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Abstract

Simulation of dynamic systems possessing unilat-
eral frictional contacts is important to many indus-
trial applications. While rigid body models are often
employed, it is well established that friction can cause
problems with the existence and uniqueness of the for-
ward dynamics problem. In these situations, we ar-
gue that compliant contact models, while increasing
the length of the state vector, successfully resolve these
ambiguities. The simplicity and efficiency of rigid
body models, however, provide strong motivation for
their use during those portions of a simulation when
the compliant contact model indicates a unique and
stable solution. We use singular perturbation theory
m combination with linear complementarity theory to
establish conditions for the validity of the rigid body
model with rolling and sliding unilateral contacts for
planar systems. The results are illustrated with a sim-
ple example.

1 Introduction

Rigid body dynamic simulation There are many
applications in an industrial setting where it 1s ben-
eficial to understand the dynamics of systems with
frictional contacts. Examples include part-feeding sys-
tems [1] and automatic assembly of mechanical compo-
nents [2]. When a component is fed, typically at high
speeds, along guides or rollers, it may experience mul-
tiple frictional contacts with surrounding rigid bodies
before arriving at its final destination. Similarly, dur-
ing the insertion of a peg into a hole, there may be
several contacts between the peg and the hole before
successful assembly [3]. Examples of robotic systems
with frictional contacts include multifingered grippers
[4], multiarm manipulation systems, legged locomo-
tion systems, and wheeled robots on uneven terrain.
Finally, there are many examples of mechanical sys-
tems in which frictional contacts are essential to the
successful operation of the system [5]. In order to suc-
cessfully design and optimize such mechanical systems
or manufacturing processes, a method for modeling
and simulating mechanical systems with frictional con-
tacts is necessary [6].

Systems with frictional contacts The dynamic
equations of motion for a mechanical system com-
prised of rigid bodies can be written in the form:

Mg+ (g, 4) =7+ DA (1)
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where ¢ € R" is the vector of generalized coordinates,
M is an n X n positive-definite symmetric inertia ma-
trix, ¢(q, ¢) is a n x 1 vector of nonlinear inertial forces,
7 is the vector of applied (external) forces and torques,
and A is the vector of constraint forces. The system is
subject to p constraints:

T
O(q) = [¢1(q), -+, dp(0)]” >0 (2)
and ®, in Equation (1) is the p x n Jacobian ma-
trix, %. We will assume, without loss of generality,

that this does not include bilateral, holonomic con-
straints. Further, for the sake of simplicity, we will as-
sume that nonholonomic constraints are not present.
Let there be m contacts, consisting of r rolling con-
tacts and s sliding contacts. Let the subscripts N and
T denote quantities in the normal and tangential di-
rections and the subscripts S and R denote sliding and
rolling (sticking) contacts respectively. The Jacobian
matrix and constraint forces in (1) for a planar system
are given by:

of = | oL 0%, ofy, |, (3)
<i>Sq = [@qu—@qudiag(ﬂsSign@TSq)),

T
A= [’\%S /\%R /\%R] )

where p = m + r and Coulomb’s law is employed.

Contacts between rigid bodies generate complemen-
tary constraints on the position (or velocity or acceler-
ation) variables and the corresponding force variables
as detailed in [7, 8]. These conditions allow active con-
tacts to become inactive. The case of inactive contacts
becoming active is modeled by rigid body impacts and
is treated elsewhere [9, 10].

Existence and uniqueness The problem of de-
termining contact forces for the rigid body problem
can be reduced to a linear complimentarity problem
(LC'P) in the planar case [7, 8]. Tt is well-known that
in the frictionless case, there is always a unique solu-
tion for §. When the constraints are not all indepen-
dent (the rows of ®, are not linearly independent),
the system is statically indeterminate and the con-
straint forces A cannot be uniquely determined. In the
frictional case, if all contacts are known to be rolling
(sticking), then the relative tangential velocity, ¢r7;,
1s zero at each contact, and the existence of a solution
can be shown if the Jacobian ®, is full rank [8]. In
all other cases, the initial value problem can be shown
to have no solution or multiple solutions for special
choices of initial conditions.



