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Two-Phase Path Planning for
Robots With Six or More Joints

This paper presents a new method for planning collision-free paths for robots with
any number of joints. It is particularly well suited for use with kinematically redun-
dant robots. The algorithm is general in that it does not impose restrictions on the
geometry, motion, or payload of the robot. It does not try to locate an optimal path.
Instead, it attempts to locate a reasonable path while mapping a minimal amount of
configuration space (c-space). The method involves iteratively modifying a con-
nected path between the initial and goal configurations to avoid all intervening
obstacles. Information from the world model is used to guide path modification.
This approach is of particular value in high-dimensional cases for which exhaustive
searches are impractical. In the worst case, the algorithm maps a straight-line path in
c-space 1o the goal and the surfaces of the interfering obstacles along this path. An

example for a seven-degree-of-freedom robot is included.

1 Introduction

To perform a task, a robot must move its joints in a coor-
dinated fashion so that its payload or tool moves from point
to point or along a specified trajectory. During the motimn,
the entire robot, including its tool or payload, must not collide
with any obstacles in the workspace. Potential obstacles in-
clude fixtures, workpieces, machines, and the robot itself. The
goal of the path planner is to automatically develop a suitable
collision-free path.

The inputs to the planner are models of the robot and its en-
vironment and a motion description. The robot model consists
of a geometric description and a kinematic description (joint
locations, orientations, and limits). The environment model is
assumed to be a complete geometric description of the robot’s
static workspace. The motion description consists of a desired
end-effector motion. In the simplest and most common case,
this involves moving the end effector from its current location
to another position and orientation. Its motion along the path
is not constrained. In other cases, the end effector position
and/or orientation along the path may be prescribed.

This paper is arranged as follows. The remainder of this sec-
tion describes the benefits of redundancy. Section 2 discusses
prior work in path planning. This includes a description of
work by the authors which motivated the design of the
algorithm detailed in Section 3. This is followed by a descrip-
tion of the implementation in Section 4 which includes an
example.

1.1 Kinematic Redundancy. Six degrees of freedom are
needed to position and orient a rigid body in space. These can
be divided into three positional coordinates and three rota-
tional coordinates. For a robot to arbitrarily position and
orient its gripper in space, it must have at least six joints.
When a robot has seven or more joints, it is kinematically
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redundant. This means that for most hand positions and
orientations of a robot with n joints (n>6), there exists an
(n—6)-parameter family of associated arm configurations.

For any particular application, it is best to use the simplest
possible robot. Used unnecessarily, the additional joints of a
redundant robot could mean higher costs and loss of rigidity
and accuracy. There are three ways to use redundancy to ad-
vantage, however. The first of these is for joint limit
avoidance. The joints of most, if not all, commercially
available robots are not free to rotate continuously. In fact,
most joints have a range of less than 27 radians. Redundancy
can be used to avoid approaching these limits and thus to
avoid the resulting motion constraints [1, 2].

Secondly, redundancy can be used for singularity
avoidance. All robots, regardless of the number of joints,
possess positions of singularity at which the actual number of
degrees of freedom is less than six. One example is when
several joints axes become aligned. In these configurations,
large joint motions are required to achieve small hand mo-
tions. The extra degrees of freedom in a redundant arm can
sometimes be used to avoid these configurations.

The third and most important use of redundancy is for
obstacle avoidance. The increased dexterity of a redundant
arm allows it to reach around, over, under and through
obstacles as well or better than a human arm. This is of great
value in cluttered or unplanned environments. Some exotic ex-
amples are the in-space repair of satellites and battlefield
munitions resupply [3]. Other applications could involve flexi-
ble manufacturing workcells or operations on complicated
workpieces such as reaching inside an automobile body.

