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ABSTRACT

A system that can process sensory information collected
during telemanipulation tasks in order to automatically identify
properties of the remote environment has many potential appli-
cations. These include generating model-based simulations for
training operators in critical procedures and improving real-time
performance when time delays are large. The research issues in-
volved in developing such an identification system are explored,
focusing on properties that can be identified from remote manip-
ulator motion and force data. As a case study, a simple block-
stacking task performed with a teleoperated two-fingered planar
hand is considered. An algorithm is presented which automat-
ically segments the data collected during the task, given only
a general description of the temporal sequence of task events.
Using the segmented data, the algorithm then successfully es-
timates the weight, width, height, and coefficient of friction of
the two blocks handled during the task. This case study high-
lights the broader research issues which must be addressed in
automatic property identification.

INTRODUCTION

Traditional teleoperated manipulation relies entirely on the
human operator for perception and control. The operator per-
ceives the remote environment visually and kinesthetically and
then generates the appropriate commands to accomplish the task
at hand. However, in many teleoperation applications, machine
perception of the remote environment can also play an important
role. For example, in remediation of toxic waste dumps, quan-
titative measurements of the size and weight of the containers
helps to infer their contents and to determine optimal handling
strategies (Griebenow, 1994). Similar considerations apply to
collecting rock samples on interplanetary missions and to trans-
porting and defusing explosives. Machine perception can also be
used to develop models of the environment for use as real-time

simulations. Simulations such as these have already been used to
overcome stability problems related to teleoperation with signif-
icant time delays (Noyes and Sheridan, 1984; Bejczy, Kim, and
Venema, 1990; Funda and Paul, 1991). They could also be used
to train operators prior to critical operations.

The problem of automatic identification of remote object
properties has received little attention in telemanipulation re-
search. (In the one study we are aware of, Fyler (1981) demon-
strated the ability to build up a picture of the shape of a remote
object using a touch probe on the end of the robot manipulator
arm.) By “automatic” we mean that the identification proce-
dure is performed by the telemanipulation system with little or
no input from the human operator. Ideally, such a system would
be able to identify all parameters of interest by observing normal
telemanipulation procedures, making the system transparent to
the operator. In actuality, input may be required from opera-
tors in the form of information (e.g. task context) or special
exploratory motions.

The environment identification problem is actually com-
posed of three main sub-problems: task decomposition, data
segmentation, and parameter estimation. It is assumed for this
paper that the operator specifies not only the task to be per-
formed but also the associated subtasks and states (task decom-
position). Data segmentation is the reconstruction of the events
or stages of a manipulation task based on streams of sensory
data. This is important because the context or state of the
system at any given time will dictate which parameters can be
estimated at that time. For example, to measure the weight of
a grasped object, the estimator must determine when it is freely
supported by the manipulator, and to find its coefficient of fric-
tion with the manipulator, the estimator must determine when
it is slipping against the gripper fingers. Once the data is seg-
mented in time, parameter estimation can proceed using sensory
data from within each of the segments. Individually, the manip-
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FIGURE 1: Block diagram of the property identification
problem.

ulation data segmentation and mechanical parameter estimation
problems have been studied extensively in other contexts, how-
ever, the application of these techniques to remote environment
identification has not previously been pursued.

Segmentation of manipulation data has received consider-
able attention for skill transference from humans to autonomous
robots (Pook and Ballard, 1993; Kang and Ikeuchi, 1994; Yang,
Xu, and Chen, 1994). In those studies, the goal was to find
the commands which resulted in successful execution of each
subtask, which may not be necessary for property estimation.
Other work has been directed at determining the manipulation
strategies of humans (McCarragher, 1994) or evaluating the per-
formance of teleoperator systems (Hannaford et al., 1991; Han-
naford and Lee, 1991), where task decomposition can be used
to relate performance to subtask attributes. For property es-
timation, segmentation may not require classification of every
portion of the data stream.

