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Abstract

For motion planning, it is important to have an accu-
rate dynamic system model and, in many cases, friction is
an important component of the model [1,2]. Tt is known,
however, that when Coulomb friction is added to the rigid-
body dynamic equations, the forward dynamic solution
may not exist and if it exists, it is not necessarily unique.
In this paper, we study the existence and uniqueness prop-
erties of the forward solution of these equations. We show
that existence and uniqueness problems arise even for a
single degree of freedom system and derive conditions un-
der which such problems occur. A graphical method is
presented which clearly shows the number of solutions as-
sociated with each value of input torque. A transmission
element is used as an example of such a system.

1 Introduction

Beginning at the turn of the century, a number of re-
searchers have shown that when the simple Coulomb fric-
tion model is combined with the rigid-body dynamic equa-
tions, there are cases when no solutions exist and also
cases when multiple solutions occur. These cases have
been treated separately in prior years at this conference
[7,9]. As we will see, the conditions producing solution
nonexistence and multiplicity are closely related.

The ability to include effects such as friction in the mod-
eling and simulation of robotic systems is becoming more
important especially for tasks such as tactile sensing and
teleoperation. Thus there is the need to understand the
nature of the existence and uniqueness problems and to
know under what conditions these problems arise.

In the next section, we discuss the Coulomb friction
model and prior work on the existence and uniqueness
problem. In section 3, we present the forward dynamic
equations and discuss their solution. In section 4, the
scalar case is considered in detail and we present a nec-
essary and sufficient condition for solution existence and
uniqueness. Next, a screw transmission drive is discussed
as an example of such a system. The paper concludes with
a discussion of the results.

2 Background

The Coulomb friction force is directed so as to oppose
relative motion and is proportional to the normal force
of contact during motion. For unilateral constraints, the
normal force F), must be positive. Thus we can express
Coulomb friction as

Fo>0
v# 0= |Fy| = uFa, vFy <0 (1)
v=0= |Ff| < uhy

where F is friction force, gt > 0 1s the coefficient of friction
and v is the velocity of relative motion. These equations
define what is commonly called the friction cone. During
motion, the friction force must lie on the friction cone while
during static contact, it may also lie inside the cone.

In actuality, friction behavior is more complicated than
that of the Coulomb model. Friction can depend strongly
on velocity [1], exhibit a nonlinear dependence on normal
force and also exhibit transient behavior [3]. Nevertheless,
Coulomb friction is an appropriate first-order model for
many material combinations. It is therefore worthwhile to
consider its effect on the existence and uniqueness problem.

This problem was first presented by Painlevé [8]. More
recently, Lotstedt [6] has published a good derivation of the
planar equations in terms of constraint forces and has pro-
vided conditions for solution consistency. He also presents
an example of both solution nonexistence and multiplicity.

Two pertinent papers have appeared at this conference.
Rajan et al considered friction in the context of a planar
peg-in-hole problem and discussed the possibility of multi-
ple solutions [9]. For the cases of a polygon in contact with
one and two rigid walls, they mapped the type of motion
associated with all possible force / torque pairs applied to
the polygon. For contact with a single wall, they derive a
condition (their equation 2.12) for which a range of input
forces are consistent with three possible solutions — static
contact, sliding contact and motion away from the wall.

The following year, Mason and Wang considered the
case of a slender rod in contact with a single rigid wall
[7]. They derived the condition (their equation 20) under
which no solution consistent with Coulomb friction exists.
Taking into account the differences in notation, Rajan’s
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condition for multiple solutions is in fact the same as Ma-
son’s condition for nonexistence. This identical condition
depends only on inertia, geometry and friction properties.
Thus we make the interesting observation that, at least for
the planar single contact case, the same system can pos-
sess either no consistent solutions or several. The number
of solutions depends on the input force and torque. This
observation can also be deduced from Lotstedt’s paper [6].

For the case of no consistent solution, Mason and Wang
concluded that under these conditions, the initially sliding
rod stops suddenly and modeled it as an impact with zero
approach velocity [7,11].