Since the difficulties of proving existence and
uniqueness arise due to the presence of unknown con-
tact forces (A) that are subject to nonlinear con-
straints, it is attractive to pursue models in which
the contact forces are explicit functions of the state
variables (¢, ¢). A continuum model for modeling the
deformations at each contact is described in [11]. This
general approach is further refined by [12]. Existence
and uniqueness is shown for the special case in which
the maximum tangential force at each point is a pri-
ort known. The disadvantage in this approach is the
complexity of the model. The contact models lead to
a high-dimensional, stiff system of equations and a run
time that is unacceptable for real-time simulation.

The goal of the paper We develop a simplified
model of compliance that overcomes the shortcomings
of the rigid body model and successfully approximates
the dynamics of the continuum model. The second
goal of the paper is to examine the stability of the so-
lutions obtained by the rigid body model. When the
reduced order rigid body model and the more com-
plex compliant contact model agree in their predic-
tions, it is attractive to pursue the simulation using
rigid body models. We argue that rigid body dynamic
simulation is meaningful only when the solution of the
compliant contact model converges to the solution of
the rigid body model. Finally, we use methods from
singular perturbation analysis to establish conditions
under which the solution predicted by the rigid body
model is stable.
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Figure 1: a) A simple model of contact compliance.
Each body consists of a rigid core and a small com-
pliant shell, the deformations of which are modeled
by (possibly nonlinear) springs and dampers. b) A
viscoelastic model for contact compliance

2 Compliant Contact Models

In this section, we develop a formulation that in-
corporates a local model of compliance at each con-
tact. This formalism assumes that the principles of
rigid body dynamics are valid and the gross motion
of the dynamic system is described by the state vari-
ables (¢, ¢). However, in addition to the gross motion,
there are small (local) deformations at each contact.
To see this, consider a rigid body surrounded by a very
thin deformable shell the inertia of which is negligible,
as shown in the schematic in Figure 1. The thick-
ness of the deformable shell is negligible compared to
the radius of curvature of the rigid body. In the pla-
nar case, the gross rigid body motion (g, ¢) determines
the nominal displacement of the contact point (u, v).
The actual displacement of the contact point is given

by (u+ér, v+ 8x). The contact forces, on the other
hand, are related to the normal and tangential de-
formations (6w, 67) of the shell and their derivatives

(6w, 67). Since the deformations can be determined
by the knowledge of the material properties of the de-
formable shell, the contact forces can be related to the
original state variables (g, ¢).

It is important to note that the compliance in the
tangential direction allows small displacements at a
sticking contact in the tangential direction before slip
actually occurs!. This can be seen if we press a fin-
ger against a rigid surface and attempt to move it
tangential to the surface. There will be a small dis-
placement before gross rigid body sliding motion be-
gins. This is in contrast to what a Coulomb-like fric-
tion law, in conjunction with conventional rigid body
models, predicts — the tangential force is a discon-
tinuous function of velocity. The tangential compli-
ance makes the tangential force a continuous (in fact,
piecewise smooth) function of tangential velocity and
provides for a smooth (continuous) transition between
the sticking and the sliding regimes.

A general viscoelastic model for contact compliance
is shown in Figure 1. At contact i, the normal and
tangential contact forces (An; and Arp ;) between the
two contacting bodies may be modeled as:

AN = v (Oni) + 9N (5N,z’, 6Nz) (4)

Ari = fri(674) + 97 (5T,z’, 6Tz) (5)

where the functions fy; and fr; are the elastic stiff-
ness terms and gy; and gp; are the damping terms
in the normal and tangential directions respectively.
These functions depend on the geometry and mate-
rial properties of the two bodies in contact and may
be nonlinear. While the constitutive laws relating the
forces to the deformations (and their derivatives) may
be quite general, it is important to note that we have
decoupled the modeling of the contact forces (i.e. the
force at a contact 1s only dependent on the deforma-
tion at that contact) and further the expressions for
the normal and tangential forces are uncoupled. The
details of the use of the compliant model solution pro-
cedure can be found in [9].

