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Congruent coordinate transformations are used to convert second-order models to a form in which
the mass, damping and stiffness matrices can be interpreted as a passive mechanical system. For
those systems which can be constructed from interconnected mass, stiffness and damping elements, it
is shown that the input-output preserving transformations can be parameterized by an orthogonal
matrix whose dimension corresponds to the number of internal masses – those masses at which
an input is not applied nor an output measured. Only a subset of these transformations result
in mechanically realizable models. For models with a small number of internal masses, complete
discrete mapping of the transformation space is possible permitting enumeration of all mechanically
realizable models sharing the original model’s input-output behavior. When the number of internal
masses is large, a nonlinear search of transformation space can be employed to identify mechanically
realizable models. Applications include scale model vibration testing of complicated structures and
the design of electro-mechanical filters.

PACS numbers: 43.40.At, 43.40.Sk

I. INTRODUCTION

The mechanical realization problem is the conversion
of a passive input-output dynamic model to a form that
is recognizable as an interconnected system of mechanical
components. Applications of mechanical realization arise
in those situations for which it is desirable to fabricate a
mechanical system possessing specified input-output be-
havior.

An important example is the scale model testing
of complicated structures in naval and aircraft design.
While the major structural elements can be easily scaled
and fabricated, scale models of other components, such
as electronic equipment and machinery, are not easily
manufactured. In these cases, the most efficient solution
can be to model the input-output behavior of the equip-
ment where it attaches to the major structure and to
build a simple structure which is dynamically equivalent.
Similarly, in the design of electro-mechanical filters[1],
the desired input-output behavior is specified and its me-
chanical realization is sought.

The mechanical realization problem starts with the
specification of a dynamic model describing input-output
behavior. In the case of scale modeling, this model may
be obtained through finite element analysis or estima-
tion from experimental data. In filter design, the model
will depend on the purpose of the filter. While both
time-domain and frequency domain model descriptions
are possible, this paper examines the realization prob-
lem for time-domain models specified in the second-order
form,
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Mq̈ + Cq̇ + Kq = Fu

y = Hdq + Hv q̇ + Haq̈. (1)

The n×1 vector q is the set of displacement coordinates,
the m × 1 vector u is the input vector, which is often
an external force vector, and the p × 1 vector y is the
output vector. The mass matrix is M = MT > 0, the
damping matrix is C = CT ≥ 0 and the stiffness ma-
trix is K = KT ≥ 0. F is the n × m input influence
matrix, which is determined by the location of the input
forces or torques. Hd, Hv and Ha are the output influ-
ence matrices of displacement, velocity and acceleration,
respectively. In many circumstances, only accelerations
need be considered as outputs and so Hd = Hv = 0, while
Ha 6= 0. This is the case considered in this paper.

The mechanical realization problem for undamped or
proportionally damped systems in the form of (1) has
been widely studied. For these systems, the mass ma-
trix can be reduced to diagonal form while the damping
and stiffness matrices can be converted to either tridiag-
onal or border diagonal form. The former consists of a
realization in which the masses are connected in series
while, in the latter, they are connected in parallel. For
example, a serial model can be obtained by Falk’s algo-
rithm using a congruent transformation computed from
the given mass and stiffness matrices.[2, 3] Parallel real-
izations can be obtained using the normal mode theory
of O’Hara and Cunniff.[4] Their results were generalized
to a mechanical system undergoing three-dimensional vi-
bration by Pierce[5].

The existence of structure-preserving transformations
which result in diagonal mass, damping and stiffness ma-
trices has been demonstrated for most real second order
systems [6, 7]. While this form is amenable to numerical
computation of input-output response by superposition,



it is not appropriate for mechanical realization which re-
quires any superposition of responses to be performed
mechanically.

A related body of work addresses inverse eigenvalue
and inverse vibration problems. [8–11] The former is con-
cerned with constructing a matrix with specified eigen-
values and so applies to the realization of mass normal-
ized systems. The inverse vibration problem involves the
reconstruction of mass and stiffness matrices from pre-
scribed frequency response data, such as resonance fre-
quencies. This approach can be extended to include pro-
portional damping.

The question of whether or not an arbitrary
{M,C,K, F,H} corresponding to a passive system can
be transformed to mechanically realizable form has not
been addressed in the literature. It remains an open ques-
tion, although one might anticipate that a result similar
to the positive realness requirement of electrical network
synthesis [12] also holds for mechanical systems. Further-
more, a recipe for transforming a system to mechanically
realizable form is unknown. As a result, the realizability
problem must be solved numerically using optimization
algorithms.

The contribution of this paper is to characterize the
set of transformations by which a class of models with
viscous, but nonproportional damping can be converted
to mechanically realizable form. The approach taken is
to parameterize the set of transformations relating all
input-output equivalent models which could result in a
mechanically realizable form. Using this parameteriza-
tion, mechanical realizations can be found by mapping
or selectively searching the set of transformations. They
can also guide future efforts seeking closed form solutions.
These topics and examples are presented in the following
sections.

II. STRUCTURE OF MECHANICALLY
REALIZABLE SECOND ORDER MODELS

Motivated by the application of scale modeling equip-
ment and machinery, this paper considers a specific sub-
set of mechanically realizable systems consisting only
of interconnected mass, stiffness and damping elements.
Other types of elements, such as transmissions, are pre-
cluded. It is also assumed that there are no isolated
masses in the system and that the system is statically
stable, i.e., each mass is connected to the rest of the real-
ization by at least one spring. Furthermore, the models
are constrained to include a rigid body mode, i.e., they
cannot employ skyhook connections comprised of springs
and dashpots attached to a fixed ground.

