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Abstract— During needle-based procedures, transitions be-
tween tissue layers often involve puncture events that produce
substantial deformation and tend to drive the needle off course.
In this paper, we analyze the mechanics of these rupture
events corresponding to unstable crack propagation during
the insertion of a sharp needle in an inhomogeneous tissue.
The force-deflection curve of the needle prior to a rupture
event is modeled by a nonlinear viscoelastic Kelvin model and
a stress analysis is used to predict the relationship between
rupture force and needle velocity. The model predicts that the
force-deflection response of the needle is steeper and the tissue
absorbs less energy when the needle moves faster. The force
of rupture also decreases for faster insertion under certain
conditions. The observed properties are sufficient to show
that maximizing needle velocity minimizes tissue deformation
and damage, and consequently, results in less needle insertion
position error. The model predicts that tissue deformation
and absorbed energy asymptotically approach lower bounds
as velocity increases. Experiments with porcine cardiac tissue
confirm the analytical predictions.

I. INTRODUCTION

Medical needle interventions are a common technique for
accessing tissue structures that would be otherwise difficult
or impossible to reach. In these procedures, needles are used,
for example, to place radioactive seeds at tumor sites, to
extract biopsy samples, to inject drugs and to insert catheters
during prenatal interventions.

Robotic needle steering has became an active research area
in recent years [1], [2], [3], [4], [5]. The robot is used to
control the position and orientation of the base of a stiff
symmetric needle, or a flexible bevel-tip needle to guide
the tip of the needle to a desired target inside the tissue. A
desired trajectory for the needle tip is often planned such that
the needle tip does not penetrate sensitive tissue or collide
with bone. As the needle penetrates tissue, both needle and
tissue deform thus altering both the path of the needle and
the location of the target. Model-based path planning and
online imaged-guided control are used to guide the needle
tip along a trajectory that converges to the desired target.

Contrary to what is experienced in homogeneous tissue
phantoms, needle insertion into biological tissues often leads
to sudden tissue rupture or unstable crack extensions due to
tissue inhomogeneity and changes in structure that affect the
flow of energy into the tissue cracks [6], [7], [8]. A rupture
event occurs when excessive tissue deformation is followed
by the sudden propagation of a crack or cracks inside the
tissue. During rupture, the stored strain energy is suddenly
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released to the cracks (or micro cracks) inside the tissue and
extends them. This can result in a significant detour from the
desired trajectory during needle steering owing both to the
initial tissue deformation prior to a rupture event as well as to
the uncontrollable propagation of cracks during the rupture.

Such path errors create the need for larger path correc-
tions and, if large enough, may necessitate backing up the
needle. Furthermore, they can cause dangerous penetration
of sensitive tissue regions. For example, during fetal cardiac
interventions, needle insertion into the left ventricle can
cause collapse of the chamber such that the subsequent
rupture penetrates the rear wall of the ventricle [9].

It is commonly known that faster motions of a sharp tool
or needle cause less tissue deformation during cutting or
penetrating of a biological material. Less deformation should
be partly due to the viscoelastic properties of the material.
For example, it was studied in [10] that ultrasonic surgical
cutting instruments can cut tissue without any significant
tissue deformation partly due to the high frequency periodic
velocity of the instrument tip. It was also shown that tissue
with higher water content can be more easily cut by an
ultrasonic cutter. It is likely that robotic needle insertions,
currently modeled as quasistatic processes, can also benefit
by controlling velocity to produce less deformation and tissue
damage.

Prior work by our group [9] showed that faster needle
insertion reduces rupture forces during needle insertions in
porcine cardiac tissue. This reduction was attributed to a
negative velocity dependence of the fracture toughness of
the epicardial layer. In contrast, in this paper, we show that
the faster needle insertion reduces tissue deformation prior
to a rupture event and also reduces the energy absorbed by
the tissue due to the viscoelastic properties of the tissue. We
explain that the negative dependency of rupture force on the
insertion velocity is due to the geometrical changes at the
tip of cracks close to the needle tip and is mostly affected
by deformation of the tissue.

The paper is arranged as follows. The next section presents
deformation and rupture force models based on the observed
force-displacement characteristics of tissue. The following
section describes our experiments and the model parameters
obtained. The final section presents conclusions.

II. DYNAMIC MODELING OF NEEDLE INSERTION

In this section, we describe the force-deflection response
associated with needle insertion in a porcine heart as well
as the characteristics of the rupture event occuring at the
beginning of the needle insertion. Then, we model a such bio-
logical organ as a viscoelastic body with a nonlinear Kelvin
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model and obtain the force-deflection-velocity relation for
inserting a needle into the body. We then present a stress
analysis that explains the relation between the rupture force
and the needle velocity.