3 Forward Dynamic Equations

The rigid-body dynamic equations for a mechanical sys-
tem such as an open-kinematic-chain robot are of the form

= A(Q)§+b(q, §) + fq, 4, §)- (2)

The n-vectors of generalized coordinates (such as joint po-
sitions) and associated input forces or torques are ¢ and r,
respectively where n is the number of degrees of freedom of
the system. The configuration-dependent inertia matrix is
represented by A € R"*™. It is both symmetric and pos-
itive definite. The vector b € R"™ consists of centrifugal,
Coriolis and gravity terms. The vector f € R™ includes
all friction terms and is a function of the generalized coor-
dinates and their first and second derivatives.

The forward dynamics problem is to solve for the joint
positions, velocities and accelerations given the input
torques or forces and the initial conditions. This is the
problem to be solved for simulation. At each time step,
the known joint torques, positions and velocities are used
to compute the joint accelerations. In the absence of fric-
tion, this involves solving a set of linear algebraic equations
for the accelerations. Using the values of acceleration and
velocity, numerical integration yields the velocity and po-
sition at the next time step.

Friction can arise due to relative motion between the
rigid bodies making up the mechanism or due to contact
between one or more of these bodies and the environment.
We will refer to these two types as internal and external
friction, respectively. Internal friction is due to such ele-
ments as the transmissions and bearings. External friction
acts at contacts between the robot and its environment. It
is important in grasping and assembly operations.

In the case of external friction, (2) must be modified as
follows.

= A@i+b(a,0) + Y LD Fu + > I (@) (g, d,)-
’ ’ (3)

This equation assumes multiple contact points along the
links. Here, F},; is the normal force vector at contact point
1 and J; is the Jacobian relating infinitesimal joint and
contact point displacements. Similarly, the friction vector
is premultiplied by the transpose of the Jacobian matrix.

If the generalized coordinate directions can be chosen
so as to coincide with the directions of the external nor-
mal and friction forces then the Jacobian reduces to the
identity matrix and (3) reduces to (2). This is true of the
problems discussed by Rajan et al [9] and by Mason and
Wang [7]. In this paper, we will discuss only those cases
which satisfy (2).

3.1 Implicitness of the Forward Solution

In addition to existence and uniqueness issues, the in-
clusion of load-dependent Coulomb or static friction in the
robot dynamic equations typically renders them implicit
in the joint accelerations. Thus, even if it is known that
a unique solution for the accelerations exists, it must, in
general, be obtained using an iterative root-finding process
at each step of the integration [2,5].

The cause of the implicitness i1s the dependence of
Coulomb friction on the magnitude of the normal force.
The normal force itself is a function of the resultant force
and moment at the friction contact. Expressed in a local
coordinate frame, the components of the resultant force
and moment can be formulated in terms of the joint posi-
tions, velocities and accelerations [2].

If the direction of the normal force happens to be con-
stant in the local frame, the normal force can be expressed
as a function in which the net force and moment compo-
nents appear linearly. This is true, for example, of friction
in transmissions and translational joints. Since the sign of
the normal force at a bilateral constraint can change, its
absolute value must be used to obtain its magnitude [2].

When the direction of the normal force is not constant
in a local joint coordinate frame, the magnitude of the
normal force will involve the square root of sums of squares
of net force and moment components [5]. This would be
true of radially-loaded revolute bearings. Consequently,
Coulomb friction can involve either the absolute value or
square root of sums of squares of acceleration-dependent
terms. Therefore, it is necessary to solve iteratively for
joint accelerations at each time step of a simulation.

3.2 Internal Friction

Consider the case of a single source of internal friction
associated with each degree of freedom and assume that
the direction of the normal forces are fixed in their respec-
tive local coordinate frames. Typically, internal friction
arises from bilateral constraints. In this case, the friction
vector, f, becomes

fa,4,4) = M|C(9)§ + d(g, 9)]- (4)

Here M € R™*" is a diagonal matrix with diagonal ele-
ments g;sgn(qg;) and p; > 0 are the coefficients of friction.
C € R™*" takes the form of an inertia matrix and d € R".
The expression in absolute values is the normal force.

In this paper, we will study friction forces of the form
given by (4). The external friction problems of [7] and [9]
can be posed in this form.



