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In a variety of situations, an undesired shock excitation is applied to a master structure
that supports shock-sensitive equipment. Often, one wishes to design and test a master
structure that transmits the least amount of shock energy to the attached equipment. In
scaled testing of new designs, a major task is to design and construct “equipment
emulators” – inexpensive mechanical systems which approximately mimic the dynamic
behavior of the actual full-scale equipment as seen by the master structure. The method
of balanced truncation is presented here as means by which reduced-order equipment
emulators with specified error bounds can be designed. The proposed approach uses
easily obtainable frequency-domain impedance descriptions of the master structure and
actual equipment at the attachment points. The method is illustrated through application
to two simple examples.

INTRODUCTION

In recent years, there has been a shift in emphasis from the design of equipment that can withstand high shock loads
to the design of structures on which commercial, off the shelf (COTS) equipment can survive. Given the prohibitive
cost of testing structural design concepts using full-scale prototypes, finite element models and scaled mechanical
models are often employed. In either case, the equipment is typically the most dynamically complex component of
the system. Consequently, the construction of detailed numerical or scaled mechanical equipment models can be
both difficult and costly. As an alternative, reduced-order equipment models can provide a means of including
salient dynamics in the overall model at modest cost. The modeling effort is aided by the fact that the equipment is
usually joined to the supporting structure at a small number of attachment points. Thus, the reduced model need only
reproduce the input-output behavior at these locations.

The requirements of such a model reduction scheme are as follows. It must be possible to quantitatively characterize
the tradeoff between model complexity and modeling error. In particular, modeling error should be expressed by a
metric appropriate to the testing goals. For shock qualification, the appropriate metric is the shock spectrum
computed from the motion of the master structure at the equipment attachment points. The technique should be
based on an “actual” model easily obtained by experiment. Furthermore, the reduced model must be amenable to
implementation. For scaled mechanical tests, this means that it must be possible to fabricate the reduced model.

Prior work on the design of scaled mechanical equipment emulators is limited to acoustic performance. Two
approaches have been employed in the modeling of equipment cabinets: modal reduction and exact miniaturization.
The former consisted of reproducing the first four fixed-base modal frequencies and masses. Design refinement
involved adding damping materials to the nominal design to minimize the difference between drive-point impedance
of the actual and scaled equipment at the attachment points (considered individually) [1]. The latter method involved
the fabrication of a scaled cabinet with a variety of oscillators attached to the shelves [1]. With regard to shock,
Barbone and co-workers have developed numerical equipment models, applicable to modally dense systems, which
are described by a small number of physically motivated parameters [2,3]. These models have quantifiable error
bounds and accurately reproduce early-time relations between forces and displacements at the attachment points. At
this time, these techniques have not been evaluated with respect to shock spectrum error, however.
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As an alternative to the approaches described above, model reduction can be cast as an optimization problem.
Intermediate to solving an optimization problem, balanced truncation provides a simple technique for truncating
model states based on their contribution to output energy. For equipment emulation, the output vector is composed
of attachment point velocities. The method addresses shock spectrum error indirectly by providing a bound on
velocity error energy. The technique and its error bound are described in the following section. Balanced reduction
is then applied to two example systems in the subsequent section. Its performance is compared with modal reduction
in the time domain as well as in the context of shock spectra. Conclusions are presented in the final section of the
paper.

BALANCED TRUNCATION

As in [1,2,3], it is assumed that the input-output behavior of the equipment at its attachment points can be
represented using a linear model. If the equipment is attached to the structure by a shock or vibration mount, this
implies the use of an above-mount equipment model. The use of linear models is also motivated by the observation
that scaled testing is often conducted using nondestructive input amplitudes to allow for repeated trials. With this
assumption, the equipment can be expressed as a first-order state space system given by

 �( ) ( ) ( ) ( ) ( )x t Ax t bu t y t Cx t� � �, (1)

where u R M
�  is a vector of inputs (attachment point forces), and y R M

�  is  a vector of outputs (attachment point

velocities). The vector x RN
� is referred to as the state vector, which consists of displacement and velocity

quantities for a discretized model of the emulator. The number of attachment points is far fewer than the number of
degrees of freedom of the model, so that M N�� . The input-output transfer function y(s)=G(s)u(s) associated with
(1) is

G s C sI A B( ) ( )� �

�1 (2)

which can be obtained experimentally from measurements of drive-point and transfer admittance. The triplet of
matrices ( )A B C, , is called a realization of G s( ) . While the transfer function is unique, the realization is not. If T is

an invertible matrix, then the triple ( )TAT TB CT� �1 1, , is another realization. The goal of model reduction is to solve

for an approximate model � ( )G s possessing L N� system states while introducing the least error in the transfer

function G s( ) . Error can be described by G s G s( ) � ( )�  where �  is an induced matrix norm.

