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Chapter 9: The Fabric of the Universe 2: Relativity 
and the Nature of Space-Time 
 
At about the same time that Rutherford was exploring the atom, the German physicist Albert Einstein was 
staging another scientific revolution that would change dramatically our understanding of the nature of 
the universe on cosmic as well as tiny scales. Einstein started by comparing measurements made by 
different observers studying the same event from different reference frames, perspectives like that of an 
observer in a spaceship with windows. These reference frames might be in motion relative to each other 
or relative to the event being observed. The dependence of measurements on the relative motion of the 
observer and the event being observed is called relativity. 
 
One example of relative motion in everyday life is the observation that the Sun, Moon, and stars all 
appear to rise in the east and set in the west on a daily basis. This results from the rotation of the Earth 
relative to the stars. Normally, we are attached to the surface of the Earth, moving only a small fraction of 
its circumference during a typical day. The Earth, however, spins such that a point at the latitude of 
Boston (42°), for example, moves in a circle at 1244 km/hr. Furthermore, the Earth orbits the Sun at a 
speed of about 30 km/s (note the time unit!). Our sense that the point at which we are located is stationary 
is therefore misleading. It is good to keep this in mind when the results of Einstein’s Theory of Relativity 
seem to violate our intuition, just as the concept of a moving Earth did to most ancient Greek scientists. 
 

 
Fig. 9-1. A passenger kicks a ball forward on a moving flatbed train car. The passenger sees the ball 
move at the velocity at which he kicked it, v=5 m/s in the example shown. An observer standing still 
on the ground measures the speed of the ball to be the speed of the train, V=100 m/s in this 
example, plus the speed v at which the passenger kicked the ball. A different formula would be 
needed if one or more of the speeds involved were close to the speed of light. 
 
Humans do have some sense of relativity in ordinary life, as when riding a train. A ball kicked forward by 
a passenger is measured by an observer standing outside on the ground to have a velocity equal to that of 
the train plus the velocity at which the passenger kicked the ball. Before Einstein proposed his theory of 
Special Relativity in 1905, this sort of relativity was well understood and considered to be the full story. 
However, since motions of reference frames in everyday life are much, much less than the speed of light 
c, we cannot assume that our understanding of relativity at low velocities will be valid when the relative 
motions are close to c. 
 
The Constant Speed of Light 
 
What if the velocities involved are not much less than the speed of light? Then we must take into account 
the fact that the train moves during the time that the ball’s change in position (or any other property) is 
measured. In order to figure out what the observer will measure, we need to know two things: the speed 
of light and whether this speed depends on the motion of the source of light.  
 
Is the speed of light constant? Actually, it is lower if the light is propagating through a medium rather 
than through a vacuum. But a more interesting question is whether the speed of light depends on the 
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motion of the source of the light. Light has a wave nature, and waves might not be expected to behave in 
the same manner as solid objects like balls.  
 
In a number of experiments between 1880 and 1920, U.S. physicist Albert Michelson measured the speed 
of light passing through a vacuum to be c = 3.00x108 m/s, the value that we adopt in this book. In 1887, 
he and Edward Morley used a clever experiment to show that there is no dependence of the speed of light 
on direction despite the Earth’s orbital velocity of 30 km/s around the Sun. (Recall from Chapter 5 that 
the speed of sound also does not depend on the source of the sound waves, only on the properties of the 
medium through which the sound travels.) In 1905, Einstein used algebra and clear thinking to determine 
the consequences of this: the nature of space and time is quite different from our everyday notions when 
motions occur near the speed of light. 
 
 
Special Relativity: How Motion Affects Space and Time 
 
In 1905, Einstein proposed a new way of thinking about physical phenomena that takes into account that 
light takes time to reach its destination. He interpreted the Michelson-Morley experiment to imply that the 
speed of light is the same for all observers, independent of their motion or the motion of the source of 
light. He then proceeded to develop the theory of Special Relativity that applies to physical measurements 
in systems — reference frames — moving at constant velocities. Einstein reasoned that the results of an 
experiment performed by an observer in such a non-accelerating reference frame should not depend on 
the motion of that frame relative to any other non-accelerating frame. In other words, there is no 
“preferred” or absolute reference frame. Rather, all non-rotating, non-accelerating frames are equivalent, 
and phenomena within each such frame all appear “normal.” Imagine, for example, that one person is in a 
spaceship traveling at a uniform velocity of 0.99c relative to another person’s planet. Within the 
spaceship, measurements of length, time, and motion will be normal. Measurements are also normal 
within the reference frame of the person on the planet. 
 
But what if a person in one reference frame measures a phenomenon that takes place in another frame 
whose motion is near the speed of light? Einstein found that measurements of such fundamental quantities 
as length and time are affected! In order to understand how this occurs, consider that we measure 
phenomena by observing the light emitted or reflected by the objects that are involved. If the motions are 
near the speed of light, the distance between an object and the observer changes significantly during the 
time interval within which the measurement takes place. This causes the interval between the times when 
the light — and therefore information — leaves the object and when it reaches the observer to keep 
changing while the measurement is in progress. Because of this, a time interval measured in the reference 
frame of the moving object is not the same as the time interval measured by the observer. Since time and 
distance (or length) are related through the velocity (see Ch. 4), the difference in the measured time 
interval implies a difference in the measurement of distance (or length). These effects are non-intuitive 
because we do not encounter objects moving near the speed of light in everyday life. We therefore need to 
rely on mathematical equations that we can derive using basic algebra and trigonometry. 
 
Perhaps the most astonishing result of Special Relativity is that the rate at which time passes is relative. 
Imagine that, standing on a stationary planet, you observe an event that occurs in a passing spaceship that 
moves near the speed of light. To be specific, a friend on the spaceship throws a ball against a wall and 
catches it. Let’s say that this event takes 2 s in the friend’s reference frame. How long does it take in your 
frame? The answer is longer than 2 s! Time (as measured by an outside observer) passes more slowly the 
faster the platform on which an event occurs moves relative to the observer. The word “event” has a very 
liberal meaning here: it can be the return of a bounced ball or the beating of a heart. In the example above, 
your friend’s heart would actually beat more slowly than normal as measured by you. 
 