There are two disadvantages of the compliant con-
tact model. First it is clear that we now need to
model the contacts and this increases the possibility
of modeling errors, particularly since contact mod-
els are notoriously difficult to obtain. Second, and
more importantly from an algorithmic and mathemat-
ical standpoint, there is a need to extend the state
space of the system. The original rigid body model
has n — (m + r) degrees of freedom, and a state space
that is 2n — 2(m + r)-dimensional. In the compli-
ant contact model the state consists of (¢, ¢) and is
2n-dimensional, regardless of the number of contacts.
The three main advantages are:

e The normal and tangential forces are now
uniquely determined and there is no question of
static indeterminacy;

e The difficulties with uniqueness and existence no
longer arise; and

1This is similar to the phenomena of microslip that is de-
scribed in the tribology and contact mechanics literature [13].




e As shown in [9], a model with tangential contact
compliance is more realistic and can better ex-
plain such physical observations as microslip and
hysteresis.

We do not wish to promote unnecessary model com-
plexity, however, and in those situations when a com-
pliant contact model is not needed, it would be de-
sirable to retain the simpler rigid body model. The
popularity of rigid body models can be attributed not
only to their simplicity, but also to the fact that they
have produced adequate results in a broad range of
applications. Clearly, rigid body models can only be
used when a unique solution can be determined with-
out any additional ad hoc assumptions. In the next
section, we will use singular perturbation theory to
investigate the stability of the solutions obtained from
the rigid body model. If a rigid body solution 1s sta-
ble, the compliant contact model solution converges
to this solution and the compliance can be neglected.
However, if this solution is unstable, one must use the
more sophisticated compliant contact model for simu-
lation.

3 Singular Perturbation Analysis

The rigid body model leads to a set of differential-
algebraic equations (DAEs) as shown in Section 1. We
argued in the previous section that a compliant con-
tact model that explicitly models the small deforma-
tions is a more accurate model. These deformations
are an order of magnitude smaller than the gross mo-
tions of the mechanical system. By setting these de-
formations to zero (or by allowing the corresponding
stiffnesses to be infinitely large), we recover the DAEs
of the rigid body model.

This suggests (see [14] for a more lucid exposition)
that we might be able to invent a small perturbation
parameter ¢ < 1 that enters the state equations for
the compliant contact model, such that, by setting
e = 0 the state equations degenerate into the DAEs
of Section 1. Further, there are two time scales in
the dynamics of the mechanical system [14, 15]. The
first time scale, is the one that corresponds to the re-
duced order rigid body model dynamics. The second
time scale is the fast time scale that characterizes the
contact dynamics.

Singular perturbation theory allows us to decom-
pose the system model into reduced (slow) and
boundary-layer (fast) models [16]. The response of
the system, described by the compliant model, con-
sists of the slow response and the fast transient. If the
boundary-layer model is exponentially stable, the fast
transients will exponentially converge to zero and 1t is
reasonable to neglect the high-frequency contact dy-
namics. In such a situation, the reduced order model
obtained by neglecting the compliance (and the effects
of the small parameter ¢), is robust to the unmodeled
dynamics. If the boundary-layer model is not stable,
we cannot neglect these terms and it is necessary to
use the complete dynamic model incorporating com-
pliance.

We will basically follow the approach of [14] in de-
veloping the reduced (slow) and boundary-layer (fast)
models for the mechanical system (1). In a previous
paper [15], one of the authors developed a framework

for analyzing the effect of compliance in the normal
direction on systems with sliding contact and derived
conditions under which this compliance could be ne-
glected. Here we will pursue a unified approach to
the analysis of rolling and sliding contacts, and estab-
lish conditions under which the details of the compli-
ant contact model can be neglected. We will use the
simple Kelvin-Voigt model [14] to model contacts and
assume, for the sake of simplicity, all contacts are 1den-
tical. However, our approach is quite general, and as
?uch), works for any constitutive law that has the form
4-5).

