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Abstract

For motion planning� it is important to have an accu�
rate dynamic system model and� in many cases� friction is
an important component of the model ������ It is known�
however� that when Coulomb friction is added to the rigid�
body dynamic equations� the forward dynamic solution
may not exist and if it exists� it is not necessarily unique�
In this paper� we study the existence and uniqueness prop�
erties of the forward solution of these equations� We show
that existence and uniqueness problems arise even for a
single degree of freedom system and derive conditions un�
der which such problems occur� A graphical method is
presented which clearly shows the number of solutions as�
sociated with each value of input torque� A transmission
element is used as an example of such a system�

� Introduction

Beginning at the turn of the century� a number of re�
searchers have shown that when the simple Coulomb fric�
tion model is combined with the rigid�body dynamic equa�
tions� there are cases when no solutions exist and also
cases when multiple solutions occur� These cases have
been treated separately in prior years at this conference
���	�� As we will see� the conditions producing solution
nonexistence and multiplicity are closely related�

The ability to include e
ects such as friction in the mod�
eling and simulation of robotic systems is becoming more
important especially for tasks such as tactile sensing and
teleoperation� Thus there is the need to understand the
nature of the existence and uniqueness problems and to
know under what conditions these problems arise�

In the next section� we discuss the Coulomb friction
model and prior work on the existence and uniqueness
problem� In section �� we present the forward dynamic
equations and discuss their solution� In section �� the
scalar case is considered in detail and we present a nec�
essary and sucient condition for solution existence and
uniqueness� Next� a screw transmission drive is discussed
as an example of such a system� The paper concludes with
a discussion of the results�

� Background

The Coulomb friction force is directed so as to oppose
relative motion and is proportional to the normal force
of contact during motion� For unilateral constraints� the
normal force Fn must be positive� Thus we can express
Coulomb friction as

Fn � �
v �� �� jFf j � �Fn� vFf � �
v � �� jFf j � �Fn

���

where Ff is friction force� � � � is the coecient of friction
and v is the velocity of relative motion� These equations
de�ne what is commonly called the friction cone� During
motion� the friction force must lie on the friction cone while
during static contact� it may also lie inside the cone�

In actuality� friction behavior is more complicated than
that of the Coulomb model� Friction can depend strongly
on velocity ���� exhibit a nonlinear dependence on normal
force and also exhibit transient behavior ���� Nevertheless�
Coulomb friction is an appropriate �rst�order model for
many material combinations� It is therefore worthwhile to
consider its e
ect on the existence and uniqueness problem�

This problem was �rst presented by Painlev�e ���� More
recently� L�otstedt ��� has published a good derivation of the
planar equations in terms of constraint forces and has pro�
vided conditions for solution consistency� He also presents
an example of both solution nonexistence and multiplicity�

Two pertinent papers have appeared at this conference�
Rajan et al considered friction in the context of a planar
peg�in�hole problem and discussed the possibility of multi�
ple solutions �	�� For the cases of a polygon in contact with
one and two rigid walls� they mapped the type of motion
associated with all possible force � torque pairs applied to
the polygon� For contact with a single wall� they derive a
condition �their equation ����� for which a range of input
forces are consistent with three possible solutions � static
contact� sliding contact and motion away from the wall�

The following year� Mason and Wang considered the
case of a slender rod in contact with a single rigid wall
���� They derived the condition �their equation ��� under
which no solution consistent with Coulomb friction exists�
Taking into account the di
erences in notation� Rajan�s
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condition for multiple solutions is in fact the same as Ma�
son�s condition for nonexistence� This identical condition
depends only on inertia� geometry and friction properties�
Thus we make the interesting observation that� at least for
the planar single contact case� the same system can pos�
sess either no consistent solutions or several� The number
of solutions depends on the input force and torque� This
observation can also be deduced from L�otstedt�s paper ����

For the case of no consistent solution� Mason and Wang
concluded that under these conditions� the initially sliding
rod stops suddenly and modeled it as an impact with zero
approach velocity �������

� Forward Dynamic Equations

The rigid�body dynamic equations for a mechanical sys�
tem such as an open�kinematic�chain robot are of the form

� � A�q��q � b�q� �q� � f�q� �q� �q�� ���

The n�vectors of generalized coordinates �such as joint po�
sitions� and associated input forces or torques are q and � �
respectively where n is the number of degrees of freedom of
the system� The con�guration�dependent inertia matrix is
represented by A � Rn�n� It is both symmetric and pos�
itive de�nite� The vector b � Rn consists of centrifugal�
Coriolis and gravity terms� The vector f � Rn includes
all friction terms and is a function of the generalized coor�
dinates and their �rst and second derivatives�

The forward dynamics problem is to solve for the joint
positions� velocities and accelerations given the input
torques or forces and the initial conditions� This is the
problem to be solved for simulation� At each time step�
the known joint torques� positions and velocities are used
to compute the joint accelerations� In the absence of fric�
tion� this involves solving a set of linear algebraic equations
for the accelerations� Using the values of acceleration and
velocity� numerical integration yields the velocity and po�
sition at the next time step�

Friction can arise due to relative motion between the
rigid bodies making up the mechanism or due to contact
between one or more of these bodies and the environment�
We will refer to these two types as internal and external

friction� respectively� Internal friction is due to such ele�
ments as the transmissions and bearings� External friction
acts at contacts between the robot and its environment� It
is important in grasping and assembly operations�

In the case of external friction� ��� must be modi�ed as
follows�

� � A�q��q � b�q� �q� �
X
i

JTi �q�Fni
�
X
i

JTi �q�f�q� �q� �q��

���
This equation assumes multiple contact points along the
links� Here� Fni

is the normal force vector at contact point
i and Ji is the Jacobian relating in�nitesimal joint and
contact point displacements� Similarly� the friction vector
is premultiplied by the transpose of the Jacobian matrix�

If the generalized coordinate directions can be chosen
so as to coincide with the directions of the external nor�
mal and friction forces then the Jacobian reduces to the
identity matrix and ��� reduces to ���� This is true of the
problems discussed by Rajan et al �	� and by Mason and
Wang ���� In this paper� we will discuss only those cases
which satisfy ����

��� Implicitness of the Forward Solution

In addition to existence and uniqueness issues� the in�
clusion of load�dependent Coulomb or static friction in the
robot dynamic equations typically renders them implicit
in the joint accelerations� Thus� even if it is known that
a unique solution for the accelerations exists� it must� in
general� be obtained using an iterative root��nding process
at each step of the integration ������

The cause of the implicitness is the dependence of
Coulomb friction on the magnitude of the normal force�
The normal force itself is a function of the resultant force
and moment at the friction contact� Expressed in a local
coordinate frame� the components of the resultant force
and moment can be formulated in terms of the joint posi�
tions� velocities and accelerations ����

If the direction of the normal force happens to be con�
stant in the local frame� the normal force can be expressed
as a function in which the net force and moment compo�
nents appear linearly� This is true� for example� of friction
in transmissions and translational joints� Since the sign of
the normal force at a bilateral constraint can change� its
absolute value must be used to obtain its magnitude ����

When the direction of the normal force is not constant
in a local joint coordinate frame� the magnitude of the
normal force will involve the square root of sums of squares
of net force and moment components ���� This would be
true of radially�loaded revolute bearings� Consequently�
Coulomb friction can involve either the absolute value or
square root of sums of squares of acceleration�dependent
terms� Therefore� it is necessary to solve iteratively for
joint accelerations at each time step of a simulation�

��� Internal Friction

Consider the case of a single source of internal friction
associated with each degree of freedom and assume that
the direction of the normal forces are �xed in their respec�
tive local coordinate frames� Typically� internal friction
arises from bilateral constraints� In this case� the friction
vector� f � becomes

f�q� �q� �q� �M jC�q��q � d�q� �q�j� ���

Here M � Rn�n is a diagonal matrix with diagonal ele�
ments �isgn� �qi� and �i � � are the coecients of friction�
C � Rn�n takes the form of an inertia matrix and d � Rn�
The expression in absolute values is the normal force�

In this paper� we will study friction forces of the form
given by ���� The external friction problems of ��� and �	�
can be posed in this form�
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Figure �� Constraint Equations in Acceleration Space�
The frictionless solution corresponds to the intersec�
tion of the two dashed lines� point A� For �i � 	� the
V�shaped constraint equations intersect at B yielding
a unique solution� By reorienting the V
s and chang�
ing their included angles� cases of zero and multiple
intersection points can be obtained�

The system of equations is given by

A�q � b�Diag��isgn� �qi��jC �q � dj � � ���

in which A� C� b� d� sgn� �xi� and � are known constants
and j � j denotes vector absolute value� not norm� The solu�
tion set consists of all intersection points of the constraint
equations�

For �i � �� the equations simplify to

A�q � b ���

Each constraint equation describes a hyperplane in the
space of joint accelerations and there is always a unique
solution since A corresponds to the inertia matrix which is
invertible�

For �i � � and n joints� the constraints are V�shaped�
�n � ���dimensional half�hyperplanes� Their intersection
may be empty or may consist of multiple points in accel�
eration space� All solutions found are consistent with the
equations and represent the dissipation of energy by fric�
tion� Figure � provides a two degree of freedom example�

� Scalar Case

The planar problem most often used to illustrate ex�
istence and uniqueness issues is that of a slender rod in
contact with a single immobile wall� The rod has two de�
grees of freedom while in contact with the wall and three
otherwise� In this section� it is shown that the forward
dynamics of a single degree of freedom system exhibit the
same existence and uniqueness problems as the multiple
degree of freedom rod�

The scalar form of ��� is given by

a�q � b � �jc�q � djsgn� �q� � � ���
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Figure �� Scalar Case of � Versus �q for � � a�c and
d � 	� The upper� dot�dashed V corresponds to �q � 	�
The lower� dotted V corresponds to �q � 	� The dark
line segment on the � �axis is the static region where
�q  	� The horizontal arrows indicate discontinuities
in acceleration which occur when �q  	�

Note that the single normal force� Fn� is given by Fn �
c�q� d� We have two equations�

�a� �c��q � �b� �d� � �� sgn� �q� � sgn�Fn� ���

�a� �c��q � �b� �d� � �� sgn� �q� �� sgn�Fn� �	�

These equations are intersecting lines in the space formed
by � and �q� The case of � � a�c and d � � is shown in
Figure �� Note that a and c� representing inertias� must
be positive�

Since these equations represent bilateral constraints�
normal force can be of either sign and Fn � � along the
vertical line through �q � �d�c� Thus for �q � �� the system
lies on the upper V and for �q � �� on the lower V� If the
system is initially static� it lies on the � axis between the
two lines� From this static region� if the torque is increased
above b � �d� motion with �q � � ensues� Similarly� if the
the torque is decreased below b � �d� motion with �q � �
ensues� At b � �d� the friction force lies on the friction
cone associated with �q � ��

Consider the behavior of various points on the graph�
At A� both the velocity and acceleration are positive� At
B� acceleration is negative while the velocity is positive�
but decreasing� Since point B is within the static band on
the � �axis� the system will stick when the velocity reaches
zero� As shown by the arrow� the system jumps to B�

and the acceleration discontinuously jumps to zero� Point
C� however� is outside the static region� When �q � � is
reached at C� the system jumps to C � on the negative�
velocity V� For �q � � initially� points B�� and A� lead to
sticking and velocity reversal� respectively�

System behavior in the case of unilateral constraints can
also be determined from this graph� In this case� Fn � �
would correspond to a cessation of contact at the friction
interface� At points to the left of the vertical line �q � �d�c�
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Figure �� Scalar Case of � Versus �q for � � a�c� In
this case� there can be multiple solutions or none�

the system �ies apart� In the slender rod example� contact
between the rod and wall would cease�

Figure �� together with the current values of velocity
and torque� provide a unique value of acceleration for all
but two points� For example� consider that the three values
of �q at B� B� and B�� are associated with a single value of
torque� These solutions� however� correspond to �q � ��
�q � � and �q � �� respectively� The two ambiguous points
occur for � � b��d� Note that a static friction coecient�
�s � �� would resolve this ambiguity�

Let us now consider the conditions under which solu�
tion existence and uniqueness fail for most values of input
torque�

��� Solution Existence and Multiplicity

Consider the graph of ��� and �	� in Figure �� Here�
� � a�c and so �	� has a negative slope� This corresponds
to a negative e
ective inertia�

Once again� the upper V is associated with positive ve�
locities and the lower with negative velocities� Starting
from rest� the input torque must leave the static region
to initiate motion� For example� if the torque is increased
above b � �d� motion in the positive direction will ensue�
Now� however� there are two possible solutions given� for
example� by A and A�� If the torque is decreased to the
value associated with B� there are three possible values of
acceleration given by B� B� and B��� B corresponds to the
static case� B� and B�� both correspond to �q � �� but with
di
erent values of acceleration� �q�

If the torque is decreased slightly below b � ad�c� the
only valid solution is the static case C� but as with the
previous �gure� the system would normally only jump like
this when the velocity reached zero� Thus� there appear
to be no solutions provided by the graph for �q � � and
� � �b�ad�c�� We can make the same arguments for neg�
ative velocities� According to the value of input torque and
velocity� we can have from zero to three feasible solutions�
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Figure �� Near�critical Case of � Versus �q� Here� the
line of ��� is nearly horizontal� For �q � 	� applying
� � �b� ad�c� moves the system to a point such as A
producing a very large negative acceleration�

����� Existence

To understand what actually happens in the case when
�q � � and � is decreased below �b � ad�c�� consider the
near�critical case shown in Figure � when the line �	� is
almost horizontal� This occurs when � � a�c� � for small
�� Assume that initially �q � � and � � �b�ad�c�� A slight
decrease in � below �b�ad�c� generates an extremely large
negative acceleration� The velocity will rapidly fall to zero
and the system will jump to A� on the negative velocity
V� As the value � � a�c is approached� deceleration time
approaches zero as does the sliding distance�

If� as in Figure �� � � a�c� the applied force or torque�
� � is insucient to shear the bonds at the friction interface�
Thus� according to Coulomb�s model� no sliding can occur
and the velocity must jump discontinuously to zero� This
agrees with Wang and Mason�s conclusion that an impulse
analysis is in order ����

����� Multiplicity

The analyses of Rajan et al� �	�� and L�otstedt� ���� produce
cases of three possible solutions of the type given by B�
B� and B�� in Figure �� They do not� however� provide a
method of selecting the �correct solution�

The rigid�body analysis provides only a partial answer�
Since the static case can only be escaped by applying a
torque outside of the static region bounded by b � �d� B
is the only possible solution if �q is initially zero�

Solution pairs such as �A�A�� and �B��B��� all corre�
spond to �q � �� however the points of each pair do di
er
by the sign of normal force� If normal force could be for�
mulated as an explicit function of system state� a unique
solution would be known� This approach is taken in ��� by
considering non�rigid bodies�
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Figure �� Screw�driven Mass� The motor applies
torque � to the screw� The mass� m� is attached to
the nut� Its displacement� y� is related to the screw
displacement� q� by the screw lead� l� The helix angle�
� and thread angle� �� are also shown�

����� Necessary and Su�cient Condition

In summary� a necessary and sucient condition for solu�
tion existence and uniqueness for arbitrary values of input
torque is given by

� � a�c ����

When � � a�c� solution existence and uniqueness problems
arise only for �q �� � and depend on the applied torque
history�

� Example� Screw Drive

Let us now elucidate the discussion of the preceding
section by means of an example� Screws are sometimes
used as transmission elements in robots� See� for example�
����

Consider the case of a screw moving a mass m with
gravity acting downward as shown in Figure �� The fol�
lowing de�nitions will be used�

q � screw displacement y � mass displacement
l � screw lead y � lq
	 � screw helix angle 
 � screw thread angle
I � screw inertia tan � � �� cos 