A. Force-Displacement Characteristics
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Fig. 1. Force-displacement responses of needle insertions into a pig heart
at two rates: 1 mm/s and 100 mm/s.

Figure 1 shows force-displacement responses of inserting
a sharp rigid needle into a pig heart with the insertion rates
of 1 mm/s and 100 mm/s. Details of these tests are presented
in section III. The process of each needle insertion can be
divided into several events [8]:

• A deformation event that starts at 0 mm and continues
until a deflection at which the needle force reaches its
maximum,

• A rupture event when an unstable crack suddenly prop-
agates into the tissue right after the force reaches its
maximum,

• A cutting event that starts after rupture such that the
crack propagates in the body in a controlled fashion in
response to needle displacement,

• A second deformation event that starts when the needle
is stopped and continues as the needle is removed.

Comparing the force-deflection curves of two insertions
during the first deformation event shows that the displace-
ment and the force of the rupture for 100mm/s insertion
are smaller than the displacement and force for 1mm/s
insertion.

B. Deformation Model

We consider a biological organ as a viscoelastic body
and use a modified nonlinear Kelvin model to calculate the
force of inserting a needle into the organ [11]. The standard
Kelvin model is a linear spring-damper model used to
predict the deformation of biological materials under uniform
tension. The modified nonlinear Kelvin model has the same
architecture as the standard Kelvin model but its components

are functions of needle sharpness and tissue deflection, δ
(Figure 2). We use deflection-dependent parameters for the
modified Kelvin model to include

• the effect of contact area size, that generally increases
with the deflection, on needle force [12] and

• nonlinear stress-strain of the material during large dis-
placement of tissue prior to fracture [6].

The parameters of the model are obtained by measurement
using the same needle.
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Fig. 2. A modified Kelvin model for the needle interacting with a
viscoelastic body.

A nonlinear force-deflection function fs(δ) defines the
force response of the spring of the modified Kelvin model
that calculates the static component of the needle force.
The series connection of a nonlinear spring k(δ) and a
nonlinear damper b(δ) calculates the dynamic component of
the needle force. Here, we assume that k(δ) and b(δ) depend
on the same function of δ with different ratios. This way, the
relaxation time of the model, τs, becomes independent of δ.

τs =
b(δ)
k(δ)

(1)

This relaxation time is almost independent of the needle
shape and can be replaced by the strain relaxation time of
the tissue. From the modified Kelvin model (Figure 2), the
contact force is given by

fn = fs(δ) + fd(δ, t) (2)

where fn is the needle force and fd(δ, t) is the force of the
dynamic part of the model defined as a function of time t
and deflection δ.

The dynamic force fd is calculated from the system of
equations of the dynamic part of the model

fd = k(δ)δk (3)
fd = b(δ) δ̇b (4)
δk + δb = δ (5)

where δk is the displacement of the spring and δb is the
displacement of the damper.

We first obtain the deflection of the spring from the system
of equations. Combining (3), (4), and (1) yields

δk =
fd
k(δ)

=
b(δ)
k(δ)

δ̇b = τsδ̇b (6)

Taking the time derivative of (5) and combining the result
with (6) yields

δ̇k +
δk
τs

= δ̇ (7)
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Here, we see that there is a linear differential equation for
spring displacement of the modified Kelvin model instead of
a linear differential equation for spring force as is obtained
with the standard Kelvin model.

The general solution for (7) is obtained by a convolution
integral as

δk =
∫ t

0

δ̇(τ) exp(− t− τ
τs

)dτ (8)

The dynamic force fd is then obtained as

fd = k(δ)
∫ t

0

δ̇(τ) exp(− t− τ
τs

)dτ (9)

For an insertion with a constant velocity v, (9) yields

fd = k(δ)vτs
(
1− exp(− t

τs
)
)

fd = b(δ)v
(
1− exp(−δ/v

τs
)
)

(10)

Substituting (10) into (2) gives the force-deflection response
of the model for insertion velocity v and relaxation constant
τs

fn = fs(δ) + b(δ)v
(
1− exp(− δ

vτs
)
)

(11)

This force-deflection response (11) shows that increasing
the insertion rate always increases the needle force for a
given deflection.

At high velocities v � δ
τs

, the dynamic part of needle
force can be approximated using a Taylor series

fd = b(δ)v
(
1− (1− (

δ

vτs
) + (

δ

vτs
)2/2))

fd = k(δ)δ(1− δ

2vτs
) (12)

For v → ∞, the dynamic part of the force-deflection
response converges to

fd = k(δ) δ (13)

This shows that the force-deflection slope of the needle
converges to a finite stiffness at an infinite velocity.

Here, we define the velocity v90, as the velocity at which
the dynamic force reaches ninety percent of its ultimate value
for a given deflection.

