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Abstract

This article discusses the numerical solution of the forward
dynamic equations of an n-degree-of-freedom manipulator

with friction. Also discussed are the modeling and experimen-
tal identification of friction. It is shown that the inclusion of
Coulomb-type friction in the dynamic equations introduces two
difficulties in the forward dynamic solution. The differential
equations are shown 1o be discontinuous in the highest-order
derivative terms. In addition, the load dependency of this type
of friction typically causes the equations to be implicit in the
joint accelerations. For the important case of load-dependent
transmission friction, the equations can be explicit. Techniques
for the forward solution are described through the example of a
roller screw tr ission. Experimental and simulation results
are used to show the importance of load-dependent friction in a
particular robot.

1. Introduction

While often neglected because it is difficult to model and
poorly understood, friction is present to some degree in
all mechanical systems. In robots, it can consume a major
portion of the applied torque. For the robot discussed in
this article, friction can represent one third of the motor
torque.

The effect of friction on robot performance is well
known. The static-kinetic friction transition near zero ve-
locity causes stick-slip behavior that limits the fidelity of
position and force control. In addition, the load and ve-
locity dependence of friction degrade the tracking ability
of simple controllers. As performance criteria are made
more stringent and payload-to-arm mass ratios increase,
friction becomes increasingly difficult to ignore.

A better understanding of friction phenomena is crucial
to understanding and improving robot performance. In-
corporating friction models into robot dynamic simulation
provides a means to study these issues. For example, sim-
ulation models can be a useful tool for robot evaluation
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as well as for mechanism and controller design. In addi-
tion, simulation is becoming increasingly important for
planning and verifying remote manipulation tasks.

A significant amount of literature exists on the topic
of simulating mechanical systems without friction.

An important example is Walker and Orin (1982). The
simulation of friction has also received attention. The fol-
lowing paragraphs describe how this work has addressed
the issues of friction discontinuity and normal-force de-
pendence.

Discontinuous equations are more difficult to inte-
grate numerically than continuous equations. They can
require more complicated algorithms, shorter time steps,
and more iterations during each time step. As a result,
researchers have proposed continuous approximations to
discontinuous friction behavior. If the model is also made
state dependent, the problem of normal-force dependence
is avoided, too. For example, Luh et al. (1980) represent
friction as a continuous viscous damping term.,

A more general approach is to replace the discontinuity
of the static-kinetic model in Figure 14 by a curve of
finite slope (Threlfall 1978; Haessig and Friedland 1990).
If the slope is large, small step sizes are needed, and the
numerical integration remains slow. In addition, the model
does not provide a true stiction mode. The system creeps
through zero velocity instead of sticking.

Several techniques have been proposed to include stic-
tion while minimizing the effect of the discontinuity on
the integration. Karnopp’s (1985) model imposes stiction
in a small neighborhood of zero velocity. This model al-
lows discontinuity of static to kinetic friction force at the
neighborhood boundary. A second approach is based on
experimental observations that, near zero velocity, friction
is a continuous function of displacement (Threlfail 1978;
Haessig and Friedland 1990). If very small displacements
are to be accurately simulated, these position-dependent
models could be more accurate than a velocity-dependent
one.

Several authors have addressed the dependence of fric-
tion on normal loads (reaction forces) in the context of
digital simulations. Threlfall (1978) proposes a predictor-
corrector method that uses the reaction forces from the
previous seven time steps to predict the new values. Al-
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Fig. 1. Friction force versus velocity. A, Static-kinetic
model. B, Complex model.

though usually no more than two iterations are needed,
friction increases simulation time by a factor of two or
three. In a similar fashion, Morgowicz (1988) uses a
Newton-Euler algorithm to compute the normal forces for
the preceding time step, which are used as a prediction
of the current values. He also obtained convergence in at
most two iterations.

A hybrid computer scheme is employed in Gogous-
sis and Donath (1990b) to avoid an iterative solution.
These authors have also studied the dependence of nor-
mal forces on joint accelerations. Gogoussis and Donath
(1987) show that frictional normal force is linearly depen-
dent on joint accelerations. In a second article (Gogoussis
and Donath 1988), they show that the friction terms in-
volving normal force will appear as expressions involving
absolute values or the square root of sums of squares of
joint accelerations.

The remainder of this article is arranged as follows.
Section 2 discusses friction modeling. In Section 3, two
important points are made. First, the inclusion of dis-
continuous friction models in the manipulator dynamic
equations can cause the joint accelerations to be discon-
tinuous. Second, the inclusion of load-dependent friction

models in the manipulator dynamic equations can cause
the equations to be implicit in the joint accelerations.
Simple examples are used to illuminate these concepts.
Switching functions are described as a simple technique
for integrating discontinuous ordinary differential equa-
tions. Solution existence and uniqueness are discussed
as well.

The special case of load-dependent friction and stic-
tion in transmission elements is discussed in Section 4.
It is shown that the manipulator dynamic equations can
be explicit in the joint accelerations. In the worst case,
the accelerations can be computed in a fixed number of -
iterations. The explicitness of transmission friction is pre-
sented in the context of a screw drive. The importance of
load-dependent friction is considered through the exam-
ple of the roller screw transmissions in the Field Materiel
Handling Robot (FMR). Settion 5 describes the effects
of combining transmission friction with other sources
of friction at a joint. Section 6 discusses the experimen-
tal identification of the FMR’s friction parameters and
provides a qualitative comparison with robot friction be-
havior previously reported in the literature, Section 7
presents a summary and conclusions.

2. Friction Modeling'

Friction is present in power transmission elements such
as gears and screws as well as in bearings, seals, hy-
draulic components, and electric motors. Friction behavior
in each of these is a complex phenomenon. For exam-
ple, friction in rolling-element bearings is a function of
bearing size, type, and design. Additional factors include
speed, load type, and magnitude as well as lubricant vis-
cosity and flow (Szeri 1980). While friction can be a
function of many variables, in some important cases,

it has been shown to be highly repeatable (Armstrong-
Hélouvry 1991; Canudas De Wit et al. 1991). Thus
friction modeling and parameter identification are not
unattainable goals.

