wave nature is so slight that it can be 
completely ignored. The large number of nanoscale events, governed by probability laws, that occur in 
macroscopic phenomena lead to a statistical certainty in the behavior on everyday size scales. 

Glossary 
 
Element: A name given to similar atoms. All atoms of a given element have the same number of protons 
in the nucleus. (See Ch. 8 for a discussion of the nuclei of atoms.) 
 
Molecule: A combination of atoms that are bound together. 
 
Particle: A tiny bit of matter, e.g., an electron or a proton. (See Ch. 8 for more examples.) 
 
Periodic Table: An organization of the chemical elements into rows and columns such that the elements in 
any given column have similar chemical properties. 
 
Temperature (Symbol: T): A quantity used to measure the thermal energy of an object or medium (see Ch. 
5). Most conveniently measured in kelvins (K). At a temperature of 0 K, the thermal energy equals zero. 
 
Thermal Energy: The average microscopic kinetic energy of particles in a substance. 
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Absolute Zero (0 K = -273 °C): Temperature at which all microscopic motion stops, corresponding to 
zero thermal energy. 
 
Ion: An atom that has more or fewer electrons than protons, so that it is electrically charged. 
 
Electron: A particle with negative electric charge that is a primary component of an atom. 
 
Bohr Model of the Hydrogen Atom: An incomplete description of an atom in which electrons can only 
occupy certain energy levels that occur in discrete (“quantized”) steps. 
 
Energy Level: A quantized state of an electron in an atom described by its negative binding energy under 
the attractive force of the positively charged nucleus. 
 
Ground State: The lowest, most stable energy level in an atom. 
 
Excited State: Any energy level other than the ground state. 
 
Photon (often denoted by the symbol g): Quantized unit of light, described as a wave packet. The energy 
and momentum of a photon depend on its frequency (wavelength); see eqs. (5-3) and (5-4). 
 
Spectrum: A representation of the amplitude of a group of waves as a function of wavelength or 
frequency. For electromagnetic waves (light), a spectrum indicates how brightness changes with 
wavelength. A commonly seen example for visible light is a rainbow. 
 
Continuous Spectrum: The case when the brightness varies smoothly with wavelength. Contrasts with a 
line spectrum (see below). 
 
Blackbody: An opaque object. Any blackbody that has a temperature higher than absolute zero (0 K) 
emits a continuous spectrum of electromagnetic waves. See eqs. (5-5–5-7) for relations between the 
electromagnetic radiation (light) of a blackbody and its physical properties. 
 
Spectral Lines: Sharp features (i.e., occurring over a very short range of wavelengths) in a spectrum. 
 
Emission-line Spectrum: Bright lines that appear in the spectrum of a hot, transparent gas. 
 
Absorption-line Spectrum: Dark lines that are superimposed on a continuous spectrum, when the light of 
a hot, opaque object shines through a cooler gas cloud. 
 
Kirchoff’s Laws: Three guidelines that describe the type of spectrum (continuous, emission-line, or 
absorption-line) that will be observed from an opaque or transparent object. 
 
Doppler Effect/Doppler Shift: The change in wavelength (or frequency) caused by relative motion 
between the source of waves and the observer. See eqs. (5-2) & (7-4) and Fig. 7-7. 
 
Redshift: Nickname given to a Doppler shift toward longer wavelengths because of motion away from the 
observer. 
 
Blueshift: Nickname given to a Doppler shift toward shorter wavelengths because of motion toward the 
observer. 
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Quantum Mechanics: The branch of physics that describes the behavior of atoms, molecules, and parti-
cles. The main entities on very tiny scales are particle waves. A primary feature is that physical properties 
like energy occur in discrete steps (i.e., they are “quantized”). 
 
Quantum theory: The interpretation of Quantum Mechanics. 
 
Particle wave: Description of a particle in terms of a wave, with the wavelength given by eq. (7-5). 
 
Schrödinger’s equation: One of the primary formulas of Quantum Mechanics. The equation describes 
how the physical states (such as position, energy, or spin) of a particle-wave depend on time and location. 
The equation uses calculus that is beyond the mathematical level of this book. 
 