For the intended applications, model simplicity drives
the choice of mechanical elements while ease of implemen-
tation precludes the use of skyhook attachments. The
results presented here can be adapted to permit addi-
tional model elements or to eliminate the rigid body
mode. Both of these cases are less restrictive than the

one considered since, for the former, the solution space
is enlarged and, for the latter, the number of constraints
is reduced.

Finally, only realizations corresponding to diagonal
mass matrices are considered here. Block diagonal mass
matrices involving, e.g., coupling between linear and ro-
tational coordinates, may arise in practical applications,
but are beyond the scope of this paper.

A. Realizable Stiffness and Damping Matrices

In addition to enforcing diagonality of the mass ma-
trix, the conditions above also constrain the form of the
stiffness and damping matrices. The simple mechanical
system of Figure 1 is used to illustrate these properties,
which are well known. Since these requirements are the
same for both types of matrices, a realizable stiffness ma-
trix is used to demonstrate them. The mass and stiffness
matrices are expressed as follows

M =

 m1

m2

m3

m4



K =

 k1 + k2 + k4 −k1 −k2 −k4

−k1 k1 + k3 0 −k3

−k2 0 k2 0
−k4 −k3 0 k3 + k4

 (2)
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FIG. 1: Simple Mechanical Model

The stiffness matrix can be decomposed into the fol-
lowing form[13]

K = CKKDCT
K (3)

where the connectivity matrix CK and nonnegative diag-
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onal matrix KD are given by

CK =

 1 1 1 0 1
1 −1 0 1 0
1 0 −1 0 0
1 0 0 −1 −1



KD =


0

k1

k2

k3

k4

 (4)

The connectivity matrix CK encodes the interconnec-
tion of masses by springs. The first column of CK is cho-
sen arbitrarily to represent the rigid body mode of the
system in Figure 1, corresponding to the zero element
of KD. The other columns of CK indicate connections
between pairs of masses. For example, the third column
represents the connection between m1 and m3 by stiffness
k2 in KD. The opposite signs on the nonzero elements of
these columns (+1,−1) together with KD11 = 0 ensures
that K will have a nullspace vector

[
1 1 · · · 1

]T corre-
sponding to a rigid-body mode. For a mechanical system
with n masses and nk springs, CK is an n × (nk + 1)
matrix and KD is an (nk +1)× (nk +1) diagonal matrix.

Similarly, a mechanically realizable damping matrix C
can be decomposed as C = CCCDCT

C , where CC is a
connectivity matrix and CD is a diagonal matrix with
nonnegative diagonal elements. It should be noted that
while CC is not necessarily equal to CK , both will share
the nullspace vector

[
1 1 · · · 1

]T ensuring the prohi-
bition against skyhook springs and dashpots.

It can be summarized that the mechanically realizable
mass, damping and stiffness matrices must satisfy the
following realization conditions:

M = diag(
[

m1 m2 · · · mn

]
),mi > 0

C = CT , Cii ≥ 0, Cij ≤ 0, C
[

1 1 · · · 1
]T = 0

K = KT ,Kii > 0,Kij ≤ 0,K
[

1 1 · · · 1
]T = 0 (5)

where i, j = 1, 2, · · · , n and i 6= j.

B. Realizable Input and Output Influence Matrices

The input and output influence matrices can be cate-
gorized in terms of both the number of inputs and out-
puts as well as their relative locations. In the case of
single-input, single-output (SISO) systems, the influence
matrices are vectors while for multi-input, multi-output
(MIMO) systems they are matrices. If the inputs and
outputs are collocated then the system can be further
classified as a driving-point realization while those sys-
tems with noncollocated inputs and outputs are termed
transfer realizations.

Without loss of generality, it is assumed that the de-
sired input and output influence vectors or matrices are

given by

1. SISO Driving-point Accelerance

F = HT = e1 (6)

2. SISO Transfer Accelerance

Ff = e1

HT
f = e2 (7)

3. MIMO Driving-point Accelerance

Ff = HT
f =

[
e1 e2 · · · em

]
(8)

4. MIMO Transfer Accelerance

Ff =
[

e1 e2 · · · em

]
HT

f =
[

em+1 em+2 · · · em+p

]
(9)

5. MIMO Driving-point and Transfer Accelerance

Ff =
[

e1 e2 · · · em

]
HT

f =
[

e1 e2 · · · er em+1 em+2 · · · em+(p−r)

]
(10)

Here, ei is an element of the standard basis for <n, which
has a 1 at the i’th component and 0’s elsewhere. The
excitation forces are applied at a set of m coordinates and
the accelerations are measured at a set of p coordinates.
Both sets share r common coordinates.

III. TRANSFORMATIONS RELATING
REALIZATIONS

Following the form of (1), an initial second order model
describing the accelerance of a mechanical system is given
by

M0ẍ + C0ẋ + K0x = F0u

y = H0ẍ. (11)

The goal of the paper is to convert this initial model to
one possessing the same input-output dynamic behav-
ior, but which also satisfies the mechanical realizability
conditions defined in the previous section. Congruent
coordinate transformations can be seen to maintain the
input-output behavior of the model while also preserving
the symmetry of the mass, damping and stiffness matri-
ces. Consider the coordinate transformation

x = Tq (12)

where T is a nonsingular matrix. A congruence transfor-
mation converts the initial model (11) to the following
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form.

Mf q̈ + Cf q̇ + Kfq = Ffu

y = Hf q̈ (13)

Here Mf , Cf , Kf , Ff and Hf are, respectively, the final
mass, damping and stiffness matrices, and the input and
output influence matrices. They are defined as

Mf = TT M0T

Cf = TT C0T

Kf = TT K0T

Ff = TT F0

Hf = H0T (14)

Thus, the set of invertible matrices T ∈ <n×n de-
scribes the family of all second-order models satisfy-
ing input-output equivalence with (11) while preserving
mass, damping and stiffness matrix symmetry. Only a
subset of matrices T may result in a mechanically realiz-
able model in which the final mass, damping and stiffness
matrices satisfy (5) and the final input and output influ-
ence matrices satisfy one of (6)-(10).