From Nothing to Everything 

 9-3 

Box 9-1 derives the precise relationship between (1) the time t of events as measured in the observer’s 
frame and (2) the time trest of the same events as measured in another frame moving relative to the 
observer’s frame: 
 
                                                                       t = Γ trest                                                                            (9-1) 
 

t = time measured by the observer, trest = time measured in the moving frame, Γ = Lorentz factor. 
The quantity Γ, the Lorentz factor, equals one for zero velocity (v=0) and is always greater than one for 
moving objects (see Fig. 9-3). Equation (9-1) therefore indicates that the observer measures events to take 
a longer time. This shatters our notion of time being an absolute quantity that passes in the same, steady 
way throughout the universe. We discuss this matter further below. 
 
 
Box 9-1. The passage of time in a moving reference frame 
 
The effect of relative motion on time is actually straightforward to calculate. One way of measuring a time 
interval is to determine how long it takes for something moving at a known speed to travel a known 
distance. Light is good to use since its speed does not depend on the relative motion between the source 
and the observer. Imagine that, as in Figure 9-2, we have a spaceship with a floor-to-ceiling height H and 
that a flash of light is directed vertically from the floor to the ceiling. 
 

 
1. As measured by a person inside the spaceship (or, more generally, at rest relative to the spaceship), 
the light will reach the ceiling in a time trest= H/c. 
 
2. Now consider the case when the spaceship is moving at a horizontal speed v relative to the observer. 
The light still travels a distance H in the vertical direction, but also a distance vt in the horizontal direction, 
with t measured in the observer’s frame. Since the speed of light has not changed, the time it takes is 
equal to the distance that the light has traveled from the floor to the ceiling divided by the speed of light,   
t = d/c. Using trigonometry, we know that this distance 𝑑 = 	 𝐻% + (𝑣𝑡)%. The time interval is t = d/c, so 
we can replace d on the left-hand side by ct. Since we want to obtain an expression for t, we must square 
both sides to get c2t2 = H2 + v2t2, or c2t2 - v2t2 = H2. We can factor out a c2t2 on the left-hand side to get 
c2[1–(v2/c2)] t2 = H2. Solving this for t and then taking the square-root of both sides, we get                   
𝑡 = +

,-(.//1/)
. Since H = ctrest, 𝑡 = 	

2rest
,-(.//1/)

= 	Γ𝑡rest, which is the same as equation (1), where we 

have defined the Lorentz factor Γ = 	 ,
,-(.//1/)

. 

 

Fig. 9-2. Time on a spaceship as 
measured by an outside observer. In the 
top frame, the spaceship is stationary and 
the time it takes for a pulse of light to 
travel from the floor to the ceiling at 
height H is trest = H/c. In the bottom 
frame, the spaceship moves relative to 
the observer at a horizontal speed v. The 
time it takes for the pulse of light to 
travel from floor to ceiling is now longer, t 
= d/c. 
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Equation 9-1 suggests that the Lorentz factor G represents the importance of the effects of Special 
Relativity. When the velocity v is less than about 20% of the speed of light, v < 0.2c, the Lorentz factor is 
very close to one. For example, at v = 0.2c, Γ = 1.02. However, as the velocity approaches the speed of 
light, Γ increases: At v = 0.9c, Γ = 2.3, at v = 0.98c, Γ = 5.0, and at v = 0.995c, Γ = 10.0. Figure 9-3 
presents a graph of Γ as a function of v. The fact that the Lorentz factor is so close to one at low velocities 
explains the reason why we have no everyday sense of Special Relativity: motions of objects in our 
common experience are so slow relative to light that our world appears to obey the “classical” equations 
of Newton and others. If we were to live instead on spaceships that regularly zip through the Galaxy at a 
speed exceeding 98% of the speed of light, we would be accustomed to the effects that relative motion 
has on time and other measurable quantities. 

 
The equation for the Lorentz factor (see the bottom of Box 9-1) contains a singularity, which is a 
mathematical point at which something special happens: Γ becomes infinite if the velocity equals the 
speed of light (v = c). In addition, the term in the square-root becomes negative if the velocity exceeds c. 
Einstein realized that this implies that no velocity in the universe can exceed the speed of light. In fact, no 
information can propagate faster than the speed of light. While some scientists have proposed that 
particles called “tachyons” might exist that always travel at speeds greater than c, this concept remains 
completely hypothetical, with no solid evidence to support it. 
 
Since the measurement of time is affected by relative motion, we should expect the same for 
measurements of length. Indeed, as shown in Box 9-2, the length L of an object in a moving frame is 
measured to be shorter than the length Lrest when it is not moving. Distances are similarly contracted if 
measured from a frame that is moving. The equation that expresses this is 
 
                                                                L = Lrest/Γ.                                                                            (9-2) 
 

L = length (or distance) in the direction of motion; no subscript: as measured by the observer;            
Lrest: as measured in a reference frame in which the objects is at rest; Γ = Lorentz factor. 

The effect applies only to the dimension in the same or opposite direction of the motion, however. 
Lengths and distances in directions perpendicular to that of the motion are the same in both frames. 
 
Consider the example of a space traveler whose vessel moves at a speed of 0.98c; the Lorentz factor is 
then Γ = 5.0. The distances to stars in the forward and reverse directions that are measured by the space 
traveler will be 5.0 times shorter than would be the case if the spaceship were stationary relative to the 
stars. In the direction perpendicular to the motion, on the other hand, the distances would be the same as 
they would be if the spaceship were stationary relative to the stars. 
 