Estimation of parameters from data in the appropriate time
segments is a classic estimation problem (Ljung, 1987). Many
of the parameters of interest are simple constants (e.g. mass,
stiffness) and will be straightforward to estimate. In some ap-
plications, however, metal-on-metal contact between the gripper
and grasped objects will generate noisy, rapidly changing force
sensor signals, so more sophisticated algorithms may be required
to determine those parameters that are conveyed by force infor-
mation.

Figure 1 shows the flow of information between various com-
ponents of the environment identification system. As the opera-
tor uses the teleoperated manipulator to execute tasks, the prop-
erty estimator system monitors feedback from the manipulator,
which in our case includes only force and motion signals. Prop-
erties that can be determined from these signals include: object
geometry, mass, mass distribution, friction coefficients, stiffness,
and surface roughness and waviness.

The remainder of this paper proceeds with a description of
the experimental hardware, including our two-fingered, planar
teleoperated hand. Next we perform post-facto segmentation
of the force and motion data followed by identification of task-
related object properties.

TELEOPERATED DEXTEROUS HAND SYSTEM

These experiments use a planar, two-fingered teleoperated
hand system with finger tip force feedback (Howe, 1992). This
system trades a limitation on the number of joints for a clean and
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FIGURE 2: (a) Master manipulator with operator’s hand.
(b) Remote manipulator.

simple mechanical design. The system has high bandwidth and
large dynamic range, which permits accurate control of contact
forces and small motions. The system is designed to execute
tasks that humans usually accomplish with a precision pinch
grasp between the thumb and index finger. For most tasks, the
operator’s wrist rests on the table top and the operator makes
contact with the master only at the tips of the fingers (Fig. 2).
The master and remote manipulators are kinematically identi-
cal, with two degrees of freedom in each finger, so finger tip po-
sition or force can be controlled within the vertical plane. The
workspace is roughly circular and 75 mm in diameter. Parallel-
ogram linkages maintain a constant vertical orientation of the
finger tips, which precludes inappropriate torques on the opera-
tor’s finger tips as the joints rotate. Two-axis strain gauge force
sensors measure finger tip forces on both master and remote
manipulator hands.

The controller uses a conventional bilateral force reflection
control scheme. The joint angles of the master manipulator are
the command inputs for position control of the joints of the re-
mote manipulator, and the forces measured at the remote ma-
nipulator finger tips are the command inputs for force control of
the master. Each finger is capable of applying a continuous tip
force of at least 4 N. Flat, thin finger tips extending downward
are mounted on the two remote manipulator fingers to facilitate
manipulation of the rectangular blocks used in the experiments
(Fig. 2b). The manipulator finger tips were covered with a 2
mm layer of closed-cell foam rubber to increase compliance and
friction.

BLOCK-STACKING TASK

Pick-and-place tasks are a convenient starting point for the
study of automatic identification techniques, because the grasp-
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FIGURE 3: Subtasks of the stacking task.

ing and lifting actions that comprise these tasks are an essential
part of many telemanipulation operations. These tasks are also
amenable to automatic identification, as the parameters of inter-
est and task segments are readily defined. To include interactions
between objects in the remote environment, here we analyze a
block stacking task, which requires reversing the positions of two
aluminum blocks, stacked one atop the other, using the teleop-
erated hand system. The operator moves the top block off of the
stack and onto the ground, and then places the other block on
top of it. Figure 3 shows the progression of the task through the
various subtasks.

The trials for this case study were performed by one of the
authors after practicing sufficiently to become proficient at the
task. Six sensor signals were recorded for each of the two remote
manipulator fingers: two joint angles, two joint velocities, and
horizontal and vertical components of finger tip force. The sig-
nals were collected at 50 ms intervals during the course of the
task, for a total of 10 seconds. The forward kinematic relations
permitted calculation of endpoint position and velocity of each
finger, as shown in the subsequent figures. In the following sec-
tions, we investigate the segmentation and parameter estimation
processes using this data.