While necessary and sufficient conditions for an ini-
tial model to be transformable to mechanically realizable
form are not available, the following is a necessary con-
dition for an initial model to possess a rigid body mode:

C0v0 = K0v0 = 0 (15)

This equation states that the initial damping and stiff-
ness matrices must share the same nullspace vector,
v0. This follows from C

[
1 1 · · · 1

]T = 0 and

K
[

1 1 · · · 1
]T = 0 in (5) and the fact that congru-

ence transformations preserve the signature of a matrix.

A. Decomposition of the Transformation

The coordinate transformation in (12) can be decom-
posed into a product of three components as follows.

T = M
−1/2
0 RM

1/2
f (16)

The first component, the inverse square root of the
initial mass matrix, is used to mass normalize the initial
second order model (11). The second component R is an
orthogonal matrix, which preserves mass normalization.
To obtain mechanically realizable form, it must perform
two tasks. First, it should convert the input and output
influence matrices to one of the desired forms (6)-(10).
Secondly, from (5), it must ensure that all off-diagonal
components of the damping and stiffness matrices are
non-positive. Since the congruent transformation pre-
serves definiteness of a symmetric real matrix, the diag-
onal elements of the damping and stiffness matrices are
always nonnegative[14].

The last component of the transformation is the square
root of the final mass matrix Mf . As will be shown, if
an orthogonal matrix can be found such that the realiz-
ability conditions mentioned above are satisfied, the final
mass matrix can be computed explicitly.

Given the decomposition of the transformation in (16),
obtaining realizable form reduces to solving for an ap-
propriate orthogonal matrix R. Orthogonal matrices are
comprised of rotations, with determinant +1, and reflec-
tions, with determinant −1. In addition, permutation
matrices constitute a subset of both rotation and reflec-
tion matrices. Used in a congruence transformation, per-
mutation matrices simply reorder the coordinates.

A basis for orthogonal matrices can be constructed
from the rotation matrices plus a single arbitrary reflec-
tion. Choosing this reflection as a permutation matrix
reduces the basis, without loss of generality, to the ro-
tation matrices. The n × n rotation matrices constitute
the Special Orthogonal group, SO(n). In the remainder
of the paper, rotation matrices will be used as a basis for
R.

B. Parameterization of the Orthogonal
Transformation

The component R of the transformation (16) must per-
form two tasks, aligning the input and output influence
matrices as well as ensuring that the off-diagonal ele-
ments of the mass-normalized stiffness and damping ma-
trices are nonpositive. These tasks can be performed
sequentially by writing R as the product of two rotation
matrices

R = RiRo (17)

where the component Ri aligns the influence matrices.
Ro ensures nonpositive off-diagonal elements of the stiff-
ness and damping matrices while preserving the form of
the influence matrices obtained with Ri.

1. Aligning Input and Output Influence Matrices

For the first task, denote the coordinate transformation
as

x = M
−1/2
0 Riz̃ (18)

Substituting (18) into the initial model (11) and pre-
multiplying by RT

i M
−1/2
0 yields the following model

¨̃z + Cz̃
˙̃z + Kz̃ z̃ = Fz̃u

y = Hz̃
¨̃z (19)
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in which the matrices are defined by

Cz̃ = RT
i M

−1/2
0 C0M

−1/2
0 Ri

Kz̃ = RT
i M

−1/2
0 K0M

−1/2
0 Ri

Fz̃ = RT
i Fz

Hz̃ = HzRi (20)

where Fz = M
−1/2
0 F0 and Hz = H0M

−1/2
0 .

Ri can be obtained by QR factorization of the mass
normalized input and output influence matrices, Fz and
Hz. In this QR factorization, a matrix is decomposed
into a product of an orthogonal matrix and an upper
triangular matrix. A property of this method is that a
matrix whose column vectors are perpendicular to each
other can be factored as a product of an orthogonal ma-
trix and a diagonal matrix.

In the most general case, the input and output influ-
ence matrices in the final realizable model (13) must have
the form given by (10). With consideration of (16), it can
be proved that the columns of Fz are mutually orthog-
onal. Thus, after the rotation Ri, the input and output
influence matrices Fz̃ and Hz̃ in (19) should satisfy the
following relationships

Fz̃ = RT
i Fz =

[
||fz1 ||e1 ||fz2 ||e2 · · · ||fzm

||em

]

Hz̃ = H0M
−1/2
0 Ri =



||fz1 ||eT
1

||fz2 ||eT
2
...

||fzr ||eT
r

||hz(r+1) ||eT
m+1

||hz(r+2) ||eT
m+2

· · ·
||hzp ||eT

m+(p−r)


(21)

To fulfill these requirements, the component Ri can be
decomposed as a product of two rotations

Ri = RFzRHz (22)

In (22), the first component RFz
satisfies

RT
Fz

Fz =
[
||fz1 ||e1 ||fz2 ||e2 · · · ||fzm ||em

]
(23)

Suppose the QR factorization of Fz is given by

QFz

[
||fz1 ||e1 ||fz2 ||e2 · · · ||fzm

||em

]
= Fz (24)

where QFz
is an orthogonal matrix. The first component

RFz
then can be chosen as

RFz = QFz (25)

From (23), the first m column vectors of RFz
(or QFz

)
should be equal to fzi

/||fzi
|| (i = 1, 2, · · · ,m), respec-

tively. According to (10), HzRFz
should have the follow-

ing form

HzRFz
=


||fz1 ||eT

1

||fz2 ||eT
2
...

||fzr ||eT
r

H̄z

 (26)

where H̄z =
[

0(p−r)×m H̃z

]
and H̃z is a (p−r)×(n−m)

matrix.

