Perturbation Stability of
Frictional Sliding With Varying
Normal Force*

, In many systems, the normal force at friction contacts is not constant, but is instead
3 a function of the system’s state variables. Examples include machine tools, friction
% j D. Bapna dampers, brake systems and robotic contact with the environment. Friction at these
contacts has been shown to possess dynamics associated with changes in normal
force. In an earlier paper, the authors derived a critical value of system stiffness for
stability based on a linearized analysis of constant velocity sliding (Dupont and
Bapna, 1994). In this paper, the domain of attraction for the steady sliding equilib-
rium point is characterized for a system in which normal force is coupled to tangential
displacement. Perturbations consisting of sudden changes in the displacement and
velocity of the loading point are considered. These perturbations can be viewed as
either actuator disturbances or changes in control input. The effect and interaction
of the frictional and geometric parameters are elucidated. The results are applicable
to the design and analysis of systems in which steady motion without [riction-induced
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limit cycles is desired.

1 Introduction

Most mechanical systems include friction interfaces and are
of finite stiffness. As a result, the potential for unsteady motion
in machines is widespread. Since this type of motion is usually
detrimental to system performance, a large body of literature
has developed which is devoted to techniques for the design
and analysis of systems with friction (Armstrong-Hélouvry et
al., 1994; Tbrahim, 1994). All techniques involve approxima-
tions of the actual system and perhaps the most important ap-
proximation in this case is the choice of friction model.

A majority of the literature on frictional instabilities employs
friction models in which normal force is constant (Armstrong-
Hélouvry et al., 1994). In many important applications, how-
ever, there exists a coupling between normal force at a friction
interface and other forces or displacements in the system. In
analyzing systems of this type, it is critical to include not only
this coupling, but also any friction dynamics induced by the
coupling.

Those papers that do treat varying normal force have typically
assumed that the frictional dependence is linear (Ibrahim,
1994). This is not surprising since the relevance of friction
dynamics has only recently been recognized and experimen-
tally-tested dynamic friction models have not been widely avail-
able (Armstrong-Hélouvry, 1993; Dupont and Dunlap, 1995).

An exception is the work of Oden and his colleagues who
study dry friction between elastic bodies subject to a power law
normal response (Oden and Martins, 1985). Normal vibrations
of the slider produce an apparent coefficient of friction which
typically differs from the velocity-independent interface coeffi-
cient of friction. The application of this model to the stability
analysis of a pin-on-disk apparatus appears in Tworzydlo et al.
(1994).

Using a rigid-body approach, several authors have addressed
the existence and modeling of frictional dynamics associated
with varying normal force (Hobbs and Brady, 1985; Lockner
et al., 1986; Linker and Dieterich, 1992). In two other papers,
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(Dieterich and Linker, 1992; Dupont and Bapna, 1994), linear-
ized stability criteria have been developed for steady sliding
motion of systems subject to the dynamic friction law proposed
in Linker and Dieterich (1992). Since the friction law is nonlin-
ear, however, the linearized stability criteria apply for small
perturbations of unknown magnitude.

In this paper, we address the question of how the geometry
and the load-dependent friction properties of a system affect its
ability to reject disturbances and track commanded inputs. We
do so for one important geometry in which normal force is
coupled by system stiffness to displacement at the friction inter-
face. We employ the friction model of Linker and Dieterich
(1992) which is applicable for the low velocities and small
displacements of boundary lubrication. While friction can differ
between systems, the qualitative trends of this model could
provide insights regarding the behavior of other friction models.
A Coulomb-like instantaneous response to changes in normal
force is a limiting case of this model.

The paper is arranged as follows. In the next section, the
friction model is defined and its response to changes in normal
force and velocity are described. In Section 3, the system geom-
etry under consideration is presented and its governing equa-
tions are derived. In Section 4, the stability of perturbations to
steady sliding is studied in the phase plane. The domains of
attraction are considered for step changes in load-point displace-
ment and velocity. The effects of frictional and geometric pa-
rameters on transient response are summarized. The case of
zero load-point velocity is also considered. The paper concludes
with a summary of design guidelines for systems of this type.

