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This paper presents the stability analysis of a single degree-of-freedom elastic system
following a rate- and state-dependent friction law. Normal force is assumed fo depend
on the displacement, velocity and acceleration of the sliding interface. The history
dependence of friction on normal force is included in the analysis. It is shown that

to achieve steady sliding, system stiffness must exceed a critical value which depends
on the expression for normal force. A system in which normal force depends on
spring displacement is analyzed in detail. These results indicate that the functional
dependence of normal force on system state can have a significant effect on the
stability of low-velocity motion.

1 Introduction

Stick-slip motion, characterized by intermittent sticking and
slipping of bodies in sliding contact, is observed in many me-
chanical systems. In some systems, such as turbomachinery
and large flexible space structures, the frictional damping in-
herent in this motion is advantageous for passive control of
vibrations (Anderson and Ferri, 1990). More often, it is a
detrimental effect encountered when the desired system motion
involves low velocities. It occurs in machine tools, tracking
mechanisms, robots under position or force control and even,
apparently, during earthquakes. For these systems, it is desir-
able to predict whether or not stick slip will occur. Except for
the last example, this type of analysis may facilitate redesign
of the mechanism and controller so that stick slip can be
avoided. '

The stability of constant-velocity sliding motion is the topic
of this paper. This topic can be studied by either considering
the stability of the constant-velocity equilibrium point or the
instability of stick-slip limit cycles. The former approach will
be taken here. Investigations of equilibrium-point stability have
been carried out by Rice and Ruina (1983) and Dupont (1994).
Note that both the equilibrium point and the stick-slip limit
cycle of a system may be stable simultaneously. In this case,
large perturbations may move the system from the domain of
attraction of the equilibrium point to that of the limit cycle.
Also, when starting from rest, it may be necessary to perturb
the system away from the limit cycle to induce stable sliding.

A factor which has received little attention in the literature
is the effect of normal force. While most analyses assume it
to be constant, normal force is often a function of the system
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state. For example, in any drive mechanism, whether composed
of screws, gears or cams, the normal force changes during
motion. Thus, it is not clear that stability results obtained for
constant normal force can be directly applied to many systems.

Anderson and Ferri (1990) and Bindemann and Ferri (1992)
have considered the effect of varying normal force on friction
dampers. These systems can be viewed as position regulators
subject to a harmonic disturbance. The equilibrium point cor-
responds to zero velocity. Any motion is due to application
of the disturbance force.

In this paper, the stability of constant-velocity slipping is
considered. The paper is arranged as follows. In the next sec-
tion, friction modeling is discussed and state variable friction
laws are introduced. In section 3, a linearized analysis of a
sliding system subject to perturbations about a constant sliding
velocity is presented. The result of this analysis is a critical
value of stiffness. Systems with stiffnesses greater than this
critical value are stable in steady sliding motion. In this anal-
ysis, normal force can depend on the relative slip displacement,
velocity and acceleration. To illustrate these results, a specific
example is provided in section 4 for which normal force de-
pends linearly on spring displacement. Both quasistatic and
inertial models are considered with numerical simulation used
for validation and comparison. Conclusions appear in section
5.

2 Friction Modeling

It has long been known that friction is not determined by
current velocity alone; it also depends on the history of motion.
The history dependence of friction has been studied extensively
by the rock mechanics community (Ruina, 1983; Rice and
Ruina, 1983; Gu et al., 1984; Dieterich, 1991; Linker and

. Dieterich, 1992). Interest in rock friction stems from the hy-

pothesis that earthquakes are fault-line stick-slip events. In
order to approximate fault-line slip, experiments have been
conducted at moderate normal stresses (e.g., 5 MPa, computed
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Fig. 1 Friction response to a step change in velocity (f and h are used
in the stability analysis to follow)

using apparent area of contact) and very low velocities (e.g.,
10™*~ 10*um/sec) with conformal contacts.

Based on these experiments, state variable friction laws have
been proposed. While these laws have been developed for rocks,
their velocity effects have recently been observed for a range
of materials (Dieterich, 1991; Dupont and Dunlap, 1993). These
include lubricated steel on steel, teflon on steel, glass, plastic
and wood. State variable models, as developed by Dieterich,
Ruina, and Linker, are described below.