Proc. 1992 IEEE Int. Conf. on Robotics and Automation, Nice, France, May 1992, pp. 1442-1447. 1444

A .qz

L =0

\

Figure 1: Constraint Equations in Acceleration Space.
The frictionless solution corresponds to the intersec-
tion of the two dashed lines, point A. For p; > 0, the
V-shaped constraint equations intersect at B yielding
a unique solution. By reorienting the V’s and chang-
ing their included angles, cases of zero and multiple
intersection points can be obtained.

The system of equations is given by
A+ b+ Diaglpssgn(¢)]|C¢ +dl =7 (5)

in which A, C, b, d, sgn(¢;) and 7 are known constants
and |- | denotes vector absolute value, not norm. The solu-
tion set consists of all intersection points of the constraint
equations.

For p; = 0, the equations simplify to

Aj=b (6)

Each constraint equation describes a hyperplane in the
space of joint accelerations and there is always a unique
solution since A corresponds to the inertia matrix which is
invertible.

For p; > 0 and n joints, the constraints are V-shaped,
(n — 1)-dimensional half-hyperplanes. Their intersection
may be empty or may consist of multiple points in accel-
eration space. All solutions found are consistent with the
equations and represent the dissipation of energy by fric-
tion. Figure 1 provides a two degree of freedom example.

4 Scalar Case

The planar problem most often used to illustrate ex-
istence and uniqueness issues is that of a slender rod in
contact with a single immobile wall. The rod has two de-
grees of freedom while in contact with the wall and three
otherwise. In this section, it is shown that the forward
dynamics of a single degree of freedom system exhibit the
same existence and uniqueness problems as the multiple
degree of freedom rod.

The scalar form of (5) is given by

ag + b+ pleg + d|sgn(g) =7 (7)
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Figure 2: Scalar Case of 7 Versus ¢ for yu < a/c¢ and
d > 0. The upper, dot-dashed V corresponds to ¢ > 0.
The lower, dotted V corresponds to ¢ < 0. The dark
line segment on the 7-axis is the static region where
g = 0. The horizontal arrows indicate discontinuities
in acceleration which occur when ¢ = 0.

Note that the single normal force, F,, is given by F,, =
¢+ d. We have two equations:

(a+pei+(b+pd) =7, sgn(d) =sen(Fn)  (8)

(a—pc)j+(b—pd) =71, sgn(q) #sgn(Fn)  (9)
These equations are intersecting lines in the space formed
by 7 and ¢. The case of u < a/c and d > 0 is shown in
Figure 2. Note that a¢ and c, representing inertias, must
be positive.

Since these equations represent bilateral constraints,
normal force can be of either sign and F, = 0 along the
vertical line through § = —d/c. Thus for ¢ > 0, the system
lies on the upper V and for ¢ < 0, on the lower V. If the
system is initially static, it lies on the 7 axis between the
two lines. From this static region, if the torque is increased
above b 4+ pd, motion with ¢ > 0 ensues. Similarly, if the
the torque is decreased below b — ud, motion with ¢ < 0
ensues. At b &+ ud, the friction force lies on the friction
cone assoclated with ¢ = 0.

Consider the behavior of various points on the graph.
At A, both the velocity and acceleration are positive. At
B, acceleration is negative while the velocity is positive,
but decreasing. Since point B is within the static band on
the T-axis, the system will stick when the velocity reaches
zero. As shown by the arrow, the system jumps to B’
and the acceleration discontinuously jumps to zero. Point
C, however, is outside the static region. When ¢ = 0 is
reached at C, the system jumps to C’ on the negative-
velocity V. For ¢ < 0 initially, points B” and A’ lead to
sticking and velocity reversal, respectively.

System behavior in the case of unilateral constraints can
also be determined from this graph. In this case, F,, < 0
would correspond to a cessation of contact at the friction
interface. At points to the left of the vertical line § = —d/c,
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Figure 3: Scalar Case of 7 Versus ¢ for pp > a/c. In
this case, there can be multiple solutions or none.

the system flies apart. In the slender rod example, contact
between the rod and wall would cease.

Figure 2, together with the current values of velocity
and torque, provide a unique value of acceleration for all
but two points. For example, consider that the three values
of ¢ at B, B’ and B" are associated with a single value of
torque. These solutions, however, correspond to ¢ > 0,
¢ = 0 and ¢ < 0, respectively. The two ambiguous points
occur for 7 = b+ pd. Note that a static friction coefficient,
ps > p, would resolve this ambiguity.