2 Friction Model

It is often observed experimentally that friction cannot be
represented by an algebraic equation relating system state vari-
ables (e.g., sliding velocity ) to friction force. Rather, the friction
force itself possesses dynamics (Armstrong-Hélouvry et al.,
1994). During stick slip, this is usually manifested as a higher
friction coefficient during the acceleration phase of the slip than
during the deceleration phase.

In lubricated contacts at velocities sufficient to eliminate solid
to solid contact, it is most likely the fluid film dynamics which
control the evolution of friction force (Hess and Soom, 1990;
Harnoy et al., 1994). At low velocities under boundary lubrica-
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Fig. 1 Response of average friction shear stress 7 to step change in
velocity, Av

tion, it is likely that the evolution of the asperity contacts deter-
mines the friction dynamics (Dieterich, 1979; Dieterich and
Linker, 1992).

In boundary lubrication, the response to a step change in
velocity has been studied experimentally for a variety of materi-
als including steel on steel, teflon on steel, glass, plastic, wood
and rock (Dieterich, 1991; Dupont and Dunlap, 1995). The
friction force for a step increase in velocity evolves as shown
in Fig. 1. Depending on the materials and lubricant, there may
be an instantaneous viscous effect of magnitude A. This is
followed by an exponential decay of magnitude B to the final
steady-state friction level associated with v, + Av. (In the model
which follows, the changes in friction stress denoted by A and
B correspond to the velocity step, Av = (¢ — 1)v, where e =
271828 ....) For those materials tested, this decay appears
to occur over characteristic sliding distances (Dieterich, 1991;
Dupont and Dunlap, 1995).

Several researchers have studied the transient behavior of
friction in response to changes in normal force (Hobbs and
Brady, 1985; Lockner et al., 1986; Linker and Dieterich, 1992).
All observed that a sudden increase (decrease) in normal force
causes a sudden increase (decrease) in friction and an evolution-
ary increase (decrease) in friction to a new steady-state level
as sliding proceeds. The response for a step increase in normal
stress is depicted in Fig. 2. The evolutionary component of the
response is given by aAc while the instantaneous component
is (s — @)Ao.

Linker and Dieterich (1992) proposed the following model
which has been used in several papers to study the stability of
systems with varying normal force (Dieterich and Linker, 1992;
Dupont and Bapna, 1994).

Nomenclature
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Fig. 2 Response of average friction shear stress = to step change in
normal stress, Ao
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To be consistent with the notation of earlier papers, the fric-
tion law is written in terms of normal stress, ¢, and friction
shear stress, 7. The reader should understand that these are
average quantities which refer to the normal and friction forces
divided by apparent area of contact.

In this equation, #.is a frictional state variable while A, B
and « are as shown in Figs. 1 and 2. pu, is the steady-state
coefficient of friction at the reference velocity, vy. L is the
characteristic sliding distance controlling the evolutionary re-
sponse to changes in both velocity and normal stress. This
model is used in the remainder of the paper.

For the case of constant normal stress, Dieterich (1979) pro-
vides a physical interpretation of the state variable. He proposes
that @ is proportional to the apparent age of the asperity junc-
tions. When normal stress can vary, Linker and Dieterich
(1992) propose that @ is related to the fraction of the contact
area associated with time-dependent creep.

(D

(2)

3 Inclined-Spring System

An important case of coupling between normal force and a
system’s state variables occurs when the friction forces are
borne by an elastic member whose normal and tangential dis-
placements are dependent. Consider a block of unit base area,
pulled by a spring of stiffness & at an angle ¢ as shown in Fig.