Wave function (symbol: y): The mathematical representation of a particle wave. The square of the 
absolute value of the wave function gives the probability that a given property of a particle wave (e.g., 
position or spin) will have a particular value when measured. 
 
Collapse of the wave function: This refers to what happens to the wave function when a physical 
measurement is made of the particle wave. The wave function momentarily becomes very compact, after 
which it spreads out. 
 
Wave packet: A description of a particle as a wave whose amplitude decreases with distance from the 
point where its wave function has its maximum value. (See Fig. 7-9.) 
 
Uncertainty principle: Statement by Heisenberg that the product of the uncertainty in position Dx times 
that of the momentum Dp of a particle always exceeds the value h/4p, which is 5.25x10–35 kg m2/s, where 
h is Planck’s constant. (See eq. 7-6.) 
 
Time-energy inequality: Variation of Heisenberg’s uncertainty principle: The product of the uncertainty 
in energy DE times the time interval Dt over which the energy is measured always exceeds the value h/4p, 
which is 5.25x10–35 J s, where h is Planck’s constant. (See eq. 7-7.) 
 
Measurement problem: The logical puzzle over the inability to measure the physical property of a particle 
without disturbing it and causing that property to have a particular value. The physical property possesses 
a combination of all possible values, governed by probability rules, until a measurement is made. 
 
Diffraction: Phenomenon that occurs when part of a wave passes through a small hole or slit in a barrier. 
A new wave, centered on the hole, emerges on the opposite side of the barrier. This new wave has the 
same wavelength as the incident wave, although its amplitude is lower. 
 
Interference pattern: Observed arrangement of areas of high and low amplitude (bright and dark in the 
case of light) areas caused when two or more waves cross each other, as in the two-slit experiment (Fig. 
7-11). This is a phenomenon only of waves; bullet-like objects do not interfere with each other. 
 
Correspondence principle: Bohr’s rule that any equation that describes phenomena on the smallest scales 
must be consistent with observations of the macroscopic world when the appropriate values of properties 
like mass and velocity are used. 
 
Nanoscales & Nanoworld: Realm of very tiny length scales, comparable to the sizes of individual atoms. 
The term is derived from a nanometer, a unit of length, where 1 nm = 1´10-9 m (one-billionth of a meter). 
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Questions for Discussion 
 
A. When you shine (invisible) ultraviolet light (“black light”) on certain materials, they glow with 
brilliant colors. How might this behavior be explained in terms of the Bohr model of the atom? What type 
of spectrum do you expect to be produced? [Hint: the colors come from the transparent outer layer of the 
material.] 
 
B. In Bohr’s model of the atom, electrons are constrained to occupy certain allowed energy levels. 
Otherwise, they would radiate light continuously as they orbit the nucleus, thereby losing energy and 
spiraling into the nucleus in a fraction of a second. In this case, atoms as we know them could not exist 
and therefore we could not exist. A universe in which we exist must therefore have atoms with such 
properties. Is this anthropic (human-centered) reasoning a satisfactory explanation for the existence of 
quantized energy levels? 
 
C. Some stars have a combination of an absorption-line spectrum with the wavelengths all shorter than 
expected by the same fractional amount (e.g., all are 0.995 times the expected wavelengths) plus a bright 
emission-line spectrum with the lines at their expected wavelengths. What is a possible explanation for 
this complex spectrum? 
 
D. Does the Bohr model of the atom explain the periodic table of the elements? What features might need 
to be added to do this? 
 
E. Although it at first seems nonsensical that solid matter might be composed of waves, what is required 
for something to possess the characteristic of being “solid”? Is there any fundamental reason why a wave 
packet could not have this characteristic? 
 
F. When Einstein learned of the idea that events on the smallest scales are probabilistic rather than 
strongly deterministic, he considered that this meant that there was something wrong with quantum 
theory. Does a probabilistic foundation for matter make sense to you? 
 
G. Where is an electron 0.0000001 s after it is measured to be at a specific location? According to 
Quantum Mechanics, its position can only be determined probabilistically. Does this mean that it has 
spread out so that it is essentially everywhere it is allowed to be according to the probabilities, or is it in 
one specific location even if the observer can only determine probabilistically where that location is? 
Does it make any difference which interpretation is adopted? 
 