The second component RHz
of the transformation Ri

needs to preserve ej ’s (j = 1, 2, · · · ,m) and should con-
vert (26) to the the following form

(HzRFz
)RHz

=



||fz1 ||eT
1

||fz2 ||eT
2
...

||fzr ||eT
r

||hz(r+1) ||eT
m+1

||hz(r+2) ||eT
m+2

· · ·
||hzp ||eT

m+(p−r)


(27)

Suppose the QR factorization of H̃T
z is given by

QHz

[
||hz(r+1) ||ẽ1 ||hz(r+2) ||ẽ2 · · · ||hzp

||ẽ(p−r)

]
= H̃T

z

(28)
where QHz

is an orthogonal matrix and ẽi is an element
of the standard basis for <n−m, which has a 1 at its
i′th component and 0’s elsewhere. Equation (28) can be
rewritten as 

||hz(r+1) ||ẽT
1

||hz(r+2) ||ẽT
2
...

||hzp
||ẽT

(p−r)

QT
Hz

= H̃z (29)

or equivalently
||hz(r+1) ||ẽT

1

||hz(r+2) ||ẽT
2
...

||hzp
||ẽT

(p−r)

 = H̃zQHz
(30)

Thus, the second component RHz
in (22) is given by

RHz
=

[
Im×m 0

0 QHz

]
(31)

In summary, from (22), (25) and (31), the component Ri

of the transformation R in (17) is given by

Ri = RFz
RHz

= QFz

[
Im×m 0

0 QHz

]
(32)
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2. Achieving Nonpositive Offdiagonal Damping and
Stiffness Elements

After aligning the input and output influence matrices,
a second rotation Ro is needed to convert the damping
and stiffness matrices in (19) to mechanically realizable
form in which all off-diagonal elements are nonpositive.
An explicit solution for Ro is not available, however, its
form and the number of its free parameters can be derived
as follows. Denote the coordinate transformation

z̃ = Row (33)

Substituting this transformation into (19) and pre-
multiplying by RT

o yields the following second order
model

ẅ + Cwẇ + Kww = Fwu

y = Hwẅ (34)

in which

Cw = RT
o Cz̃Ro

Kw = RT
o Kz̃Ro

Fw = RT
o Fz̃

Hw = Hz̃Ro (35)

The input and output influence matrices in (19) are
already in the desired form, given by (21), only with a
lack of scaling, and the transformation Ro should pre-
serve this form. To do so, it can be expressed as

Ro =
[

Ini×ni 0
0 R̃o

]
, (36)

with Ini×ni
as the ni × ni identity matrix and the ro-

tation matrix R̃o ∈ SO(n − ni). The value ni is the
number of masses at which input forces are applied and
/ or accelerations are measured,

ni = m + p− r. (37)

It follows that n − ni is the number of internal masses
of the system, i.e., those masses to which an input is not
applied nor at which an output is measured.

The free parameters of Ro are those of R̃o ∈ SO(n −
ni), which number (n− ni)(n− ni − 1)/2. Given Ro, an
explicit solution exists for the final mass matrix and so
this is also the number of free parameters of the transfor-
mation space defined by (16). This number, quadratic in
the number of internal masses in the model, represents
the dimension of the space which must be mapped or
searched for mechanically realizable models.

C. Solving for the Final Mass Matrix

An explicit solution for the final mass matrix, Mf , can
be derived from the realization conditions of (5) requiring
the damping and stiffness matrices in (13) to satisfy

Kf

[
1 1 · · · 1

]T = 0

Cf

[
1 1 · · · 1

]T = 0. (38)

Since the model (13) is related to the model (34) by the
congruent transformation M

1/2
f , Cf = M

1/2
f CwM

1/2
f and

Kf = M
1/2
f KwM

1/2
f . Substituting these expressions into

(38) reduces to

Cw
√

mf = 0
Kw

√
mf = 0 (39)

where √
mf is a vector of the square roots of the final

masses, i.e., √mf =
[ √

mf1

√
mf2 · · · √mfn

]T .
The vector √

mf is a scaled version of the shared
nullspace vector of Cw and Kw. The final masses are
obtained by scaling the nullspace vector according to the
following theorem, presented for the most general case of
input and output influence matrices (MIMO drive-point
and transfer accelerance) given by (10).

Theorem 1. The input masses, to which excitation
forces are applied, and the output masses, at which ac-
celerations are measured, are given by

mfi
=

1
||fzi

||2
, i = 1, 2, · · · ,m

mf(m+j) =
1

||hz(r+j) ||2
, j = 1, 2, · · · , p− r (40)

where fzi
(i = 1, 2, · · · ,m) is the i′th column vector of

M
−1/2
0 F0 and hzj

(j = 1, 2, · · · , p) is the j′th row vector
of H0M

−1/2
0 .

Proof. According to (10), (14) and (16),

Ff = TT F0 = M
1/2
f RT M

−1/2
0 F0 = M

1/2
f RT Fz (41)

This is equivalent to

M
−1/2
f

[
e1 e2 · · · em

]
= RT

[
fz1 fz2 · · · fzm

]
(42)

which simplifies to[
1

√
mf1

e1
1

√
mf2

e2 · · · 1
√

mfm

em

]
=[

RT fz1 RT fz2 · · · RT fzm

]
(43)

Since rotation matrices preserve vector length, equat-
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ing the magnitude of columns yields

mfi =
1

||fzi
||2

, i = 1, 2, · · · ,m (44)

The second equation of (40) follows similarly.