Recall that in everyday relativity, at speeds much less than c, the observed velocity of a ball thrown 
forward with velocity v in a frame moving at velocity V is simply v+V. This cannot be true when both v 

Fig. 9-3. The value of the Lorentz factor 
Γ as a function of velocity v divided by 
the speed of light c. It becomes 
infinitely large as v approaches c. 
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and V are close to c, since then the sum would be greater than c. Einstein derived a formula for the 
addition of velocities that is valid even for speeds close to that of light. In the case in which both 
velocities are in the same direction, the formula for the total velocity measured by the observer, relative to 
whom the frame moves with velocity V, is 
                                                                 𝑣obs = 	

.:;
,:(;./1/)

.                                                                 (9-3)  

 
The value of vobs never exceeds the speed of light. 
 
 
Box 9-2. The effect of relative motion on measurements of length 
and distance 
 
Imagine that you have a spaceship that has length Lrest when it is not moving. You can determine Lrest by 
standing at the rear and sending a pulse of light that reflects off a mirror at the front, then measuring the 
time trest it takes for the reflected pulse to return to the rear (see Figure 9-4). This must equal trest=2Lrest/c. 
 
The situation is more complicated for an observer relative to whom the spaceship is in motion. Imagine 
that part of the pulse of light, as well as part of the reflection, is directed to the outside observer so that it 
can be detected. By the time the light pulse arrives at the position where the front of the spaceship was 
located earlier — when the light from the initial pulse at the rear was emitted — the spaceship has moved 
and the front is no longer there. The time t1 that it takes for the light pulse to arrive at the front in the 
outside observer’s frame is given by the equation t1 = L/c + vt1/c. Here L is the length of the spaceship as 
measured by the outside observer and vt1 is the distance that the front of the spaceship advances during 
the time interval t1 that it takes for the light pulse to travel from the rear to the front. If we solve the above 
equation for t1 (note that it appears on both the right and left sides of the equation), we get t1 = L/(c–v). 
 
After reflection off the mirror in the front, it takes a time interval t2 for the light pulse to reach the rear, 
which by that time will have advanced by a distance vt2. The time t2 is therefore given by the equation     t2 
= L/c – vt2/c, the solution to which is t2 = L /(c+v). The total time for the light to return to the rear is 
 

 

Fig. 9-4. Measurement of the length of a spaceship 
by an outside observer. Top: The spaceship is 
stationary and the time it takes for pulse of light to 
travel the distance Lrest from rear (left) to front 
(right), or vice-versa, is trest = L/c. Middle: The 
spaceship moves relative to the observer at 
horizontal speed v. The time for light to travel from 
rear to front is t1=L/(v+c) and from front to rear is 
t2=L/(v–c). The difference in time intervals 
corresponds to the observer measuring the length 
of the moving spaceship to be shorter than if v=0. 
Bottom: Appearance of spaceship for different 
values of the Lorentz factor Γ. 

G = 1 
v = 0 
G = 5 
v = .98c 
G = 10 
v = .995c 
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𝑡 = 	 𝑡, + 	𝑡% = 𝐿 ,
1-.

+ 	 ,
1:.

= 𝐿 1:.
1:. 1-.

+ 	 1-.
1:. 1-.

= 	 %=1
1/-	./

= 	 %=
1[,-(./1)/

= 2Γ%𝐿/𝑐 . 
 
Here we have made use of the mathematical definition of Γ (see Box 9-1). 
 
We note that, from equation (9-1), (a) t = Γtrest, and from above, (b) trest = 2Lrest/c, so that we have             
(c) t = 2ΓLrest/c. We have already shown that (d) t = 2Γ2L/c. We can set expressions (d) and (c) equal to 
each other: 2Γ2L/c = 2ΓLrest/c. If we multiply both sides by the speed of light c, and divide both sides by 
2Γ2, we arrive at the final formula: L = Lrest/Γ, which is equation (9-2). 
 
 
Note that the slowing down of time (“time dilation”) and the shortening of lengths (“length contraction”) 
in a frame moving with respect to the observer are real effects, not merely illusions or mathematical 
wizardry. For example, some unstable particles created in high-energy physics experiments exist for a 
tiny fraction of a second if created with low velocities. They then proceed to decay into lighter particles. 
However, the closer their initial velocities are to the speed of light, the longer they exist, as predicted in 
equation (9-1). While the length of an object returns to its rest value once it stops moving, its age will still 
be less than if it had always remained stationary. You might think that this is crazy and should lead to 
contradictions. Box 9-3 discusses how the apparent paradoxes are resolved. 
 
 
Box 9-3. Einstein’s thought experiments to clarify Relativity 
 
At first glance, there seems to be some inconsistency in Special Relativity, since it should be symmetric. 
Consider an observer, whom we’ll call “Speedy,” on a spaceship moving at a velocity v near the speed of 
light relative to another observer, “Zero.” If all uniform motion is relative, Speedy should measure Zero’s 
velocity to be –v, i.e., equal in magnitude to v but in the opposite direction. In that case, we would expect 
Speedy to measure lengths of things at rest in Zero’s frame (e.g., a stick that Zero is holding) to be 
foreshortened along the direction of motion, and vice versa. So both should appear to be much thinner 
than normal as seen by the other. How can Zero measure lengths in Speedy’s frame to be shorter while 
Speedy measures lengths in Zero’s frame also to be less? Furthermore, how could they each measure 
the other’s time to pass more slowly? This would seem to lead to contradictions. 
 
Einstein explored how such issues are resolved through gedanken (thought) experiments, as he liked to 
call them. The first, dealing with time, is the “Twin Paradox.” Imagine that you have a twin on the Earth 
and that you travel in a spaceship at a velocity of 0.98c to a star system that is 9.8 light-years 
(abbreviated “lt-yr”) from the Earth. You then immediately turn around and return to the Earth. (Recall that 
a light-year is the distance traveled by light in one year, equal to 9.5 trillion km. The nearest star outside 
our solar system is about 4 lt-yr away.) In the frame of your twin on the Earth, the round-trip will take you 
20 years. However, your twin will measure your time to pass 5 times more slowly than on the Earth, since 
the Lorentz factor for v=0.98c is Γ=5.0. So, you will have aged 5 times less than this, or only 4 years. 
Your twin will now be 16 years older than you!  
 