A = parameter expressing dependence
of friction on current velocity
B = parameter expressing dependence
of friction on prior values of veloc-
ity and average normal stress
g = dimensionless average friction
shear stress
k = spring constant
k., = critical spring constant
L = characteristic sliding distance
M, = maximum overshoot in g
M, = maximum overshoot in ¢
P, = instantaneous change in ¢ due to
a load-point displacement pertur-
bation

492/ Vol. 118, JULY 1996

t = time
v = block velocity
vo = load-point velocity
(vyg, py) = reference values of velocity
and steady-state friction coef-
ficient
x, X = perturbations from steady-
state displacement and veloc-
ity
Xo = displacement of load point
« = evolutionary component of
steady-state friction coeffi-
cient
6 = displacement of block

u = friction coefficient
s = steady-state friction coefficient

¢ = natural logarithm of dimensionless

velocity

¢ = spring angle

o = average normal (bearing) stress
0o = nominal normal stress
o, = steady-state normal stress

T = average friction shear stress

@ = friction state variable
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Fig. 3 Inclined-spring model

3. The free end of the spring is pulled at velocity vy = %, while
the block slides at velocity v = 5. When the spring is relaxed,
the normal force is given by o,. To be consistent with previous
literature, the free end of the spring will be called the load
point. In an actuated system, the load-point velocity v, = X,
can be viewed as the control input. In other applications (e.g.,
brakes), it may be appropriate, through kinematic inversion, to
view the load point as held stationary by a constraint force
while the surface under the block is in motion. While the in-
clined-spring system is a simple, idealized model, its geometry
is representative of many machine elements.
The normal stress, o, is given by

o = 0o + ktan Y(§ — x) (3)

where 6 and x, are the displacement of the block and load point,
respectively. Let

6 =x5+x

so that x represents the shortening of the spring from its steady-
state length.
At steady-state

Os = 0g T k tan lrl'(xxs - xO) (4)
From (3) and (4), normal stress can be written as
o =0, + kxtan (5)

As shown in Dupont and Bapna (1994 ), quasistatic analysis
was found to be a good approximation to the inertial system
for a wide range of masses, particularly for the case of tan ¢
< 0.

In the equations which follow, 7, o, and u,, represent the
steady-state values of friction stress, normal stress and friction
coefficient for a load-point velocity of vo.

For the quasistatic case (i.e., when mé is small relative to
the other terms),

T = —k(6 = %) (6)

We introduce dimensionless coordinates for velocity and
shear stress given by

¢=1n<2) (7)
Vo
and
g="T=, (8)
UIS

respectively. Combining Egs. (1), (2), (3) and (6), the qua-
sistatic motion of the system is described by

g=20 -t

s5

5= Janl —e? [Htand%

= — tan l[fa:l
Ao, (1 —tan gg) | 1 - tan ¢g
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Dividing the second equation by the first yields

b _ 1 [1+tan1/mss
dg A(l —tanyg) | 1 — tan yYg

- tan (/Ja]

¢
+g&< e >F1+mnw%m+(B_Aw] (10)
KAL \1 — e* 1 — tan g
Equation (10) describes phase plane trajectories for the qua-
sistatic motion of the inclined-spring system with the state vari-
able law given by (1, 2) and the normal stress given by (3).
Trajectories were obtained numerically using a fourth-order,
variable-step-size, Runge-Kutta method. The trajectories were
generated by switching between (9) and (10). Equation (10)
was used for ¢ > 0.3 while (9) was used otherwise. This
switching was required due to the limitations of the integration
routine.

3.1 Stationary Load Point, v, = 0. Consider the special
case when the system is initially in motion and the load point
is suddenly brought to rest. It is possible to obtain an analytic
solution for this case given by

d¢ _ 1 [1+tan¢t,u*
dg  A(l —tanyg) | 1 — tan yg

— tan wa]

L O% [(1 + tan Yus)g

Y7 R +(B—A)¢]. (11)

This equation is written in terms of u, and o, to emphasize
that the initial and steady-state velocities are different.

Defining
(B —-—A\ oy
= < A ) KL’

Equation (11) then reduces to

do 1+ tan Py tan Yo
Lty = i

dg A(l — tan ¥g) A(l — tan g)

_a*(1+tandfu*)< g > (12)
AkL 1 —tan g/

By substituting tan ¢ = o = 0 in (12), the differential equa-
tion describing the case of constant normal stress can be ob-
tained. The result is equivalent to that of Gu et al. (1984).