2.1 State Variable Friction Laws. Dieterich (1972, 1979)
and Ruina (1983) have performed numerous friction experi-
ments on rocks in which they have observed a fading memory
dependence of friction on slip history. They argue that for
constant normal load, friction can be described by the current
slip velocity and by a set of state variables which represent the
surface’s memory of previous sliding. In general, these are
weighted averages of some function of the recent sliding ve-
locity.

Several researchers have studied the transient behavior of
friction in response to changes in normal load. These include
Hobbs and Brady (1985) and Lockner et al. (1986). All ob-
served that a sudden increase (decrease) in normal load causes
a sudden increase (decrease) in friction and an evolutionary
increase (decrease) in friction to a new steady-state level as
sliding proceeds.

Linker and Dieterich (1992) carried out a detailed investi-

gation using a double-shear apparatus with 5 cm X 5 cm blocks
of westerly granite. They performed tests involving step changes
and pulses in normal load during constant-velocity sliding. A
reference normal stress of 5 MPa and load-point velocity of
1 um/sec were used.
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Fig. 2 Friction response to a step change in normal stress (f, and h,
are used in the stability analysis to follow)

They confirmed the observations that a sudden change in
normal load causes a sudden change in the friction followed
by an evolutionary change. To incorporate the observed effects
into a state variable model, they made the following three
assumptions:

(1) Changes in normal stress, o, result in changes in state, 6.
(2) The changes in shear stress, 7, that result from changes
in o and v can be expressed by the same state variable, 6.

(3) A sudden change in ¢ results in a sudden change in the
state variable. This change is symmetric with respect to in-
creases and decreases in o.

Linker and Dieterich proposed the following model.

T=0 [u*+Aln <vl> +B€]
. v v o .
0=_Z [ln (U_*>+0] —E;(T ¢))

In this equation, u, is the steady state coefficient of friction
at the reference velocity, v,. The parameter « is an empirical
constant and is a measure of the evolutionary component of
the change in friction stress due to a change in normal stress.
This model is used in the analyses which follow.

Since the state variable friction laws were developed to model
interfacial stresses in geologic faults, they are written in terms
of normal stress, o, and friction shear stress, 7. This notation
will be used here for consistency. However, it should be noted
that these are average quantities which refer to the normal and
friction forces divided by apparent area of contact.

Nomenclature

A = parameter expressing de-

pendence of friction on k = spring constant o = evolutionary component
current velocity k., = critical spring constant of steady-state friction
B = parameter expressing de- L = characteristic sliding dis- coefficient
pendence of friction on tance B = frequency of undamped
prior values of velocity m = block mass oscillations at critical
and average normal stress m, = dimensionless block mass stiffness
B; = parameters expressing de- q = perturbation force x = dimensionless spring stiff-
pendence of normal stress T = spring force ness
on perturbation displace- t = time Y = spring angle
ment and its derivatives v = block velocity o = average normal (bearing)
Sy fi = partial derivatives of fric- vy = load-point velocity stress
tion stress with respect to (v, p,) = reference values of veloc- oo = nominal normal stress
velocity and normal stress ity and steady-state fric- o = steady-state normal stress
h, h; = evolutionary components tion coefficient gy = normal stress perturbation
of friction impulse re- X, X = perturbations from steady- 7 = average friction shear
sponse with respect to ve- state displacement and ve- stress )
locity and normal stress locity 6 = friction state variable
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Figures 1 and 2 depict the response of (1) to sudden steps
in sliding velocity, Av, and normal stress, Ao, respectively.
This behavior corresponds to experimental observations. In
Fig. 1, the changes in friction stress denoted by 4 and B
correspond to the velocity step, Av = (e— 1)y, where e =
2.71828... ,

For the case of constant normal stress, Dieterich (1979)
provides a physical interpretation of the state variable. He
proposes that 6 is proportional to the apparent age of the
asperity junctions. When normal stress can vary, Linker and
Dieterich (1992) propose that @ is related to the fraction of the
contact area associated with time-dependent creep.