In the field of structural dynamics, modal realizations are often employed in model reduction. For a modal
realization, TAT �1  is block diagonal, so that
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Each 2 2� submatrix corresponds to a pair of the N system states. In modal truncation, pairs of states are eliminated

from the model based on a criteria such as rate of decay,� �i i , frequency, 1 2
�� �i i , or transfer function error. The

latter quantity is given by C Bi i i i� �  [6]. Transfer function error is the most appropriate of these for equipment

model reduction. Modal truncation has the advantage of being conceptually simple. In addition, it provides a
physical interpretation of the system states as modes. The technique can become impractical, however, when a
structure possesses many modes whose contributions to the transfer function error are comparable. This is true of
modally dense systems, such as COTS equipment cabinets [1].

Given the goal of model reduction, truncation should ideally be performed on the realization in which the retained

states minimize the error norm, G s G s( ) � ( )� . Clearly, this optimal choice of realization will depend both on G s( )

and on the number of states to be retained, L . Furthermore, there is no reason to assume that a modal realization is
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close to the optimal. In contrast, a balanced realization is one in which the states are selected according to input-
output energy transfer. Those states least involved in energy transfer are truncated. While not optimal, it is shown
below that this method provides excellent approximation of modally dense structures.

A description of a balanced realization for the transfer function G s( )  requires the introduction of the controllability
gramian P and observability gramian Q . These gramians satisfy the equations:

                                                  
AP PA BB

A Q QA C C

T T

T T

� � �

� � �

0

0
(4)

The observability gramian has the interpretation (see, e.g., [4]) offered by the following calculation. Given the input

u t t( ) ,� �0 0  and initial state x x( )0 0� , then y t y t x QxT T( ) ( )
0 0 0

�z � . If Q  has certain very small eigenvalues, then

the initial conditions corresponding to those eigenvectors will have very little effect upon the output. The
controllability gramian can be interpreted by calculating the minimum control energy which was needed to move the
state vector x  from the origin to its initial value x x( )0 0� . Mathematically, this can be posed as the following

optimization problem. Find J u u t u t dtopt
u

T( ) min ( ) ( )
( , )

�

� ��
��
zL2 0

0
 subject to (1) and x x( )0 0� . The solution is given by

J u x P xopt
T( ) � �

0
1

0  [6]. Thus, if certain eigenvalues of P are very small, then the states x( )0  associated with those

eigenvalues are very difficult (control costly) to achieve. Assuming u t t( ) ,� �0 0 , these results can be combined to

yield the ratio of future output energy to prior minimum input energy associated with an arbitrary initial state, x0 [6].
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The eigenvalues of P QP1 2 1 2/ /  can be seen to provide a means of ranking the importance of state space directions

(described by eigenvectors) in terms of their 2-norm contribution to this energy. Consequently, a realization that
diagonalizes P QP1 2 1 2/ / makes it possible to apply this ranking directly to the realization’s states.

 Such a realization ( )A B C, , is termed balanced and can be shown to satisfy
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The observability gramian and controllability gramians in this case are identical, diagonal matrices
� � �diag( , ,... ),� � � �1 2 0N i . The realization is termed ordered if � � �1 2� �. N .

Any asymptotically stable, minimal realization ( )A B C, ,  with observability gramian Q  and controllability gramian

P can be transformed into a balanced realization ( )TAT TB CT� �1 1, ,  where P RRT
� is a Cholesky factorization of

P , RQR U UT T
� �

2 is a singular value decomposition of RQRT , and T U RT
�

�

�
1 2 1/  [6]. The truncation of a

balanced realization results in a stable, minimal system. Let ( )A B C, ,  be an ordered, balanced realization with

transfer function G s( ) . The diagonal gramian �  is partitioned as � � �� diag( , )1 2 , where

�2 1 2�
�

diag( , ,... )� � �L N  consists of "small" elements. The matrices ( )A B C, , are partitioned conformably, so that
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The truncated system ( )A B C11 1 1, , is stable, with transfer function � ( )G s . The approximation satisfies the bound [6]

G s G s i
i L

N

( ) � ( )� �
�

� �

�2
1

� (8)

where the infinity norm for the system y s G s u s( ) ( ) ( )� is defined by
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One technical difficulty with the technique described above is that if G s( ) is a passive transfer function (i.e., it does

not produce energy) then � ( )G s is not necessarily passive. Mathematically the passivity condition is given by

G i G i( ) ( )*
� �� � 0  or, for single-input single-output systems, the phase must be less than �90� ). This technical

point turns out to be very important since it is desired to fabricate equipment models using passive mechanical
elements. The issue can be resolved with a method of passivity preserving balanced truncation described in [5]. The
performance (both theoretically and in practice) is not compromised by the modified technique. The approach is
illustrated below for two example systems.

EXAMPLE 1

A single-input single-output system was used to compare the performance obtained through balanced and modal
truncation. The system is depicted in Fig. 1. An equipment model possessing 36 modes (72 states) is attached to a
master structure with a fixed-base frequency normalized to unity. The equipment modes possess a uniform random
frequency distribution in the interval [0.6,1.4]. Their magnitudes correspond to a uniform distribution in the interval
[0,1]. This equipment model was selected to reflect the ambiguity encountered when attempting a modal reduction
of equipment possessing moderate modal density.