We use z to denote the slow variables and ez to
denote the fast variables, with ¢ < 1. ez corresponds
to the small deformations, that is, small deviations
from the rigid body constraints. g € R*~(m+7) g a
subset of the vector of generalized coordinates which

is partitioned as ¢ = [qquzT]T so that

s P (g1, q2)
[ - ] = | ®rr(q1,92)
1s a valid choice of coordinates. In order for this to be

42
true, the implicit function theorem requires that the
Jacobian matrix

@Nq(mxn)
T= d

TRg(rxn)

] (6)
O((n—(mtr)x(man))  L(n=(mt ) x(n=(mtr)))

be nonsingular. This in turn implies

[y

must be full rank. If these conditions are satisfied, we
may write:

ViR - €z
FARECRINS

where J = I'"!, and Equation (1) can be written in
the form:

X

[ €z ] :_J—1j[ ij ] I e
+[0F, o%n, o0p, [N (D)

With the Kelvin-Voigt model, the normal and tangen-
tial contact forces take the form:

A= —(%eé + éez) (8)

where ¢ and e are the stiffness and damping con-

stants respectively. The scaling of these constants
is obtained through dimensional analysis (for exam-
ple, see [14, 15]). The first m + r equations model
the fast dynamics (boundary layer) and the remaining
n — (m+ r) represent the slow dynamics.

We let € — 0 in the transformed equations of mo-
tion and solve for the steady state solution, Z, from
the first m + r equations. Z 1s then substituted in to
the last n — (m + r) equations to obtain the slow dy-
namics. Note that the Z; corresponding to the normal



contact constraints must be negative while the z; cor-
responding to the tangential rolling constraints have
no restriction on sign.

To proceed with the stability analysis, we perform a
time scale transformation 7 = ﬁ on the fast dynamics

equations along with a change of variables z = y 4+ 7
to move the quasi-steady state of z to the origin and
arrive at the homogeneous boundary layer dynamics
of the form:

y' +bDy +kDy =0 (9)
where / denotes differentiation with respect to 7 and

Py
1Ry

D:[ :| 1\/[_1 [é)gq q)gRq q)gRq] (10)

These equations represent the transient of z. The sta-
bility of these equations depends on the eigenvalues of

D as well as the value of %

4 The One Contact Case

Figure 2: Planar rigid rod in contact with horizontal
surface.

Consider the classic problem of the planar sliding
rod. A rigid, slender rod of length [ = l; + 13 18 in
contact with a rigid horizontal surface, where [; is the
distance from the contact to the C.M. and [5 1s the
distance from the C.M. to the non-contacting end of
the rod. The rod has mass m and centroidal moment
of inertia 7. p is the coefficient of friction between the
rod and surface. ¢ = [, y. 0]7 represent the general-
1zed coordinates for the rod which are the position of
the C.M. and the angular orientation.

The impenetrability constraint of the tip of the rod
in contact 1s: ¢y = y. — 1158 > 0. The gradient of
the normal and tangential constraints at the contact
point are:

dng = [01 — b (11)
dry = [10 lisf] (12)

and the relative normal acceleration at the contact,
NN, 1s given by:

= (Gnadai+ 60 M ™ (7= )+ M " [0Fg 6] 3 |

256 and c# denote sin 6 and cos @ respectively.

4.1 With contact sliding

If we assume that the contact is sliding ((/)N # 0),
the rigid body problem takes the form of an LC'P.

v =b+AAN 20, Ax 20, nnAn =0 (13)
where
1 12c0 .
A = —+ %(69 + psgn(¢r)st)
. 1 licO
b o= 16%s0+ [o — —i] r
m I

Note with g = 0, A > 0 and therefore 4 is a 1 x
1 P-matrix, which guarantees a unique solution. If
b > 0 we are guaranteed of the existence of a solution
regardless of whether or not A is a P-matrix.

If we now wish to pursue the singular perturbation
approach to the problem, a transformation to a sys-
tem of fast and slow variables can be accomplished by
making the change of variables:

o % SRR

x 0 0 |
The inverse function theorem requires:
01 —leh]
det(J™)=det |1 0 0 |=—-1#0
00 1

So we can always transform to the system of fast and
slow variables and back.

