
 

Abstract - An important component of machine perception is the 
estimation of contact states during task execution. This paper 
addresses two fundamental questions that must be answered 
when formulating mathematical descriptions of the contact 
states: Are two contact states distinguishable from each other? 
Can the unknown or imprecisely known parameters in these de-
scriptions be identified? A technique is presented to answer these 
questions, which is based on a Taylor series expansion of the 
contact state’s constraint equations. The approach is illustrated 
through several examples. 
 
Index Terms - distinguishability, identifiability, contact state es-
timation, machine perception. 

I. INTRODUCTION 

Enhancing machine perception is an important compo-
nent of achieving robot autonomy. To this end, the literature 
contains a growing body of work on contact state estimation, 
e.g., [6], [14], [9], [16]. This approach to perception is based 
on the concept that tasks can be decomposed into sequences 
of contact states. At each step of task execution, motion plan-
ning and control involve moving from one contact state to an-
other.  

Published applications of contact state estimation include 
cooperative human and machine perception during teleopera-
tion [7], assembly task monitoring [16], automated virtual 
model calibration [8], and force control [4]. While the imple-
mentations of contact state estimators differ in these works, 
each method is based on a mathematical description of the 
contact states.  

The description, in the form of constraint equations, can 
involve the kinematics as well as force-velocity relationships. 
These equations are parameterized by robot sensor data and 
by the physical parameters of the objects in contact (e.g., ge-
ometry, mass, friction). 

A rigorous approach to estimator design involves ensur-
ing that the proposed set of sensors and associated contact 
constraint models are sufficient (1) to distinguish each contact 
state from the others in the task, and (2) for each contact state, 
to identify the objects’ physical parameters. In most prior 
work on contact state estimation, however, the distinguisha-
bility and identifiability of candidate constraint models can 
only be confirmed ex post facto through local numerical tests 
(e.g., residual analysis) of experimental data. This approach 
necessitates experimental testing of a set of candidate models, 

along with their associated sensors, to determine their feasi-
bility for contact state estimation 

In contrast, this paper presents an analytical method that 
can be used to deduce contact state estimation feasibility 
without the need for experimental implementation. In this ap-
proach distinguishability and identifiability are defined as 
dual problems that can be solved in a systematic manner for 
any set of sensors and constraint equations. Thus, the method 
can be used to select sensors and constraints independent of 
the technique selected to perform the experimental contact 
state estimation.   

The paper is arranged as follows. Section II provides an 
overview of distinguishability and identifiability in the litera-
ture. Section III presents the proposed method. Examples are 
provided in section IV followed by conclusions in the final 
section.   

II. BACKGROUND 
As an example of contact states, two polygonal contact 

states commonly used in planar peg insertion are considered 
in Fig. 1. Contact state 1 corresponds to the contact between a 
vertex of a manipulated polygon and an edge of a fixed poly-
gon (i.e., grey colored block). Contact state 2 describes the 
contact between an edge of the manipulated polygon and a 
vertex of a fixed polygon.  

  
Fig.1     a) Contact state 1                b) Contact state 2 
 
The vectors 1 2[ , ]N p p=

G
and 1 2[ , ]M q q=

G
correspond to the 

unknown orientations of the contact normals. The unknown 
locations of the contact points are 1 3 4[ , ]rc p p=

JJG
 and 

2 3 4[ , ]oc q q=
JJJG

, respectively. The parameters 5p  and 5q repre-
sent the positional offset in the direction of the normal for the 
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fixed edge in contact 1 and the manipulated edge in contact 2, 
respectively. The vector or

JJG
corresponds to the location and 

orientation of the gripper with respect to the robot base frame. 
These examples will be used in the remainder of the paper. 

Using techniques described in our previous papers [5], 
[6], the constraint equations for these two contact states can 
be written as follows.  

 
Contact State 1 

( ) ( )5 1 3 2 4 2 3 1 4 1 2
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1 2
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( ) ( )

( ) ( )
5 1 3 2 4 2 3 1 4

1 2 1 2

2 2
1 2

cos ( ) sin ( )

cos ( ) sin ( ) ( ) sin ( ) cos ( ) ( ) 0

1
x y

q q q q q t q q q q t

q t q t r t q t q t r t

q q

θ θ

θ θ θ θ

− + + − − −


− − + =


+ =

(2) 

 
In these equations, the sensor path ( )S t , { }0 1, , , nt t t t∈ " , con-
sists of a finite set of locations and orientations of the robot 
gripper (i.e., { }( ) ( ), ( ), ( )x yS t r t r t tθ= ). Here, the minimum 
value of n is determined by the number of unknown parame-
ters and the nature of the constraint equations. If additional 
sensors were available (e.g., force, torque), then additional 
constraint equations could be written. The sets 

{ }1 5, ,p p p= … and { }1 5, ,q q q= …  comprise the unknown 
time-independent parameters in the constraint equations. 