Some researchers and manufacturers have developed
theoretical or empirical friction models for machine el-
ements and complete systems, as well as typical values
of the model parameters. These parameter values pro-
vide only rough estimates of the behavior in a particular
system. While it may be possible to use them to identify
the dominant sources of friction in a system, the actual
parameter values should be identified by experiment.

Because of the complexity of friction models in indi-
vidual components, robotics researchers typically consider
an aggregate friction model for each robot joint. This can

1. Portions of this section have been reprinted with permission from Proc.
1990 IEEE Int. Conf. Robotics and Automation, Cincinnati, May, 1990,
pp. 1370-1376. (€)1990 IEEE.
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be as simple as the static-kinetic friction model shown in
Figure 1A or as detailed as that shown in Figure 1B.

The limited experimental modeling work in the litera-
ture suggests that Figure 1B is more appropriate. Friction
decreases with increasing velocity in region A of Figure
1B. The negative slope makes stable control in this region
very difficult. For moderate velocities, friction is reported
to increase smoothly with velocity. In this region, labeled
B in Figure 1B, friction can be thought of as a combina-
tion of Coulomb and viscous friction. The shape of this
curve is attributed to the transitions between lubrication
regimes as velocity is increased (Armstrong-Hélouvry
1991). :

It should be noted that Figure 1B represents steady
sliding behavior. In addition to depending on current
velocity, friction depends on the past history of motion.
(See, for example, Ruina [1983]; Hess and Soom [1990];
Dupont [1991]). If one is interested in predicting the
stability of low-velocity motion in the stick-slip regime,
this behavior should be included in the friction model.

If the trajectories of interest pass quickly through the
negatively sloped region of Figure 1B, transient friction
behavior can be ignored, since its time scale is short
compared with that of the rest of the system.

A second caveat on the models in Figure 1 is that, at
velocity reversals, friction may be more appropriately
modeled as a continuous function of displacement. This
can be interpreted as the straining and eventual rupture
of many small bonded contacts between the two sliding
or rolling surfaces. The hysteresis models of ball bear-
ings obtained by Dahl (1977) and Walrath (1984) are
representative. The transition displacement from static to
kinetic friction is on the order of 1 to 10 um (Armstrong-
Hélouvry 1991). It can be an important aspect of the
friction model for high-precision tasks such as those of
pointing and tracking mechanisms.

By considering the standard Coulomb friction equa-
tion, we can gain insight into the computational issues
involved in simulating a broad class of friction models.
Independent of the area of contact, the Coulomb friction
force always opposes relative motion and is proportional
to the normal force of contact (Adamson 1982). This
force can be expressed as

Fe = p|Fn|sgn(vr), m

where p is the coefficient of friction, Fyy is the normal
force, and v, is the relative velocity. The signum function
is defined as

+1, z>0
sgn(w)={ 0, z=0 )]
-1, <0

Because of its dependence on the sign of velocity, the
friction force is discontinuous at zero velocity. This
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indicates that the governing differential equations are
discontinuous in the highest-order derivative terms.

In addition, the normal forces in robot components
depend not only on joint positions and velocities, but
also on accelerations. The significance of this normal-
force dependence has not been thoroughly studied. Some
experiments have shown that friction is independent of
normal force (Armstrong-Hélouvry 1991; Canudas De
Wit et al. 1991). Our analysis indicates that it is impor-
tant in certain transmission elements. Its importance in
bearing friction is unclear. If present, it will most likely
be apparent for heavy payloads or at high velocities and
accelerations when dynamic loading is greatest.

3. Robot Dynamics With Friction

The rigid-body dynamic equation including friction for an
open-kinematic-chain robot is of the form

T = D(g)d + Mg, P + f(a,4,9)- 3)

The vectors of joint displacements and actuator torques
are ¢ and T, respectively. Their‘dimension equals

the number of degrees of freedom of the robot. The
configuration-dependent inertia matrix is denoted by D.
It is both symmetric and positive definite. The vector h
consists of centrifugal, Coriolis, and gravity terms. The
vector f includes all friction terms and is a function of
joint positions, velocities, and accelerations.

The inverse dynamics problem is to solve for the joint
torques or forces given the joint positions, velocities,
and accelerations. Efficient solution of this problem is
necessary for model-based control. Regardless of the
friction model used, inclusion of the frictional term does
not substantially increase the difficulty of the problem if
the Newton-Euler recursive equations are employed. In
this method, the velocities and accelerations of the links
are successively computed from the base -outward. Using
these quantities, the forces and moments at the joints are
computed from the distal link inward. Consequently, the
reaction forces and moments are readily available for use
in computing the frictional torques.

The forward dynamics problem is to solve for the joint
positions, velocities, and accelerations given the input
torques or forces and the initial conditions. This is the -
problem to be solved for simulation. At each time step,
the known joint torques, positions, and velocities are used
to compute the joint accelerations. In the absence of fric-
tion, a solution of the type described in Walker and Orin
(1982) involves solving a set of linear algebraic equations
for the accelerations. Given the special properties of the
mass matrix, this can be done efficiently. For example,
the Cholesky decomposition method takes advantage of
the matrix’s symmetry and positive definiteness (Rice
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Fig. 2. X-Y positioning system.

1983). Using the values of acceleration and velocity, nu-
merical integration yields the velocity and position at the
next time step.

In contrast to the inverse problem, friction can sig-
nificantly increase the difficulty of solving the forward
dynamic problem. Because the resultant forces between
the links vary with the positions, velocities, and acceler-
ations of all the joints, the Coulomb-type friction term,
f(q,4, ) in (3), is discontinuous. The left side of (3),
7(t), can be arbitrarily specified. Clearly, if 7(¢) is cho-
sen as a continuous function, the right side must also be
continuous indicating that § can be discontinuous. Fur-
thermore, the form of f(q, ¢, §) typically prevents (3)
from being solved explicitly for §.

3.1. Example 1. Discontinuities in the Forward
Solution: X-Y Positioning System

Let us investigate the discontinuity with respect to the
highest order derivatives by considering the X-Y Posi-
tioning System pictured in Figure 2. While this system
employs prismatic joints, the results showing disconti-
nuities in acceleration caused by friction also hold for
revolute joints. The equations are more complicated for
revolute joints, however, since friction would be velocity-
as well as acceleration-dependent.