But, why don’t you measure your twin’s time to pass 5 times more slowly than your time as well? The 
reason is that there is an asymmetry: your velocity is not constant during the trip. You must first 
accelerate from a speed of zero to v, when you reach the star system you must decelerate back to zero, 
then accelerate in the other direction to go home, and finally you must decelerate again to zero when you 
return to the Earth. While each reference frame that moves at a constant velocity is equivalent to any 
other similar reference frame, accelerating reference frames are different. 
 
Another aspect of this situation is how you measure the passage of time in another frame. The most 
straightforward is to observe an electronic clock in that frame. For example, the clock could send a pulse 
of radio waves every second as measured by a clock on the spaceship. In this case, the arrivals of the 
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pulses at the Earth will be affected by the fact that the spaceship becomes more distant from the Earth as 
it approaches the star system and closer to the Earth as it returns. The rate at which the pulses are 
received is in fact a frequency (pulses per second, or Hz) and therefore is subject to the Doppler effect. 
Einstein derived a formula for the special-relativistic Doppler effect (compare with eq. 5-2): 
 
                                                                     𝜆obs = 	Γ 1 + .

1
	𝜆C                                                                  (9-4a) 

 

 or, in terms of frequency,                       𝑓obs = 	
EF

G(,:HI)
                                                                       (9-4b) 

lobs = wavelength (in nm) and fobs = frequency (in Hz) measured by the observer, l0 = wavelength (in 
nm) and f0 = frequency (in Hz) measured at rest relative to the source of the light, G = Lorentz factor 
(no units) and v = velocity (in m/s) of the moving reference frame, c = speed of light = 3.0´108 m/s. 
 

Recall from Chapter 5 that the sign of v is positive for motion away from the observer and negative for 
motion toward the observer. According to equation (9-3), the pulses therefore arrive faster, which means 
that they have a higher frequency, during the return trip than during the first half. The G factor in the 
denominator, on the other hand, is the same during the whole trip because it does not depend on the 
direction of the motion. Because of this factor, the faster rate of arrival during the return trip does not 
completely offset the slower rate during the first half of the trip. This means that, in the final analysis, the 
time from the beginning to the end of the trip will have passed more slowly — it will be 1/Γ times shorter 
— on the spaceship than on the Earth. 
 
The second thought experiment is referred to as the “Pole-vaulter’s Paradox” (see Fig. 9-5). Consider an 
unrealistically fast pole-vaulter with a 5-meter pole running down a field at a speed of 0.98c so that the 
Lorentz factor Γ = 5.0. To the spectators sitting on the side of the field, her pole is 5.0 times shorter, or 1 
m. Now imagine that the pole-vaulter needs to run through a small building of length 2 m in the rest frame 
of the spectators, with two gates that open and close very quickly. The gates, initially open, close when 
the pole-vaulter is in the middle of the building, and then open again simultaneously as seen in the frame 
of the spectators. This appears normal to the spectators, except of course for the vaulter’s unbelievably 
high speed and the shorter-than-normal pole.  
 

 
 
 
 
But, in the pole-vaulter’s frame, her pole is still 5 m long, yet the length of the building is only 2/5.0 = 0.4 
m. How then does she see her pole fit into the building? The answer is that, in her frame, the gates do not 
close and re-open simultaneously. The light from the second gate’s closing reaches her first, so she sees 
that gate close and open before the front of her pole reaches it, then looks behind her and sees the first 

Fig. 9-5. The “Pole-vaulter’s Paradox.” (a) If the 
runner were too slow, the pole would be too 
long to fit inside the gates. (b) If the runner’s 
speed is high enough, the stationary spectators 
see the pole (and the vaulter!) to have shorter 
sizes in the direction of motion than when 
measured at rest. Both the vaulter and the pole 
can fit in the building even with the gates 
closed. (c) & (d) The same event as viewed in 
the pole-vaulter’s frame. The pole is too long to 
fit into the (length-contracted) building, but the 
second gate is no longer closed at the same 
time as the first gate. Rather, it closes and re-
opens first. After the pole clears the front door, 
that door closes and re-opens. This thought 
experiment illustrates that events simultaneous 
in one reference frame are not necessarily 
simultaneous in another.  
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gate close (after the rear of her pole is inside the building) and then open again. In this way, the length 
contraction is indeed symmetric — the pole-vaulter sees very thin spectators and they see an equally thin 
pole-vaulter. Events that are simultaneous in one reference frame are not necessarily so in another. 
 
 
One component of the relativity of simultaneity is the finite speed of light: it takes time for light to travel 
to us to convey the information needed to make a measurement. In everyday life, we all agree as to which 
events are simultaneous because the speed of light is so much faster than any other motions involved. 
This is often not true if we detect an event from the sound it gives off. For example, a cannon fired next to 
you will be heard before a cannon fired at the same time from a distance of 1 km. Similarly, astronomers 
might observe two stars explode in the sky, one at a distance of 1000 lt-yr and the other at a distance of 
2000 lt-yr. In order to observe these two events simultaneously at the Earth, the more distant star would 
need actually to have exploded 1000 years earlier than the closer one. But this is just apparent 
simultaneity caused by the locations of the events and the finite speed of light. For motions near the speed 
of light, the effect on space and time described by Relativity also comes into play. 
 
Although simultaneity of events is relative, time reversal of causally linked events is not possible 
according to Special Relativity. “Causally linked” means that one event causes the other to happen. For 
example, in no reference frame should you be able to see a fire before the match that starts it is lit. 
 
Space Travel 
 
It is fun to think about space travel at speeds near that of light. If you could build a spaceship that traveled 
at v=0.995c (Lorentz factor Γ=10), it would take you only one year according to your measurement of 
time to travel a distance (as measured from Earth) of 9.95 lt-yr. In your frame, all distances to things in 
the outside world in the forward or reverse direction would be 10 times shorter than when you were 
stationary relative to the Earth. So, despite the fact that the bright regions of our Galaxy extend over about 
60,000 lt-yr, you could travel to the other side and back within your lifetime if you could attain a speed so 
close to c that the Lorentz factor was 3000 or higher. 
 
