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ABSTRACT

Optimal control of dampers has been proposed to mitigate
vibration effects in mechanical systems. In many cases, systems
are subject to periodic forcing and the goal is to maximize the
energy dissipated by the damper. In contrast to prior work uti-
lizing instantaneous or infinite-time-horizon optimization, this
paper employs periodic optimal control to maximize the energy
dissipated per cycle. For single degree of freedom systems in
which the maximum allowable control effort is of the same or-
der as the forcing magnitude, a state-dependent singular control
law is shown to deliver maximum energy dissipation. Alter-
nate control laws are proposed for situations when rattlespace
requirements dictate damper displacements other than that of
the singular solution.

INTRODUCTION

Dampers are used in a wide variety of applications to
isolate structures and equipment from vibrations and to dis-
sipate energy. Applications include flutter mitigation in tur-
bine blades of aircraft engines and power plant generators
(Sinha and Griffin, 1982), (Srinivasan and Cutts, 1984), vi-
bration damping in large space structures (Ferri, 1987), and
shock and vibration isolation for vehicles and equipment
cradles (Lane et al., year), (Hrovat, 1993), (Karnopp and
Trikha, 1969).

Dampers can be designed to be either passive (e.g.,
dashpots), active (e.g., motors) or semi-active (e.g., hy-
draulic cylinders with controllable orifice diameter). Semi-
active dampers are the most appealing to designers because
they deliver performance that rivals active dampers, while
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consuming only a fraction of the power required by them
(Karnopp and Trikha, 1969).

In this paper, periodic optimal control is employed to
maximize the energy dissipated by a damper. Since we are
interested in establishing a benchmark for controller per-
formance, no constraints are imposed on the damping force.
For implementation, controller saturation as well as any rel-
evant damper dynamics would have to be considered.

In the next section, control approaches which have been
applied to dampers are reviewed. The following section
presents the derivation of the singular controller which max-
imizes energy dissipation according to the system parame-
ters and the periodic forcing. A penalty on control effort is
then introduced to obtain controllers for a range of damper
displacement amplitudes (rattlespace). Finally, numerical
results are presented followed by conclusions.

CONTROL OF DAMPERS

Several control approaches have been pursued to maxi-
mize damper energy dissipation. These include Lyapunov’s
direct method, sliding mode control and LQR theory. The
first method entails optimizing energy dissipation in an in-
stantaneous sense by choosing the control which maximizes
the derivative of a Lyapunov energy function. Semi-active
controllers of this type have been developed for use with
electrorheological (ER) fluid dampers (McClamroch et al.,
1994) as well as friction dampers (Dupont et al., 1997).
Sliding mode control, on the other hand, was successfully
employed by Wang and co-workers (1994) to improve the
performance of ER dampers.
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Another control approach that has received consider-
able attention is LQR theory. Ferri and co-workers (1992)
have applied this technique to friction dampers. The cost
function used was an infinite time integral of a weighted sum
of system energy and control effort. Numerical simulations
indicated a marked improvement in energy dissipation over
a simple feedback controller given by Fn(t) = k|Z|, where
& is the relative velocity and F (¢) is the normal force at a
friction interface. In the vibration isolation of automobiles,
Hrovat (1993) proposed LQR controllers using cost func-
tions composed of mean-square rattlespace and a metric of
ride discomfort. Similarly, Karnopp and Trikha (1969) have
proposed the use of LQR theory in enhancing shock and vi-
bration isolation in an aircraft landing/taxiing on a runway.

In many situations, the vibrational excitation is peri-
odic. Instantaneous optimization approaches do not take
into account system forcing and so the results tend to be
suboptimal. Similarly, those who have applied LQR. theory
have considered only transient response or stochastic exci-
tation. In contrast, the periodic controllers developed here
maximize steady-state dissipation according to the partic-
ular forcing,.