This theorem states that each member of the set of
mechanically realizable models which are input-output
equivalent to the initial model (11) has the same input
and output masses. The following theorem proves the
invariance of total system mass for all mechanical real-
izations. Physically, this result follows from input-output
equivalence at zero frequency to preserve the rigid body
mode.

Theorem 2. All mechanical realizations which are
input-output equivalent to the original second-order
model (11) possess the same total mass.

Proof. Recall from (15) the necessary condition for real-
izability that C0 and K0 share the same nullspace vector
and let this vector v0 be of unit length:

C0v0 = K0v0 = 0 (45)

By (5) and (14), TT K0T
[

1 1 · · · 1
]T = 0 and since

TT is invertible, T
[

1 1 · · · 1
]T = αv0, where α is a

scalar constant.
Substituting T = M

−1/2
0 RM

1/2
f yields

√
mf = αRT M

1/2
0 v0 (46)

and an expression for total mass is given by

√
mf

T√mf =
i=n∑
i=1

mfi
= α2vT

0 M0v0 (47)

To compute α, it is known from Theorem 1 that √mf1 =
1/||fz1 ||. Since a system must have at least one input
and output, the first mass can always be used in this
expression and combining it with (46) yields

α =
1/||fz1 ||

(RT M
1/2
0 v0)1

(48)

where the subscript 1 in the denominator indicates the
first element of the column vector.

Recall (17) in which Ri aligns the inputs and outputs
and Ro has the structure of (36). Since all mechanical
realizations share the same Ri and furthermore, since Ro

cannot change the first element of M
1/2
0 v0, the constant α

is independent of Ro and thus the same for all mechanical
realizations.

Taken together the preceding theorems indicate that
only the internal masses of the system can differ between
realizations and that the total internal mass is constant.

IV. OBTAINING REALIZABLE MODELS

In the preceding section, it has been demonstrated that
congruent coordinate transformations T for converting a
model to mechanically realizable form can be expressed
as

T = M
−1/2
0 RM

1/2
f = M

−1/2
0 (RiRo)M

1/2
f . (49)

The first component M
−1/2
0 is known from the initial

second order model (11) and the second component Ri

can be obtained via QR factorization of the input and
output influence matrices in (19). The last component
M

1/2
f can be obtained from (39) and Theorem 1.
An explicit solution for the remaining component Ro is

only available for SISO systems with no damping or pro-
portional damping. In all other cases, a solution for Ro

must be sought through mapping or selectively searching
the special orthogonal group SO(n−ni) in which n−ni

is the number of internal masses. SO(n − ni) can be
described by np parameters where

np = (n− ni)(n− ni − 1)/2 (50)

and each parameter corresponds to a two-dimensional ro-
tation angle.

These parameters must be selected to satisfy the
n(n−1) inequality constraints that the off-diagonal com-
ponents of the stiffness and damping matrices be nonposi-
tive. Since the number of constraints exceeds the number
of parameters in (50), it is not clear that a solution will
exist in the general case. If the initial model is derived
from either experiment or FEM, however, it is likely that
these constraints will be dependent and mechanically re-
alizable solutions will exist.

To search for a solution, Ro in (36) can be written
as the product of np two-dimensional rotation matrices
involving the last n− ni coordinates,

Ro =

i = n− 1,
j = n∏

i = ni + 1,
j = ni + 2

Rij , (51)

in which Rij is the two-dimensional rotation matrix in the
i’th and j’th coordinates. Two-dimensional rotations,
also known as Givens rotations, have been widely used
to convert symmetric matrices to tridiagonal matrices in
solving symmetric matrix eigenvalue problems[15].

The elements of these rotation matrices correspond to
those of an identity matrix except for the following four.

Rij(i, i) = cos(θij), Rij(i, j) = − sin(θij)
Rij(j, i) = sin(θij), Rij(j, j) = cos(θij)

(52)

To obtain a bijection (one-to-one and onto map) be-
tween θij and SO(n − ni) where n − ni ≥ 3, it is not

7



necessary for all θij to vary as 0 ≤ θij < 2π. For
example, in SO(3), all rotation matrices can be gener-
ated from the product R12(θ12)R13(θ13)R23(θ23) in which
0 ≤ θ12 < 2π, 0 ≤ θ13 < π and 0 ≤ θ23 < 2π. Allowing
0 ≤ θ13 < 2π would result in a two-to-one map.

Even when the angle ranges are appropriately re-
stricted so that the map from θij to SO(n − ni) is a
bijection, the map from SO(n−ni) to the system model
(34) is many-to-one. This is due to the equivalence class
of models corresponding to permutations of the internal
masses.

Recall that a permutation matrix congruence transfor-
mation swaps pairs of rows and columns of the matrix
to which it is applied. This operation results purely in
a renumbering of the internal mass coordinates of the
model. There are (n− ni)! possible permutations of the
internal masses. Half of these correspond to swapping
an even number of pairs of rows and columns and so re-
sult from rotation permutation matrices. As a result,
the mapping from θij to the system model (34) will be
(n− ni)!/2-to-one.

The following sections describe how realizable mod-
els can be found by mapping or selectively searching the
space of transformations. For each example, the initial
second order model was generated by applying a ran-
dom congruent transformation to a realizable second or-
der model. The first two examples involve mapping the
entire transformation space and so the initial models are
recovered as members of the sets of realizable models.

A. Mapping Transformation Space

When the number of internal masses is small, the
number of free parameters of the transformation space,
given by np in (50), is also small. In this case, a complete
mapping of transformation space is feasible and the
results can be easily visualized. Two examples with
three internal masses are presented here.