Solving (12) for the general case, we find

¢=Ce,7g+1+tantpu* 1 + A
A tan ¢ l—~tangg B—-A

T
+E)+
Y u)“}

Y "
3 {—t (1 — tan (//g)}
X |In (1 — tan fg) + >

n=1

. e~ g~ (/)] {1 + tan Yy (

A tan 2

nXn!
(13)

The convergence of the series in {13) follows from the ratio
test.
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A necessary condition for contact between the block and
surface is that the term (1 — tan g), in the equation above,
be positive. This follows because we can express o as

o = 0.(1 — tang) (14)

In the context of the inclined-spring model, this means that the
block may leave the surface if the spring is stretched too much
when it is pulling the block out of the surface or if it is com-
pressed too much while pulling the block into the surface.

For both a moving and stationary load point, the following
values from Linker and Dieterich (1992) were used to generate
the trajectories depicted in the remainder of the paper.

A =0.0145, B =0.0160, L=10"°m
gy =5 X 10N/m?, pu, =07, a=0.56

4 Perturbations

Previously, two necessary conditions for steady sliding at
constant velocity were derived (Dieterich and Linker, 1992;
Dupont and Bapna, 1994). The first is that the spring angle, ,
should lie outside the steady-state friction cone defined by p,,
or

1+ p,tan gy > 0. (15)

The second, obtained through linearizatioh, indicates the mini-
mum spring stiffness, k., necessary for steady sliding. It is
given by

st(B —A)
L{l + ()uss - Cl) tan !//}

A stiffness equal to k., produces a limit cycle about the steady
sliding equilibrium point. The critical stiffness applies to pertur-
bations from equilibrium of sufficiently small size.

In response to a finite perturbation for k > k,,, the system
may converge back to steady sliding or it may diverge such
that the block sticks or attains a high velocity. This could lead
to stick slip. Even if the system does converge to the equilibrium
point, it may do so in an undesirable manner.

In this section, we investigate the maximum size of stable
perturbations (their domain of attraction) and ascertain the de-
pendence of their transient response on the values of spring
stiffness k, steady-state friction coefficient u,, frictional lag «,
and spring angle . It is assumed that perturbations arise either
from disturbance forces which drive the system away from the
equilibrium point or from sudden changes in commanded input.
An example of the latter would be a step change in commanded
velocity requiring the system to move to a new equilibrium
point. This could correspond to a desired velocity step or to the
staircase output of a digital-to-analog converter.

For the quasistatic inclined-spring system, the phase plane,
discussed in the next section, is two dimensional. Any perturba-
tion from the equilibrium point of steady sliding can be decom-
posed into a combination of steps in the displacement and the
velocity of the load point (Gu et al., 1984). The jump to a zero
load-point velocity is treated as a separate case. A stationary
load point could represent an intentional dwell time or a stiction
interval of the actuator.

4.1 Phase Plane. It is convenient to represent the evolu-
tion of the system with time on a plane defined by the axes (¢,
g) = (In (w/w), ((7 — 7,)/0)). In this plane, each point
represents a unique combination of velocity and shear strength
and has a value of state variable given by (1). The origin
represents the steady sliding condition for load-point velocity,
vo. In the phase plane, constant-state curves are straight lines
with slope A. The line § = 0 passes through the origin.

At steady state, # = & = 0. From (2), 6,, = —In (v/v,).
Substitution of this value into (1) yields the following equation

kcr =

(16)
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Fig. 4 Characteristic curves for inclined-spring model with ¢ = —7/4
and ¢ = /4. Trajectories for load-point displacement perturbations are
shown for the two spring angles.

for the locus of points corresponding to steady sliding for all
values of load-point velocity.