While the screw imparts a vertical force� Fm� to the
mass� we can express this as a torque� �l� by multiplying
it by the screw lead� l�

�l � lFm � ml��q �mgl ����

It can be shown that the normal force on the screw threads
is of the same sign as �l�

sgn�Fn� � sgn��l� ����

Using the expressions for screw eciency� �� found in stan�
dard mechanical design texts� such as ����� the dynamic
equations are

�I �ml���i��q �mgl��i � �

�i �

��
�

�� � tan�
tan����� � sgn��l� � sgn� �q�

�� � tan�
tan����� � sgn��l� �� sgn� �q�

����

τ
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q
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Figure �� Graph of � Versus �q for an Overhauling
Screw� Since � � �� a positive torque is required to
maintain �q  	�

These are two linear equations in ��q� �� which are of the
same form as ��� and �	��

��� Necessary and Su�cient Condition

A necessary and sucient condition for solution exis�
tence and uniqueness is to require that the e
ective in�
ertias� which are also the slopes of the lines� be positive�
This condition is

�I �ml���i� � � ����

In this case� the graph of the equations will be similar to
Figure ��

This condition is always met if the following inequality
is satis�ed�

	 � � ����

A screw of this type is called backdrivable or overhauling
due to its low friction� Unless a suciently�positive torque
is applied to the screw under static conditions� the mass
will descend due to gravity� This can be seen from its
graph� Figure �� in which the static region lies entirely on
the positive half of the � �axis since mgl��� � ��

Equation ���� is even more restrictive than ���� and
thus is a sucient� but not necessary condition� It is� how�
ever� an important case because almost all screws used as
transmissions in robots and mechanisms are of this type�

��� Screw Behavior

As in the general scalar case� solution existence and
uniqueness problems arise when one line of the graph is
horizontal or negatively sloped� For this to be true� 	 �
� and so existence and uniqueness is only an issue with
nonoverhauling screws� In addition� the product ml� must
be large compared to the rotational screw inertia� This
can be compared to the slender rod problem for which
existence and uniqueness problems can only arise when
the rotational inertia is large compared to the mass�
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Figure �� Graph of � Versus �q for a Screw with �I �
ml��	�� � 	�

The graph for this case appears in Figure �� We can
gain additional insight into its V�shape by considering the
case of lowering the mass starting from rest� With �q � ��
the normal force on the screw threads is entirely due to
gravity� Due to the high friction coecient� a negative
torque� � � mgl���� must be applied to overcome friction�

Following the graph from A to B� the negative acceler�
ation of the screw decreases the gravity�load�induced nor�
mal force� As a result� the friction force decreases and a
smaller magnitude of torque is needed to overcome friction�

At point B� ��q� �� � ��g�l��Ig�l�� The normal force
between the screw and nut threads is zero� The mass is
in free fall� Now consider moving from B towards C� The
screw is pushing down on the nut� Larger negative ac�
celerations generate larger normal forces and thus larger
negative torques are needed to overcome friction�

� Conclusion

We have shown that the forward dynamic equations for
a single degree of freedom system can exhibit existence and
uniqueness problems� In fact� the same system parameter
values can produce cases of both no solution and multiple
solutions depending on the value of input torque or force�

We derived a necessary and sucient condition for so�
lution existence and uniqueness� Coecients of friction
which do not satisfy this condition are quite large com�
pared to typical magnitudes of internal friction� This is
a signi�cant result because it indicates that in many im�
portant cases� existence and uniqueness of the forward dy�
namics is not a problem�

Coecients of this magnitude� however� might easily
be encountered in external friction applications involving
static or sliding contact with the environment� In these
cases� it is necessary to identify the actual forward dy�
namic solution associated with a value of input torque�
Toward this end� we have indicated when the static solu�
tion applies� The remaining ambiguity between multiple
dynamic solutions arises because normal force cannot be

expressed as an explicit function of system state with a
rigid�body model� This ambiguity can be resolved by con�
sidering systems of �nite sti
ness ���� It remains to be seen
if higher dimensional systems yield even more interesting
behavior�
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