Let us now consider the conditions under which solu-
tion existence and uniqueness fail for most values of input
torque.

4.1 Solution Existence and Multiplicity

Consider the graph of (8) and (9) in Figure 3. Here,
p > a/c and so (9) has a negative slope. This corresponds
to a negative effective inertia.

Once again, the upper V is associated with positive ve-
locities and the lower with negative velocities. Starting
from rest, the input torque must leave the static region
to initiate motion. For example, if the torque is increased
above b 4+ pd, motion in the positive direction will ensue.
Now, however, there are two possible solutions given, for
example, by A and A’. If the torque is decreased to the
value associated with B, there are three possible values of
acceleration given by B, B’ and B”. B corresponds to the
static case. B’ and B” both correspond to ¢ > 0, but with
different values of acceleration, §.

If the torque is decreased slightly below b — ad/c, the
only valid solution is the static case C, but as with the
previous figure, the system would normally only jump like
this when the velocity reached zero. Thus, there appear
to be no solutions provided by the graph for ¢ > 0 and
7 < (b—ad/c). We can make the same arguments for neg-
ative velocities. According to the value of input torque and
velocity, we can have from zero to three feasible solutions.

A T

F<0 F>0

Figure 4: Near-critical Case of 7 Versus §. Here, the
line of (9) is nearly horizontal. For ¢ > 0, applying
T < (b— ad/c) moves the system to a point such as A
producing a very large negative acceleration.

4.1.1 Existence

To understand what actually happens in the case when
¢ > 0 and 7 is decreased below (b — ad/c), consider the
near-critical case shown in Figure 4 when the line (9) is
almost horizontal. This occurs when u = a/c + € for small
€. Assume that initially ¢ > 0 and 7 > (b—ad/c). A slight
decrease in 7 below (b—ad/c) generates an extremely large
negative acceleration. The velocity will rapidly fall to zero
and the system will jump to A’ on the negative velocity
V. As the value u = a/c is approached, deceleration time
approaches zero as does the shiding distance.

If, as in Figure 3, 4 > a/c, the applied force or torque,
7, is insufficient to shear the bonds at the friction interface.
Thus, according to Coulomb’s model, no sliding can occur
and the velocity must jump discontinuously to zero. This
agrees with Wang and Mason’s conclusion that an impulse
analysis is in order [7].

4.1.2 Multiplicity

The analyses of Rajan et al, [9], and Lotstedt, [6], produce
cases of three possible solutions of the type given by B,
B’ and B" in Figure 3. They do not, however, provide a
method of selecting the “correct” solution.

The rigid-body analysis provides only a partial answer.
Since the static case can only be escaped by applying a
torque outside of the static region bounded by b &+ ud, B
is the only possible solution if ¢ is initially zero.

Solution pairs such as (A, A’) and (B’, B"”) all corre-
spond to ¢ > 0, however the points of each pair do differ
by the sign of normal force. If normal force could be for-
mulated as an explicit function of system state, a unique
solution would be known. This approach is taken in [4] by
considering non-rigid bodies.
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Figure 5: Screw-driven Mass. The motor applies
torque 7 to the screw. The mass, m, 1s attached to
the nut. Its displacement, y, is related to the screw
displacement, ¢, by the screw lead, [. The helix angle,
« and thread angle, 8, are also shown.

4.1.3 Necessary and Sufficient Condition

In summary, a necessary and sufficient condition for solu-
tion existence and uniqueness for arbitrary values of input
torque is given by

p<alc (10)
When u > a/c, solution existence and uniqueness problems
arise only for ¢ # 0 and depend on the applied torque
history.

5 Example: Screw Drive

Let us now elucidate the discussion of the preceding
section by means of an example. Screws are sometimes
used as transmission elements in robots. See, for example,
[2].