Referring to Figure 2, mass m; moves in the z-
direction within the slot in mass m,, and m, moves in
the y-direction within the square frame. The forces Fj
and F> are applied to the masses as shown. For the sake
of simplicity, gravity is not included in this analysis. First
consider the frictionless case. Summing forces in the z
and y directions, one can obtain the dynamic equation

below:
F my 0 i
= . 4
[Fz} [0 (m1+m2)} [y] @
Now let us include a Coulomb-friction force between

my and m, dependent on the normal force of contact. We
can express this force as

Fy = p|Fy|sgn(@). ®

The discontinuity in this expression is due to the term
sgn(x). With friction, the dynamic equations become

Fi|_|m 0 & pmasgn(a)|g|
[Fz]_[o (ml+m2)][ﬁ]+[ 0 - ©
Notice that the discontinuity does indeed affect the accel-
eration. In addition to showing a dependence on sgn(z),

" the equation also depends on sgn({). In this case, how-

ever, sgn(F>) = sgn(§j). For this reason and (as explained
in Section 3.2) because the direction of Fly is fixed in a
local coordinate frame attached to m,, (6) is explicit in
the accelerations.

As an illustration of the discontinuity and load depen-
dence of Coulomb friction, the behavior of m; has been
simulated using the parameter values listed below.

=10 F; =8sin(24t) u=0.3

my =30 F, = 50c0s(0.8%)

Figure 3 shows the time history of m;. Notice that the
discontinuities in acceleration occur when the velocity
changes sign. The magnitude of the acceleration always
decreases across a discontinuity. Also note that the mag-
nitude of a discontinuity corresponds to the magnitude of
|Fy| at that point. At the velocity zero crossings close to
t =2 and t = 6, |Fy| is near zero, and the corresponding
discontinuities in acceleration are small.

" Friction also affects the overall magnitude of the accel-
eration curve. When the velocity and acceleration are of
the same sign, friction acts against the applied force, and
the magnitude of the acceleration is smaller with friction
than without it. When the velocity and acceleration are
of opposite sign, friction acts in the same direction as
the applied force, and the acceleration with friction is of
greater magnitude.

3.1.1. Numerical Integration of Discontinuous O.D.E.s

When integrating discontinuous ordinary differential equa-
tions, care must be taken to use the correct value of the
derivative on each side of a discontinuity. Unfortunately,
discontinuities generally occur inside an integration subin-
terval. A standard technique is to employ switching func-
tions that flag the presence of a discontinuity in the last
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Fig. 3. Simulated time history of mass 1 with friction.
Position is measured relative to a local frame centered in
mass 2.

subinterval. For the initial value problem,

&= f(z,1),

z(0) = o,

a switching function, ¢(x,1), is defined such that

¢(xz,t) = 0 when f(z,t) is discontinuous and

Ty tn) » O(Ent1,tnt1) < O implies a discontinuity
in the subinterval z, < < z,4; (Fatunla 1988). For a
velocity zero crossing, sgn(q) is such a function.

In addition to detecting a discontinuity, the integrator
must also provide a mechanism for locating the point of
discontinuity within the subinterval. Integration up to the
point of discontinuity is then repeated. The integration
routine is then restarted from the discontinuity using the
appropriate derivative value. Initially, small steps should
be taken to accurately capture any transients that follow
the discontinuity. If the friction model includes stiction
(static friction), the integrator must also include tests to
detect when sticking occurs. This is discussed in Sections
4.2 and 4.3.

Variable-step-size, variable-order methods are appro-
priate for integrating discontinuous equations. The plots
appearing in Figure 3 were obtained using a method of
this type. For synchronization purposes in real-time sim-
ulation and control, however, Morgowicz (1988) suggests
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the use of fixed-step-size methods. By choosing the con-
troller period as a multiple of the fixed step size, the
simulated robot state is available at controller sampling
times.

To locate discontinuities occurring during the previous
subinterval, Morgowicz uses linear interpolation. Approx-
imate values of the state derivatives on both sides of the
discontinuity are computed. They are used to reintegrate
the subinterval in one step. Unless very fine motions are
under consideration, simplifications of this type can give
quite adequate simulation results. The time saved in sim-
ulating a given trajectory will depend on the number of
velocity zero crossings involved.

3.2. Implicitness of the Forward Solution

In general, the inclusion of load-dependent Coulomb or
static friction in the robot dynamic equations renders
them implicit in the joint accelerations. The forward solu-
tion requires an iterative root-finding procedure (such as a
modified Newton method) at each step of the jntegration
to compute the accelerations. A hybrid-computer alter-
native to iteration is described in Gogoussis and Donath
(1990b).

The cause of the implicitness is the dependence of fric-
tion on the magnitude of the normal force. The normal
force itself is a function of the resultant force and mo-
ment at the joint. Expressed in a local coordinate frame,
the components of the resultant force and moment can
be formulated in terms of the joint positions, velocities,
and accelerations. Just as with the net input forces or
torques (7 — f in (3)), these components will be affine
transformations of the accelerations.

If the direction of the normal force happens to be
constant in the local frame, the normal force can be
expressed as a function in which the net force and mo-
ment components appear linearly. This is true for friction
in translational joints such as the X-Y positioning system
described in the previous section and for axially loaded
bearings when the axial load can be considered inde-
pendently of radial load. Because the sign of the normal
force can change, its absolute value must be used to ob-
tain its magnitude.

When the direction of the normal force is not con-
stant in a local joint coordinate frame, the magnitude of
the normal force will involve the square root of sums of
squares of net force and moment components. As an ex-
ample, consider a radially loaded joint bearing. The load
can take on any direction between zero and 27 radians. In
the planar case, for a local frame attached to the bearing
with z as the bearing axis, the magnitude of the normal

force is
Fnormal:\/Fzz"'Fyzv (7)

The International Journal of Robotics Research



where F}; and F are the z and y components of the
bearing reaction: force. In three dimensions, there are
multiple bearings at'a joint, and one must consider joint
geomietry and reaction torques as well as reaction forces
(Gogoussis and Donath 1988).