For these examples, contact state distinguishability and 
identifiability can be summarized as follows: 

 
• Contact states 1 and 2 are globally distinguishable if, 

given almost any sensor path ( )S t , there is no solution for 
the parameter set{ },p q such that that (1) and (2) are sat-
isfied simultaneously.  

• Contact state 1 (resp. state 2) is globally identifiable if, 
given almost any sensor path ( )S t , there exists a unique 
solution set p  (resp. q ) that satisfies equation (1) (resp. 
equation (2)). If there are a finite number of solutions 
then contact state 1 (resp. contact state 2) is locally identi-
fiable. 

A. Distinguishability 
In the robotics literature, distinguishability tests are local 

results which are employed during contact state estimation. 
Contact state estimation is a dual estimation problem in which 
contact states as well as properties parameterizing the states 
are estimated. A unified solution to these problems is pro-
vided using multiple model estimation [6]. With this tech-
nique, the parameters of all contact states are first estimated 
simultaneously in a moving data window; then the contact 
state is estimated using a distinguishability test based on the 
residuals of the parameter estimation. Additional examples 
include [14] and [9] where properties are estimated using a 

Kalman filter, and contact states are estimated using distin-
guishability tests based on the innovations of the filter. These 
tests include hypothesis testing [9], hidden Markov models 
[6], SNIS tests [14] and ratio of residual sum of squares [2]. 
The reported distinguishability tests are all local and numeri-
cal techniques. 

B. Identifiability 
Identifiability has been investigated in the robot calibra-

tion literature. For example, confidence intervals on the iden-
tified parameters [12] and condition number of the Jacobian 
matrix [19] can be used as local tests for identifiability. In 
particular a model is locally unidentifiable if the parameter 
Jacobian is singular (i.e, high condition number), and a model 
is locally identifiable if the Jacobian is far from singularity 
(i.e., condition number less than 100 [19]). 

The only global result related to contact identifiability 
known to the authors is the notion of C-space equivalence de-
fined by Eberman in [10]. To illustrate this approach, (1) is 
recast in an input-output form in (3), with { }( ), ( )xr t tθ  as the 
inputs and ( )yr t as the output. Note that other input-output 
representations are possible. 
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The model is globally identifiable if the inverse mapping from 
the parameter matrix 2 4( )iF p ×∈\ to 5

ip ∈\ is unique; it is 
locally identifiable if there are a finite number of solutions 
and it is unidentifiable if there are an infinite number of solu-
tions. For this example, it can be easily shown that 
if 2 0p ≠ and if the sign of the normal is known (i.e., inward 
or outward), then the mapping is unique resulting in global 
identifiability of contact state 1. 

This technique can be applied only if the constraint equa-
tions can be written as affine functions of the inputs. Contact 
2 in (2) provides a counterexample which cannot be written in 
this form. 

C. State Space Model Distinguishability and Identifiability 
State space models have been actively investigated for 

global distinguishability [21], [18], as well as local and global 
identifiability [15], [3], [13]. These tests have been used in 
applications related to control [15], biology [3], and chemistry 
[21].  

In a series of papers published in the mid-eighties [13], 
[22], [21], Walter and Lecourtier provided a uniform way for 
testing the distinguishability and identifiability of state-space 
models. In these papers, the following model is used to repre-
sent the input-output relationship of experimental data. 

( )
( ) 0 0

( ) ( ), ( ), ,
( ) : , (0) , (0)

( , ) ( ), ,i
i

x t f x t u t p t
M p x x u u

y t p g x t p t

= = =
=

�
    (4) 



    
 

Here, x is the state vector, p is a set of unknown time-
independent parameters, u is the input vector, and y is the out-
put vector.  