But your trip would come at a price: your friends would all be long dead by the time you returned, and the 
Earth might have changed too much for you to bear. Furthermore, the cost in energy would be enormous, 
since the energy of your spaceship and its cargo would be Γ times its rest value (see eq. 9-5 below). An 
equivalent amount of energy — and therefore an enormous amount of fuel — would be necessary to 
accelerate the spaceship to such a high velocity. And even small objects that your spaceship hit would 
have a major impact, making the flight extremely dangerous. 
 
The Four Dimensions of Space-Time 
 
In the mathematical formulas of Special Relativity, the product of the speed of light and time, ct, appears 
in the same way as do the three dimensions of space. The publication of Einstein’s papers on Special 
Relativity led Hermann Minkowski to consider time as representing another dimension, equivalent to the 
three dimensions of space. These four dimensions of the universe are together called space-time. 
 
Mass and Energy 
 
Einstein’s formula that relates mass and energy, E = mc2, only includes the energy contained in the mass 
when the object is stationary relative to the observer. The full equation, valid whether the object is 
moving or not, is 
 
                                                           E = Γmc2.                                                                     (9-5) 
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E = energy (rest-mass + kinetic, in J), m = mass (in kg), c = speed of light = 3.0´108 m/s. 

This consists of two parts: the rest-mass energy, mc2, and the kinetic energy, (Γ–1)mc2. [Note: if the 
velocity v is much less than c, the value of (Γ–1) is very close to ½(v/c)2, so that the classical expression 
for kinetic energy, ½mv2, is recovered.] 
 
An important implication of equation (9-5) is that no object with mass can reach the speed of light. The 
value of the Lorentz factor at such a speed would be infinity (see Figure 9-3 and the mathematical 
definition of Γ in Box 9-1). This means that it would take an infinite amount of energy to accelerate an 
object to the speed of light. Only massless particles like photons can travel that fast. 
 
General Relativity: How Mass Affects Space-Time 
 
Although Einstein’s theory of Special Relativity initially met with considerable skepticism among 
physicists, over the next several years more and more of them realized that it provides a description of 
natural phenomena that is both elegant and accurate. Einstein, meanwhile, was busy extending the theory 
to include accelerating reference frames and gravity. It took ten years of development using high-level 
mathematics. Finally, in 1915 Einstein completed what he called the General Theory of Relativity. Here 
we summarize the foundation of General Relativity and its most important implications. 
 
Recall (see Ch. 3) Galileo’s experiments showing that objects of different mass fall with the same rate of 
acceleration. Newton’s equations can explain Galileo’s result, but only if the inertial mass m in his 
equation a =F/m is the same as the gravitational mass m in his equation F(gravity) = –GMm/r2. The 
assumption that this is true is called the Equivalence Principle. Einstein adopted a modified version of this 
and used it as the basic premise upon which he constructed General Relativity. The Equivalence Principle 
that he assumed states that experiments performed in a laboratory cannot determine the difference 
between acceleration caused by gravity and that caused by other forces. This also implies that the 
results of experiments performed by an observer in free-fall in a gravitational field are the same as those 
performed by an observer in a gravity-free, non-accelerating environment. 
 
After working through the mathematical consequences of these assumptions, Einstein found that space-
time can be curved. It does not need to be “flat” as had been supposed. When space is flat, the shortest 
distance between two points — a “geodesic” — is a straight line. In curved space-time, it is not. 
 

 
 
According to General Relativity, space-time is most curved close to a massive, compact object such as a 
star. The geometry, shown in Figure 9-6, is similar to a hole with sloping sides. Since light is expected to 
follow geodesic paths, the predicted bending of space-time by a star suggested a possible test to the 
theory. Light traveling past a massive object should follow a curved path. The light should therefore 
appear to an observer on the other side of the massive object to come from a different direction than it 

Fig. 9-6. The geometry of space-
time and bending of the path of 
light as it passes a massive, 
compact object such as the Sun. 
Since the four dimensions of space-
time cannot be represented 
adequately in a two-dimensional 
figure such as this, the drawing is 
meant only to show the sense of 
the curvature. [Source: 
www.answersingenesis.org] 
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would in the absence of the massive object. This implies that the positions of stars near the Sun in the sky 
during a solar eclipse — when the sky is dark enough to see stars through a telescope — should appear to 
shift slightly compared with their usual positions.   
 
In 1919, astronomer Arthur Eddington organized an expedition to observe a solar eclipse and found that 
the positions of the stars near the Sun were indeed shifted by the amount predicted by Einstein. The 
publicity surrounding this event made Einstein a celebrity. More modern tests of this prediction of 
General Relativity have been made using radio waves from space probes when they are on the other side 
of the Sun from the Earth, and in each case the measurements agree with the theoretical predictions. 
 
A glass lens also bends light, which is the principle by which a magnifying glass works. Can a massive 
object also act as a lens and magnify objects that lie behind it as viewed by a distant observer? The 
answer is “yes!” A number of such gravitational lenses have been seen. The most striking ones occur 
when the light from a remote galaxy passes through another galaxy or cluster of galaxies before the light 
reaches the Earth. Multiple magnified images, arcs, and rings result because of the different paths the 
light can take and still be bent into our line of sight by the gravitational curvature of space-time. 
 

 
 
According to General Relativity, gravity has a geometrical interpretation through the bending of space-
time. One can then picture the orbits of the planets as being analogous to balls tracing out elliptical paths 
in a frictionless, 4-dimensional roulette wheel created by the Sun’s gravity. 
 
Gravity affects time as well as space. Consider a photon emitted from a site close to a massive object. It 
will lose energy as it escapes the gravitational force of the object, just as an object thrown upward on the 
Earth loses kinetic energy as it progresses toward the peak of its trajectory. For light, energy is directly 
proportional to frequency (see Ch. 5), so the loss of energy means a shift to lower frequency and therefore 
longer wavelength. This is called the gravitational redshift. Since time is the inverse of frequency, if 
frequency is decreased, then the passage of time becomes more stretched out. (See the discussion in Box 
9-3). An observer far away from a massive object measures time to pass more slowly than normal for 
phenomena that occur very close to the massive object. 
 