We see from the preceding paragraphs that Coulomb
friction involves the absolute value or square root of sums
of squares of acceleration-dependent terms. Substituting
either type of expression inte the original dynamic equa-
tion destroys its affine properties, rendering it implicit in
the accelerations. Consequently, it is necessary to itera-
tively solve for joint accelerations at each time step of a
simulation.

For this reason, simulation of load-dependent friction
terms appears to be very time consuming. This is not
necessarily the case. For small friction coefficients, the
zero-friction accelerations can be used to start the it-
erative process. Even better, Morgowicz (1988) claims
convergence in two itérations using as initial values the
normal force magnitudes from the preceding time step.
The cost of implicitness is significant, however. Using
two iterations effectively requires two forward solutions
in addition to solving the inverse problem once for those
force and torque components needed to-compute the nor-
mal forces.

3.2.1. Implicitness Resulting From Absolute Value

For those cases in which the magnitude involves only

an absolute value, it is sometimes possible to avoid an
iterative solution. This is an important case, because

it applies to transmission elements that, when present,

often dominate machine friction. The various cases are
discussed below.

In the most restrictive case, if it can be shown that the
sign of the normal force does not change for all allowed
trajectories of the mechanism, the absolute value can
be dropped. This is the case for the screw transmissions
of the robot discussed in Section 4.3. The combination
of gravity preloading and trajectory constraints ensures
normal forces of constant sign.

A less restrictive case corresponds to the normal force
being continuous when passing through zero. If the initial
sign of the normal force is known (for instarice, starting
from rest, § = 0), the absolute value can be dropped-
and a switching function that depends on. the sign of
the normal force, Fiy, can be adjoined to the original
equations. The function, sgn(F), can-be used as' the
switching function. The resulting equations are explicit.

This is not the most general case, as normal forces can
depend on the discontinuous joint accelerations. To prove
the continuity of a normal force at its zero crossings,
it would be sufficient to show that all-friction-induced
discontinuities in normal force preserve its sign. Although

this may be true of many practical manipulators and
trajectories, it may be difficult to prove. In addition, if
the input torque, 7, is allowed to be discontinuous, it
would also be necessary to show that the sign of the
normal force is preserved for these discontinuities as well.

In the most general case, normal forces can change
sign because of friction-induced discontinuities. A: general
solution technique follows. It can be adapted to handle
input torque discontinuities as well.

As long as the joint velocities are of constant sign or
remain zero, the normal forces dre continuous functions,
and"their signs can be tracked with switching functions.
Whenever a frictional discontinuity (i.e, a velocity zero
crossing) occurs, the signs of the normal forces may
change, and an implicit solution technique is in order. To
investigate the solution of these equations, let us reformu-
late (3) using a Coulomb friction model:

7= D(@)§+ Mg, D + f(g, 4, @), ®)
f(g,4,9) = MA@ + blg, |- ©

Here M is a diagonal matrix with diagonal elements

nisgn(g;), and w; is the coefficient of friction associated

with joint . The system of equations can be more simply

stated by replacing the unknown, §, by z:
Az + Diag[p;]|Cz + d| = b, (10)

in which A, C, b and d are known constants and | - |

denotes vector absolute value, not norm. The solution

set consists of all intersection points of the constraint’

equations.

For 11; = 0, the equations simplify to

Az =b. (11)
Each constraint equation describes a hyperplane in the
space of joint accelerations, and there is always a unique:
solution, since A corresponds to the inertia matrix that is
invertible.

For p; > 0 and n joints, the constraints are V-shaped,
(n — 1)-dimensional half-hyperplanes. Their intersection
may consist of multiple points in acceleration space. All
solutions are consistent with the:equations and represent

“ the dissipation of energy by friction. The existence and

uniqueness issues associated with Coulomb friction' be-
tween rigid bodies have been studied in Lotstedt (1981),
Rajan et al. (1987), Mason and Wang (1988), and Dupont
(1992a,b). Ini the context of 4 single friction contact, these
articles all demonstrate that for a sufficiently high friction
coefficient, there may be no consistent solution or several.
Dupont (1992a) shows that a single degree of freedom

is sufficient to exhibit these problems and that the num-
ber of cotisistent solutions depends on the value of input
force or torque. Mason and ‘Wang (1988) address the case
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of no consistent solution and model it as an impact with
zero approach velocity: Dupont (1992b) addresses the
case of multiple dynamic solutions and shows that for a
system of finite stiffness, the extra dynamic solution is
unstable. In summary, the existence and uniqueness prob-
lems associated with friction of the form of (9) are due to
the rigid-body assumption.

For most cases of interest involving low-friction mech-
anisms, the Vs are nearly hyperplanar and their intersec-
tion consists of a single point. As suggested by Gogoussis
and Donath (1990a), this solution can be found by a
two-step iterative process. The signs of the terms in
absolute values are hypothesized and a trial solution is
obtained based on the hypothesis. The trial solution is
then checked for consistency with the hypothesized signs
of the absolute-value terms. In a maximum of 2" iter-
ations, the unique solution can be found. To minimize
the number of iterations, the hypothesized signs can be
taken as those of the previous time step or as those of the
frictionless solution.

In summary, if sgn(A(g)d + b(g, ¢)), the vector of
normal force signs, is known, the equations can be solved
explicitly using switching functions. When a velocity
zero crossing occurs, (ie., ¢ # 0 — ¢ = 0or ¢ =
0 — ¢ # 0), the two-step iterative process can be
used. This involves repeatedly hypothesizing the vector
sgn(A(q)d + b(g, ¢)) and solving for ¢ until a consistent
solution is found. This technique is used in the discussion
of transmission friction that follows.

4, Friction in Transmission Elements

Transmission components such as gears, screws, and
harmonic drives are often used to convert high-speed,
low-torque motor output to low-speed, high-torque joint
motion. In these devices, not only is the direction of the
frictional normal force fixed in the local coordinate frame,
but also the force can be represented by a function in
which the input torque, output torque, and rotor-inertia
torque appear linearly: These torques are all present in the
frictionless dynamic equations. Thus, no additional force
or moment components need be computed.

A direct relationship exists between the effective input
torque and the output torque (or force) and can be repre-
sented as an efficiency. The expression for the efficiency
can replace the friction torque in the dynamic equations.
In the following sections, the nature of these equations is
examined in the context of a screw drive.