PERIODIC OPTIMAL CONTROL

In this section, a standard variational approach is em-
ployed to derive the optimal damping force for systems with
periodic excitation. Given the forcing, it is expected that
the system trajectory will be periodic. It is interesting to
note, however, that the classical applications of periodic
optimal control are systems which possess closed-loop equi-
librium points. For example, Horn and Lin (1967) showed
that in chemical reactor operation, periodic control laws
improve performance in comparison to steady-state optimal
controllers. Similar strategies were employed in the analysis
of fuel-efficient cruise trajectories for aircraft, wherein the
standard optimal controllers (LQR. etc.) were replaced by
periodic controls (Speyer and Evans, 1984).

Controller Design

Consider maximizing the energy dissipated by a control
force, u on the system shown in Figure 1. A state variable
representation of this system is given by

i’l = T3 (1)
i’g = %(Fezt(t)—cmg—k:ml—u) (2)

where Fi;(t) is a known external periodic force.
Since this is a nonautonomous system, these equations
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Figure 1. BLOCK MODEL FOR STUDYING FORCED VIBRATIONS.

can be redefined as

j?l = T (3)
iy = % (Font(23) — c 20 — ki — ) (@)
by =1 (5)

where z3 = t.
Let the cost function be given by

1 flotr €
J(u) = min —/ [—u z2 + 3 u?| dt (6)

u€eEQ T to

where 7 € T 2 (0, 00) is the time period of the system and
to is the initial time. Q is the set of all admissible values for
u, in which the maximum value of u is of the same order as
the forcing magnitude and u(t) is piecewise continuous.

An optimal controller with no constraints on the control
effort expended (e = 0) will first be developed. It is assumed
that the state variables as well as the time period are free
variables. Furthermore, periodicity of the state variables,
x1 and x5 is treated as an input to the problem. Penalty on
control effort (e # 0) will be introduced in the subsequent
sections.

With € = 0, the Hamiltonian can be written as

H(z,\u,x3,A3) = —u 2 + A1 T2+

A
52 (Fezt(l’g)—CI'z —k‘l‘l —U)+>\3 (7)

Necessary conditions for optimality indicate that

k

A — X (8)

}\2:—)\1+£)\2+U (9)
m
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_l 8Feact(m3)

Aa = m  Oxg Az (10)

T + % =0 (11)

I (to) = (to + 7') (12)

372(750) = CEQ(tO + 7') (13)

)\1 (to) = )\1 (t[) + 7') (14)

)\Q(t[)) = )\Q(t() + 7') (15)
H(z,\u,x3,)\3) = K (16)
H(to+71) = J(u) (17)

along the optimal trajectory. Here, K is a constant to be
determined.

Since the Hamiltonian is linear in v, H, = 0 does not
give us an expression for the optimal controller. Instead, it
defines a singular arc, given by (11). This equation implies
that

PR S (18)
m

From equations (8)—(11) and (18), the expression for u

can be determined to be?

m OF,:(x
u=Fep(x3) —cwog — ka1 — — M

2¢ Or3 (19)

With z3(t) = ¢, and u as defined above, the system
dynamics, (3)-(5) can be solved to give

z1(t) = x1(to) + {_QLC Feopt(to) +x2(to)| ¢

+2ic t Fezt (U)da (20)
£2lt) = #3(t0) + 5 [Foae®) — Fenlto)]  (21)

Note that equations (19)—(21) hold for any periodic in-
put. Since any such input can be written as a Fourier series,
we can let Fe ¢ (t) = A sin(wt + ¢) in our analysis, without
any loss of generality. The optimal period of the system for
this case is the same as the forcing period.

The initial conditions, 1 (tp) and z2(tp), in the above
equations can now be chosen such that the periodicity con-
ditions, (12) and (13), are satisfied. With F,,(t) as defined

2Since this control law is valid only along the singular arc, it will
be referred to as the “singular controller” from here onward in this
paper.

above and ¢ = 0,these initial values can be shown to be

T (t()) = — 2;4@ COS((IJ t()) (22)
) (to) = QAC Sin((D t()) (23)

Since we now know z1,zs, and u along the singular
arc, the transversality conditions of (16) and (17) give the
average rate of energy dissipation,

Ju)=K=— (24)

for @ =2m/7 and t; = 0.