Example 1: Four-mass Driving-point Accelerance
An initial second order model satisfying (15) is given

by 
1.5182 3.8080 −1.0679 1.8792
3.8080 10.4989 −2.9426 5.2055

−1.0679 −2.9426 0.9188 −1.4534
1.8792 5.2055 −1.4534 2.7745

 ẍ +


0.1836 0.3089 0.0234 0.0841
0.3089 1.1514 −0.0858 0.4348
0.0234 −0.0858 0.0728 0.0187
0.0841 0.4348 0.0187 0.2717

 ẋ +


6818 16814 −2200 2656

16814 63328 −11552 14063
−2200 −11552 3827 −910

2656 14063 −910 6627

 x =


−0.4326
−1.1465

0.3273
−0.5883

 u

y =
[
−0.4326 −1.1465 0.3273 −0.5883

]
ẍ(53)

After mass normalization, the initial model becomes

ẅ +


0.7316 −0.1283 0.3312 −0.1787

−0.1283 0.4246 0.2858 −0.1413
0.3312 0.2858 1.0947 0.2789

−0.1787 −0.1413 0.2789 0.5134

 ẇ +


17792 −6182 5980 −2606
−6182 27522 6075 −20547

5980 6075 21560 05432
−2606 −20547 5432 28812

 w =


−0.1401
−0.2679

0.0935
−0.1728

 u

y =
[
−0.1401 −0.2679 0.0935 −0.1728

]
ẅ(54)

By QR factorization of the vector[
−0.1401 −0.2679 0.0935 −0.1728

]T , the orthog-
onal matrix Ri is obtained as

Ri =

 −0.3886 −0.7430 0.2592 −0.4793
−0.7430 0.6025 0.1387 −0.2565

0.2592 0.1387 0.9516 0.0895
−0.4793 −0.2565 0.0895 0.8345

 (55)

After aligning the input and output influence vectors, the
mass normalized second order model (54) is

¨̃z +

 0.0490 −0.0882 −0.2034 0.0236
−0.0882 0.6629 −0.0759 0.1068
−0.2034 −0.0759 1.3181 0.0127

0.0236 0.1068 0.0127 0.7344

 ˙̃z +

 0.1877 −0.5873 −0.4114 0.4359
−0.5873 3.2409 −0.0973 −1.3774
−0.4114 −0.0973 2.5883 −0.0377

0.4359 −1.3774 −0.0377 3.5517

 z̃ =

 0.3605
0.0000
0.0000
0.0000

u

y =
[

0.3605 0.0000 0.0000 0.0000
] ¨̃z
(56)

The number of internal masses is n − ni = 3 and so the
transformation space can be parameterized by np = 3
two-dimensional rotations. The terms Rij in (51) which
preserve the driving-point input and output influence
vectors are given by

R23 =

 1
cosθ23 −sinθ23

sinθ23 cosθ23

1



R24 =

 1
cosθ24 −sinθ24

1
sinθ24 cosθ24



R34 =

 1
1

cosθ34 −sinθ34

sinθ34 cosθ34

 (57)

The matrix Ro is the product

Ro(θ23, θ24, θ34) = R23R24R34. (58)
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A complete map relating rotation angles to realizable
models is obtained by discretizing the rotation angles as
shown in Figure 2. The shaded regions correspond to me-
chanically realizable models. Note that the plotted angle
ranges are 0 ≤ θ23 < 2π, π/2 ≤ θ24 < 3π/2, 0 ≤ θ34 < 2π
in order to obtain one-to-one coverage of SO(3). Since
there are three internal masses, there are six possible per-
mutations of these masses, three of which are obtained
through rotations. Consequently, the map from θij to
system models is three-to-one resulting in three equiva-
lent regions of mechanically realizable models. Removing
equivalent realizations reduces the set to that shown in
Figure 3.

0
2

4
6

2
3

4

0

2

4

6

θ 34
, R

ad
ia

ns

θ23, Radiansθ24, Radians

7
8
9
10
11
12

FIG. 2: Realizable Regions for Example 1. Three regions cor-
respond to cyclic permutations of the three internal masses.
Legend indicates total number of connecting elements (springs
and dampers) in realizations.

In the figures, the shading indicates the number of con-
necting elements (springs and dampers) in the realiza-
tions. The realizations with the fewest connecting ele-
ments are located on the boundary between realizable
and unrealizable regions where off-diagonal elements of
the damping and stiffness matrices change their signs.

Two realizable models from this set are presented here
which differ in the number of springs and dampers.

Realization 1: Selection of rotation angles θ23 =
2.9496, θ24 = 2.3387 and θ34 = 1.7104 radians yields

FIG. 3: Single Region Containing all Distinct Mechanical Re-
alizations for Example 1. Legend indicates total number of
connecting elements (springs and dampers) in realizations.

the mechanically realizable model 7.6941
0.0164

0.1906
0.2268

 q̈

+

 0.3770 −0.0058 −0.0974 −0.2738
−0.0058 0.0136 −0.0012 −0.0066
−0.0974 −0.0012 0.1124 −0.0139
−0.2738 −0.0066 −0.0139 0.2943

 q̇

+

 14444 −115 −8796 −5533
−115 339 −124 −100
−8796 −124 9078 −158
−5533 −100 −158 5792

 q =

 1
0
0
0

u

y =
[

1 0 0 0
]
q̈ (59)

Since there are no zero elements in the damping and
stiffness matrices, this realization includes a dashpot and
spring between each pair of masses.