4.1. Example 2. Screw Drives: The Scalar Case

Screws are used to convert angular motion into linear
motion. Typically, the screw rotates with the motor. The
load is attached to the nut, which translates as the screw
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rotates. The losses in a screw transmission are due to

the sliding motion between the screw and nut threads.

A force analysis of the screw and nut can be found in
many mechanical design texts (Spotts 1985). Whereas the
output is a force, F, an output torque, 7, can be computed
as the product

T=I1F, (12)

where the screw lead, [, is defined here as the distance
the nut advances as the screw rotates through one radian.
The efficiency is the ratio of output to input torques and
is a function of thread geometry and the coefficient of
friction between the screw and nut.

Before discussing screws in the context of robot dy-
namics, consider the simple system in Figure 4 for raising
and lowering a mass, m. Summing torques on the screw,
we get

13)

The term, 7,, is the applied motor torque. The terms on
the right side of this equation correspond to the screw
inertial torque, the load (output) torque, and the friction
torque. The displacement of the screw is given by g. The
screw lead, [, relates the linear displacement of the mass,
y, with ¢. The load torque is comprised of inertial and
gravity components and is given by '

Ta = Joz§ + 7 + 75

71 = (ml§ + mg)l. (14)
The friction torque, ¢, can be eliminated from the
torque equation by introducing the efficiency, 7.
n=2, (15)
Tin
Tin = Tag — Jzzq (16)

There are two expressions of efficiency, 7; and 7, for
the cases of driving and backdriving the screw. These
correspond to friction acting against and with 7, respec-
tively. In the constant velocity case, they also correspond
to raising and lowering the load.

3 { m < 1, sgn(n)=sgn(y), Driving )

B 7, > 1, sgn(r) = —sgn(y), Backdriving

Using the screw efficiency, the torque equation reduces to

n(Ta - Jzzq) =T. (18)

Selection of the appropriate value of 7 requires the
signs of both the velocity and the load torque. The sign
of the load torque corresponds to the sign of the nor-
mal force of friction. For this scalar equation, it can be
shown that a sufficient condition for solution existence
and uniqueness is that the screw be of the low-friction
overhauling type (Dupont 1992a). In the context of Fig-
ure 4, a positive torque would have to be applied to an
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Fig. 4. Screw drive for positioning mass, m.

overhauling screw for the mass to descend with gravity at
constant velocity. .

The velocity and load torque must be included in the
switching function used to integrate this equation. A ve-
locity zero crossing would indicate the presence of a
discontinuity in ¢ during the preceding integration subin-
terval. A load-torque zero crossing indicates a change in
the slope of § during the subinterval. Note that friction
models expressing 77 as a function of such variables as
position and velocity would not affect the solution proce-
dure.

Notice how the screw inertial torque is not included as
part of the load torque in (14). Motor rotor inertia should
be treated in the same way. Because J,, is typically small
compared to the load torque, it is reasonable to ques- .
tion the importance of isolating it from the load torque.
However, note that the screw lead, [ < 1, amplifies the
rotational screw inertia by the factor 1/1%.

The system in Figure 4 was simulated with the fol-
lowing parameter values chosen to clearly illustrate the
dependence of acceleration on the signs of both velocity
and load torque:

Tin = 750 sin(4%)

mi? =50
Lz =5 9= 0
71 = .663 72 =191

The simulation plots appear in Figure 5. The disconti-
nuities in the acceleration, §, at velocity zero crossings
are apparent. In-addition, a change in the slope of § oc-
curs at load-torque zero crossings. Because gravity was
taken to be zero, the load torque and the acceleration pass

o y ~
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- AN 7 X, 7
250 N7 AN 7
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Fig. 5. Simulated time history of screw.

through zero simultaneously. One might suspect that if
this were not the case, load-torque zero crossings would
also cause discontinuities. However, examination of the
equations shows that, irrespective of the value of g, zero
crossings of 7; cause discontinuities in jerk, g, but not in
acceleration.

4.2. Transmission Stiction

Up to this point, friction at zero velocity has been ne-
glected. Equation (18) is really only valid for nonzero
velocities. A simple static friction model will be used to
outline the forward dynamic solution of sticking joints.
At zero velocity, the static friction force assumes the
magnitude and direction necessary to prevent motion. Its
maximum magnitude is, in most cases, greater than or
equal to the Coulomb value. Static values of the efficien-
cies.can be computed using static friction coefficients.

Ms S m < 17
19
Ms = M2 > 1 (19
Consider when the screw is stuck because of friction.
Both ¢ and § are zero. For the given value of load torque
(1; = mgl), there exists a band of applied torques for
which no motion will ensue. This dead band is defined by
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and is pictured on the ordinate axis in Figure 6 for 7; >
0. Escape from static friction will occur when 7, moves
outside of this dead band. The direction of motion is
determined by which inequality is violated. The screws
used in robotic applications are overhauling in both the
dynamic and static cases. This means that if the applied
torque in Figure 4 is zero, the mass will descend under
the force of gravity even if starting from rest.

So far, we have described the case when the screw
is initially at rest. There is actually a second case when
static friction must be considered. This occurs when the
velocity is initially nonzero and changes sign during an
integration subinterval. There are two possible discontinu-
ities in acceleration at the zero crossing. In one, stiction
occurs, forcing ¢ and ¢ to zero. In the other, no stiction
occurs, but the velocity changes sign. To determine which
discontinuity occurs, the stiction inequality is evaluated at
the time of the velocity zero crossing with § assumed to
be zero. If the applied torque at that instant falls outside
the stiction dead band, then the value of 7 changes, but
stiction does not occur. :

In actuality, the friction model used in the preceding
simulation included static friction. Stiction did not occur
for two reasons. With g = 0, 7; is zero at £ = 0, and so
no friction force can be generated. Second, the magnitude
and frequency of 7, are high enough that it is always
outside the stiction dead band at velocity zero crossings.