Using the Kelvin-Voigt contact force model in the
fast dynamics equation, letting ¢ — 0 and solving for
z gives:

b
knyA
In order to satisfy the constraints of non-negativity of
the normal contact force and normal relative separa-
tion of the rigid body model (achieved as ¢ — 0), the
value for 7 in the above expression must be < 0 (A4
and b of different signs).

With time scale transformation and change of coor-
dinates, we arrive at boundary layer dynamics of the
form of equation (9). For a system with only sliding
(or frictionless) contacts the matrix in the boundary
layer dynamics, I, equals the matrix in the rigid body
LC'P formulation, A.

Since we assume ky,by > 0, the stability of the
boundary layer depends on the eigenvalues of the ma-
trix:

7 =

(14)

1 b -
D=A= - + %(69 + psgn(¢r)sh)

As noted in [15], for the case of the planar rod with
one sliding contact, the condition for stability of the
boundary layer is identical to the requirement for the
matrix to be a P-matrix in the LC'P formulation and
thus ensure the existence of a unique solution for ar-
bitrary input. Based on the value of Z, the singular
perturbation analysis may be used to test the stability
in those situations where LC'P analysis tells us that
the contact is maintained. A summary of the results
is given in Table 1.



Table 1: LC'P and stability results for 1 sliding con-
tact (C'=contact, NC=no contact, N.S=no solution, *
denotes a case where the rod skims over the surface
without generating contact forces)

Conditions Solutions | Stability
A>010>0 NC stable
A>0106=0 NC* stable
A>010<0 C stable
A=010>0 NC stable
A=01]0=01] oo solns. -
A=0]b<0 NS N/A
A<0|b>0 C unstable

NC stable
A<0]b6=0 NC* stable
A<0|b<0 NS N/A

4.2 With contact rolling

If we now assume the contact is rolling or sticking
(i.e. no relative tangential motion at the contact) with
the definition of surplus and slack variables, the planar
rod problem with a rolling (sticking) contact can again
be formulated as an LC'P [8].

sT = pAN + Ap, 57 = pAN — Arp, 5}',5; >0 (1b)

AN>0,9y >0, pnvAn =0 (16)
nr = 10F =07, 035y =0, npsp =0 (17)
77]_|\_7 _Q;.qu.'i'qj)NqM_l(T_c)
1 |=| ¢red + b M (T — ¢
57 i 0
_¢Nq (¢T ¢Tq ) ¢Nq 1¢Tq 0 AN
+ ¢Tq ( _¢Tqﬂ) ¢Tq 1¢Tq 1 SZ
Qu U

The coefficient matrix in the LC'P problem is

L4 71 0(ch + ps) —w 0
A= " e L, P
—w 1 9(69+ﬂ59) w2

L 2u -1 0

(19)

This matrix is never a P-matrix.

Again we pursue a singular perturbation approach
to the problem and model the static frictional force
with the compliant contact model as was done for the
normal force. To perform the reversible change of vari-
ables,

[65]: (ZJ; =J_1ll;]—a7 g

the inverse function theorem requires:

0 1 —licl
F:J_lz 1 0 1159
00 1

be nonsingular. Since |T'| = —1, this transformation is
always possible. After changing variables and letting
e — 0, solving for z in the two fast equations gives:

= Sz

1] _ 22|k

[52] _mllx [ﬁ] (20)

kr

1 iCxSz 1 n 15%°c  1Ce -

+| kv 1 I, , m, 1 J] -
0 e L_i_lle l;CxSex L Sz (L—Fﬁ)

T m I I 1 m I

We note that z; should be < 0 to satisfy the rigid
body unilateral contact constraints in the limit. For
the range of orientations 0 < § < 7 it is positive for
7 = 0 (no external forces or torques). Additionally, for
the rolling contact case the steady state value of the
tangential contact force must fall within the Coulomb
bounds (|Ar| < pAn). For the case presented this
condition translates to:

szz

o< (21)

Again using the time scale transformation ¢t = \/er
and the coordinate transformation y = z — 7 gives the
boundary layer dynamics:

y +BDy + KDy=0

with
K= [kN 0 :| B_[bN 0 :| D= %_1_110]@' _IICZ‘Sx
0 kr "L 0 bp "™ PCeSe 1 | 125%
Lo Ly 0
(22)
The eigenvalues of the matrix D are v; = %, vy =
% + ? which are always positive real. Thus, the

boundary layer is always stable.
4.3 Discussion

No contact Thisis a trivial case in which principles
of classical rigid body dynamics show uniqueness and
existence, and stability 1s not an issue.

