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Abstract

Simulation of dynamic systems possessing unilat�
eral frictional contacts is important to many indus�
trial applications� While rigid body models are often
employed� it is well established that friction can cause
problems with the existence and uniqueness of the for�
ward dynamics problem� In these situations� we ar�
gue that compliant contact models� while increasing
the length of the state vector� successfully resolve these
ambiguities� The simplicity and e�ciency of rigid
body models� however� provide strong motivation for
their use during those portions of a simulation when
the compliant contact model indicates a unique and
stable solution� We use singular perturbation theory
in combination with linear complementarity theory to
establish conditions for the validity of the rigid body
model with rolling and sliding unilateral contacts for
planar systems� The results are illustrated with a sim�
ple example�

� Introduction

Rigid body dynamic simulation There are many
applications in an industrial setting where it is ben�
e�cial to understand the dynamics of systems with
frictional contacts� Examples include part�feeding sys�
tems ��	 and automatic assembly of mechanical compo�
nents �
	� When a component is fed� typically at high
speeds� along guides or rollers� it may experience mul�
tiple frictional contacts with surrounding rigid bodies
before arriving at its �nal destination� Similarly� dur�
ing the insertion of a peg into a hole� there may be
several contacts between the peg and the hole before
successful assembly ��	� Examples of robotic systems
with frictional contacts include multi�ngered grippers
��	� multiarm manipulation systems� legged locomo�
tion systems� and wheeled robots on uneven terrain�
Finally� there are many examples of mechanical sys�
tems in which frictional contacts are essential to the
successful operation of the system �
	� In order to suc�
cessfully design and optimize such mechanical systems
or manufacturing processes� a method for modeling
and simulatingmechanical systems with frictional con�
tacts is necessary ��	�

Systems with frictional contacts The dynamic
equations of motion for a mechanical system com�
prised of rigid bodies can be written in the form�

M �q � c�q� �q� � � ��T
q � ���
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where q � �n is the vector of generalized coordinates�
M is an n� n positive�de�nite symmetric inertia ma�
trix� c�q� �q� is a n�� vector of nonlinear inertial forces�
� is the vector of applied �external� forces and torques�
and � is the vector of constraint forces� The system is
subject to p constraints�

��q� � ����q�� � � � � �p�q�	T � � �
�

and �q in Equation ��� is the p � n Jacobian ma�

trix� ��
�q

� We will assume� without loss of generality�

that this does not include bilateral� holonomic con�
straints� Further� for the sake of simplicity� we will as�
sume that nonholonomic constraints are not present�
Let there be m contacts� consisting of r rolling con�
tacts and s sliding contacts� Let the subscripts N and
T denote quantities in the normal and tangential di�
rections and the subscripts S and R denote sliding and
rolling �sticking� contacts respectively� The Jacobian
matrix and constraint forces in ��� for a planar system
are given by�

�T
q �

h
��T
Sq

�T
NRq

�T
TRq

i
� ���

��Sq �
h
�NSq��TSqdiag��ssign� ��TSq ��

i
�

� �
�
�TNS �TNR �TTR

�T
�

where p � m � r and Coulomb�s law is employed�
Contacts between rigid bodies generate complemen�

tary constraints on the position �or velocity or acceler�
ation� variables and the corresponding force variables
as detailed in ��� �	� These conditions allow active con�
tacts to become inactive� The case of inactive contacts
becoming active is modeled by rigid body impacts and
is treated elsewhere ��� ��	�

Existence and uniqueness The problem of de�
termining contact forces for the rigid body problem
can be reduced to a linear complimentarity problem
�LCP � in the planar case ��� �	� It is well�known that
in the frictionless case� there is always a unique solu�
tion for �q� When the constraints are not all indepen�
dent �the rows of �q are not linearly independent��
the system is statically indeterminate and the con�
straint forces � cannot be uniquely determined� In the
frictional case� if all contacts are known to be rolling
�sticking�� then the relative tangential velocity� ��T�i�
is zero at each contact� and the existence of a solution
can be shown if the Jacobian �q is full rank ��	� In
all other cases� the initial value problem can be shown
to have no solution or multiple solutions for special
choices of initial conditions�



Since the di�culties of proving existence and
uniqueness arise due to the presence of unknown con�
tact forces ��� that are subject to nonlinear con�
straints� it is attractive to pursue models in which
the contact forces are explicit functions of the state
variables �q� �q�� A continuum model for modeling the
deformations at each contact is described in ���	� This
general approach is further re�ned by ��
	� Existence
and uniqueness is shown for the special case in which
the maximum tangential force at each point is a pri�
ori known� The disadvantage in this approach is the
complexity of the model� The contact models lead to
a high�dimensional� sti� system of equations and a run
time that is unacceptable for real�time simulation�

The goal of the paper We develop a simpli�ed
model of compliance that overcomes the shortcomings
of the rigid body model and successfully approximates
the dynamics of the continuum model� The second
goal of the paper is to examine the stability of the so�
lutions obtained by the rigid body model� When the
reduced order rigid body model and the more com�
plex compliant contact model agree in their predic�
tions� it is attractive to pursue the simulation using
rigid body models� We argue that rigid body dynamic
simulation is meaningful only when the solution of the
compliant contact model converges to the solution of
the rigid body model� Finally� we use methods from
singular perturbation analysis to establish conditions
under which the solution predicted by the rigid body
model is stable�
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Figure 1: a) A simple model of contact compliance.
Each body consists of a rigid core and a small com-
pliant shell, the deformations of which are modeled
by (possibly nonlinear) springs and dampers. b) A
viscoelastic model for contact compliance

� Compliant Contact Models

In this section� we develop a formulation that in�
corporates a local model of compliance at each con�
tact� This formalism assumes that the principles of
rigid body dynamics are valid and the gross motion
of the dynamic system is described by the state vari�
ables �q� �q�� However� in addition to the gross motion�
there are small �local� deformations at each contact�
To see this� consider a rigid body surrounded by a very
thin deformable shell the inertia of which is negligible�
as shown in the schematic in Figure �� The thick�
ness of the deformable shell is negligible compared to
the radius of curvature of the rigid body� In the pla�
nar case� the gross rigid body motion �q� �q� determines
the nominal displacement of the contact point �u� v��
The actual displacement of the contact point is given

by �u� �T � v � �N �� The contact forces� on the other
hand� are related to the normal and tangential de�
formations ��N � �T � of the shell and their derivatives

� ��N � ��T �� Since the deformations can be determined
by the knowledge of the material properties of the de�
formable shell� the contact forces can be related to the
original state variables �q� �q��

It is important to note that the compliance in the
tangential direction allows small displacements at a
sticking contact in the tangential direction before slip
actually occurs�� This can be seen if we press a �n�
ger against a rigid surface and attempt to move it
tangential to the surface� There will be a small dis�
placement before gross rigid body sliding motion be�
gins� This is in contrast to what a Coulomb�like fric�
tion law� in conjunction with conventional rigid body
models� predicts � the tangential force is a discon�
tinuous function of velocity� The tangential compli�
ance makes the tangential force a continuous �in fact�
piecewise smooth� function of tangential velocity and
provides for a smooth �continuous� transition between
the sticking and the sliding regimes�

A general viscoelastic model for contact compliance
is shown in Figure �� At contact i� the normal and
tangential contact forces ��N�i and �T�i� between the
two contacting bodies may be modeled as�

�N�i � fN�i ��N�i� � gN�i

�
�N�i� ��N�i

�
���

�T�i � fT�i ��T�i� � gT�i

�
�T�i� ��T�i

�
�
�

where the functions fN�i and fT�i are the elastic sti��
ness terms and gN�i and gT�i are the damping terms
in the normal and tangential directions respectively�
These functions depend on the geometry and mate�
rial properties of the two bodies in contact and may
be nonlinear� While the constitutive laws relating the
forces to the deformations �and their derivatives� may
be quite general� it is important to note that we have
decoupled the modeling of the contact forces �i�e� the
force at a contact is only dependent on the deforma�
tion at that contact� and further the expressions for
the normal and tangential forces are uncoupled� The
details of the use of the compliant model solution pro�
cedure can be found in ��	�

There are two disadvantages of the compliant con�
tact model� First it is clear that we now need to
model the contacts and this increases the possibility
of modeling errors� particularly since contact mod�
els are notoriously di�cult to obtain� Second� and
more importantly from an algorithmic and mathemat�
ical standpoint� there is a need to extend the state
space of the system� The original rigid body model
has n� �m� r� degrees of freedom� and a state space
that is 
n � 
�m � r��dimensional� In the compli�
ant contact model the state consists of �q� �q� and is

n�dimensional� regardless of the number of contacts�
The three main advantages are�
� The normal and tangential forces are now

uniquely determined and there is no question of
static indeterminacy�

� The di�culties with uniqueness and existence no
longer arise� and

�This is similar to the phenomena of microslip that is de�
scribed in the tribology and contact mechanics literature �
��




� As shown in ��	� a model with tangential contact
compliance is more realistic and can better ex�
plain such physical observations as microslip and
hysteresis�

We do not wish to promote unnecessary model com�
plexity� however� and in those situations when a com�
pliant contact model is not needed� it would be de�
sirable to retain the simpler rigid body model� The
popularity of rigid body models can be attributed not
only to their simplicity� but also to the fact that they
have produced adequate results in a broad range of
applications� Clearly� rigid body models can only be
used when a unique solution can be determined with�
out any additional ad hoc assumptions� In the next
section� we will use singular perturbation theory to
investigate the stability of the solutions obtained from
the rigid body model� If a rigid body solution is sta�
ble� the compliant contact model solution converges
to this solution and the compliance can be neglected�
However� if this solution is unstable� one must use the
more sophisticated compliant contact model for simu�
lation�

� Singular Perturbation Analysis

The rigid body model leads to a set of di�erential�
algebraic equations �DAEs� as shown in Section �� We
argued in the previous section that a compliant con�
tact model that explicitly models the small deforma�
tions is a more accurate model� These deformations
are an order of magnitude smaller than the gross mo�
tions of the mechanical system� By setting these de�
formations to zero �or by allowing the corresponding
sti�nesses to be in�nitely large�� we recover the DAEs
of the rigid body model�

This suggests �see ���	 for a more lucid exposition�
that we might be able to invent a small perturbation
parameter � � � that enters the state equations for
the compliant contact model� such that� by setting
� � � the state equations degenerate into the DAEs
of Section �� Further� there are two time scales in
the dynamics of the mechanical system ���� �
	� The
�rst time scale� is the one that corresponds to the re�
duced order rigid body model dynamics� The second
time scale is the fast time scale that characterizes the
contact dynamics�

Singular perturbation theory allows us to decom�
pose the system model into reduced �slow� and
boundary�layer �fast� models ���	� The response of
the system� described by the compliant model� con�
sists of the slow response and the fast transient� If the
boundary�layer model is exponentially stable� the fast
transients will exponentially converge to zero and it is
reasonable to neglect the high�frequency contact dy�
namics� In such a situation� the reduced order model
obtained by neglecting the compliance �and the e�ects
of the small parameter ��� is robust to the unmodeled
dynamics� If the boundary�layer model is not stable�
we cannot neglect these terms and it is necessary to
use the complete dynamic model incorporating com�
pliance�

We will basically follow the approach of ���	 in de�
veloping the reduced �slow� and boundary�layer �fast�
models for the mechanical system ���� In a previous
paper ��
	� one of the authors developed a framework

for analyzing the e�ect of compliance in the normal
direction on systems with sliding contact and derived
conditions under which this compliance could be ne�
glected� Here we will pursue a uni�ed approach to
the analysis of rolling and sliding contacts� and estab�
lish conditions under which the details of the compli�
ant contact model can be neglected� We will use the
simple Kelvin�Voigt model ���	 to model contacts and
assume� for the sake of simplicity� all contacts are iden�
tical� However� our approach is quite general� and as
such� works for any constitutive law that has the form
���
��

We use x to denote the slow variables and �z to
denote the fast variables� with � � �� �z corresponds
to the small deformations� that is� small deviations
from the rigid body constraints� q� � �n��m�r� is a
subset of the vector of generalized coordinates which

is partitioned as q �
�
qT� q

T
�

�T
so that

h
�z
x

i
�

�
�N �q�� q��
�TR�q�� q��

q�

�

is a valid choice of coordinates� In order for this to be
true� the implicit function theorem requires that the
Jacobian matrix