Two state space models 1( )M p and 2 ( )M q  are globally 
distinguishable if (i) for almost any q there is no p such that 

1 2( , ) ( , )y t p y t q= and (ii) for almost any p there is no q such 
that 2 1( , ) ( , )y t q y t p=  for any input and time [23].  
Similarly, a state-space model ( )M p is globally (locally) 
identifiable if for almost any q there is only one (a finite 
number of) p such that ( , ) ( , )y t p y t q= for any input and time 
[23].  

There exist a variety of techniques in the literature for 
solving state space model distinguishability and identifiabil-
ity. For linear models, these methods include equating trans-
fer function coefficients [22] and similarity transformations 
[20]. For nonlinear models, techniques include linearization 
[11], Taylor series expansions [17] and generating series [23]. 

This paper focuses on the Taylor series expansion tech-
nique. In this approach, the Taylor series of the output vector 
at 0t += can be written as a succession of time derivatives 
evaluated at time 0t += as described in (5)-(6). It is assumed 
that the functions f and g and the vectors x and u are infinitely 
differentiable with respect to time. 
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= ∑                (5) 

     0 0
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( , )( , , )
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t

d y t pa p x u
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=                (6)

   
Note that each coefficient of the Taylor series (6) is a 

function of the unknown time-independent parame-
ters{ }0 0, ,p x u . Because of the uniqueness of the series coeffi-
cients, the input-output behavior of a state-space model can 
be written as a unique set of algebraic equations in which 
each equation corresponds to a coefficient of the series. 

In order to test for global distinguishability and identifi-
ability, the set of algebraic equations must be solved for all 
possible sets of parameters (i.e., find all the { }*

0 0, ,p p x u=  
given the *q such that *

1( , )y t p *
2 ( , )y t q=  or *( , )y t p =  

*( , )y t q ). 
These sets of equations can be difficult to solve by hand, 

however, tools from commutative algebra can be used to sim-
plify the equations [18]. In this paper, algebraic sets of equa-
tions are transformed to Gröbner bases. Gröbner bases pos-
sess the same roots than the original system, but are often eas-
ier to solve [1]. 

III. TAYLOR SERIES TESTING OF DISTINGUISHABILITY AND 
IDENTIFIABILITY FOR CONTACT STATES 

As given in (7), the constraint equations representing a 
contact state contact equations are permitted to be nonlinear 
in the parameters ip as well as the sensor variables ( )js t . It is 

assumed here that the objects in contact are rigid and so their 
intrinsic properties ip  are time-independent.  

( ), ( ) 0 1 , 1

( ) 0
i j

i

F p s t i n j m

H p

 = = =


=

… …
         (7) 

( )F ⋅  includes all the sensor-dependent constraint equa-
tions while ( )H ⋅ models any additional equality constraint on 
the parameters (e.g., 2 2

1 2( ) 1H p p p= + − in (1)). 
Using the implicit function theorem, ( )F ⋅  in (7) can be 

transformed into a set of input-output equations. Equation (8) 
presents the scalar result of this transformation; however 
multi-input, multi-output systems can also be considered. 

( )( ) , ( ) 1 , 1 1

( ) 0

0

i j

i

y t G p u t i n j m

H p
F
y

 = = = −

 =

∂ ≠ ∂

… …          (8) 

The selection of the inputs and outputs from the sensor 
variables is not unique; however, the same choice must be 
made for all models when testing distinguishability. In this 
paper, the selection resulting in the simplest input-output 
models is chosen.  

Adapting the results of [17], contact state constraint 
equations can be represented by Taylor series expansions. 
Since the equations are algebraic, the expansion is performed 
with respect to the inputs. In this paper, we consider only two-
input, single-output systems, which includes the examples of 
(1) and (2). The approach, however, can be applied to any al-
gebraic system. Assuming that the function ( , )y p u is ana-
lytic, a Taylor series expansion of order m can be written as: 

1 2
1 2 10 20

0 0
( , , ) ( , , )

!

n k km n

nk
n k

u u
y p u u a p u u

n

−

= =

∆ ∆
= ∑∑            (9) 
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=
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Since the function ( , )y p u is assumed to be infinitely dif-

ferentiable with respect to its inputs, its mixed derivatives are 
equal. The number of coefficients cn of the series is given by 
(11) where on is the number of outputs, in is the number of 
inputs, and m is the order of the expansion. 