3 Critical Stiffness

It has been observed experimentally that as the stiffness of
a system is increased, the stick-slip amplitude decreases. It is
often the case that above a certain stiffness, stick-slip motion
changes to quasi-steady sliding (Rabinowicz, 1958; Rice and
Ruina, 1983). It is important to be able to predict this stiffness,
called the critical stiffness, which will ensure stable sliding.
Friction laws which depend only on the current slip rate cannot
be used to predict the critical stiffness since they indicate that
only by applying sufficient damping can stick-slip be elimi-
nated. Models which include frictional lag must be used to
predict steady motion for stiff systems (Armstrong-Hélouvry,
1991; Rice and Ruina, 1983; Dupont, 1994).

Except for Dieterich and Linker (1992), the effect of varying
normal stress and the associated frictional lag on critical stiff-
ness has received little attention. In this section, this stiffness
is derived for a single degree of freedom elastic system for
which normal stress depends on the system state and its de-
rivatives.

The system is represented by a slider attached to a spring
as shown in Fig. 3. The free end of the spring is constrained
to move at velocity, vy, called the load-point velocity.

Let

U(t) =P+ x(t)

In this equation, x can be interpreted as shortening of the
spring from its steady-state length.

Given unit base area, the force exerted by the spring can be
written as

T=74—kx )

where 7 1s the steady-state friction stress.
The equation of motion is therefore

mx=rs—kx—1+q ; 3)
where g is a disturbance force.
In order to analyze the stability of the system, small per-
turbations about the load-point velocity, vy, and steady-state
normal stress, oy, are considered.

<1

v(t) = vo+ X(8), %)

aa(t)

S8

() =05+ 0a(D), <<1 O]

The impulse response.-is. used to represent the linearized
behavior of 7(f) about the equilibrium point (vy,0,). A graph-
ical representation of this appears in Figs. 1 and 2. The stress,
7(f), can be expressed as

t

7(t) = 75(v0,059) + /X () - “So h(t=t)x(t")dt’

 ; t'_.;,_jfzfl&A(r)+S hy(t—t")aa(t")dt" (5)

0
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Fig. 3 Spring-mass model

where 6 is that state variable and all of the following derivatives
are evaluated at the equilibrium point.

>0 ®
’Z;E f- S: h(Hdt <0 Q)
%=f1 >0 ®)
“Z:: fit S: h(H)di = p>0 )

where pg is the steady-state coefficient of friction.
The linearized equation of motion can now be written as
t

mx () +fx () - S h(t—1t)x{t)dt’ +fioa(®)

0
t

+S m(t—1)oa(tdt +kx(t)y=q(t) (10)
0

Taking the Laplace transform of (10) and rearranging terms
gives

(ms*+ (f=h(5)Js+K)R(s) + (i +F(9)}a®)=4()  (11)

In this equation, while x is a system variable and is defined
by (3), o is a dependent variable which must be specified in
terms of the system variables.

A general equation for normal stress expressing a linearized
dependence on acceleration, velocity and displacement, re-
spectively, is given by

Fa(8)=(Bos® + Bis + kB, + B3)%(s) + By (12)

In this expression By and B, express the normal-stress de-
pendence on acceleration and velocity, respectively. The pa-
rameter B, represents a dependence on displacement coupled
through stiffness while B; represents a direct dependence on
displacement. Step changes in normal stress at £ = 0 can be
represented by B,.

For stable sliding, the roots of the characteristic equation
should lie in the left half of the complex plane. Substituting
s= %if into the characteristic equation, we wish to solve for
the critical value of spring stiffness at which the roots of the
characteristic equation pass through the imaginary axis into
the right half plane. For the exponential decays depicted in
Fig. 1 and 2, A(¢) and A;(¢) can be represented by

h(H)=1+Nrfe”", A>0 13)

=0~ Drfie™", \>1 (14

Here 1/r represents the characteristic time of the decay proc-
esses which, according to Dieterich and Linker (1992), is the
same for velocity steps and normal stress steps. Also,

s _\r

v (15)
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=AS1= s (16)

The following equations are obtained by combining (11)-
(14), evaluating at s = i and separating the result into real
and imaginary parts.