¢_(1 +tanl//p’ss g
A-B 1 — tan yg

(17)

The steady-state curves for ¢y = *7/4 are shown in Fig. 4. For
constant normal stress, these curves reduce to a line through
the origin with slope, (A — B).

One type of perturbation corresponds to a sudden change in
the velocity of the load point. Assuming that the system was
initially at steady state, this type of perturbation instantaneously
moves the equilibrium point to a new position on the steady-
state curve. The trajectory taken to the new equilibrium point
is described by (9).

A second type of perturbation involves a change in shear
stress without any change in load-point velocity. This can be
caused by a sudden change in load-point displacement. To pic-
ture such a perturbation in the phase plane, consider that the
evolution Eq. (2) for 8 can be expressed as:

d0=—‘—1-‘§[1n<1> +0] -2 o
L Vo Bo

When the load point is suddenly displaced, the block does
not move instantaneously and hence dé = 0. In this case, the
equation above simplifies to

(18)

!
df = — —d 19
35 %° (19)
with
do = —tan ydr

The shear stress, 7, as given by (1), when expressed in terms
of the dimensionless velocity, ¢ becomes

7 = o[us + Ad + BI]

Differentiation and substitution of expressions for do, df and
o yields the following differential equation for the load-point
displacement perturbation curve.

tan Y1
(0o — tan ¥7)*?

d_¢=l[1—atan¢+

} (20)
dr A | oo— tan Y7
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Fig. 5 Trajectory stability for ¢ = w/4, k = 3k.,. The stability boundary
lies between the stable and unstable trajectories shown.

If the system is at (¢;, g;) When the perturbation occurs, the
equation can be integrated to obtain

_.4,1:_1_[&111(_1__—_3%)
A 1 — tan g,

(1 + tan l///"l‘m)(g _ gl) ] (21)
(1 — tan Yg,)(1 — tan yg)

Figure 4 depicts the load-point displacement perturbation
curves for two spring angles, ¢ = +r/4. For constant normal
stress, these curves reduce to a line of constant state, 8, which
lies approximately midway between the pair of curves shown.

The figure also illustrates, for each spring angle and initial
conditions (¢;, g;) = (0, 0), load-point displacement perturba-
tions and the subsequent response of the system. The perturba-
tion moves the system instantaneously from the origin to point
a(a’) for y = ~w/4 (¢ = w/4). The ensuing trajectory back
to the origin follows a solution to (9). During the perturbation,
the increase in ¢, denoted Py, for ¢ = m/4 is slightly larger

the maximum block velocity for ¢ = /4 is 2.4 times that for
¢ = -ml4.

As can be seen from this figure, any general perturbation
from the origin (initial condition in the phase plane) can be
decomposed into perturbations in load-point displacement and
velocity. In addition, certain load point trajectories may be mod-
eled as a sequence of perturbations.

4.2 Domain of Attraction. The linearized stability result
indicates that the origin of the phase plane is stable for spring
stiffnesses greater than k., under sufficiently small perturbations.
Given a value of k, the domain of attraction is the set of points
in the phase plane for which the nonlinear system converges to
the origin (is asymptotically stable).

4.2.1 Moving Load Point. Figure 5 depicts one stable and
one unstable trajectory for ¢ = w/4. While no equation for the
boundary of the domain of attraction is known, this boundary
exists and lies between the stable and unstable trajectories
shown in the figure.

Note that stable trajectories near the stability boundary expe-
rience very high velocities before reaching equilibrium. To give
an illustration, for the stable trajectory shown in Fig. 5, ¢ goes
as high as 125. The velocity at this point is e'?v, (= 1.93558
X 107%,). This is well outside the range of ¢ for which the
model is valid. Thus, knowledge of the location of the actual
boundary is not necessary. '

A more appropriate stability boundary can be defined by
prescribing bounds on either shear stress transients or velocity
transients or both. Shear stress transients could be important if
an actuator is operating near saturation. In precision motion
control applications, velocity transients would be of consider-
able concern.