1

( )
( , , )

!

in

k
c o i o

i

m k
n n n m n

n
=

+
=

∏
                   (11) 

A. Distinguishability 
Based on the uniqueness of the Taylor series expansion, 

two contact state models will possess the same input-output 
behavior if and only if all the coefficients of their expansions 
are equal, as given below.  
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(12) 

 
Thus, for two models 1M  and 2M  to be distinguishable, their 
outputs 1 1 2( , , )y u u p  and 2 1 2( , , )y u u q  must differ in at least 
one term of (10) for all choices of parameters. This test can be 
stated precisely as follows. 
 
Definition 1: Two contact state models 1M  and 2M , de-
scribed by their output behavior 1( )y ⋅ and 2 ( )y ⋅ , are globally 
distinguishable if and only if  for almost any set of inputs 

( )u t , (i) given almost any set of parameters p , there is no 
solution to (12) for q , and (ii) given almost any set of pa-
rameters q, there is no solution to (12) for p. 

B. Identifiability 
The identifiability of a contact model M  described by its 

output behavior, ( )y ⋅ , can be tested by considering how many 
sets of parameters yield the same coefficients in (10). This 
test can be performed by counting the number of solutions for 
p , given q , in  
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This test can be stated formally as follows. 
 
Definition 2:  A contact state model M is globally identifi-
able if and only if, given any set of parameters q and almost 
any set of inputs ( )u t ,  there  is a unique solution to (13), 
which is p q= . If a finite number of solutions for p  exist 
then M  is locally identifiable. M is unidentifiable if an infi-
nite number of solutions exist. 

C. Application of the Tests 
Since (12) and (13) involve n unknown parameters, at 

least n independent algebraic equations are needed for their 
solution. Equation (8) can provide cn β+  equations where 

cn  is the number of coefficients in the expansion and β is the 
dimension of ( )H ⋅ . The resulting lower bound on the number 
of Taylor coefficients is: 

cn n β≥ −                          (14) 

This is a lower bound since there is no guaranty that the alge-
braic equations from the Taylor series are independent. This 
bound can be related to the order of the expansion by (11).  

To solve for the parameters, the algebraic equations of 
(12) or (13)  are transformed to a Gröbner basis using a com-
puter algebra package (e.g., Mathematica). The number of so-
lutions to the resulting equations is then determined to apply 
the distinguishability or identifiability test.  

Since the Taylor series is developed around nominal in-
put values, the approach appears to be local. It is important to 
note, however, that the solutions for the parameters are ob-
tained without substituting numerical values for the inputs. 
Thus, the results are truly global. 

IV. EXAMPLES 
Three examples are presented using the contact states of 

Figure 1. The first two are identifiability tests of the individ-
ual contact states. The third tests the distinguishability of the 
two models. 

A. Identifiability of Contact State 1 
Since the contact state described by (1) can be expressed 

in input-output form as an affine function of the inputs, it was 
possible to use Eberman’s method to test identifiability in sec-
tion II.B.  

To compare this result with the Taylor series approach, 
(1) is rewritten in the form of (8). To match the input-output 
choice of (3), ( )yr t is taken as the output with ( )xr t  and 

( )tθ as the inputs. While this restricts 2p  to be nonzero, 
choosing ( )xr t  as the output would instead force 1p  to be 
nonzero. 

( ) ( )5 1 3 2 4 1 2 3 1 4 1 1 2

2
2 2
1 2 2

cos ( ) sin ( ) ( )
( )

1 0, 0

p p p p p u t p p p p u t pu t
y t

p

p p p

− + − − −
=


 + − = ≠

  (15) 

 
Since there are five parameters, at least five equations are 
needed. The last equation of (15) provides one and so at least 
four series coefficients are needed. Through second order, 
these are: 
 

( ) ( )5 1 3 2 4 10 2 3 1 4 10 1 20
00

2

2 3 1 4 10 1 3 2 4 10
10

2

1
11

2

1 3 2 4 10 2 3 1 4 10
20

2

21 22

cos sin

( )cos ( )sin

( )cos ( )sin

0

p p p p p u p p p p u p u
a

p
p p p p u p p p p u

a
p

p
a

p
p p p p u p p p p u

a
p

a a

− + − − −
=


 − − + +

=

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
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 (16) 

 



    
 

Equation (16) provides four independent equations. Due to 
the cyclic nature of the derivative of sine and cosine, addi-
tional terms in the expansion do not generate independent 
equations. The Taylor series coefficients of (16) combined 
with the last equation of (15) are used to form equations in the 
form of (13). These algebraic equations are transformed into a 
Gröbner basis as shown in (17). 
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         (17) 