Realization 2: Rotation angles θ23 = 3.2484, θ24 =
2.1776 and θ34 = 1.5769 radians produce a mechanically
realizable model with the fewest springs (four) and dash-
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pots (three), as shown in Figure 4. 7.6941 0 0 0
0 0.0220 0 0
0 0 0.2502 0
0 0 0 0.1616

 ẍ +

 0.3770 −0.0177 −0.1450 −0.2143
−0.0177 0.0178 0 −0.0001
−0.1450 0 0.1450 0
−0.2143 −0.0001 0 0.2144

 ẋ

+

 14444 0 −10633 −3810
0 474 −474 0

−10633 −474 11528 −421
−3810 0 −421 4232

x =

 1
0
0
0

u

y =
[

1 0 0 0
]
ẍ (60)

F

k =474
1

k =421
2

k =10633
3x

k =3810
4

m =0.0220
2

m =0.1616
4

m =7.6941
1

c =0.1450
2

c =0.0177
1

c =0.2143
3

m =0.2502
3

FIG. 4: Realization with the Fewest Springs and Dashpots.

Although the initial model (53) and two realizations
(59) and (60) have different mass, damping and stiffness
matrices, they possess the same driving-point acceler-
ance.

Example 2: Five-mass Transfer Accelerance
Consider the SISO second order model satisfying (15)

and given by


36.0632 0.2743 7.0077 37.1531 −14.0227
0.2743 16.5796 −6.7431 5.5551 2.1107
7.0077 −6.7431 17.1533 16.6964 −13.3775

37.1531 5.5551 16.6964 61.9214 −25.8255
−14.0227 2.1107 −13.3775 −25.8255 17.8591

 ẍ +


97.2937 −57.5426 91.8234 72.4757 −38.5575

−57.5426 62.9875 −56.3684 −51.0698 29.9845
91.8234 −56.3684 92.8620 64.1156 −37.4205
72.4757 −51.0698 64.1156 60.7210 −27.3858

−38.5575 29.9845 −37.4205 −27.3858 34.8577

 ẋ +


931.9559 −207.5005 567.4285 768.4827 −618.2834

−207.5005 383.5154 −262.6956 −186.1123 172.2111
567.4285 −262.6956 514.7016 383.3350 −393.4070
768.4827 −186.1123 383.3350 709.9495 −487.2931

−618.2834 172.2111 −393.4070 −487.2931 544.2288

 x

=
[

1.9574 −0.2111 0.5512 0.4620 −1.2316
]T

u

y =
[

0.5045 1.1902 −1.0998 −0.3210 1.0556
]

ẍ

(61)

The input and output influence vectors differ indicat-
ing that the system represents a transfer accelerance.
Following (7), a realizable model is sought in which the
force excitation is applied at the first coordinate and the
acceleration is measured at the second. The solution for
Ri is not included here for the sake of brevity.

With n = 5 masses and ni = 2 input and output
masses, the transformation space is parameterized by
np = 3 two-dimensional rotations. The matrix Ro is
given by

Ro(θ34, θ35, θ45) = R34R35R45. (62)

Figure 5 depicts the map between rotation angles and
system models. As in Example 1, there are three equiv-
alent regions of mechanically realizable models corre-
sponding to rotational permutations of the three inter-
nal masses. The plotted angle ranges in this figure are
0 ≤ θ34 < 2π, 0 ≤ θ35 < π, 0 ≤ θ45 < 2π.
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FIG. 5: Realizable Regions for Example 2. Three regions cor-
respond to cyclic permutations of the three internal masses.

As an example realization, rotation angles θ34 =
3.0386, θ35 = 3.0048 and θ45 = 1.1158 radians produce
the following mechanically realizable model with a fully
populated stiffness matrix and a damping matrix pos-
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sessing a single zero dashpot.
2.0000 0 0 0 0

0 5.0000 0 0 0
0 0 3.4340 0 0
0 0 0 2.3326 0
0 0 0 0 10.2334

 q̈ +


8.5000 −1.0000 −6.8047 −0.0596 −0.6357

−1.0000 13.3000 −11.0845 −0.6876 −0.5280
−6.8047 −11.0845 31.9340 −14.0385 −0.0063
−0.0596 −0.6876 −14.0385 14.7857 −0.0000
−0.6357 −0.5280 −0.0063 −0.0000 1.1700

 q̇ +


130.0000 −20.0000 −49.9987 −8.2885 −51.7128
−20.0000 92.0000 −47.6153 −20.9996 −3.3852
−49.9987 −47.6153 139.9326 −29.8486 −12.4700
−8.2885 −20.9996 −29.8486 59.6030 −0.4664
−51.7128 −3.3852 −12.4700 −0.4664 68.0344

 q

=
[

1 0 0 0 0
]T

u

y =
[

0 1 0 0 0
]
q̈

(63)

B. Searching Transformation Space

As the number of internal masses n− ni in the model
grows, it becomes impractical to map the entire trans-
formation space as was done in the preceding exam-
ples. Instead, the transformation space can be selectively
searched using a nonlinear optimization method.

Recalling that the role of Ro in obtaining a realizable
model is to ensure that the off-diagonal elements of the
stiffness and damping matrices are nonpositive, a cost
function for optimization can be chosen as

J(θ) = w1SK + w2SC (64)

where θ is the vector of rotation angles, SK is the summa-
tion of all positive off-diagonal elements in the stiffness
matrix K and SC is the summation of all positive off-
diagonal elements in the damping matrix C. In order to
balance the contributions from the stiffness and damping
matrices, the weighting factors w1 and w2 are defined as

w1 = 1

w2 =
trace(K)
trace(C)

.

Since a congruent orthogonal transformation does not
change the trace of a matrix, the weighting factor w2 is
constant.

A wide variety of optimization techniques can be
employed to search for an angle vector θ resulting in
a realizable model. Since the problem is nonlinear,
local minima of the cost function can exist. If such a
minima is detected during optimization, a perturbation
of random direction and magnitude can be applied to
escape its domain of attraction.