4.3. Example 3. Screw Drives: The Vector Case

One example of a robot that uses screw drives is the
Field Materiel Handling Robot (FMR) pictured in Fig-
ure 7. Constructed by Martin Marietta Aero and Naval
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Systems for the U.S. Army, the FMR is designed for
palletized supply handling. This hydraulically driven, six-
degree-of-freedom robot possesses a 25-foot reach and
two-ton payload capacity. Because of stringent cycle time
and transportability requirements, friction represented a
potential challenge to the controller.

Roller screws are used to actuate the shoulder and el-
bow joints through closed kinematic chains, as depicted
in Figure 8. Along with the hydraulic components, the
screws are the dominant frictional elements. Roller screws
differ from ordinary screws in that they include plan-
etary, threaded rollers between the screw and the nut.

The rollers substitute rolling and spinning friction for the
much larger sliding friction that occurs between a simple
screw and nut. Friction remains significant, however.

Although not addressed in the literature, theoretical
friction models have been developed by roller screw man-
ufacturers. These models are complex, highly application
dependent, and proprietary (Lemor 1989). In their place,
the manufacturer provides theoretical parameter values for
the friction angle factor, K, the nominal diameter, d, and
the screw lead, [, to be used in the efficiency equations
for ordinary power screws, which are given below:

-1 -1
m = (1+ £9) m=(1-£)"". @D
Consider first the case when the screw at joint 7 is mov-

ing:
n
n(r —17) = Zdijiij +hi =77

j=1

22

In this equation, 7 represents the screw, and possibly
motor rotor, inertial torque as seen by the motor. Because
it is assumed that D and h include the screw inertia, it is
explicitly subtracted from the right side of the equation.

By examining the Newton-Euler recursive equations,
the screw inertial torque about the screw axis, 7°, is
found to be

7° =e3- (Iws +ws X sws)). (23)

Here, e is a unit vector in the z-direction, I, is the in-
ertia tensor of the screw, and w, is the screw’s angular
velocity. All are expressed in a local coordinate frame
attached to the screw. Furthermore, the cross-product term
does not contribute, since, for the screw, I, = I,. The
vector w, is a function of the velocities and accelerations
of the screw joint and all preceding joints. The general
form of 7° for a screw at joint  is

78 = [aa (@, .., ai(@, 0, ..., 0]d+bi(g,d). (24)

The standard, open-chain Newton-Euler equations can
be adapted for use in the forward and inverse dynamics
of closed kinematic chains using a method such as that
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Fig. 7. The Field Materiel Handling robot (FMR).

described in Murray and Lovell (1989). The closed chains
affect the term values, but not the form, of the preceding

equation and those that follow.
Applying (22) and (24) to the system of equations
yields

dl,l e dl,n
di_1,1 ceo disyn
dij1 +( — Dai cdiit+—Dai digpr ... dig
di+1’1 . . di+1,n
dn,l dn,n
hy T
Chi Ti—1
Xg+ | hi+—Db | = | 7 25
hit1 Tit1
hn Tn

Thus, for a screw in motion, the form of the dynamic
equations is reduced to that of the frictionless case.

Now we will consider the static case. Recall that when
a screw is sticking, Gsrew = Gserew = 0. To determine if
breakaway occurs, the same inequalities as the scalar case
are employed. For screw ¢, the stiction dead band is given

by

T72l/7723 <7 < Til/"]lsa Tz'l > 07

26
Hms € 7 < T, T < O 26
In this case the load torque on screw i is given by
= Zdijl'ij +h; -1 (27
=1

The screw inertial torque in the equation above is not
necessarily zero because of contributions from the motion
of preceding links.

The accelerations of the other joints are needed to
solve for 7;. They can be computed using the explicit
equation

dig ... dien di; d i1 din
di—1 oo diciior dicr dicigpr ... dicin
0 0 1 0
dit1,1 dit1i-1 i1 digriq1 -.. diqin
dn,i dnyi—1  dng  dnip dn,n

hy Tl

hi_q Tic1

xg+ | 0 =] 0 (28)
hit1 Tit1
hn Tn

To enforce Gserew = O, the ith rows of 7, D, and h (asso-
ciated with the sticking screw joint) are set to 0, except
for the (¢, ¢)th element of D, which is set to 1.

Through systematic application of the preceding equa-
tions, the friction in any number of screw joints can be
included. To solve for the accelerations, each row of the
dynamic equation corresponding to a screw joint is mod-
ified according to either (25) or (28). The load torque
can then be computed for each screw joint using (27).
These values can be used to test for breakaway of stick-
ing joints. For the FMR, there is no ambiguity in select-
ing 7; for screws in motion, because the signs of 7} are
fixed. If they were not, the iterative procedure described
in Section 3.2 could be employed. Similar equations can
be derived for other transmission elements, as well as
for other forward solution techniques. (See Gogoussis
and Donath [1988] for a derivation of harmonic drive
efficiency.) )

5. Combining Friction Terms

When a joint exhibits friction in addition to transmission
friction, the dynamic equations can take on one of two
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Fig. 8. Shoulder and elbow joirits of the FMR. These
Joints are driven by roller screws through closed kine-
matic chains.

possible forms depending on the friction’s source. Denot-
ing the net motor torque by 7, = 7; — 77, the load torque
by 7;, and the additional friction torque by 7, the two
equations are

Tm = (1 £ By + 74,
Tm = (1 £ kX1 + 74 /N).

29
(30)

The reciprocal of efficiency is represented by (1 + k) > 0.
The signs apply to driving and backdriving the transmis-
sion, respectively. IV is the effective transmission ratio of
the joint. If, in (30), the friction coefficient is held con-
stant instead of the friction torque and the friction torque
is linearly related to ¢ or g, then N should be squared.
This would be true, for example, of viscous friction.

Equation (29) applies when the additional friction does
not contribute to the load torque. For screws, this is true
of any friction that must be overcome to spin the screw
even when the nut is removed. In the FMR, this would be
true of friction in the screw motors.

Equation (30) applies when the additional friction con-
tributes to the transmission load torque. This would apply
to friction in the bearings of the three pivot joints forming
closed kinematic chains at the shoulder and elbow joints
of the FMR (Fig. 8). While transmission friction amplifies
and attenuates the additional friction term during driving
and backdriving, respectively, division by the transmission
ratio dominates.