Finally, since the Hamiltonian (7) is linear in u, we em-
ploy the generalized Legendre-Clebsch condition, (H,), < 0
as a weak local sufficiency condition. This is satisfied along

the singular arc,

— =5 <0 (25)

Numerical Evaluation of Singular Control. To facilitate
the comparison of controller performance due to variations
in parameter values, let the ratio between the forcing fre-
quency and the undamped natural frequency of the system
be given by 8 = @/w,, where w, = \/k/m. Also, let the
damping ratio of the system be given by ¢ = ¢/(2 m wy).
The state trajectories, optimal control force, net energy dis-
sipated by the controller, and control effort spent can now
be rewritten in terms of these quantities as

A
z1(t) = I Ama cos(@ t) (26)
z2(t) = Conm sin(w ¢) (27)
u(t) = g sin(@t) + (1 - %) 4?5 cos(wt)  (28)
T A2
E:/Oul'th:mT:KT (29)
T A2 _ 322
U:/O uz(a)da:§ [1+(11C+ﬁ2)]T (30)

where E is the energy dissipated per cycle and U is the
control effort expended per cycle. All the results described
in this section were obtained with parameters chosen as
follows: A =105, m =1,¢=0.1, w = 27. k was chosen to
give a desired value of f.
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Figure 2. CONTROL FORCE VERSUS DISPLACEMENT FOR (3 =
1.25 (A1), 1 (A2), 0.8 (43) ALONG SINGULAR ARC TRAJECTORY.
¢ IS HELD CONSTANT AT 0.00796.

Figure 2 depicts control force versus displacement along
the singular arc, for = 0.8, 1.0, and 1.25, while holding
¢ constant (= 0.00796). The area inside this curve rep-
resents the amount of energy dissipated per cycle by the
controller—equal to E. It can be shown that the optimal
control force corresponds to a passive system.? From (27)
and (28), the optimal control impedance is

)
372(75)
=2Cwnm+(1- 37 ”"ﬁm cot(@ 1)
=c+(1-p%) 2" cot(@t) (31)

B

From this equation it can be observed that the optimal con-
trol force is viscous in nature for § = 1. Otherwise, the cor-
responding passive system would store and release energy
during each period. For example, a passive implementation
of ¢* could be comprised of a spring (8 > 1) or mass (8 < 1)
in parallel with a viscous damper.

While not apparent from this figure, (29) indicates that
the amount of energy dissipated per cycle, E, depends on
7. Therefore, as (3 increases (@ is increased while holding

3A system is said to be passive if, for all time, the power entering
the system is greater than or equal to the rate of change of energy
stored in the system.
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Figure 3. CONTROL FORCE VERSUS DISPLACEMENT FOR ( =
0.3 (B1), 0.03 (Bz), 0.00796 (Bs) ALONG SINGULAR ARC TRAJEC-
TORY. 3 IS HELD CONSTANT AT 1.

wy, constant), the amount of energy dissipated per cycle de-
creases. Thus for the areas in Figure 2, A; < Ay < As
corresponding to 8 = 1.25, 1.0, and 0.8, respectively. The
average rate of energy dissipation, F /7, however, remains
constant. It can also be observed from this figure and equa-
tion (26) that the peak-to-peak amplitude of oscillation de-
creases with increase in the value of 3.

Figure 3 represents optimal control force versus dis-
placement for ¢ = 0.00796, 0.03, and 0.3, with g and w,
held constant. It is clear from this figure, as well as from
(26) and (29), that the peak-to-peak amplitude of oscillation
besides the average rate of energy dissipation, E /7 decrease
with increasing (. In other words, as the amount of internal
damping in a system increases, the scope for improvement
in energy dissipation through an external damping force de-
creases.