 
Since 2 0p ≠ , it is easy to show that this system admits two 
solutions 
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p q p q
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p q p q
p q p q
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           (18) 

 
As was the case in section II.B, the solution can be 

uniquely determined if the sign of the contact normal 
(i.e., 1 1,p q ) is known. By Definition 2, contact state 1 is glob-
ally identifiable if 1sgn( )p  is known and locally identifiable 
otherwise. Note that while the choice of output restricted 2p  
to be nonzero, by choosing ( )xr t  as the output, 1 0p ≠ in-
stead. Repeating the solution process for this case yields the 
same result. 

B. Identifiability of Contact State 2 
From (2) it can be observed that this model cannot be 

made affine in the inputs regardless of the choice of output. 
This necessitates the use of the Taylor series method and so 
(2) is rewritten in the form of (8). As in the previous example, 

( )yr t is selected as the output with ( )xr t  and ( )tθ as the in-
puts: 
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Series coefficients are computed to second order and are 
given in (20). Using (13), these coefficients provide five 
equations which are combined with the last equation of (19).  
 

( ) ( )
( )

( )

5 1 3 2 4 10 2 3 1 4 10

1 10 2 10 20
00

1 10 2 10
2 2

1 5 10 2 5 10 1 2 3 20
10 2

2 10 1 10

1 10 2 10
11

2 10 1 10

2 2
2 5 1

20

cos sin

cos sin
sin cos

cos sin ( )( )
cos sin

cos sin
cos sin

3 (

q q q q q u q q q q u

q u q u u
b

q u q u

q q u q q u q q q u
b

q u q u
q u q u

b
q u q u

q q q

b

− + + − − − 
  − =

+

− − + −
=

+

− +
=

+

+

=

( )

2 2
2 5 10 1 2 3 10

3 2
2 3 10 1 2 5 10 1 2 10 20

2 2 3 2
1 1 2 10 3 20 2 10 20 1 5

3
2 10 1 10

2 2
1 2

21 2
2 10 1 10

22

) cos(2 ) 4 sin

4 sin 2 sin(2 ) 4 sin

4 ( )cos ( ) 4 sin 3

2( cos sin )

cos sin
0

q q u q q q u

q q u q q q u q q u u

q q q u q u q u u q q

q u q u

q q
b

q u q u
b









 − +
 
+ − − − 
  + − − + 

− +

+
=

+

=



















(20) 

 
The system of algebraic equations is transformed to a Gröbner 
basis. For lack of space, the resulting basis is not written.  
As with the previous example, contact state 2 is globally iden-
tifiable if the sign of the contact normal is known and locally 
identifiable otherwise. 

C. Distinguishability of Contact States 1 and 2 
To test distinguishability of the models, Definition 1 is 

applied to the equations formed by combining (16) and (20) 
using (12) together with the final equations in (15) and (19). It 
can be directly observed that the equation 21 21a b= cannot be 
satisfied since  2 2

1 2 1q q+ = and 1 1 2 11 sin ( ) cos ( ) 1q u t q u t− ≤ + ≤ . 

   
( )

2 2
1 2

21 21 2
2 10 1 10

0
cos sin

q q
a b

q u q u
+= ⇔ =
+

          (21) 

 
By Definition 1, since the equations have no solution regard-
less of whether p  or q  is given, the two contact state models 
are globally distinguishable.   

V. CONCLUSIONS 
This paper has provided the first method for testing the 

global distinguishability and identifiability of contact state 
models. Just as contact state estimation is a dual problem in-
volving the estimation of both state parameters as well as con-
tact states, the Taylor series method provides a unified ap-
proach to testing the capability to estimate both the parame-
ters and the states.  

The approach can be applied to any smooth nonlinear 
constraint equations. Possible limitations of the method in-
clude no known bound on how many coefficients are needed 



    
 

as well as the complexity of solving the resulting algebraic 
equations. 

In contrast to the local numerical methods currently ap-
plied in parameter and contact state estimation, however, no 
sensor data is needed for the tests. Since the equations involv-
ing the Taylor series coefficients are evaluated symbolically, 
the results are not local.  

Furthermore, the dependence of identifiability and distin-
guishability on those sensors selected as inputs can be as-
sessed. Future work will consider the effect of input excita-
tion on identifiability and distinguishability.  
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