— B4 (m+ Bof)) + B*{ — P(m+ B\ f1) + k + f(kB, + By)
+ B\ = Drfi— (L + Nrf) + Pk + fiMkB, + B} =0 (17)
_ (kBy+ B\ = Drfi + P(SA=fiBIM)
BoO\ = Drfi+ (F+ B f)

Substituting (18) into (17) yields a quadratic equation in &
with roots which can be found with some effort. These are

i = 1)Bs—Bir+ By?) + frz + 1)
Bofitu—1)

e (18)

kcrl = 19

and

B ilfiBy+ BAD +frM =N+ )\1"2(’" + By fiM)}
S+ £1B) + rfi(\ — 1)(Bo— mBy) + By B, f

n rfNf+mr) - By(ffi — mrfi(\ — 1) + BoffiMT
S+ £1By) + rfi(\ — 1)(Bo— mBy) + B\B, f1

The first root can be discarded since the corresponding fre-
quency is imaginary.

kcr2 =-

(20)

Bi=-r (2D

Therefore, the required critical stiffness is &,,. For a par-

ticular case, (20) can be simplified and expressed in terms of

the parameters of the state variable model and those of (12).

This will be exemplified through the inclined-spring system
discussed in the rest of the paper.

4 Inclined-Spring Model

Consider a mass of unit base area, pulled by a spring of
stiffness & at an angle ¢ as shown in Fig. 4. This system
illustrates normal stress coupling to displacement through stiff-
ness. For example, the slider of a slider-crank mechanism can
be modeled in this way. Dieterich and Linker (1992) analyzed
this system in connection with fault slip and the triaxial test.
The normal stress, g, is given by

o(f)y= o5+ aa() (22)
where
ga=kxtan y 23)

As before, x represents the shortening of the spring from its
steady-state length. Comparing its Laplace transform with the
general form of normal stress proposed in (12),

Bz=tanx[/ BO=Bl=B3=B4=0 (24)
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Fig. 5 Effect of spring stiffness with y = —«/4

As will be shown in the next section, due to the magnitude of
the velocities under consideration, the inertial forces can some-
times be neglected. The critical stiffness for the resulting quas-
istatic model is obtained from the inertial expression by setting
the mass to zero.

For the state variable law expressed by (1), the critical stiff-

nesses are
os(B~A) <Aass+m>

L Vg L
, dynamic
ker=9 {1+tan Y(us— )} Aa”—a tan ¢ 1%
Uy L
os(B—A) .
L% o) tan 91’ quasistatic
25

Itisinteresting to note that, in the quasistatic case, the critical
stiffness reduces to that of constant normal stress when either
¥ = 0 or ug = «. The latter case occurs when there is no
instantaneous dependence of friction on normal stress.

To validate the results for critical stiffness, the nonlinear
quasistatic and inertial models of the inclined-spring system
were simulated. The dynamic equations are derived in Bapna
(1992). The following parameter values, taken, from Linker
and Dieterich (1992), were used.

A=0.0145, B =0.0160, L=10"%m

00=5X10°N/m?, pe=0.7, a=0.56

Figures 5 shows the effect of stiffness for the quasistatic
model with ¢y = — w/4. The solid line in this figure is the loci
of steady-state points. The case depicted corresponds to a load-
point velocity of vy. The closed trajectory in the figure occurs
for k = k.. The system in unstable for k< k. and stable for
k>k,,.

To examine the effect of spring angle on system perform-

ance, a single value of stiffness, k> k. (= — x/4) is used in
Fig. 6. Negative spring angles cause the system to converge
more rapidly to the equilibrium point. The critical stiffness is,
however, smallest for positive spring angles.

4.1 Lock-up Condition.

For the quasistatic case of the inclined-spring system, (18)
and (25) yield

2
p-8=4 (_qg> ( 1+ g tan ) 26)

A L 1+ (uss— ) tan
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This expression is positive for §>0, i.e., when the spring is
pulling the block out of the surface. It can only be negative
when (1 + (pgs — @) tan ¥) >0 and (1 +p tan ¥)<0. The latter
inequality, which also applies to the inertial model, corre-
sponds to a spring angle within the friction cone defined by
pss- A necessary condition for steady motion is that the hor-
izontal component of the spring force be at least as large as
the steady-state friction stress that the spring generates. This
condition can be expressed as