H. Do you find the many worlds hypothesis attractive as an explanation for the strange behavior of the 
nanoworld? Why or why not? 
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Sample Problems on the Quantum Nature of Matter 
 
1. A gas containing only ionized hydrogen (i.e., with only nuclei and free electrons) has a temperature of 
10,000 K. How many times faster do the electrons move, on average, than do the nuclei? The mass of a 
hydrogen nucleus is 1836 (roughly 432) times that of an electron. [Although it is not exact, use the 
approximation that !

"
𝑚𝑣" 	≈ 	 !

"
𝑚 𝑣 ", where the curved equal sign means “approximately equals.”] 

 
Answer: Use formula (7-1) (ignore the first part) and solve algebraically for :  
!
"
𝑚𝑣" 	≈ 	 !

"
𝑚 𝑣 " = 	 '

"
𝑘𝑇  

𝑣 " ≈ 	 'JK
L

  
 
Now form an algebraic ratio (see Appendix A): 
 
Me -

MN - 	≈ 	
'JK
Le

'JK
LN

= 	LN
Le

 , 
 
where the subscripts “N” and “e” refer to the nucleus and electron, respectively. Now take the square-root 
of both sides to get the desired ratio: 
 
Me
MN
	≈ 	 LN

Le
	≈ 	 43" = 43. 

 
So, the electron has a velocity that is 43 times that of the nucleus. Note that the value of the temperature 
was not needed, since it conveniently cancelled out when the algebraic ratio was formed. 
 
2. Calculate the wavelength of an emission line that is formed when electrons in hydrogen atoms jump 
from the n=4 to the n=2 energy level. Consult the section “Light and the Electromagnetic Spectrum” of 
Chapter 5 to determine the color (including, if relevant, infrared or ultraviolet) of this emission line. 
 
Answer: Use formula (7-3b) (ignoring the middle part): 
 

 𝜆 = 	91.15 9/-9--

9--.9/-
	𝑛𝑚 = 91.15 "-Q-

Q-."-
	nm	=	91.15 Q×!R

!R.Q
	nm = 91.15 RQ

!"
	nm  = 486.1 nm,  

 
 where n1=2 and n2=4. 
 
According to the relevant text in Chapter 5, this wavelength corresponds to a blue color (more precisely, 
it is a turquoise color). 
 
3. A human of mass 100 kg is running at a speed of 5 m/s. What is the wavelength of the person?  
 
Answer: Use formula (7-5): 
 
l = h/(mv)  = (6.63´10-34 kg m2/s)/[(100 kg)(5 m/s)] = 1.3´10-36 m.  
 
This wavelength is incredibly small: a human does not have measurable wave properties. 
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4. The momentum of an electron (mass m = 9.11´10–31 kg) is measured by a detector with an uncertainty 
of 2.12´10–25 kg m/s. Calculate the minimum uncertainty in the position of the electron. 
 
Answer: Use formula (7-6), solve algebraically for Dx, and then plug in the numbers: 
 
Dx Dp > 5.3´10–35 kg m2/s  
 
Dx > (5.3´10–35 kg m2/s)/Dp = (5.3´10–35 kg m2/s)/(2.12´10–25 kg m/s) = 2.5´10–10 m. 
 
Since the uncertainty cannot be less than this, 2.5´10–10 m is the minimum uncertainty in the position. 
 
5. As mentioned in this chapter, a particle can pop into and out of existence as long as its energy is less 
than the limit given by expression (7-7). One such type of particle is called a “virtual photon.” Calculate 
the minimum uncertainty in energy of a virtual photon that lives for 5.3´10–22 s. (Use this as the time over 
which its energy is measured.) Compare this with the minimum (rest-mass) energy of an electron, Erest = 
mc2 = 8.2´10–14 J. 
 
Answer: Use formula (7-7), solve algebraically for DE, and then plug in the numbers: 
 
DE Dt > 5.3´10–35 J s  
 
DE > (5.3´10–35 kg m2/s)/Dt = (5.3´10–35 J s)/(5.3´10–22 s) = 1.0´10–13 J. 
 
