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ABSTRACT

Optimal control of dampers has been proposed to mitigate
vibration e�ects in mechanical systems� In many cases� systems
are subject to periodic forcing and the goal is to maximize the
energy dissipated by the damper� In contrast to prior work uti�
lizing instantaneous or in�nite�time�horizon optimization� this
paper employs periodic optimal control to maximize the energy
dissipated per cycle� For single degree of freedom systems in
which the maximum allowable control e�ort is of the same or�
der as the forcing magnitude� a state�dependent singular control
law is shown to deliver maximum energy dissipation� Alter�
nate control laws are proposed for situations when rattlespace
requirements dictate damper displacements other than that of
the singular solution�

INTRODUCTION

Dampers are used in a wide variety of applications to
isolate structures and equipment from vibrations and to dis�
sipate energy� Applications include �utter mitigation in tur�
bine blades of aircraft engines and power plant generators
�Sinha and Gri�n� ��	
�� �Srinivasan and Cutts� ��	��� vi�
bration damping in large space structures �Ferri� ��	�� and
shock and vibration isolation for vehicles and equipment
cradles �Lane et al�� year�� �Hrovat� ������ �Karnopp and
Trikha� ������
Dampers can be designed to be either passive �e�g��

dashpots�� active �e�g�� motors� or semi�active �e�g�� hy�
draulic cylinders with controllable ori�ce diameter�� Semi�
active dampers are the most appealing to designers because
they deliver performance that rivals active dampers� while

�Address all correspondence to this author�

consuming only a fraction of the power required by them
�Karnopp and Trikha� ������

In this paper� periodic optimal control is employed to
maximize the energy dissipated by a damper� Since we are
interested in establishing a benchmark for controller per�
formance� no constraints are imposed on the damping force�
For implementation� controller saturation as well as any rel�
evant damper dynamics would have to be considered�

In the next section� control approaches which have been
applied to dampers are reviewed� The following section
presents the derivation of the singular controller which max�
imizes energy dissipation according to the system parame�
ters and the periodic forcing� A penalty on control e�ort is
then introduced to obtain controllers for a range of damper
displacement amplitudes �rattlespace�� Finally� numerical
results are presented followed by conclusions�

CONTROL OF DAMPERS

Several control approaches have been pursued to maxi�
mize damper energy dissipation� These include Lyapunov�s
direct method� sliding mode control and LQR theory� The
�rst method entails optimizing energy dissipation in an in�
stantaneous sense by choosing the control which maximizes
the derivative of a Lyapunov energy function� Semi�active
controllers of this type have been developed for use with
electrorheological �ER� �uid dampers �McClamroch et al��
����� as well as friction dampers �Dupont et al�� �����
Sliding mode control� on the other hand� was successfully
employed by Wang and co�workers ������ to improve the
performance of ER dampers�
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Another control approach that has received consider�
able attention is LQR theory� Ferri and co�workers ����
�
have applied this technique to friction dampers� The cost
function used was an in�nite time integral of a weighted sum
of system energy and control e�ort� Numerical simulations
indicated a marked improvement in energy dissipation over
a simple feedback controller given by FN �t� � kj �xj� where
�x is the relative velocity and FN �t� is the normal force at a
friction interface� In the vibration isolation of automobiles�
Hrovat ������ proposed LQR controllers using cost func�
tions composed of mean�square rattlespace and a metric of
ride discomfort� Similarly� Karnopp and Trikha ������ have
proposed the use of LQR theory in enhancing shock and vi�
bration isolation in an aircraft landing�taxiing on a runway�

In many situations� the vibrational excitation is peri�
odic� Instantaneous optimization approaches do not take
into account system forcing and so the results tend to be
suboptimal� Similarly� those who have applied LQR theory
have considered only transient response or stochastic exci�
tation� In contrast� the periodic controllers developed here
maximize steady�state dissipation according to the partic�
ular forcing�

PERIODIC OPTIMAL CONTROL

In this section� a standard variational approach is em�
ployed to derive the optimal damping force for systems with
periodic excitation� Given the forcing� it is expected that
the system trajectory will be periodic� It is interesting to
note� however� that the classical applications of periodic
optimal control are systems which possess closed�loop equi�
librium points� For example� Horn and Lin ����� showed
that in chemical reactor operation� periodic control laws
improve performance in comparison to steady�state optimal
controllers� Similar strategies were employed in the analysis
of fuel�e�cient cruise trajectories for aircraft� wherein the
standard optimal controllers �LQR etc�� were replaced by
periodic controls �Speyer and Evans� ��	���

Controller Design

Consider maximizing the energy dissipated by a control
force� u on the system shown in Figure �� A state variable
representation of this system is given by