Using the attachment point force and velocity as the input and output, respectively, the equipment model was
reduced to four modes (8 states) using balanced and modal truncation. (The latter was carried out using
C Bi i i i� �  to rank the contribution of each mode to transfer function error.) With this choice of input and output,

the transfer function corresponds to mechanical admittance. The admittance magnitude for the entire system
(equipment and master structure) is plotted in Fig. 2. This quantity can be interpreted as the response of the master
structure to a vertical disturbance force. From this plot, it can be seen that balanced truncation provides a better
match to the full system in the neighborhood of the master structure’s fixed-base frequency. While not depicted, this
is also true of admittance phase angle. Furthermore, balanced truncation provides better low and high frequency
amplitude matching.

master structure

equipment l

Fig. 1.  One dimensional example system. The equipment model has 36 modes (72 states) uniformly distributed
about the fixed-base frequency of the master structure.
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Fig. 2.  Admittance (velocity/force) magnitude plots for systems consisting of the master structure and the full,
balanced or modal equipment models.

To compare the truncation techniques in terms of shock severity, the shock spectrum of the master structure was
computed in response to a half-sine force pulse of duration 0.5 seconds. The result is shown in Fig. 3. It can be seen
that the modal truncation model causes the shock spectrum to be underestimated in the neighborhood of the master
structure’s fixed-base frequency by a factor of 0.52 to 0.67. This indicates that the modally truncated system absorbs
significantly more energy in this frequency range than does the actual equipment. To a lesser degree, this model also
underpredicts the shock spectrum at high frequencies. A shock trial conducted with such a model would erroneously
suggest that the master structure provides a much safer shock environment than in actuality. In contrast, the
equipment model obtained by balanced truncation provides good shock spectrum matching over the entire frequency
range.

EXAMPLE 2

A two-dimensional finite element cabinet model was developed in order to test the passive, balanced realization
technique for structures of more realistic complexity. The cabinet is constructed of beam elements and consists of
three main compartments, with stringers and masses intended to simulate internally mounted components. The
model appears in Fig. 4. There are two inputs and two outputs consisting of the vertical forces and velocities,
respectively, measured at drive points 1 and 2.  The stringer stiffnesses and masses were randomly chosen, so that a
number of modes involving motion of the stringers and cabinet structure lie in the range of 15-40 Hz.

The full finite element model of the cabinet has 24 states, which through passive balanced truncation, is reduced to
4. The two drive point admittance magnitudes (diagonal elements of G s( ) ) are shown in Fig. 5 and Fig. 6. As was
the case for the one-dimensional example, both low and high frequency asymptotic behavior is well captured by the
truncation. In addition, the major dynamic effects are captured for all intermediate frequencies.

To confirm these observations, the cabinet model was mounted on a master structure consisting of a simply
supported beam. The beam properties were chosen such that the modal frequencies and admittance amplitudes were
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comparable to those of the cabinet at the attachment points. The velocity response of the combined system to an
impulsive force applied at attachment point 1 is shown in Fig. 7. The system incorporating the truncated equipment
model accurately predicts both early and late time response. The shock spectrum at attachment point 1 of the
combined system is plotted in Fig. 8 for a half-sine force pulse applied at this point. Excellent agreement between
the full and reduced systems is observed.
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Fig. 3.  Shock spectrum with 5% damping comparing response of the master structure to a half-sine force pulse for
the full and truncated equipment models.

Drive 1 Drive 2

Base Plate

Attached Masses
(equipment models)

Main Structure

Stringers

Fig. 4.  Two-dimensional cabinet model. The two inputs and two outputs consist of the vertical drive point forces
and velocities, respectively.
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Fig. 5.  Drive point admittance (velocity/force) at attachment point 1 for the full-order and reduced-order systems.
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Fig. 6. Drive point admittance (velocity/force) at attachment point 2 for the full-order and reduced-order systems.
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Fig. 7.  Deck velocity at attachment point 1 in response to an impulsive force input.
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Fig. 8.  Shock spectrum (5% damping) at attachment point 1 for the full-order and reduced-order systems.
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CONCLUSIONS

Balanced truncation has been demonstrated as an effective alternative to modal truncation for the design of
numerical or scaled mechanical equipment models. The method is inspired by the desire to minimize input-output
error energy described in terms of 2-norms. The relationship between model complexity and error energy can be
ascertained using known error bounds that depend on the truncated states. A simple modification makes it possible
to ensure that the reduced system preserves the passivity of the full-order model.

The application of the approach to two example systems indicates that balanced truncation is effective from the
viewpoints of the time, frequency and shock spectra domains. In addition, the first example established that balanced
truncation may be superior to modal truncation in the context of shock loading. Additional work is needed to fully
understand the analytical and practical implications for the emulation of actual equipment. Furthermore, for multi-
input multi-output systems, no systematic technique exists for fabricating a reduced model obtained either through
modal or balanced truncation. These issues are topics of current study.
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