Recognizing that 7; is an affine transformation of ¢, we
will solve for the discontinuity in 7;, which will be lin-
carly related to the discontinuity in acceleration. Making
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use of the following properties

Driving:
Backdriving:

sgn(7y,) = sga(ty)
sgn(Tm) = —sgn(ty)

we can compute A7;. For (29), the magnitude of the
discontinuity in acceleration resulting from a velocity
zero-crossing is linearly related to

_ ZkTm ZTf
=it Gb
Similarly for (30),
_ 2kmm
A1 = =12 + 273 /N 32)

From (31), we can see that transmission friction increases
the discontinuity in acceleration associated with 75 (e.g.,
motor friction). From (32), it is clear that the transmission
reduces the discontinuity associated with 75 (e.g., bearing
friction) by the factor N.

6. Experimental Friction Identification

By measuring the motor and load torques, we can solve
for the total friction torque at a joint, which is given by

Tf =Tm — T1-

In addition to transmission friction, the total friction will
most likely include components of the form of both (29)
and (30). If, for example, the friction torque is composed
of components resulting from the screws, bearings, and
motor, it can be expressed as

Tf =ﬂ:le:t(1:|:k)be/Nﬂ:Tmf. (33)

Unless special model structures can be assumed for the
motor and bearing friction terms, it will not be possible
to ascertain the individual contribution of each friction
source.

6.1. Testing of the FMR

Two types of test were used to experimentally determine
the friction parameters for the FMR. To compute the fric-
tion torque, the motor torque at a joint was determined by
measuring the chamber pressures of the hydraulic motors.
The load torque was estimated using measured position
and velocity data along with the estimated frictionless
rigid-body dynamic model. The parameters for the fric-
tionless model (inertias and link lengths) were obtained
through a combination of direct measurement and solid
modeling.

The first type of test, the constant-velocity test, in-
volved moving single joints at constant velocity with
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the remaining joints locked. In general, a high-gain ve-
locity feedback controller is needed for this test. When
repeated at different velocities for a given configuration
and payload, the data points yield plots of friction force
or torque versus velocity, such as shown in Figure 1. The
dependence of friction on load was ascertained by col-
lecting data for various payloads and configurations. Data
were collected for both positive and negative velocities to

detect any directional asymmetries such as have been re- -

ported by others (Armstrong 1988; Canudas De Wit et al.
1991).

A second type of test, the breakaway test, was used to
dqtermine stiction levels in each joint. Starting from rest,
thie motor torque for a single joint was slowly increased
until motion was detected. The torque was then slowly
decreased until the joint stuck. The test was performed
for both directions of motion. In addition to determining
whether a higher stiction level of friction exists, this test
may reveal multivalued friction behavior such as that
described in Hess and Soom (1990).

6.2. Experimental Results

This discussion focuses on the screw-driven shoulder

and elbow joints of the FMR. At the time of testing,
only open-loop control of the joints was possible. The
servovalves® steady-state flow—versus-load curves for low
flows, loads, and fixed currents are fairly flat, however.
Thus, constant-velocity tests can be closely approximated
by applying a constant current to the servovalve.

Because of open-loop control and project constraints,
constant-current tests were run for a small range of low
- velocities for each joint. These were repeated for several
payloads. In addition, breakaway tests for each joint were
performed at several positions and payloads.

Plots of actual data for a representative constant-current
test of the shoulder appear in Figure 9. The applied cur-
rent is plotted in Figure 9A. This test included joint dis-
placement in both directions, as shown in Figure 9B.
Because the shoulder link is actuated through a closed
kinematic chain, joint velocity is related to motor velocity
through a position-dependent transformation. The effect
of this transformation can be seen by comparing Figures
9C and 9D, which depict the motor and joint velocities,
respectively. The motor torque and the load torque, the
latter obtained from the estimated frictionless model, are
shown in Figure 9E. The difference between these curves
is the estimated friction torque.

To investigate the dependence of friction on normal
force, friction torque versus load torque is plotted in Fig-
ure 9F. Also appearing in the figure are two lines fit by
least squares to the positive and negative velocity data.
To exclude the friction transients, the positive-velocity
line was fit to data for time ¢t € (10,40) seconds. The

negative-velocity line was fit for te (50, 80). The equa-
tions of these lines are

by = 0.50|7;| + 464,
1= 0.33|7| + 1037,

¢>0,
g<0. G4
These lines and the data from which they were obtained
appear in Figure 9G. As expected, a significant depen-
dence on load torque exists because of the screw trans-
mission. In addition, a substantial directional asymmetry
is apparent. The only asymmetry predicted by (33) relates
to bearing friction:

r7las0 — I7slo<o = 2ot
fl1g>0 flg<0 N

. (35)

Although this term does predict greater friction for pos-
itive velocities, bearing friction is expected to be small
and transmission ratios relatively high. (The effective
transmission ratios for the three pairs of bearings in the
closed kinematic chain comprising the shoulder joint are
configuration dependent.) Thus, the source of this asym-
metry remains unclear. It is possible that the asymmetry
is due to an unknown systematic error that generates a
constant offset in either the motor or load torque of Fig-
ure 9E.

If we make the assumption that the bearing friction
term in (33) is negligible, the expression for aggregate
friction reduces to

Ty =tk £ Try: (36)

Because motor friction may include both load-dependent
and constant components, we can interpret the slopes in
(34) as a combination of motor and transmission load
dependence. To account for this, we write

Tmf = kmfTi + Trmgs 37
and letting ¥’ = k + kmy,
Tr =Zk'n £ ;. (38)
Expressing the values of k' as efficiencies
k=050, =067, =20, ¢>0
K =033 m =075 m=15 g¢<0 O

The manufacturer’s theoretical range for 7; is 0.8 to 0.9
for the shoulder and elbow screws. This tends to confirm
the presence of load-dependent friction in addition to that
of the transmission.