0.9k(δ)δ = k(δ)δ(1− δ

2v90τs
)

v90 = 5
δ

τs
(14)

As an example, if the relaxation time of a tissue is 1 sec and
the considered deflection is 10 mm, then the ninety percent
velocity is 50 mm/s.

C. Rupture Force

The balance of energy for a quasi-static crack extension
is written as [6]

fndx = du+ JcdA (15)

where dx is the infinitesimal tool displacement, du is the
change of deformation energy during the crack extension,
Jc is the fracture toughness of the material and dA is the
infinitesimal crack area.

If the elastic energy concentrated around the tip of the
needle is very small or does not change over the length of
the crack during insertion, the change of elastic energy in the
body during fracture will be zero du = 0, and consequently
the needle force can be obtained by [8]

fn = Jc
dA

dx
= Jcwc (16)

where wc is the width of the crack. The obtained force is
only for a sharp cutting event where a crack grows in a stable
fashion and follows the needle tip displacement. In fracture
mechanics, the sharp cutting force of a sharp tool is used to
evaluate the toughness of materials [6].

The force of a rupture event always goes beyond the
sharp cutting force. A crack may not propagate at the sharp
cutting force due to the lack of enough stress and energy
concentration at the tip of the needle [8]. In this condition,
the needle continues to deform the body and to store strain
energy inside the body. If a crack extension eventually
occurs, it will generally occur in a short period of time such
that the tool displacement and the tool work are negligible.
A rupture event is due to an unstable crack propagation. An
unstable crack propagation occurs due to one or both of the
following conditions [6]:

• Material change: for example, when the tool passes
through a body and reaches a new layer of material
with a toughness smaller than the first layer.

• Geometrical changes around a crack tip: for example,
when a blunt crack becomes sharp and remains sharp
during rupture.

The rupture force should not be estimated by the force of
sharp cutting (16). A rupture starts when the concentrated
strain energy around the crack will be enough to extend a
crack inside the body. Prediction of the rupture force requires
calculations of the stress at a microscopic level around the
tip of the needle and in the small cracks around the needle
tip.

Here, we use a stress analysis to evaluate the force of
rupture for needle insertion. Assume the pressure over the
contact area between the needle and tissue is constant, then
we can write:

p =
F

Ac
(17)

where p is the pressure and Ac is the size of the contact area.
The stress at a blunt crack tip is intensified by a concentration
factor Ks that depends on the crack tip curvature [6]. A
rupture event starts when the stress and strain energy is
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sufficient around the tip of a crack. We conclude that the
force of rupture should be inversely proportional to the crack
stress concentration factor Ks and proportional to the size
of the contact area:

fn ∝
Ac
Ks

(18)

Increasing the rate of needle insertion can reduce the
contact area and make the crack sharper depending on the
material type and the shape of the needle. It was reported
for a variety of materials including soft viscoelastic material
such as rubber and soft polymer that increasing the rate
of a crack extension reduces the bluntness of the crack
and reduces the force required to initiate and propagate a
crack [6].

We assume that the rupture force decreases or remains
constant when the rate of needle insertion increases. In this
way, we can represent the force of rupture as

fn = fr(v) (19)
v1 > v2 → fr(v1) ≤ fr(v2)

where fr(·) is a continuous function of velocity. We show
that a faster insertion causes smaller tissue deflection and tool
work at the beginning of a rupture event. Substituting (19)
into (11) relates the rupture deflection to the insertion veloc-
ity.

fr(v) = fs(δr) + b(δ)v
(
1− exp(− δ

vτs
)
)

(20)

It can be shown that increasing the velocity v decreases
the rupture deflection. We also conclude that if fr changes
smoothly for velocities higher than v90, then the rupture
deflection does not significantly change for insertions faster
than v90.

The tool work prior to rupture can be obtained from

W =
∫ δr

0

fndδ (21)

It can be shown that increasing the velocity v decreases the
tool work. Thus, we can also conclude that if fr changes
smoothly for velocities higher than v90, then the tool work
does not significantly change for insertions faster than v90.

The tool work is absorbed by the tissue during the rupture
or prior to the rupture. The absorbed energy prior to the
rupture causes plastic damage to the tissue. The absorbed
energy during the rupture extends the cutting crack. A larger
unstable crack causes more position error during needle
steering since an unstable crack does not necessarily follow
the trajectory of the needle.

III. EXPERIMENTAL RESULTS

A series of needle insertion experiments were performed to
validate that the force-deflection characteristics of the needle
fits a modified Kelvin model and to verify that the force, tool
work, and the deflection at the moment of a rupture event
follow the analytical predictions of the model.

 

Fig. 3. Needle insertion setup.