General Relativity predicts that gravitational waves should be emitted when, for example, two very 
massive, very compact objects — such as collapsed cores of former stars called “neutron stars” (see Ch. 
13) — orbit each other. As do electromagnetic waves, gravitational waves travel at the speed of light, 
even through a vacuum. Joseph Taylor and Russell Hulse observed such a binary neutron star system in 
the 1970’s. They found that the size of the semi-major axis of the orbit decreases with time at a rate that is 

Fig. 9-7. Example of a gravitational lens. This 
image from the Hubble Space Telescope shows a 
bright galaxy (reddish color) whose gravity 
focuses the light from a much more distant 
galaxy (with a bluish-white color). The long arc, 
as well as other, less dramatic features in the 
image, are caused by the gravitational lens. This 
bending of the path of the light was predicted by 
Einstein’s General Relativity. [Source: stsci.edu] 
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predicted by the equations of General Relativity. The orbital decay occurs because energy is lost from the 
system as it emits gravitational waves. Instruments designed to observe gravitational waves directly are 
now in operation, and several events have been observed. As will be discussed in Chapter 13, the 
observed spectrum of the waves and how the spectrum changes with time matches the theoretical 
expectations of the gravitational waves emitted when two black holes or (for one of the events) two 
neutron stars merging. 

Summary 
 
The speed of light c is the speed limit of the universe. No information or energy can move faster than 
light and no matter can even reach c. After Michelson measured the speed of light, he and Morley 
determined that c does not depend on the relative motion between the source of the light and the observer. 
Einstein adopted this, along with the requirement that all observers measure the same results of 
experiments that take place in their own rest frame. He used these assumptions as the basis of Special 
Relativity, which describes measurements of phenomena that occur in non-accelerating reference frames 
that are in motion relative to one another. 
 
Einstein found that the measurements of such fundamental quantities as length and time are not absolute. 
Instead, they depend on the velocity of the object or system relative to the observer. For example, certain 
particles that are very short-lived if they are stationary have much longer lives if they move at a velocity 
very close to the speed of light relative to the observer. This is not an illusion: a measurement represents 
reality. It only seems strange to us because we are not accustomed to observing objects that move at 
speeds near that of light. In fact, the predictions of Special Relativity have been verified many times to 
extremely high precision. 
 
An important parameter of Special Relativity is the Lorentz factor G, which corresponds to how many 
times shorter an object is measured to be than its rest length and how many times more slowly time passes 
in a moving reference frame as viewed by an outside observer. Einstein also formulated his famous 
equation E=mc2 that defines the rest-mass energy. This means that mass and energy are really just two 
manifestations of a single property of matter, mass-energy. Scientists later used this formula to explain 
the energy sources of stars and also to build nuclear weapons and reactors. 
 
After deriving Special Relativity, Einstein developed General Relativity, which considers accelerating 
reference frames and gravity. His interpretation of gravity as bending of space-time is qualitatively 
different from Newton’s “action at a distance” description, yet the two produce nearly identical results 
except near very massive objects. The curvature of space-time causes light to follow a bent path around a 
massive object such as the Sun. Galaxies can even act as gravitational lenses, causing the appearance of 
multiple images of objects that lie at large distances beyond them. A remote observer measures time 
intervals of phenomena near a massive object to be longer than it is for similar events in his/her rest 
frame. Also, light emitted from a site very close to a compact, massive object is redshifted (shifted to 
longer wavelengths). This bending of light, slowing down of time, and other effects of General Relativity 
have all been observed, with the magnitudes of the effects agreeing with the predictions of the theory. 

 

Glossary 

Reference frame: An imaginary location (“platform”) from which measurements are made. 
 
Rest frame: A reference frame in which there is no motion of the object or person in question. 
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Relative velocity: The velocity measured from the rest frame of an observer. For speeds much less than 
that of light, the relative velocity equals the velocity of the object minus the velocity of the observer. For 
speeds close to c, equation (9-3) must be used. 
 
Relativity: The branch of physics that deals with the effects of moving reference frames on the 
observation of events and measurement of physical properties of objects. 
 
Everyday (“Galilean”) relativity: Relationship between velocities in different reference frames that are 
moving at relative velocities much less than the speed of light. 
 
Special Relativity: Einstein’s theory of the effect of relative motion at a constant velocity on the 
observation of events and measurement of physical properties of objects.  Important when the relative 
velocities are close to the speed of light. 
 
General Relativity: Einstein’s theory of gravity and accelerating reference frames. Describes gravity as 
curvature of space-time caused by the presence of mass. 
 
Michelson-Morley experiment: Important observation that the speed of light does not change if there is 
relative motion between the observer and the source of the light. 
 
Lorentz factor (symbol: Γ): A parameter whose value corresponds to the importance of the effects of 
Special Relativity. At speeds less than about 0.2c, Γ is very close to 1. As the speed approaches c, Γ 
increases. See Box 9-1 and Fig. 9-3. 
 
Time dilation: Effect described by Special Relativity: time passes more slowly for events observed in 
reference frames that are moving near the speed of light relative to the observer. See Box 9-1 and eq. (9-
1). 
 
Length contraction: Lengths and distances in the forward and reverse directions are fore-shortened when 
the phenomenon being observed is moving near the speed of light relative to the observer. See Box 9-2 
and eq. (9-2). 
 
Gedanken (thought) experiment: The use of physical principles and logic to predict the outcome of an 
experiment that is impractical to carry out in real life. Einstein used these to search for and resolve logical 
contradications in theoretical descriptions of nature. 
 
Causality: The logical ordering of events such that all observers see phenomena occur after the events 
that trigger them. 
 
Twin paradox: Gedanken experiment that illustrates time dilation and that only reference frames in 
uniform relative motion (constant speed and direction) are equivalent in Special Relativity. 
 