¥> —cot™ (i) @n
4.2 Quasistatic Approximation. Some insight about the
range of masses for which the quasistatic model provides a
close approximation of system behavior can be obtained by
considering the critical stiffness. The dimensionless critical
stiffness, ko= korL/ 055, for the inertial system is given by

B (B—A)A +m,)
Kor= A1 + tan Pluss— )] — tan Yo

28

where dimensionless mass is given by m, =mvd/oL.
The critical stiffnesses of the quasistatic and inertial models
are nearly equal for

m,<<A=0.0145 29
Simulation was used to verify this condition. The approx-
imation is best when the spring is pulling the block into the
surface.
The actual mass, m, expressed in terms of the dimensionless

mass, m,, is

m= m *(72ssL
Up

From this expression, it is clear that even m, = 0.001 rep-
resents a large mass when considering moderate normal stresses
and low velocities. Thus, even with relatively large masses, the
quasistatic model may be a good approximation when consid-
ering perturbations about the equilibrium point.

4.3 Inertial Effects. As seen in Fig. 7, the effect of mass
is to increase the critical stiffness and thus, to destabilize the
system.

For the quasistatic case, the effect of increasing the spring
angle, ¥, was to decrease the critical stiffness. Figure 7 shows,
however, that after certain value of mass, labeled M4, this
effect is reversed. This critical mass, at which &, is independent
of ¢, is given by

Alpss— @)

o

For this choice of parameters, M« = 0.0036 = 0.254. Since
0< < pgs, it follows that 0= My =< + . This indicates that
the quasistatic model must be used with caution. For large o/
pss» the reversal of k,’s dependence on spring angle occurs for
small m,. Even though the quasistatic criterion might be met,
any comparisons based on spring angle using the quasistatic
model could be invalid.

As seen in Fig. 7, the critical stiffness, (28), possesses a
singularity for positive spring angles. At this point, labeled
Mycr2s 85 becomes negative. For positive spring angles, no finite
stiffness can stabilize the system for m,=muc. Note that

(30

Mycer1 =

0‘006)| Mcra™> Mucry-
A[l + By(pss — )] A
00041 Mycr2= ‘ 2 =Mycr1+ (31
. aB; o tan ¥
ooz + The effect of increasing the spring angle is to decrease Macn-
T Tss T For a given m, > M, @ maximum spring angle exists above
Oss which the system is unstable. This situation does not corre-
spond to the block losing contact with the surface since the
normal stress is given by
-0.002 1
g=04(1 +xx/L tan ¥) 32)
-0.004 + : + + Clearly, loss of contact can occur for any spring angle given
05 032 ot 04 07

In(v/v)

Fig.6 Comparison of trajectories for various y with fixed k>kedy = —
=l4)

K y=m/4
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appropriate initial conditions. Note that both critical masses
approach infinity as o goes to zero. Thus, their effects will
only be seen in systems for which friction lag changes in normal
stress.
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Fig. 7 Critical stiffness, x., as a function of dimensionless mass, m,
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5 Conclusions

Experimental observations indicate that frictional stress re-
sponds to changes in normal stress with both instantaneous
and evolutionary components. Since normal stress is not con-
stant during the motion of most systems, but rather is a func-
tion of system state, it is important to gain an understanding
of its effect and importance.

In this paper, the stability of a system with a single me-
chanical degree of freedom was studied subject to a state vari-
able friction law proposed by Linker and Dieterich (1992).
While this law is based on certain assumptions which may not
hold for all systems, it is perhaps the simplest law to incorporate
all effects relating to history dependence and may provide a
qualitative indication of the behavior of more general friction
laws.

An expression for the critical stiffness of the linearized model
was derived for constant load-point velocity and normal stress
dependent on slip displacement, velocity and acceleration. This
general expression for normal stress covers a large class of
systems and provides a lower bound on the combined machine/
controller stiffness for stable motion.

The inclined-spring model was used as an example of a
system for which normal stress is coupled through system stiff-
ness to displacement. Two constraints on system mass were
identified which indicate when the quasistatic model can be
expected to provide a good approximation of the inertial sys-
tem. When these constraints are met, the critical stiffness is
smaller for positive spring angles (¥ >0) than for negative
angles. However, systems with positive spring angles exhibit
less damping when perturbed from steady sliding.