Suppose, for example, that one is interested in determining
the maximum step increase in load-point velocity for which the
maximum velocity overshoot of the block does not exceed ¢
= 7 (Vmax/Vgoa = € ). Since the system is time invariant, phase
plane trajectories do not cross each other. The maximum veloc-
ity step can be obtained by starting at the point given by ¢ =
7, g/ 0¢ = = and following the system backwards in time until
the steady-state curve is reached. Figure 6 shows the maximum
velocity step perturbation A¢ as a function of spring stiffness

than that of = — /4. During the ensuing motion, however, for five spring angles.
AD | = gl = 45
o
32T
24T
16 T
08 +
0 Ll -+ + t t + Bt K/k_CTyis
L0 20 30 40 50 6.0 7.0

Fig.6 Maximum load-point velocity step perturbation A¢ as a function of k/k.. (¢ = 7/4) for various
spring angles (expressed in degrees). Based on maximum velocity overshoot of ¢ = 7.
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Fig. 7 Stationary load point with 4 = /4 and k = 3k,. The dotted
trajectory is followed by the sliding block when the load-point, originally
moving with velocity v,, stops suddenly. Similar trajectories are obtained
for other spring angles.

4.2.2 Stationary Load Point. Before proceeding to the
analysis, we need to note that for the case of a stationary load
point, the usual interpretation of k,, is not possible. In this case,
the equilibrium is at ¢ = —oo and linearization about —o is
inappropriate for a nonlinear system. Nonetheless, the value of
k does determine the domain of attraction and the rate at which
the system converges to the equilibrium point.

For constant normal stress, the stability boundary for trajecto-
ries described by a simplified (12) is given by a line which,
for k > 0, intersects the ¢-axis at a positive value of ¢ (Gu et
al., 1984). Velocities along trajectories starting to the right of
this line tend toward infinity while those of trajectories to the
left of the line tend toward zero (i.e., the block stops). As k
increases, this line shifts to the right along the ¢ axis, thus
increasing-the region in the phase plane where the trajectories
are stable.

In the case of variable normal stress, the phase plane trajector-
ies defined by (13) are depicted in Fig. 7 for ¢ = w/4 and
various initial conditions. Unlike the constant normal stress
case, an equation for the stability boundary is not easily ob-

tained. It can be seen from the figure, however, that there is a
boundary separating the stable and unstable trajectories.

As was the case for a moving load point, some trajectories
within the domain of attraction, while asymptotically stable,
attain high velocities before the system comes to rest. For all
practical purposes, these trajectories can be considered unstable.
If a maximum allowable velocity is specified, we can find a
trajectory such that for all the initial conditions to the left of this
trajectory, velocities will always remain less than the maximum
allowable velocity. This trajectory will serve as a practical sta-
bility boundary.

Setting (dp/dg) = 0 in (12) we get

_ 1 { 1 + tan ¢,
Ay(l — tan ¢rg) (1 — tan 4g)

1
B—-A

Once a maximum allowable velocity is chosen, the correspond-
ing g can be calculated from (22) and the trajectory through
this point computed. Since the trajectories do not cross each
other in the phase plane, this trajectory can be considered the
stability boundary.

4.3 Effect of Parameters. Several parameters affect the
location of both the actual and transient-limited stability bound-
aries. These are the stiffness, %, the steady-state coefficient of
friction, p,,, its evolutionary component, «, and the spring
angle, . Due to the nonlinearity of the system, it is difficult to
describe their effect and interrelationship quantitatively.
Through simulation, however, it is possible to evaluate their
qualitative effect on transient response for moving and station-
ary load points. These effects are summarized in Table 1.

The novel aspects of this work involve the geometric parame-
ter, ¢, and the frictional lag parameter, «. The ensuing discus-
sion focuses on their effect on displacement and velocity pertur-
bations of the load point. From Fig. 4, note that load-point
displacement perturbations follow curves with a steep slope in
the phase plane. Conversely, load-point velocity perturbations
follow steady-state curves with small negative slopes.