Pole-vaulter’s paradox: Gedanken experiment that illustrates length contraction and demonstrates that 
two events that are simultaneous in one reference frame are not necessarily simultaneous in another.  
 
Space-time: The framework of the 4-dimensional macroscopic universe, consisting of three dimensions 
in space and one in time. 
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Equivalence Principle: Assumption that the gravitational mass equals the inertial mass. This needs to be 
valid for the acceleration from gravity to be independent of the mass of the falling body (see Ch. 4). 
Einstein’s version is that no measurement can discern a difference between acceleration caused by gravity 
and that caused by other forces. 
 
Geodesic: The shortest distance between two points. In flat space, a line is a geodesic. On the surface of a 
sphere, it is a section of a great circle. Light follows a geodesic path. 
 
Gravitational redshift: Doppler effect on light emitted from a location near a massive object. The light 
loses energy, which corresponds to its frequency becoming lower, wavelength longer. 
 
Gravitational waves: Phenomenon predicted by Einstein’s theory of General Relativity. For example, 
ultra-dense concentrations of two or more massive objects in motion should emit these types of waves. 
 
Gravitational lens: Phenomenon in which massive objects bend the path of light in such a way as to 
focus the light, as in a conventional lens. The observer sees multiple images and/or arcs of bright objects 
in the background whose light passes by the massive objects. 

Questions for Discussion 

A. Suppose that you had the technology to build your own spaceship that can travel very close to (but 
always slightly less than) the speed of light. Would you want to take a tour of our neighborhood in the 
Milky Way Galaxy? You could do so in a reasonable amount of time if your spaceship could travel at a 
Lorentz factor Γ = 5 or greater. What would the consequences be? 
 
B. Does our common notion of reality remain intact if two observers in motion relative to each other 
measure time and length differently? Does this mean that all reality is relative and therefore subjective 
rather than objective? 
 
C. Why can a material object never reach the speed of light? Can you think of any way to overcome this 
obstacle? 
 
D. You would be very comfortable in a spaceship that accelerated at 1 g = 10 m/s2, since you would feel 
the same acceleration as gravity provides on the surface of the Earth. Approximately how long would it 
take for such a spaceship to get close to the speed of light? You can do a rough calculation by 
approximating 1 year as 30 million (3x107) s and using the formula v = at despite the fact that it would 
cease to be valid as your spaceship got very close to the speed of light. Is your answer shorter or longer 
than you expected? 
 
E. Can you think of a reason why the Equivalence Principle should be valid? Does this call for a theory 
that can explain it? 
 
F. What are the differences between Einstein’s theory of General Theory and Newton’s Universal Law of 
Gravitation? In particular, how does each explain how the force of gravity is transmitted? Compare with 
the explanation offered by the Standard Model of particle physics. Can all three theories be correct? 
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Sample Problems in Relativity 

1. Imagine that you are traveling in a spaceship toward a star that, measured from the Earth, lies at a 
distance of 98 lt-yr. Your spaceship travels toward the star at a Lorentz factor G=5 (speed of 0.98c). The 
length of the spaceship measured at rest is 50 m. 
 
a. How long will it take to travel from the Earth to the star as measured in the Earth’s frame? 
 
Answer: Since both the distance and the time are measured in the Earth’s frame, we can calculate the time 
as just the distance divided by the speed: 
 
t = d/v = (98 lt-yr)/(0.98c) = 100 yr. 
 
Note that when lt-yr is used as the unit for distance and the speed is in terms of c, time is in units of years. 
 
b. How long will it take to travel from the Earth to the star as measured in the spaceship’s frame? 
 
Answer: The observer’s rest frame is now that of the spaceship. Eq. (9-1) gives 
t = Γtrest and we need trest. So, 
 
trest = t/Γ = (100 yr)/5 = 20 yr. 
 
c. What is the rest-mass energy in J of a 50 kg human in the human’s rest frame? 
 
Answer: Eq. (8-2) (or eq. 9-5 with Γ = 1) gives 
 
Erest = mc2 = (50 kg)(3.00x108 m/s)2 = 4.5x1018 J. 
 
d. What is the energy in J of a 50 kg human in the spaceship as measured from the Earth? 
 
Answer: Since the spaceship is moving relative to the Earth-based observer, we use eq. (9-5):     
 
E = Γmc2 
= (5)(50 kg)(3.00x108 m/s)2 = 2.2x1019 J. 
 
Note that you should only use two significant digits because this is the accuracy of the data. 
 
e. What is the length of the spaceship in the Earth’s frame? 
 
Answer: Since the spaceship is moving relative to the Earth-based observer, eq. (9-2) gives 
 
L = Lrest/Γ = (50 m)/5 = 10 m. 
 
f. What is the distance d between the Earth and the star in the spaceship’s frame? 
 
Answer: Distance has the same relationship as length, so we can again use eq. (9-2), substituting d for L. 
Here the “rest frame” is the Earth’s frame, since it is at rest relative to the star whose distance is given. 
For a measurement inside the spaceship, we have 
 
d = drest/Γ = (98 lt-yr)/5 = 20 lt-yr. 
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(Only two significant digits are used.) So, it makes sense that it only takes 20 yr to get to the star in the 
spaceship’s frame! 
 
g. The spaceship has a blue tail light that emits light at a rest wavelength of 450 nm. What wavelength 
will be observed from the Earth as the spaceship travels (i) toward the star and (ii) back toward the Earth? 
 
Answer: Use eq. (9-4a). Since the spaceship is moving away, the velocity is v = +0.98c. Therefore, 
 
   𝜆obs = 	Γ 1 + .

1
	𝜆C= 5(1+0.98)(450 nm) = 4500 nm. 

 
this is in the infrared part of the spectrum (see Ch. 5).  
 
During the return trip, the light would be blueshifted (v = -0.98c), so if the spaceship also has a blue 
headlight, the wavelength observed at the Earth would be 
 
   𝜆obs = 	Γ 1 + .

1
	𝜆C	= (5)(1–0.98)(450 nm) = 45 nm, 

 
which is in the ultraviolet part of the spectrum. 
 