It was also shown that, for steady sliding, there exist both
upper and lower bounds on spring angle. For negative spring
angles, the bound is the same for the quasistatic and inertial
models and is the lock-up condition associated with the steady-
state friction cone. For positive spring angles, a new type of
bound was identified which is observed only for systems of
sufficient mass and only when friction depends on normal
stress history.

This analysis indicates that it is important to take the effect
of varying normal stress into account. The value of system
stiffness necessary to maintain stable sliding motion can de-
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pend quite significantly on normal stress and its coupling to
system state. The normal stress can produce either a stabilizing
or destabilizing effect on the system depending on the coupling
and system parameters. These results may be important for
machine design and control.

References

Anderson, J., and Ferri, A., 1990, ‘‘Behavior of a Single-Degree-of-Freedom
System with a Generalized Friction Law,’’ Journal of Sound and Vibration,
Vol. 140, No. 2, pp. 287-304.

Armstrong-Hélouvry, B., 1991, Control of Machines with Friction, Kluwer
Academic Press, Norwell, MA.

Bapna, D., 1992, ““The Stability of Sliding Systems with Friction Subject to
Varying Normal Stress,”” M.S. Thesis, Aerospace and Mechanical Engineering,
Boston University:

Bindemann, A., and Ferri, A., 1992, ‘“‘Characteristics of Passive Damping in
Built-up Structures,” Friction-Induced Vibration, Chatter, Squeal and Chaos,
ASME Winter Annual Meeting, Anaheim, CA, DE-Vol. 49, pp. 173-182.

Dieterich, J., 1979, “Modeling of Rock Friction: 1. Experimental Results and
Constitutive Equations,”’ Journal of Geophysical Research, Vol. 84, pp. 2161~
2168.

Dieterich, J., 1991, ““Micro-mechanics of Slip Instabilities with Rate- and
State-dependent Friction,”” (Abstract), Eos, Trans. Am. Geophys. Union, Fall
Meeting Abstract Volume, p. 324.

Dieterich, J., and Linker, M. F., 1992, ‘““Fault Stability Under Conditions of
Variable Normal Stress,”” Geophysical Research Letters, Vol. 19, No. 16, pp.
1691-1694.

Dupont, P., 1994, ‘‘Avoiding Stick-slip Through PD Control,”” IEEE Trans-
actions on Automatic Control, May.

Dupont, P., and Dunlap, E., 1993, ‘‘Friction Modeling and Control in Bound-
ary Lubrication,” Proc. 1993 American Control Conference, San Francisco,
CA, June, pp. 1910-1914.

Gu, J., Rice, J., Ruina, A., and Tse, S., 1984, ‘‘Slip Motion and Stability
of a Single Degree of Freedom Elastic System with Rate and State Dependent
Friction,” J. Mech. Phys. Solids, Vol. 32, No. 3, pp. 167-96.

Hobbs, B., and Brady, B., 1985, ‘‘Normal Stress Changes and the Constitutive
Law for Rock Friction,” (abstract), Eos Trans. AGU, Vol. 66, p. 382.

Linker, M., and Dieterich, J., 1992, ‘‘Effects of Variable Normal Stress on
Rock Friction: Observations and Constitutive Equations,”” Journal of Geo-
physical Research, Vol. 97(B4), April, pp. 4923-4940.

Lockner, D., Summer, R., and Byerlee, J., 1986, ‘Effects of Temperature
and Sliding Rate on Frictional Strength of Granite,”” Pure Appl. Geophys., Vol.
124, pp. 445-485.

Rabinowicz, E., 1958, ““The Intrinsic Variables Affecting the Stick-slip Proc-
ess,”” Proc. Phys. Soc. London, Vol. 71, pp. 668-675.

Rice, J., and Ruina, A., 1983, ¢“Stability of Steady Frictional Slipping,”’
ASME Journal of Applied Mechanics, Vol. 50, June, pp. 343-349.

Ruina, A., 1983, “‘Slip Instability and State Variable Laws,” Journal of
Geophysical Research, Vol. 88, December, pp. 10359-10370.

Transactions of the ASME