Example 3: Ten-mass SISO Driving-point
Accelerance

To illustrate the use of an optimization method in
solving the mechanical realization problem, the Nelder-
Mead method[16] was applied to the following ten-mass
driving-point system using the cost function defined in
(64). For brevity, the model is presented after mass nor-
malization and alignment of input and output influence
vectors. The damping matrix does not correspond to
proportional damping.

Cz̃ = 10−2 ×

2.71 0.59 0.91 0.31 0.28 0.04 −0.53 0.38 −0.86 0.10
0.59 2.21 −0.45 0.18 −0.56 −0.00 0.14 0.33 0.74 −0.21
0.91 −0.45 3.24 0.10 −0.72 0.12 0.23 0.54 0.83 0.14
0.31 0.18 0.10 2.48 −0.02 −0.54 −0.12 −0.87 0.86 −0.13
0.28 −0.56 −0.72 −0.02 2.51 −0.53 −0.00 0.32 −0.16 −0.01
0.04 −0.00 0.12 −0.54 −0.53 3.21 −0.33 0.07 0.01 −0.07

−0.53 0.14 0.23 −0.12 −0.00 −0.33 2.91 −0.31 −0.23 0.18
0.38 0.33 0.54 −0.87 0.32 0.07 −0.31 2.74 0.51 −0.68

−0.86 0.74 0.83 0.86 −0.16 0.01 −0.23 0.51 2.60 0.59
0.10 −0.21 0.14 −0.13 −0.01 −0.07 0.18 −0.68 0.59 3.54



Kz̃ =



16685 5279 2255 964 2052 1663 −3627 432 −6797 93
5279 11712 −615 −742 952 664 −1747 −2261 3368 −2184
2255 −615 13728 −1508 −3500 709 2709 −669 3985 1844
964 −742 −1508 15194 −821 −457 360 −362 4447 249

2052 952 −3500 −821 17704 −591 −855 −525 2505 −2485
1663 664 709 −457 −591 19298 −199 1753 1535 34

−3627 −1747 2709 360 −855 −199 13734 −1139 −153 2045
432 −2261 −669 −362 −525 1753 −1139 16008 808 −1654

−6797 3368 3985 4447 2505 1535 −153 808 15770 3236
93 −2184 1844 249 −2485 34 2045 −1654 3236 19318


Fz̃ = H

T
z̃ =

[
1 0 0 0 0 0 0 0 0 0

]T (65)

With nine internal masses, there are thirty-six two-
dimensional rotation parameters describing the space of
transformations. The optimization method was initiated
with the rotation angles set to random numbers in the
range 0 to 2π. The search terminates when a realizable
model is found. The result of one trial appears below.
This trial involved six iterations in which at most 2500
evaluations of the cost function were permitted for each
iteration.

Mf = diag(
[

1.000 0.590 0.221 0.302 0.461 0.310 0.378 0.123 0.378 0.521
]
)

Cf = 10−2 ×

×



2.71 −0.49 −0.05 −0.18 −0.60 −0.24 −0.29 −0.07 −0.45 −0.36
−0.49 1.84 −0.00 −0.07 −0.56 −0.02 −0.29 −0.02 −0.07 −0.34
−0.05 −0.00 0.77 −0.13 −0.07 −0.12 −0.05 −0.00 −0.18 −0.16
−0.18 −0.07 −0.13 0.88 −0.06 −0.16 −0.06 −0.00 −0.12 −0.09
−0.60 −0.56 −0.07 −0.06 1.45 −0.00 −0.00 −0.01 −0.04 −0.10
−0.24 −0.02 −0.12 −0.16 −0.00 0.88 −0.21 −0.00 −0.10 −0.03
−0.29 −0.29 −0.05 −0.06 −0.00 −0.21 1.27 −0.00 −0.22 −0.15
−0.07 −0.02 −0.00 −0.00 −0.01 −0.00 −0.00 0.10 −0.00 −0.00
−0.45 −0.07 −0.18 −0.12 −0.04 −0.10 −0.22 −0.00 1.24 −0.06
−0.36 −0.34 −0.16 −0.09 −0.10 −0.03 −0.15 −0.00 −0.06 1.29



Kf =



16685 −4698 −265 −1705 −1809 −2239 −1058 −74 −1632 −3205
−4698 10694 −7 −809 −1432 −702 −2497 −315 −41 −193
−265 −7 3609 −754 −129 −278 −135 −422 −718 −900
−1705 −809 −754 4805 −295 −759 −4 −68 −407 −4
−1809 −1432 −129 −295 6300 −1016 −522 −1 −1088 −8
−2239 −702 −278 −759 −1016 6269 −876 −359 −8 −33
−1058 −2497 −135 −4 −522 −876 6655 −96 −1182 −285
−74 −315 −422 −68 −1 −359 −96 1967 −178 −453

−1632 −41 −718 −407 −1088 −8 −1182 −178 5453 −199
−3205 −193 −900 −4 −8 −33 −285 −453 −199 5280


Ff = H

T
f =

[
1 0 0 0 0 0 0 0 0 0

]T (66)

V. CONCLUSIONS

A congruent coordinate transformation has been de-
veloped to convert second order models to a form in-
terpretable as a passive mechanical system. The space
of transformations has been parameterized by a set of
two-dimensional rotation matrices. Complete mapping
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of transformation space is possible for systems with small
numbers of internal masses, however, an optimization
method is needed to search for realizable models in higher
dimensional cases. While not demonstrated here, opti-
mization methods allow the flexibility to search for me-
chanically realizable models that satisfy additional crite-
ria. For example, the cost function could be adapted to
find models with the fewest dashpots or springs. These
results can be applied to the vibration testing of compli-
cated structures and to the design of electro-mechanical
filters.
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