�x� � x� ���

�x� �
�

m
�Fext�t�� c x� � k x� � u� �
�

where Fext�t� is a known external periodic force�

Since this is a nonautonomous system� these equations

m

k

Fext
x1

u

(t)

c

Figure �� BLOCK MODEL FOR STUDYING FORCED VIBRATIONS�

can be rede�ned as

�x� � x� ���

�x� �
�

m
�Fext�x��� c x� � k x� � u� ���

�x� � � ���

where x� � t�
Let the cost function be given by

J�u� � min
u � 	

�

�

Z
t�
�

t�

h
�u x� �

�



u�
i
dt ���

where � � T
�
� ����� is the time period of the system and

t� is the initial time� � is the set of all admissible values for
u� in which the maximum value of u is of the same order as
the forcing magnitude and u�t� is piecewise continuous�
An optimal controller with no constraints on the control

e�ort expended �� � �� will �rst be developed� It is assumed
that the state variables as well as the time period are free
variables� Furthermore� periodicity of the state variables�
x� and x� is treated as an input to the problem� Penalty on
control e�ort �� �� �� will be introduced in the subsequent
sections�
With � � �� the Hamiltonian can be written as

H �x� �� u� x�� ��� � �u x� � �� x��

��
m
�Fext�x��� c x� � k x� � u� � �� ��

Necessary conditions for optimality indicate that

��� �
k

m
�� �	�

��� � ��� �
c

m
�� � u ���
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��� � �
�

m

�Fext�x��

�x�
�� ����

x� �
��
m
� � ����

x��t�� � x��t� � �� ��
�

x��t�� � x��t� � �� ����

���t�� � ���t� � �� ����

���t�� � ���t� � �� ����

H�x� �� u� x�� ��� � K ����

H�t� � �� � J�u� ���

along the optimal trajectory� Here� K is a constant to be
determined�
Since the Hamiltonian is linear in u� Hu � � does not

give us an expression for the optimal controller� Instead� it
de�nes a singular arc� given by ����� This equation implies
that

�x� �
���
m
� � ��	�

From equations �	������ and ��	�� the expression for u
can be determined to be�

u � Fext�x��� c x� � k x� �
m


 c

�Fext�x��

�x�
����

With x��t� � t� and u as de�ned above� the system
dynamics� ������� can be solved to give

x��t� � x��t�� �

�
�
�


 c
Fext�t�� � x��t��

�
t

�
�


 c

Z t

t�

Fext���d� �
��

x��t� � x��t�� �
�


 c
�Fext�t�� Fext�t��� �
��

Note that equations ������
�� hold for any periodic in�
put� Since any such input can be written as a Fourier series�
we can let Fext�t� � A sin��� t� �� in our analysis� without
any loss of generality� The optimal period of the system for
this case is the same as the forcing period�
The initial conditions� x��t�� and x��t��� in the above

equations can now be chosen such that the periodicity con�
ditions� ��
� and ����� are satis�ed� With Fext�t� as de�ned

�Since this control law is valid only along the singular arc� it will

be referred to as the �singular controller� from here onward in this

paper�

above and � � ��these initial values can be shown to be

x��t�� � �
A


 c ��
cos��� t�� �

�

x��t�� �
A


 c
sin��� t�� �
��

Since we now know x�� x�� and u along the singular
arc� the transversality conditions of ���� and ��� give the
average rate of energy dissipation�

J�u� � K �
A�

	 c
�
��

for �� � 
 	
� and t� � ��
Finally� since the Hamiltonian �� is linear in u� we em�

ploy the generalized Legendre�Clebsch condition� � �Hu�u � �
as a weak local su�ciency condition� This is satis�ed along
the singular arc�

�

�u

d�Hu

dt�
� �


 c

m�
� � �
��

Numerical Evaluation of Singular Control� To facilitate
the comparison of controller performance due to variations
in parameter values� let the ratio between the forcing fre�
quency and the undamped natural frequency of the system
be given by � � ��
�n� where �n �

p
k
m� Also� let the

damping ratio of the system be given by  � c
�
 m �n��
The state trajectories� optimal control force� net energy dis�
sipated by the controller� and control e�ort spent can now
be rewritten in terms of these quantities as

x��t� � �
A

�  � m ��n
cos��� t� �
��

x��t� �
A

�  �n m
sin��� t� �
�

u�t� �
A



sin��� t� � ��� ���

A

�  �
cos��� t� �
	�

E �

Z �

�

ux� dt �
A�

��  �n m
� � K � �
��

U �

Z
�

�

u���� d� �
A�

	

�
� �
��� ����

� � ��

�
� ����

where E is the energy dissipated per cycle and U is the
control e�ort expended per cycle� All the results described
in this section were obtained with parameters chosen as
follows� A � ���� m � �� c � ���� �� � 
	� k was chosen to
give a desired value of ��
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Figure �� CONTROL FORCE VERSUS DISPLACEMENT FOR � �
���	 
A��� � 
A��� �� 
A�� ALONG SINGULAR ARC TRAJECTORY�

� IS HELD CONSTANT AT ��������

Figure 
 depicts control force versus displacement along
the singular arc� for � � ��	� ���� and ��
�� while holding
 constant �� �������� The area inside this curve rep�
resents the amount of energy dissipated per cycle by the
controller equal to E� It can be shown that the optimal
control force corresponds to a passive system�� From �
�
and �
	�� the optimal control impedance is

c� �
u�t�

x��t�

� 
  �n m� ��� ���
�n m

�
cot��� t�

� c� ��� ���
�n m

�
cot��� t� ����

From this equation it can be observed that the optimal con�
trol force is viscous in nature for � � �� Otherwise� the cor�
responding passive system would store and release energy
during each period� For example� a passive implementation
of c� could be comprised of a spring �� � �� or mass �� � ��
in parallel with a viscous damper�
While not apparent from this �gure� �
�� indicates that

the amount of energy dissipated per cycle� E� depends on
� � Therefore� as � increases ��� is increased while holding

�A system is said to be passive if� for all time� the power entering

the system is greater than or equal to the rate of change of energy

stored in the system�
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Figure �� CONTROL FORCE VERSUS DISPLACEMENT FOR � �
��� 
B��� ���� 
B��� ������� 
B�� ALONG SINGULAR ARC TRAJEC	

TORY� � IS HELD CONSTANT AT ��

�n constant�� the amount of energy dissipated per cycle de�
creases� Thus for the areas in Figure 
� A� � A� � A�

corresponding to � � ��
�� ���� and ��	� respectively� The
average rate of energy dissipation� E
� � however� remains
constant� It can also be observed from this �gure and equa�
tion �
�� that the peak�to�peak amplitude of oscillation de�
creases with increase in the value of ��

Figure � represents optimal control force versus dis�
placement for  � ������� ����� and ���� with � and �n
held constant� It is clear from this �gure� as well as from
�
�� and �
��� that the peak�to�peak amplitude of oscillation
besides the average rate of energy dissipation� E
� decrease
with increasing � In other words� as the amount of internal
damping in a system increases� the scope for improvement
in energy dissipation through an external damping force de�
creases�

The ratio between amount of control e�ort expended
per cycle and time period of the system� U
� � for di�erent
values of � and  is presented in Figure �� This �gure
indicates that the minimum control e�ort is expended when
� � �� independent of the value of � For � �� �� however�
the control e�ort decreases with increasing �

Since E
� remains the same for any value of �� and it
increases as  decreases� a key factor in determining operat�
ing conditions under which the singular optimal controller
will be most e�ective is U
� � It can� therefore� be deduced
from �gure � that an external damper will be most e�ective
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Figure 
� AVERAGE CONTROL EFFORT EXPENDED VERSUS � FOR

DIFFERENT VALUES OF ��

when � � � and  is very small� Of course most systems for
which energy dissipation is of import have very low internal
damping �directly related to � and operate near resonance
�� � ���

Rattlespace Constraints� In many practical systems�
the rattlespace� may be smaller than what is commanded by
the singular controller described above� To determine an op�
timal control force for systems with rattlespace constraints�
we rede�ne our problem as follows� For a given value of
x��t�� and x��t��� determine the maximum amount of en�
ergy that can be dissipated by an external control force�
while ensuring periodicity about x��t�� and x��t��� Since
the choice of initial values for xi obviates the necessary
condition on periodicity of �i� a numerical solution entails
solving for �i such that x� and x� are periodic�
To solve this problem� a penalty on control e�ort is

introduced �� �� � in equation ����� The optimal control
force for this case can be determined to be

u� �

�
x� �

��
m

�

� ��
�

Numerical analysis was used to compare the perfor�
mance of the constrained rattlespace controller with that

�Rattlespace is de�ned as the permissible peak�to�peak displace�

ment of a system�
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of the singular controller� Four di�erent values of � were
considered ������ ���� �� and �����

Figure � depicts energy dissipated versus rattlespace�
for � � ��  � ������ and the four values of �� It is ev�
ident from this �gure that there exists a unique value of
displacement amplitude �� ��� where the maximum en�
ergy is dissipated� This amplitude is equal to that of the
singular arc amplitude �refer to the peak�to�peak value of
x� in Figure 
�� In fact� at this amplitude� the trajectories
are those of the singular arc� independent of ��

It is also clear from this �gure that the amount of en�
ergy dissipated by the constrained rattlespace controller is
practically independent of the value of �� Figure �� how�
ever� indicates that control e�ort expended for � � � and
 � ������ is highly dependent on � at rattlespace ampli�
tudes other than that of the singular arc� From Figures �
and �� it is clear that the control trajectory obtained for
large � should be used in any implementation�

CONCLUSIONS

In this paper� periodic optimal controllers were de�
signed to maximize the energy dissipated by a damper� For
single degree of freedom systems� a singular control law was
shown to deliver the maximum energy dissipation� The sin�
gular controller can be implemented as a passive system�
Except when forced at resonance� however� the damping
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system would include energy storage elements�

Constrained optimal controllers were proposed for sys�
tems with rattlespace less than what is commanded by the
singular controller� The controller performance indicates
that the energy dissipated is virtually independent of any
penalty imposed on the control e�ort� The control trajec�
tories obtained for the largest penalty can� therefore� be
used to deliver maximum energy dissipation for the allowed
rattlespace� while expending the least control e�ort�

The periodic forcing acting on the system was assumed
to be composed of one frequency� Since any periodic input
can be written as a Fourier series� the results obtained in
this paper can be appropriately extended to such inputs�
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