� �

�
�Nq �m�n�
�TRq �r�n�

���n��m�r����m�n�� I��n��m�r����n��m�r���

�
���

be nonsingular� This in turn impliesh
�Nq

�TRq

i
���m�r��n

must be full rank� If these conditions are satis�ed� we
may write� h

�q�
�q�

i
� J��z� x�

h
� �z
�x

i
where J � ���� and Equation ��� can be written in
the form�h

��z
�x

i
� �J�� �J

h
� �z
�x

i
� J��M���� � c

�
h
��T
Sq

�T
NRq �T

TRq

i
�� ���

With the Kelvin�Voigt model� the normal and tangen�
tial contact forces take the form�

� � �� bp
�
� �z �

k

�
�z� ���

where k
�
and bp

�
are the sti�ness and damping con�

stants respectively� The scaling of these constants
is obtained through dimensional analysis �for exam�
ple� see ���� �
	�� The �rst m � r equations model
the fast dynamics �boundary layer� and the remaining
n� �m� r� represent the slow dynamics�

We let � 	 � in the transformed equations of mo�
tion and solve for the steady state solution� z� from
the �rst m � r equations� z is then substituted in to
the last n � �m � r� equations to obtain the slow dy�
namics� Note that the zi corresponding to the normal



contact constraints must be negative while the zi cor�
responding to the tangential rolling constraints have
no restriction on sign�

To proceed with the stability analysis� we perform a
time scale transformation � � tp

�
on the fast dynamics

equations along with a change of variables z � y � z
to move the quasi�steady state of z to the origin and
arrive at the homogeneous boundary layer dynamics
of the form�

y�� � bDy� � kDy � � ���

where � denotes di�erentiation with respect to � and

D�
h
�Nq
�TRq

i
M��� ��TSq �TNRq �TTRq

�
����

These equations represent the transient of z� The sta�
bility of these equations depends on the eigenvalues of

D as well as the value of b�

k
�

� The One Contact Case
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Figure 2: Planar rigid rod in contact with horizontal
surface.

Consider the classic problem of the planar sliding
rod� A rigid� slender rod of length l � l� � l� is in
contact with a rigid horizontal surface� where l� is the
distance from the contact to the C�M� and l� is the
distance from the C�M� to the non�contacting end of
the rod� The rod has mass m and centroidal moment
of inertia I� � is the coe�cient of friction between the
rod and surface� q � �xc yc �	

T represent the general�
ized coordinates for the rod which are the position of
the C�M� and the angular orientation� �

The impenetrability constraint of the tip of the rod
in contact is� �N � yc � l�s� � �� The gradient of
the normal and tangential constraints at the contact
point are�

�Nq � �� � � l�c�	 ����

�Tq � �� � l�s�	 ��
�

and the relative normal acceleration at the contact�
	N � is given by�

�N ���Nq �q�q �q��NqM
�����c���NqM

��	�TNq �
T
Tq 

h
�N
�T

i

�
s� and c� denote sin � and cos � respectively


��� With contact sliding

If we assume that the contact is sliding � ��N 
� ���
the rigid body problem takes the form of an LCP �

	N � b�A�N � �� �N � �� 	N�N � � ����

where

A �
�

m
�
l��c�

I
�c� � �sgn� ��T �s��

b � l� ��
�s� �

�
�

�

m
� l�c�

I

�
�

Note with � � �� A 
 � and therefore A is a � �
� P �matrix� which guarantees a unique solution� If
b � � we are guaranteed of the existence of a solution
regardless of whether or not A is a P �matrix�

If we now wish to pursue the singular perturbation
approach to the problem� a transformation to a sys�
tem of fast and slow variables can be accomplished by
making the change of variables�

h
� �z
�x

i
�

	

 ��N

�xc
��

�
� � J��

�
�xc
�yc
��

�
� J�� �q

The inverse function theorem requires�

det�J��� � det

�
� � �l�c�
� � �
� � �

�
� �� 
� �

So we can always transform to the system of fast and
slow variables and back�

Using the Kelvin�Voigt contact force model in the
fast dynamics equation� letting �	 � and solving for
z gives�

z �
b

kNA
����

In order to satisfy the constraints of non�negativity of
the normal contact force and normal relative separa�
tion of the rigid body model �achieved as �	 ��� the
value for z in the above expression must be � � �A
and b of di�erent signs��

With time scale transformation and change of coor�
dinates� we arrive at boundary layer dynamics of the
form of equation ���� For a system with only sliding
�or frictionless� contacts the matrix in the boundary
layer dynamics�D� equals the matrix in the rigid body
LCP formulation� A�

Since we assume kN � bN 
 �� the stability of the
boundary layer depends on the eigenvalues of the ma�
trix�

D � A �
�

m
�

l��c�

I
�c� � �sgn� ��T �s��

As noted in ��
	� for the case of the planar rod with
one sliding contact� the condition for stability of the
boundary layer is identical to the requirement for the
matrix to be a P �matrix in the LCP formulation and
thus ensure the existence of a unique solution for ar�
bitrary input� Based on the value of z� the singular
perturbation analysis may be used to test the stability
in those situations where LCP analysis tells us that
the contact is maintained� A summary of the results
is given in Table ��



Table 1: LCP and stability results for 1 sliding con-
tact (C=contact, NC=no contact, NS=no solution, �
denotes a case where the rod skims over the surface
without generating contact forces)

Conditions Solutions Stability
A 
 � b 
 � NC stable
A 
 � b � � NC� stable
A 
 � b � � C stable
A � � b 
 � NC stable
A � � b � � � solns� �
A � � b � � NS N A

A � � b 
 � C unstable
NC stable

A � � b � � NC� stable
A � � b � � NS N A

��� With contact rolling

If we now assume the contact is rolling or sticking
�i�e� no relative tangential motion at the contact� with
the de�nition of surplus and slack variables� the planar
rod problem with a rolling �sticking� contact can again
be formulated as an LCP ��	�

s�T � ��N � �T � s
�
T � ��N � �T � s

�
T � s

�
T � � ��
�

�N � �� 	N � �� 	N�N � � ����

	T � 	�T � 	�T � 	
�
T s

�
T � �� 	�T s

�
T � � ����

�
	N
	�T
s�T

�
�

	

 ��Nq �q � �NqM

���� � c�
��Tq �q � �TqM

���� � c�
�

�
� ����

�

	

�NqM

����TNq � �TTq�� �NqM
���TTq �

�TqM
����TNq � �TTq�� �TqM

���TTq �

� �� �

�
�
�
�N
s�T
	�T

�

The coe�cient matrix in the LCP problem is

A �

	

 �

m
�

l�
�

I
c��c� � �s�� � l�

�
c�s�

I
�

� �

m
� l�

�

I
s��c� � �s�� �

m
�

l�
�
s��

I
�


� �� �

�
� �

����
This matrix is never a P �matrix�

Again we pursue a singular perturbation approach
to the problem and model the static frictional force
with the compliant contact model as was done for the
normal force� To perform the reversible change of vari�
ables�

h
� �z
�x

i
�

	

 ��N

��T
��

�
� � J��

�
�xc
�yc
��

�
� J�� �q

the inverse function theorem requires�

� � J�� �

�
� � �l�c�
� � l�s�
� � �

�

be nonsingular� Since j�j � ��� this transformation is
always possible� After changing variables and letting
�	 �� solving for z in the two fast equations gives�h
z�
z�

i
� ml� �x

�

�
Sx
kN
Cx
kT

�
�
��

�

� �
kN

�

� �
kT

��
l
�

�
CxSx

I
�
m

� l
�

�
S
�
x

I
� l�Cx

I
�
m

� l�
�
C�x

I

l�
�
CxSx

I
l�Sx
I

�
�

� �
m

�
l�
�

I
�

We note that z� should be � � to satisfy the rigid
body unilateral contact constraints in the limit� For
the range of orientations � � � � 
 it is positive for
� � � �no external forces or torques�� Additionally� for
the rolling contact case the steady state value of the
tangential contact force must fall within the Coulomb
bounds �j�T j � ��N �� For the case presented this
condition translates to�

j�T
�N

j � j kT z�
kNz�

j � � �
��

Again using the time scale transformation t �
p
��

and the coordinate transformation y � z� z gives the
boundary layer dynamics�

y
��

� BDy
�

�KDy � �

with

K�
h
kN �
� kT

i
�B�

h
bN �
� bT

i
�D�

�
�
m

� l�
�
C�x

I
� l�

�
CxSx

I

� l�
�
CxSx

I
�
m

� l�
�
S�x

I

�

�

�
The eigenvalues of the matrix D are �� � �

m
� �� �

�
m

�
l�
�

I
which are always positive real� Thus� the

boundary layer is always stable�

��� Discussion

No contact This is a trivial case in which principles
of classical rigid body dynamics show uniqueness and
existence� and stability is not an issue�
Sliding contact Depending on the value of A and
b� the LCP can have di�erent outcomes as shown in
Table �� An examination of this table reveals that
there is one case where two solutions will satisfy the
LCP � This occurs when A � � and b 
 �� The two
solutions correspond to maintaining and breaking con�
tact respectively� The no contact solution is obviously
stable� If the case where the contact is maintained is
examined via the singular perturbation analysis �note
that z � A��b � ��� since A � � this solution is
unstable� In this situation� there is only one stable
solution� However� this may not always be the case as
illustrated next�
Rolling contact Consider the initial conditions
and the parameters� �� � � rad�

s
� m � �kg� l� �

��
m� l� � ��
m� I � �
��m�l� � l��� and � � ��� �

mg �	T N � A plot illustrating the number of LCP so�
lutions for the range of orientation angles � � � � 

and coe�cients of friction � � � � 
�
 is given in Fig�
ure ���� We see that for a range of conditions the prob�
lem actually yields all � possible rigid body solutions
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Figure 3: Planar rolling rod LCP solutions, ml�
�

I
� � ,

�� � �.

� contact break� rolling� and sliding� For instance at
� � ��
�� � � ��� the three solutions are� impend�
ing break �	N � ����
�m

s�
� 	T � 
���
��m

s�
�� main�

tain rolling ��N � 
���
�N� �T � �����
N �� and im�
pending sliding ��N � ��
���N� �T � ������N� 	T �
������m

s�
�� The singular perturbation analysis shows

that the contact breaking and rolling cases are both
stable� The impending sliding case cannot be analyzed
using this model because � is not a di�erentiable func�
tion of the state�

� Concluding remarks

It is well�known that there are di�culties in using
rigid body dynamic models for the dynamic simula�
tion of systems with frictional contacts� In particular�
when rigid body models are used in conjunction with
Coulomb�s empirical law of friction for dynamic simu�
lation of systems with frictional contacts� there may be
situations in which there are no solutions or multiple
solutions for the contact forces and the accelerations�
In this paper� we describe a contact model that models
the small compliance in the normal and tangential di�
rection� We show that this compliant contact model�
when used with the rigid body dynamic equations of
motion� always yields a unique solution for the accel�
erations and the forces� While this model is superior
to the traditional rigid body model in terms of ac�
curacy and robustness� it is also more complex and
requires a larger number of parameters� Therefore� it
is appealing to use rigid body models� whenever con�
cerns of uniqueness and existence do not arise� We
use methods of singular perturbation theory to estab�
lish conditions under which solutions from the rigid
body model are stable� or in other words� conditions
in which the compliant contact model solution con�
verges exponentially to the rigid body model solution�
The basic ideas of this paper are applicable to any
situation with frictional contacts� However� the rigid
body model� and therefore the perturbation analysis�
cannot be applied to statically indeterminate systems�

In situations when rigid body LCP analysis reveals
multiple solutions� one might ask if stability analy�
sis can help resolve the di�culty with ambiguities�

We may simply discard the unstable solutions and
retaining the stable one� However� as our example
with rolling contact showed� there are also cases where
there may be more than one stable solution or where
there might be a unique� but unstable solution� Thus�
the stability analysis simply shows when it is essential
to pursue the more sophisticated compliant contact
model� and when it is satisfactory to neglect the fast
dynamics�

Our future work addresses incorporating stability
analysis as a diagnostic tool in real�time simulation
where it is prudent to check for stability and warn the
user in unstable regimes�
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