A. Methods and Materials
A linear actuator instrumented with a Sensotec model

31, 22 N tension/compression load cell and a 1.1 mm
diameter tri-pointed surgical needle was used to perform
the experiments (Figure 3). The needle is controlled such
that its velocity remains constant during insertion. The linear
actuator is commanded through a trapezoidal velocity profile
moving the needle into the tissue at a specified peak velocity.
The linear actuator reached maximum accelerations near 10
m/s2. The output of load cell was filtered using a low pass
filter with a cutoff frequency of 100Hz to remove the force
sensor noises. Force and position data were collected at a 2
kHz sample rate during needle insertion.

Needle insertion tests were performed for a range of
velocities within an area of about 2cm x 2cm on the heart
wall. The selected area is almost flat and visually appears
homogeneous. Fresh pig hearts were obtained from a grocery
store, refrigerated for less than one hour and the tests
were performed over a period of less than two hours. The
pig heart tissue is composed of three layers. A thin outer
epicardial layer is followed by a thick muscular myocardium
that constitutes approximately 95 percent of the heart wall
thickness. Insertion tests were performed on the epicardial
and myocardial layers.

B. Model Parameters and Output
An initial set of experiments were performed from which

we obtained the parameters of the model (11). First, the force
fs(δ) was obtained from the nonpenetrating needle force-
deflection curve using a velocity of 1 mm/s and a maximum
deflection of 6 mm. The resulting force-deflection curve is

fn = 11000δ2
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Fig. 4. The relaxation response of a pig heart during contact with a needle.

The relaxation time constant of the heart in contact with
the needle is obtained from the response of the tissue shown
in Figure 4. In this test, the needle penetrates the tissue
with the velocity of 20 mm/s for a maximum deflection of
6 mm and then stops. the force fits an exponential response.
with time constants τs = 1.2 sec. Based on the measured
relaxation time, v90 is 83 mm/s for the deflection of 10 mm.

The stiffness of the dynamic model, k(δ), is obtained
by penetrating the heart with a velocity of 100 mm/s and
comparing the force at this velocity with the force at 1 mm/s
velocity for the same deflection. The model predicts the force
difference of k(δ)δ based on (13) and we use this to identify
k(δ). The resulting stiffness is largely independent of δ in
this case and so we take stiffness as a constant, k = 150
N/m.

C. Evaluation of the Deformation model and the Analytical
Results

Figures 5a-5c present five overlaid force-displacement
trajectories for three needle velocities: 1 mm/s, 20 mm/s,
and 100 mm/s. Each force-displacement trajectory includes a
deformation mode followed by an unstable crack extension.
The results show that needle insertion into an organ wall
includes an unstable crack extension and also demonstrate
that the force-deflection responses of the needle insertion
prior to the unstable crack extension are repeatable. There is
variation in the forces of rupture, however.

Figures 6 compares force-displacement trajectories for five
insertion velocities including 1 mm/s, 5 mm/s, 20 mm/s, 50
mm/s and 100 mm/s. The force-deflection curves of faster
insertions are steeper.

Figures 7 shows the force-deflection curves of the de-
formation model at five velocities. The force-deflection of
higher velocities converge to the force-deflection response
of 100m/s faster than the measured force responses. This is
due to nonlinear dynamic properties of the tissue, which was
not considered by the model.

Table I lists the average force, the average deflection, the
average tool work, and the average crack length of insertions
at five different velocities at the moment of rupture. The
results show a negative dependency of the average deflection,
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Fig. 5. Overlaid force-deflection curves of needle insertions at (a) 1 mm/s
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Fig. 6. Force-deflection curves of needle insertions at five different
velocites: 1 mm/s, 5 mm/s, 20 mm/s, and 100 mm/s
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Fig. 7. Force-deflection curves of the modified Kelvin model at five
different velocties 1 mm/s, 5 mm/s, 20 mm/s, and 100 mm/s.

force, tool work, and crack length on the insertion velocity.
The results also show that the rupture values for velocities
of 50 mm/s and 100 mm/s are approximately the same.

IV. CONCLUSIONS

Needle insertion into biological materials can produce
rupture events and unstable crack propagations. It was shown
that the deflection, the force, and the tool energy of a rupture
event can decrease as needle velocity increases. We conclude
that faster needle insertions can be employed in order to
increase position accuracy during needle steering and to
decrease tissue damage. The model predicts a finite insertion
velocity that closely matches the performance achieved by an
infinite velocity, which can be calculated from the relaxation
time of the tissue.
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TABLE I
PROPERTIES OF THE NEEDLE INSERTIONS WITH FIVE DIFFERENT

VELOCITIES

v fr (N) δr (mm) W (m J) lc (mm)
1 1.37±0.11 11.04±0.34 7.56 10.55
5 1.35±0.107 10.98±0.044 7.41 10.3

20 1.108±0.15 10±0.93 5.54 7.19
50 0.85±0.34 7.5±1.41 3.18 3.29

100 0.88±0.08 7.04±0.42 3.125 3.18
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