2. A spaceship has a length of 30 m when measured at rest. What length is measured by an observer 
relative to whom the spaceship is moving at a speed of 0.98c (Lorentz factor Γ = 5)? 
 
Answer: Eq. (9-2) gives 
 
L = Lrest/Γ = (30 m)/5 = 6 m. 
 
3. A muon particle has an average lifetime of 2.2 µs after it is created. If a muon is produced in a collision 
of particles in a laboratory and its Lorentz factor is 200, how long will it survive on average? 
 
Answer: Eq. (9-1) gives 
 
t = Γtrest = 200(2.2 µs) = 440 µs. 
 
4. A spaceship traveling at a speed of 0.866c (Lorentz factor Γ = 2) relative to the Earth shoots a rocket in 
the forward direction at a speed of 0.980c (Lorentz factor Γ = 5). What is the speed and Lorentz factor of 
the rocket measured in the Earth’s reference frame? 
 
Answer: Eq. (9-3) gives 
 
𝜈obs = 	

.:;
,:(;./1/)

= 	 C.LMM1:C.NLC1
,:[(C.LMM1)(C.NLC1)/1/]

= 	 ,.LPM1
,:C.LPN

= 	 ,.LPM1
,.LPN

= 0.998𝑐.  
 
From the definition of the Lorentz factor given in Box 9-1, 
 

Γ = 	
1

1 − (𝑣%/𝑐%)
= 	

1
1 − [(0.998𝑐)%/𝑐%

= 	
1

1 − 0.996
= 	

1
0.004

= 16. 
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Homework Questions 

1. A spaceship initially at rest is propelled to a Lorentz factor Γ = 7 (speed of 0.98974c). The mass of the 
spaceship is 20,000 kg; neglect the mass of the fuel. 

a. How much energy (in J) would be required to do this? [Hint: Use equation (9-5).] 

b. How much mass in fuel would be needed to create this much energy at the highest possible efficiency, 
100% conversion of rest-mass into energy? [Hint: Use the equation E = mc2 and solve for m.] 

c. Was our neglect of the mass of the fuel correct in this case, or is much more mass needed in fuel than in 
the structure of the spaceship? That is, can space travel near the speed of light be fuel-efficient? 
 
2. A spaceship moves through the Galaxy at a Lorentz factor Γ = 7 (speed of 0.98974c). 
 
a. How much energy would be involved in a head-on collision of the spaceship with a small space rock of 
mass 1 kg? [Note that, because velocity is relative, as measured by the spaceship, the rock hits the 
spaceship at a Lorentz factor Γ = 7.] 
 
b. Compare this with the energy of a hydrogen bomb, about 1x1017 joules, by dividing your answer to part 
(a) by this number. Is space travel at speeds close to that of light hazardous? 
 
3. A spaceship traveling at a speed of 0.9682c (Lorentz factor Γ = 4) is passing by the Earth so that at one 
moment its path is perpendicular to your line of sight toward it. You are standing on the Earth looking up 
at the spaceship at that moment. [Note: The direction of the spaceship’s motion avoids complications 
related to the change in time for light from the spaceship to travel to you on the Earth. Otherwise, it is not 
important to the calculation.] 
 
a. How long do you observe the spaceship to be if its length at rest is 20 m? 
 
b. A traveler on the spaceship radios to you “hello”, which in her rest frame takes 3 seconds. How long do 
you hear it take for her to say “hello”? 
 
4. Two spaceships approach each other, each with a speed of 0.975000c (Lorentz factor of 4.50035) 
relative to a stationary point between them. 
 
a. What is the relative velocity of the spaceships, i.e., the velocity of one as measured by the other?  
[Hint: keep 6 significant digits throughout; rounding will lead to an error.] 
 
b. What is the Lorentz factor that corresponds to this relative velocity? 
 
5. A spaceship traveling at a speed of 0.99000c away from the Earth ejects a shuttle-craft in the rear 
direction at a velocity of 0.98000c relative to the spaceship. 
 
a. What is the velocity of the shuttle-craft relative to the Earth?  [Hint: keep 5 significant digits 
throughout; rounding will lead to an error. Note that the velocities are in opposite directions, so one is 
positive and the other negative.] 
 
b. What is the Lorentz factor of the shuttle-craft corresponding to the velocity calculated in part (a)? 
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6. A spaceship traveling at a speed of 0.553c (Lorentz factor Γ = 1.2) is heading directly toward the Earth. 
Space traffic controllers on the Earth shine a laser beam composed of red photons with a wavelength of 
650 nm toward the spaceship to signal it to stop.  
 
a. What is the wavelength of the laser beam measured in the frame of the spaceship? 
 
b. What color will the laser beam have as viewed from the spaceship? [Consult Chapter 5, page 5-7 for 
converting wavelength to color.] Will it still have the characteristic red color of stop signs? 
 
Astronomical Puzzle (Group Exercise) 
 
7. An object in our Galaxy has a double set of emission lines whose wavelengths vary periodically. For 
example, the Hb emission line of hydrogen has a rest wavelength of 486.1 nm. Two Hb lines appear in 
the spectrum of the object. The graph (shown below) of wavelength vs. time for each line resembles a 
sine curve, with the longest wavelength of one line occurring at the same time as the shortest wavelength 
of the other line.  
 
a. Determine the likely physical principle that can cause the changing wavelengths. 
 
b. Devise some hypotheses that might be able to explain this phenomenon. 
 
c. Evaluate each hypothesis logically. Is it self-consistent (i.e., does it avoid logical contradictions?) Does 
it pass the “Occam’s Razor” criterion that hypotheses should not be overly complex? 
 
d. For each hypothesis, make some predictions as to what further observations — e.g., images of the 
object — should show. 
 

 
 

Figure for problem 7. The graph plots 
the wavelength of the hydrogen Hb 
emission line from a cosmic object. 
There are two such lines — 
corresponding to the red and blue 
curves — observed at any given time. 
The rest wavelength of the Hb line is 
shown as a horizontal dashed line. 