Since the uncertainty cannot be less than this, 1.0´10–13 J is the minimum uncertainty in the energy. 
Dividing this by 8.2´10–14 J, we find that the uncertainty is 1.2 times the energy of an electron at rest (see 
the next chapter for a discussion of rest-mass energy). 

 

Homework Problems 
 
1. A gas is composed of only hydrogen (H) and helium (He) atoms at some temperature T. The mass of a 
He atom mHe is 4 times the mass of a H atom, mH. 
 
a. What is the ratio of the average velocities of the H to He atoms? [Use the same approximation as in 
sample problem 1 above.] 
 
b. By how many times does the average velocity of a hydrogen atom increase if the temperature is 9T 
instead of T? 
 
2. A strange hypothetical atom has only 4 energy levels that its electrons can occupy. Determine how 
many spectral lines will appear in its spectrum. Show how you arrive at your answer by drawing a sketch 
similar to Figure 7-4 (but with no energy levels beyond n=4). [Hint: electrons can “jump” from any level 
onto any other level.] 
 
3. A strange hypothetical atom has only 5 energy levels that its electrons can occupy. Determine how 
many spectral lines will appear in its spectrum. Show how you arrive at your answer by drawing a sketch 
similar to Figure 7-4 (but with no energy levels beyond n=5). [Hint: electrons can “jump” from any level 
onto any other level.] 
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4. Calculate the wavelength of an emission line that is formed when electrons in hydrogen atoms jump 
from the n=5 to the n=3 energy level. Consult the section “Light and the Electromagnetic Spectrum” of 
Chapter 5 to determine the color (including, if relevant, infrared or ultraviolet) of this emission line. 
 
5. Calculate the wavelength of an emission line that is formed when electrons in hydrogen atoms jump 
from the n=4 to the n=1 energy level. Consult the section “Light and the Electromagnetic Spectrum” of 
Chapter 5 to determine the color (including, if relevant, infrared or ultraviolet) of this emission line. 
 
6. A certain star with a surface temperature of 10,000 K is composed of only hydrogen and helium. As do 
most stars, it has an atmosphere that is cooler than the surface. Draw a sketch of the visible spectrum of 
the star, indicating the colors (or using color pencils or pens if you have them). Use Figures 7-2 & 7-3 as 
a guide; the format of your sketch should be as in one of the panels of Fig. 7-3, i.e., a strip with 
wavelength decreasing to the right. 
 
7. A strange star with a surface temperature of 5,000 K is composed of only hydrogen and sodium. As do 
most stars, it has an atmosphere that is cooler than the surface. Draw a sketch of the visible spectrum of 
the star, indicating the colors (or using color pencils or pens if you have them). Use Figures 7-2 & 7-3 as 
a guide; the format of your sketch should be as in one of the panels of Fig. 7-3, i.e., a strip with 
wavelength decreasing to the right. 
 
8. An electron of mass 9.11´10–31 kg moves at a speed of 1.5´108 m/s. What is the wavelength of the 
electron? 
 
9. A proton of mass 1.67´10–27 kg moves at a speed of 2.0´107 m/s. What is the wavelength of the 
proton? 
 
10. The position of an electron (mass m = 9.11´10–31 kg) is located by a detector with an uncertainty of 
1.0´10–11 m. 
a. Calculate the minimum uncertainty in the momentum of the electron. 
 
b. Compare this with the momentum (p = mv) of a fast electron traveling at a velocity of 3.0´107 m/s, 
which is 0.1 times the speed of light. To compare, divide the uncertainty from part (a) by the momentum. 
 
c. Comment on whether the uncertainty in momentum is important or if it instead can be neglected when 
measuring the position and momentum of an electron. 
 
11. a. Calculate the minimum uncertainty in energy (in J) of a “virtual” photon (you will encounter these 
in Ch. 8) that lives for 2´10–22 s. [Use this as the time over which its energy is measured.] 
 
b. Compare this uncertainty in energy with the rest-mass energy of an electron, 8.2x10–14 J. To compare, 
divide the uncertainty from part (a) by the rest-mass energy. 
 
c. If the photon’s energy is at least twice that of an electron, it can turn into particles. Use the uncertainty 
in energy you calculated in part (a) as the actual energy of the photon. Can it turn into particles? 
 