As shown by the trajectories depicted in Fig. 4, it is the -
dependent trajectory shape which determines the relative veloc-
ity overshoot in response to load-point displacement perturba-

o) — tan wa}

(1 + tan t//u*)g} (22)
1 — tan ¢g

Table 1 Effect of parameters on transient response. M, and M, are the maximum over-
shoot in block. velocity and friction stress, respectively. P, is the instantaneous change in
block velocity due to a displacement perturbation. All perturbations are those of the load

point. Note that there is no M, for v, = 0. (T = incr , + = decr , * = for k/k., (¢
= 7/4) < 5.25)
Effect of Increasing Parameter
Parameter v £ 0 vo=10
P> 0: My1, M1
P <0: M|, My >0 Myt
a
>0 Pyl P<0: Myl
Displacement Perturbation: v ¢ ¢
P<0: Pyt
ker |
v (No ker)
L Displacement Perturbation: Py {, My 1 M1
¢
Velocity Perturbation: My |*, M, |
k My |, Mg { Myl
ss Effect is small for u,, € [0.56,0.70] Effect is small
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Fig. 8 Effect of a for y = —m/4. ¢y = @/ pes, pss = 0.70 and k = 3k,

tions. Negative spring angles produce smaller maximum veloci-
ties. For the same reason, if the maximum velocity overshoot
is specified, negative spring angles allow larger load-point dis-
placement perturbations.

The result is not the same, however, if one considers load-
point velocity perturbations as shown in Fig. 6 (for fixed veloc-
ity overshoot). Although increasing ¢ produces a flatter trajec-
tory, the rate of convergence (in the velocity direction) is only
weakly dependent on ¢ for small k > k. The larger size of
the allowable velocity steps for ¢ > 0 in Fig. 6 is consequently
due primarily to the trend toward a horizontal steady-state curve
for increasing . As k increases, however, the relative rate of
convergence for negative spring angles increases such that at k
~ 5.25k, (¢ = w/4), My is independent of .

For all spring angles, the frictional lag parameter o reduces
the effect of the spring angle. This is made clear in Fig. 8 which
depicts the effect of « on the phase plane trajectories for ¢ =
—m/4 given a single set of initial conditions. This observation
can be applied directly to load-point velocity perturbations as
the steady-state curve (17) is independent of «. During load-
point displacement perturbations, however, there is the addi-
tional influence of a on Py in (21).

5 Conclusions

Much effort has been devoted to friction compensation (con-
troller design ) based on the assumption that the mechanical and
frictional properties of the system are fixed. It is also possible,
however, to reconsider mechanical and lubricant design from
the viewpoint of producing a system which is easier to control.
The analysis of this paper has revealed, for the inclined-spring
system, the interrelationship between the geometric property ¢,
the stiffness property k, and the frictional property . It has also
been shown that the best choice of these parameters depends
on the type of input trajectories or perturbations which are
expected.

If one is designing a system which can be modeled by the
inclined-spring system, the foremost consideration is to ensure
that the stiffness exceeds the critical value necessary for steady
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sliding. Negative spring angles (¢ < 0) require stiffer springs
for stability and the spring angle must lie outside the friction
cone to avoid jamming. If, however, the system is likely to
experience load-point displacement perturbations, (e.g., short
periods of rapid load point slip) negative spring angles produce
less velocity overshoot. ’

If load-point velocity perturbations are expected (e.g., veloc-
ity step inputs), increasing the spring angle will decrease the
velocity overshoot for k < 5k, (w/4). It will also decrease the
friction stress overshoot and thus decrease the maximum load
borne by the load-point actuator.

Frictional lag associated with changes in normal force can
have a significant effect on the transient dynamics as shown in
Fig. 8. According to the sign of the selected spring angle, the lag
can be either stabilizing or destabilizing. To achieve prescribed
performance criteria, selection of materials, lubricants, spring
stiffness and spring angle should be considered concurrently.

While friction does vary from system to system, its basic
components, including frictional memory, are the same. Conse-
quently, the results presented here could provide qualitative
insight into the behavior of a variety of systems.
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