SEGMENTATION

To relate the force and displacement data streams to the
parameters of interest, we divide the task into subtasks, the se-
quence of operations required to execute the task, and relate
these to system states, the description of the physical configura-
tion of the remote manipulator and environment. This approach
is an extension of the syntactic method used by Hannaford et al.,
(1989) for segmentation of peg-in-hole telemanipulation tasks.
As illustrated in Fig. 3, the example task begins with subtask I,
pregrasp of block 1, followed by subtasks pickup, carry, place, and
release of the first block. The ensuing subtasks for the second
block are pickup, carry, place, and release.

Each subtask in Fig. 3 is also labeled with a system state,
which describes the configuration of the manipulator robot and
environment at a specific time, including contact and constraint
conditions. The physical situation described by the state then
implies which parameters can be identified in that subtask.
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Three states are shown: free-motion of the fingers, hold-on-
ground, and hold-above-ground. A fourth possible state, hold-
on-ground-with-sliding, is not shown in Fig. 3, although it could
occur during any hold-on-ground state. Each state can describe
more than one subtask, as physical configurations are repeated
as the task progresses. Although it will not necessarily be true
for more complex tasks, in this initial study we assume that
states can be determined by local values of motion and force
signals, without reference to the history of the task. Thus the
free-motion state can be distinguished by the absence of finger
tip forces.

In this example, we begin the parameter identification pro-
cedure after the task is complete, so that the entire position,
velocity, and force records are available. We also specify the ex-
pected sequence of subtasks and their corresponding states for
each task. The correspondence between states and the parame-
ters which can be identified in that state is also given explicitly,
although this information can be compiled in a database for use
with a variety of tasks; for instance, the weight of a grasped ob-
ject can be determined in every hold-above-ground state. The
operator must then relate the specific parameters which are to
be identified to the generic parameters, so that the system can,
for example, distinguish the weights of blocks 1 and 2.

The automatic segmentation algorithm uses Boolean com-
binations of thresholded force and velocity data to identify the
system state at each time. Once the system state at each time is
determined, the subtasks are identified using a priori knowledge
of the expected sequence of subtasks, and additional historical
information. For example, carrying block 1 and carrying block 2
both occurred during a hold-above-ground state; however, they
were separated by a free-motion state, a fact used to distinguish
the two subtasks.

Table 1 shows the sensor signals required for estimating the
environment parameters during the first four subtasks. The sys-
tem state for each subtask is also listed. Most of the parameters
pertain to the first block (with the exception of the height of the
lower block). Properties of the second block (and the height of
the first block) can be estimated during the last five subtasks.

Automatic Identification of Subtasks and States

Given the property-subtask correspondence summarized in
Table 1, the automatic identification of task states proceeded in
three stages, similar to the qualitative reasoning approach that
has been applied to the analysis of sensor signals from human
task performance (McCarragher, 1994). In the first stage, the
measured motions and forces at the finger tips were transformed
into task coordinates and thresholded. The resulting threshold
functions were tri-valued, that is, they were assigned values of
“47. %07, or “-”. In the second stage, the thresholded data were
combined using Boolean operators to assign state labels. Once
the states were identified, additional processing identified the
subtasks. Here we describe the details of the state and subtask
identification procedures.

Because these experiments used a multifingered hand, the
finger tip motion and force data must be transformed to find the
net motion and force of the grasped object in task space. This
requires computation of averages and differences of the horizon-



TABLE 1: Relevant Signals and System States for Estimation of Object Parameters During the First Four Subtasks