The ratio between amount of control effort expended
per cycle and time period of the system, U/, for different
values of 8 and ( is presented in Figure 4. This figure
indicates that the minimum control effort is expended when
B = 1, independent of the value of (. For 8 # 1, however,
the control effort decreases with increasing (.

Since E/7 remains the same for any value of 3, and it
increases as ( decreases, a key factor in determining operat-
ing conditions under which the singular optimal controller
will be most effective is U/7. It can, therefore, be deduced
from figure 4 that an external damper will be most effective
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Figure 4. AVERAGE CONTROL EFFORT EXPENDED VERSUS 3 FOR
DIFFERENT VALUES OF (.

when 8 = 1 and ( is very small. Of course most systems for
which energy dissipation is of import have very low internal
damping (directly related to ¢) and operate near resonance

(B=1).

Rattlespace Constraints. In many practical systems,
the rattlespace* may be smaller than what is commanded by
the singular controller described above. To determine an op-
timal control force for systems with rattlespace constraints,
we redefine our problem as follows: For a given value of
x1(to) and x2(to), determine the maximum amount of en-
ergy that can be dissipated by an external control force,
while ensuring periodicity about z;(fp) and z2(fp). Since
the choice of initial values for x; obviates the necessary
condition on periodicity of A;, a numerical solution entails
solving for \; such that z; and z» are periodic.

To solve this problem, a penalty on control effort is
introduced (¢ # 0 in equation (6)). The optimal control
force for this case can be determined to be

U = (a:2 + %) /€ (32)

Numerical analysis was used to compare the perfor-
mance of the constrained rattlespace controller with that

4Rattlespace is defined as the permissible peak-to-peak displace-
ment of a system.
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Figure 5. ENERGY DISSIPATED PER CYCLE VERSUS RATTLESPACE
(z1 PEAK-TO-PEAK) FOR ¢ = 0.01 (...),0.1 (— - =), 1 (——), 100(—

).

of the singular controller. Four different values of € were
considered (0.01, 0.1, 1, and 100).

Figure 5 depicts energy dissipated versus rattlespace,
for 5 =1, ( = 0.00796 and the four values of €. It is ev-
ident from this figure that there exists a unique value of
displacement amplitude (= 167) where the maximum en-
ergy is dissipated. This amplitude is equal to that of the
singular arc amplitude (refer to the peak-to-peak value of
z1 in Figure 2). In fact, at this amplitude, the trajectories
are those of the singular arc, independent of e.

It is also clear from this figure that the amount of en-
ergy dissipated by the constrained rattlespace controller is
practically independent of the value of e. Figure 6, how-
ever, indicates that control effort expended for 8 = 1 and
¢ = 0.00796 is highly dependent on € at rattlespace ampli-
tudes other than that of the singular arc. From Figures 5
and 6, it is clear that the control trajectory obtained for
large € should be used in any implementation.

CONCLUSIONS

In this paper, periodic optimal controllers were de-
signed to maximize the energy dissipated by a damper. For
single degree of freedom systems, a singular control law was
shown to deliver the maximum energy dissipation. The sin-
gular controller can be implemented as a passive system.
Except when forced at resonance, however, the damping
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Figure 6. CONTROL EFFORT EXPENDED VERSUS RATTLESPACE, (&1
PEAK-TO-PEAK) FOR € = 0.01 (...),0.1 (—- —),1 (——), 100(—).

system would include energy storage elements.

Constrained optimal controllers were proposed for sys-
tems with rattlespace less than what is commanded by the
singular controller. The controller performance indicates
that the energy dissipated is virtually independent of any
penalty imposed on the control effort. The control trajec-
tories obtained for the largest penalty can, therefore, be
used to deliver maximum energy dissipation for the allowed
rattlespace, while expending the least control effort.

The periodic forcing acting on the system was assumed
to be composed of one frequency. Since any periodic input
can be written as a Fourier series, the results obtained in
this paper can be appropriately extended to such inputs.
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