The results of the breakaway tests were surprising.
To the accuracy of the FMR’s sensors, the static level
of friction was the same as the kinetic level observed in
the constant-current tests. According to the manufacturer,
the static efficiency can be up to 25% lower than the
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Fig. 9. A, Current applied to shoulder servovalve dur-
ing constant-current test. This includes a constant bias
current that compensates for leakages and the null off-
set of the servovalve. B, Position of shoulder joint. All
other joints are locked during test. C, Motor (screw) ve-
locity. D, Shoulder joint velocity. E, Motor torque and
frictionless load torque of shoulder. F, Estimated shoulder
friction versus load torque. Lines fit by least squares for
positive and negative velocities are also shown. G, Abso-
lute values of friction versus load torque with lines fit by
least squares.
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kinetic value (Lemor 1989). It is believed that the lack
of a higher stiction level is due to a mechanical dither
effect caused by the vibrations of the diesel engine and
hydraulic pumps mounted on the FMR’s truck body. In
addition, the friction level at the onset of motion was the
same as at motion cessation. Hence multivalued friction
behavior was not observed.

6.3. Load Dependence of Friction

In contrast to other experimental work appearing in the
robotics literature, friction was found to depend on load.
In light of the load dependence of transmission models
in general, this is not a surprising result. Two possible
explanations are given here as to why load dependence
was not observed by others. The arguments are based on
transmission efficiency and preloading.

The relative motion between a power screw and its nut
is that of pure sliding, which gives it perhaps the lowest
efficiency of all transmission elements. Similar to screws,
worm gear motion is predominantly sliding. In contrast,
the relative motion between spur gears is predominantly
rolling. As a result, the efficiency of spur gears is very
high. Between these extremes are elements such as helical
gears that combine rolling and sliding motion. The point
of this comparison is that the load dependency of low-
efficiency transmissions is easier to detect experimentally.
Even though roller screws provide higher efficiencies
than ordinary power screws, they are still relatively low-
efficiency devices.

Methods of limiting or eliminating backlash are com-
monly used in robot transmissions. Preloading methods
eliminate most backlash and also stiffen the transmission.
Other methods, such as adjustable gear centers, eliminate
only average backlash. In all cases, the goal is to simulta-
neously contact both sides of the screw threads or driving
gear teeth. This is done at the expense of increased fric-
tion. For small applied loads, transmissions with backlash
elimination, particularly preloading methods, can exhibit
friction levels roughly independent of applied load. For
example, roller screws can be preloaded by using two
nuts that are separated by, and squeezed together against,
a preload spacer. In the absence of an external load, each
nut produces a friction torque proportional to the preload.
As an external load is applied, the load on one nut in-
creases by approximately half the external load, while the
load on the other nut decreases by approximately half.
Hence, for small external loads applied in either direction,
the friction force is approximately constant. This is de-
picted in the load-deflection curves of Figure 10 (Lemor
1990). Similar behavior may occur with gear trains, al-
though these are more complex to analyze because of
their geometry.

Load, Load,
Nut 1 Nut2
Nut2 Nut 1
Total Load,
Nut1
External
Preload X ! Load
| y Total Load,
| ~__ | Nut2
Deflection, I - Deflection,
Nut2 5 B Nut |

Fig. 10. Load versus deflection curves for the double nut
of a preloaded roller screw.

In the FMR, preloading of the screws was unnecessary.
The gravity load is sufficient to eliminate all backlash,
given the maximum allowable acceleration of these joints.
Without a preload, friction is directly proportional to
applied load.

The disturbance-rejection capability of a hydraulic
system for low flow rates and loads was manifested in the
constant-current test data presented earlier. For moderate
velocities and loads, simulation indicates that a nonlinear
decoupling control law based on the rigid-body dynamics
and a simplified hydraulic motor model is adequate to
achieve critically damped response in the shoulder and
elbow joints. To achieve appropriate response at high
speeds and/or large loads, a feedforward, load-dependent
friction term has been included in the FMR controller.

This example demonstrates that load-independent fric-
tion models can be inadequate. The load-dependent screw
friction in the FMR can represent one third of the motor
torque. Simulations indicate that the shoulder-screw load
torque (and thus friction torque) can vary dynamically by
+23% from its average value during a typical unloaded
trajectory. Of course, a comparison of loaded and un-
loaded trajectories would show an even greater variation
in transmission friction. Simulations also show that the
screw inertial torque at the elbow can be greater than 9%
of 7; during smooth trajectory segments and greater than
25% during transients.

7. Summary

In this article, the effect of friction on the solution of the
forward dynamics problem is examined. Two factors are
identified as making the problem more difficult than it

is in the frictionless case. The differential equations can -
be discontinuous in the highest-order derivative terms
(accelerations) and, for load-dependent friction, implicit in
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the general case. Both concepts are clearly described and
illustrated by examples.

In contrast to other work employing continuous ap-
proximations to discontinuous friction laws, a numerical
integration scheme for discontinuous models that is based
on switching functions is provided. In fact, this method is
used in several commercial simulation packages.

In the-case of load-dependent friction, the equations
cannot always be solved explicitly .for joint accelerations.
In the general case, the accelerations must be obtained
iteratively at each time step. While several researchers re-
port convergence in two iterations, this more than doubles
the number of operations at each time step.

When the direction of normal force is fixed in the
local coordinate frame, the normal force appears as an
absolute-valued expression. This is a very important case,
as it includes transmission elements that can be dominant
friction sources. This case is studied in detail, and the
geometry of the solution set is described. It is shown that
in certain situations the equations are explicit. For the
general case, an iterative solution procedure that yields an
exact solution in a finite number of iterations is described.

An efficiency formulation for transmission elements
that has two benefits is introduced. First, friction can
be included by simple modification of the frictionless
solution procedure. Second, the computation of an inverse
solution for normal force is avoided. These issues are
described in the context of screw drives for which the
forward dynamic equations with static and Coulomb
friction are developed.

Experiments are described for measuring aggregate
friction at a joint. A constant-velocity test is illustrated
using experimental data from the FMR. This example
shows a clear dependence of friction force on normal
load.

With the price-to-performance ratio of digital comput-
ers dropping steadily, the choice of friction model can be
based on actual friction behavior as opposed to ease of
simulation. At the same time, the transmission example
demonstrates that model accuracy is not always obtained
at a great loss of efficiency. Friction models should be
selected according to the behavior of the predominant
friction sources in a particular robot. The necessary detail
of the model for satisfactory results should be determined
by the task and performance requirements.
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