Object Parameter
Friction of
Subtasks System State Weight Width Height Fingers Against
Block #1 | Block #1 | Block #2 Block #1
Pregrasp, free-motion _ _ _ _
Block #1
Pickup, hold-on-ground _ _ vertical horiz. and
Block #1 positions vertical forces
Carry, hold-above- vertical horizontal _ horizontal and
Block #1 ground forces positions vertical forces
Place hold-on-ground - - vertical horizontal and
Block #1 positions vertical forces

tal (x) and vertical (y) components of the two finger motions.
The average motion of the two fingers is a measure of rigid body
motion, and the difference in finger tip motions corresponds to
gripping motion. Horizontal and vertical components of the fin-
ger tip forces were similarly transformed. The sum of the forces
from the two fingers was the net force applied to the environment
(including the block and the ground), and grip force was the
minimum horizontal component of the two (opposing) finger tip
forces. Because each finger of our system has only two degrees of
freedom and flat finger tips, and because the objects were flat-
sided blocks, the kinematic transformations of endpoint forces
and motions to task space was trivial. In general, these trans-
formations for multifingered hands require the use of robotic
grasp analysis (Kerr and Roth 1986).

Once the task motions and forces were obtained, the veloc-
ity and force data were passed through thresholding filters with
equal positive and negative thresholds. The velocity thresholds
were + 5 cm/sec, and the force thresholds were + 0.05 N. Posi-
tion and force data for one trial of the stacking task are shown
below in Figs. 4 and 5. The progression of the task can be dis-
cerned in these figures. The side to side pattern of motion can
be seen in Fig. 4a, up and down motion in Fig. 4b, and grasp
and release in Figure 4c. The vertical offset of the two fingers
(Fig. 4d) is not of interest in this task, but has been included for
completeness. The forces applied to the environment are shown
in Fig. 5. Horizontal forces (Fig. 5a) are generally zero during
the carry and free-motion subtasks, and non-zero during pickup
and placement subtasks. Net vertical force (Fig. 5b) is also zero
during free-motion, but positive during carry subtasks, and neg-
ative or zero during pickup and placement. The holding subtasks
are clearly visible in Fig. 5c as large, positive grip forces.

These correlations between sensor data and task states were
formalized into rules for automatically identifying the various
states, as summarized in Table 2. Free-motion was defined as
any time that both components of the force on both finger tips
were zero. The hold-on-ground state was active whenever the
grasp force was positive (i.e., greater than the positive threshold)
and the total vertical force exerted by the fingers was not upward
(i.e., negative or zero) and the average vertical velocity of the
fingers was near zero. The sliding-on-ground state is the same
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as hold-on-ground, with the added condition that the average
horizontal velocity was non-zero. Hold-above-ground was active
when the grasp force was positive and the sum of the vertical
forces was upward (positive). Note that this criterion for the
hold-above-ground state can include a brief period just before
and after the block lifts, when the vertical force is positive but
the block is still in contact with the ground. This is unavoidable
if the state identification algorithm uses only instantaneous data
without reference to the prior state of the system. This approach
proved adequate for this simple task.

Data for several trials of the block-stacking task were pro-
cessed using the automatic state identification procedure. The
segmentation algorithm divided the data into sections which cor-
responded closely to those selected by hand. For these data sets,
the results of thresholding were not especially sensitive to the
threshold values, although selecting appropriate thresholds can
be difficult when noisy manipulators and a larger range of tasks
and operators are involved (Hannaford and Lee, 1991).

Figure 6 shows the results of applying the procedure to the
data in the preceding figures. The value of the plotted function
denotes the identified state of the system at that time. A value of
1 corresponds to free-motion, a value of 2 to hold-above-ground,
and a value of 3 to hold-on-ground. Times at which sliding on
the ground was identified are labeled with an “x”.
zero indicates that none of the four possible states was identified.
Accordingly, data from these times were not used in the identi-
fication of any object properties. These “dropouts” are caused
mainly by transients in the signals just after lLift-off or impact
of the blocks. While these unidentified points are not desirable,
they are not a problem as long as at least some data samples are
successfully identified for each subtask. Using this convention,
the expected (and observed) progression of states for this task
1, 3, 2,3, 1, 3, 2, 3, 1. Subtasks [-IX were assigned to
the data stream from the state information using the list of the
anticipated order of the states.