Sliding contact Depending on the value of A and
b, the LC'P can have different outcomes as shown in
Table 1. An examination of this table reveals that
there is one case where two solutions will satisfy the
LCP. This occurs when A < 0 and & > 0. The two
solutions correspond to maintaining and breaking con-
tact respectively. The no contact solution is obviously
stable. If the case where the contact is maintained is
examined via the singular perturbation analysis (note

that 7 = A='b < 0), since A < 0 this solution is
unstable. In this situation, there is only one stable
solution. However, this may not always be the case as
illustrated next.

Rolling contact Consider the initial conditions

and the parameters: 9 = Orad ,m = lkg, i =
0.5m, Iy = 0.5m, I = 5 (11—1—12) and 7 = [-1 —
mg 4T N. A plot 1Hustrat1ng the number of LC'P so-
lutions for the range of orientation angles 0 < 8 <«
and coefficients of friction 0 < p < 2.5 1s given in Fig-

ure (3). We see that for a range of conditions the prob-
lem actually yields all 3 possible rigid body solutions
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Figure 3: Planar rolling rod LC'P solutions, mﬁ =3,
0 =0.

— contact break, rolling, and sliding. For instance at
6 = 115°, p = 1.4 the three solutions are: impend-
ing break (ny = 0.33287 nr = 20.75147), main-
tain rolling (Axy = 5.6729N, Ap = —7.872N), and im-
pending sliding (Ay = 4.5673N, Ap = —6.394N, np =
3.84897%). The singular perturbation analysis shows

that the contact breaking and rolling cases are both
stable. The impending sliding case cannot be analyzed
using this model because A is not a differentiable func-
tion of the state.

5 Concluding remarks

It i1s well-known that there are difficulties in using
rigid body dynamic models for the dynamic simula-
tion of systems with frictional contacts. In particular,
when rigid body models are used in conjunction with
Coulomb’s empirical law of friction for dynamic simu-
lation of systems with frictional contacts, there may be
situations in which there are no solutions or multiple
solutions for the contact forces and the accelerations.
In this paper, we describe a contact model that models
the small compliance in the normal and tangential di-
rection. We show that this compliant contact model,
when used with the rigid body dynamic equations of
motion, always yields a unique solution for the accel-
erations and the forces. While this model is superior
to the traditional rigid body model in terms of ac-
curacy and robustness, it is also more complex and
requires a larger number of parameters. Therefore, it
is appealing to use rigid body models, whenever con-
cerns of uniqueness and existence do not arise. We
use methods of singular perturbation theory to estab-
lish conditions under which solutions from the rigid
body model are stable, or in other words, conditions
in which the compliant contact model solution con-
verges exponentially to the rigid body model solution.
The basic 1deas of this paper are applicable to any
situation with frictional contacts. However, the rigid
body model, and therefore the perturbation analysis,
cannot be applied to statically indeterminate systems.

In situations when rigid body LC'P analysis reveals
multiple solutions, one might ask if stability analy-
sis can help resolve the difficulty with ambiguities.

We may simply discard the unstable solutions and
retaining the stable one. However, as our example
with rolling contact showed, there are also cases where
there may be more than one stable solution or where
there might be a unique, but unstable solution. Thus,
the stability analysis simply shows when it is essential
to pursue the more sophisticated compliant contact
model, and when it is satisfactory to neglect the fast
dynamics.

Our future work addresses incorporating stability
analysis as a diagnostic tool in real-time simulation
where it 1s prudent to check for stability and warn the
user in unstable regimes.
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