Consider the case of a screw moving a mass m with
gravity acting downward as shown in Figure 5. The fol-
lowing definitions will be used.

q = screw displacement
| = screw lead y =lg

a = screw helix angle 0 = screw thread angle
I = screw inertia tan p = u/ cosb

While the screw imparts a vertical force, F,,, to the
mass, we can express this as a torque, 77, by multiplying
it by the screw lead, .

y = mass displacement

= 1Fn = ml®§ + myl (11)

It can be shown that the normal force on the screw threads
is of the same sign as 7,

sgn(Fy) = sgn(m) (12)

Using the expressions for screw efficiency, 5, found in stan-
dard mechanical design texts, such as [10], the dynamic
equations are
(I 4+ ml )i+ mgl/n; =7
m= taﬁf(ﬂip)’ sgn(m) = sgn(q) (13)
=

tan a

2= tan(a—p)’ SgH(Tl) # Sgn(q)

= 0

<0 1>0
-—  —

mgl/n;,

Figure 6: Graph of 7 Versus ¢ for an Overhauling
Screw. Since a > p, a positive torque is required to
maintain ¢ = 0.

These are two linear equations in (¢, 7) which are of the
same form as (8) and (9).

5.1 Necessary and Sufficient Condition

A necessary and sufficient condition for solution exis-
tence and uniqueness is to require that the effective in-
ertias, which are also the slopes of the lines, be positive.
This condition is

(L +ml i) > 0 (14)

In this case, the graph of the equations will be similar to
Figure 2.
This condition is always met if the following inequality
is satisfied.
a>p (15)

A screw of this type is called backdrivable or overhauling
due to its low friction. Unless a sufficiently-positive torque
is applied to the screw under static conditions, the mass
will descend due to gravity. This can be seen from its
graph, Figure 6, in which the static region lies entirely on
the positive half of the 7-axis since mgl/n2 > 0.

Equation (15) is even more restrictive than (14) and
thus is a sufficient, but not necessary condition. It is, how-
ever, an important case because almost all screws used as
transmissions in robots and mechanisms are of this type.

5.2 Screw Behavior

As in the general scalar case, solution existence and
uniqueness problems arise when one line of the graph is
horizontal or negatively sloped. For this to be true, o <
p and so existence and uniqueness is only an issue with
nonoverhauling screws. In addition, the product mi® must
be large compared to the rotational screw inertia. This
can be compared to the slender rod problem for which
existence and uniqueness problems can only arise when
the rotational inertia is large compared to the mass.
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Figure 7: Graph of 7 Versus ¢ for a Screw with (I +
mlz/ﬁz) < 0.

The graph for this case appears in Figure 7. We can
gain additional insight into its V-shape by considering the
case of lowering the mass starting from rest. With ¢ = 0,
the normal force on the screw threads is entirely due to
gravity. Due to the high friction coefficient, a negative
torque, 7 < mgl/n2, must be applied to overcome friction.

Following the graph from A to B, the negative acceler-
ation of the screw decreases the gravity-load-induced nor-
mal force. As a result, the friction force decreases and a
smaller magnitude of torque is needed to overcome friction.

At point B, (§,7) = (—g/l, —Ig/l). The normal force
between the screw and nut threads is zero. The mass is
in free fall. Now consider moving from B towards C. The
screw is pushing down on the nut. Larger negative ac-
celerations generate larger normal forces and thus larger
negative torques are needed to overcome friction.

6 Conclusion

We have shown that the forward dynamic equations for
a single degree of freedom system can exhibit existence and
uniqueness problems. In fact, the same system parameter
values can produce cases of both no solution and multiple
solutions depending on the value of input torque or force.

We derived a necessary and sufficient condition for so-
lution existence and uniqueness. Coefficients of friction
which do not satisfy this condition are quite large com-
pared to typical magnitudes of internal friction. This is
a significant result because it indicates that in many im-
portant cases, existence and uniqueness of the forward dy-
namics is not a problem.

Coefficients of this magnitude, however, might easily
be encountered in external friction applications involving
static or sliding contact with the environment. In these
cases, it is necessary to identify the actual forward dy-
namic solution associated with a value of input torque.
Toward this end, we have indicated when the static solu-
tion applies. The remaining ambiguity between multiple
dynamic solutions arises because normal force cannot be

expressed as an explicit function of system state with a
rigid-body model. This ambiguity can be resolved by con-
sidering systems of finite stiffness [4]. It remains to be seen
if higher dimensional systems yield even more interesting
behavior.
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