A value of

was:

A weakness of the simple segmentation algorithm used for
this study is that it could potentially oscillate between the hold-
on-ground state and the hold-above-ground state if the manipu-
lated objects did not make and break contact cleanly. Although
the data collected for this example did not exhibit this compli-



TABLE 2: Qualitative Values of Sensed Parameters Which Define Task States

Sensed Parameters
| State Vx_ avg | Vy_ avg | Fx_avg | Fy_ avg | Fx_ grip | Fy_ shear
free-motion 0 0 0 0
hold-on-ground 0 -or 0 +
hold-on-ground, sliding + or - 0 -or 0 +
hold-above-ground + +

TABLE 3: Methods of Property Estimation

| Property | Subtask | System State | Formula for Estimate |
Weight (Block 1) Subtask 111 hold-above-ground W= niitie

Carry Block 1 (Average sum of
vertical forces for

fingerl and finger2)

Height (Block 2) yrr = 2§

Part a: Subtask 1T hold-on-ground (Average vertical
Pick up Block 1 position of right finger)
yrv = EJ\;?V
Part b: Subtask IV hold-on-ground (Average vertical
Place Block 1 position of right finger)
b=y — y1v|
Final: (Absolute value of

the difference in
average height)

Width (Block 1) Subtask IIT

Carry Block 1

hold-above-ground
(average difference in
horizontal position)

p > maz| 2

x

(Max. absolute value of

p (Block 1) Subtasks II-IV
Pick up Block 1,
Carry Block 1,

and Place Block 1

hold-on-ground L |
and
vertical force over

horizontal force)

hold-above-ground

TABLE 4: Comparison of Estimated (mean and standard deviation) and Actual Environment Parameters

Block 1 Block 2
Property Estimated Value | Actual Value Estimated Value | Actual Value
Weight 0.352 £ 0.024 N | 0.343 £ 0.0005 N 0.425 N & 0.071 N | 0.437 4 0.0005 N
Height 1.75 &£ 0.01 cm 1.60 & 0.01 cm 1.29 4+ 0.02 cm 1.27 £ 0.01 cm
Width 1.47 £+ 0.01 cm 1.59 + 0.01 cm 2.36 £ 0.01 cm 2.54 £ 0.01 cm
Lower Bound on g 0.49 - 1.06 -

455




(cm)

16

14

(cm)

12

10
0

(cm)

Mean x-Position of Two Fingers

10

Time (sec)
@

Mean y-Position of Two Fingers

Time (sec)
(b)

Horizontal Distance Between Two Fingers (x2 - x1)

Vertical Offset of Two Fingers (y2 - y1)

Time (sec)

()

FIGURE 4: Horizontal and vertical positions of the two
fingers. Legend: m = Movement of fingers to a new
position; gg = Grasping an object on the ground; g1 =
Grasping object 1; g2 = grasping object 2.
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FIGURE 5: Forces: (a) Total horizontal force on

environment; (b) Total vertical force on environment; (c)
Grip force; (d) Vertical shear force. Legend: g1 = Grasping

object 1; g2 = Grasping object 2.
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FIGURE 6: Result of automatic system state identification
procedure.

cation, future segmentation algorithms should be robust to this
problem.

IDENTIFICATION OF OBJECT PROPERTIES

For the sake of brevity, only four illustrative properties were
estimated from the data, namely block weight, height, width,
and g, the coefficient of static friction between the block and
the fingers of the robot hand. Table 3 lists each property along
with the subtasks in which the appropriate measurements can be
collected. The last column of the table contains the simple for-
mulas used to estimate the object properties. Because our goal
is to outline the steps of the identification process and illustrate
the key issues, no attempt has been made to find an optimal es-
timator. This table describes object property estimation during
manipulation of the first block (Subtasks II-IV); for estimation
of the analogous properties during manipulation of the second
block (Subtasks IV-VIII), each instance of “block 1” in the table
is simply replaced by “block 2” and vice versa.

Ideally, the weight of block 1 was the sum of the vertical
forces measured at each finger tip during the “carry block 1” sub-
task. The estimate was the average sum over all samples in the
subtask (i.e. over Nyrr , the number of samples in subtask IH).
The weight estimate is sensitive to segmentation boundaries, due
to noise during the transition period between subtasks. There-
fore, the weight estimate arbitrarily excluded force data during
the first and last 5% of the carry subtask.

The width of each block is simply the average horizontal
distance between the finger tips over the entire carry subtask. In
contrast, the height estimate uses interactions between objects
in the remote environment to determine the desired parameters.
This requires multiple estimation steps because it is formed from
two discrete measurements. For example, the height of block 2
is found from the difference between the vertical position of the
fingers when block 1 is lifted from atop block2 and when it (block
1) is subsequently placed on the table. Similarly, moving block
2 gives the height of block 1.

Note that for these experiments, we assume static friction
can be modeled as a single constant u. Ideally, u would be
measured at the onset of slip, but since slippage of the blocks
between the fingers was not detectable, only a lower bound of g
was obtained. If slip did occur, the maximum value of u recorded
should correspond to the coefficient of static friction, recorded at
the onset of slip. In many telemanipulation tasks operators ex-
pressly avoid slips, so accurate determination of g could require
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FIGURE 7: Object weights. The solid portions are the
segments of data used for weight estimation.

Object Height Measurement
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FIGURE 8: Object Heights. The solid portions are the
segments of data used for height estimation. Object 2
height is the difference between the first and second solid
lines, while object 1 height is the difference between the
third and fourth solid lines.

a special test procedure.

RESULTS

The estimated parameters for one trial of the block-stacking
task are listed in Table 4, along with actual values, as measured
by a laboratory balance and calipers. Applying the algorithm to
a different trial of the block stacking task gave similar estimates
of the parameters. Certain trials exhibited significant vibrations
following state transitions suggesting the need for data filtering
prior to segmentation.

Figures 7 - 8 are plots of the measurements used to esti-
mate object weight and height. The portions of the data that
were used in the estimates are indicated by solid lines. Figure
7 shows the force measurements used to find the average weight
during the hold subtask. Note that there are two intervals of
measurements, indicating that two objects were held. The large
oscillations that occur during the second interval are due to in-
ertial forces and the object impacting the surface. The average
estimates of the weights are within 3% of the actual values. The
standard deviation is relatively large for block 2 due to the os-
cillations in the force signals.

The first two solid lines in Figure 8 show the heights during
the two hold-on-ground states, when block 1 is moved from the
top of block 2 to the ground. The difference in these heights gives
the height of the block originally beneath it. Likewise, the last
set of two solid lines represents grasping and moving block 2 from
the ground to the top of block 1. Notice that the intervals for
these subtasks are fairly short, but even though there are only a



few points in the interval, the estimated heights of blocks 1 and 2
are within 10% and 2% of their respective measured dimensions.
The estimated height of block 1 shows greater error, perhaps due
to slipping of the block within the fingers at the instant when
the block makes contact with the ground. The errors in the
estimates of the widths of the blocks were approximately 7%.

CONCLUSIONS

Automatic identification of the properties of remote environ-
ments promises to improve the handling of hazardous materials,
and to aid in the construction of environment models for stabiliz-
ing telemanipulation with time delays. Through the analysis of
a simple block stacking task, we have demonstrated that there
are three principal functions in automatic identification: task
decomposition, data segmentation, and parameter estimation.
In this initial study, we started with an operator-specified task
description that divided the task into a sequence of subtasks,
with associated system states and identifiable parameters. Seg-
mentation and estimation algorithms then used force and mo-
tion signals to determine several basic properties of the blocks,
including weight, size, and a lower bound on the coefficient of
friction between the blocks and the manipulator finger tips. Key
issues we hope to address in future work include development of
robust segmentation and estimation techniques for a variety of
manipulators and tasks, and determining the appropriate role of
user interaction in remote parameter identification.
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