Redundancy does make the task of path planning more dif-
ficult. The dimensionality of the problem is increased and the
concept of arm separability can be hard to apply. Arm
separability is the notion, widely used in path planning, that
the arm can be decomposed into major and minor linkages.
Most of the gross motion of the arm is attributed to the major
linkage consisting of the first few joints (usually three) and
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links of the robot. The remaining joints associated with the
hand are ignored or frozen during most of the path planning
process. In a well-designed redundant robot, it is probable
that the major linkage will possess more than three joints and
more than two sizable moving links [3]. Since problem dif-
ficulty seems to increase exponentially with degrees of
freedom, a path planner for redundant robots should em-
phasize search efficiency over path optimality.

2 Historical Review

Many papers on path planning have appeared in the
literature. While so much work has been done, progress
toward developing efficient, general techniques has been slow.
This lack of progress is not surprising since it appears that the
computational complexity of the path-planning problem is ex-
ponential in the number of degrees of freedom [4, 5].

The most promising techniques developed so far fall into
two categories. The first of these solves the path-planning
problem by incrementally building a path from the initial
robot configuration to the goal [6-16]. These typically use on-
ly local information about the environment. Consequently,
they can be used on-line since the amount of computation at
each step is small. Their major disadvantage is that they are
heuristic methods which provide no guarantee that a solution
will be found even if one exists. They can become stuck in
stable, non-goal positions from which their escape requires ad-
ditional algorithmic intelligence. While the methods described
in [15, 16] are nonheuristic, they have yet to be fully im-
plemented or extended beyond two dimensions.

The second category reduces the robot path-planning
problem to that of finding a path for a point. The position of
the entire robot can be determined from the values of the joint
coordinates. This set of coordinates is called a configuration.
In the space of configurations, called configuration space or ¢-
space, the robot is represented by a point. If the joints have
limits, these form the boundaries of the space. Otherwise,
points with angular coordinates differing by multiples of 27
are identified with each other. These algorithms generally
build sets of obstacle-free regions of c-space. A graph
representing the connectivity of these sets is formed and
searched for an optimal point path between the initial and goal
configurations [17-29].

The difficult and time-consuming step in this approach in-
volves mapping obstacles into c-space. As a result, most suc-
cessful methods use arm separability and other simplifications
[19, 21, 28].

Some papers have examined characterizing the surfaces of
the transformed obstacles [27, 30]). Other works, while not
computing the obstacle surfaces directly, do so indirectly by
finding forbidden intervals for each link and building cellular
representations of free space [21, 28}. For example, Faverjon
[21] maps all obstacles into a discretized c-space for the first
three joints. Starting from the base, obstacle-filled joint inter-
vals for each link are recursively computed from a simplified
robot model. From these, an octree representation of c-space
is formed. The octree is searched for an optimal path which
keeps the neglected robot’s hand away from obstacles.

Lozano-Pérez presents a generalization of this algorithm in
[28]. The algorithm produces some fast and impressive results.
Like [21] it builds approximations of c-space obstacles from a
series of one-dimensional forbidden ranges. To limit computa-
tion, it does not try to find a globally optimal path and so only
maps that part of c-space bounded by the initial and goal joint
values. For most of the motion, only the first three joints are
used. The wrist joints are only allowed to move near the initial
and goal points. This algorithm is fast for problems of low
dimension.

Much of the success of these algorithms can be attributed to
their pruning of the search space by reducing problem dimen-
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sionality. In cases where arm decomposition is not possible,
such as with kinematic redundancy, we would like to structure
our path search so as to avoid an exhaustive mapping. Ideally,
we would like to map only that portion of c-space necessary to
find a reasonable path or to conclude that no path exists at the
resolution of the map.

Prior work by the authors has shown that a simple heuristic
search in a discretized c-space can locate collision-free paths
for seven-jointed robots operating in simple environments
[31]. In this work a uniform discretization of seven-
dimensional c-space is used. The equally sized cells correspond
to the volume swept out by the robot as its joints vary between
the limits of the cell. The algorithm builds a free-space path
from initial to goal configurations composed of a set of con-
tiguous, empty cells containing both points. The contents of a
particular cell are only evaluated if it is being considered for
the path. At that time, it is labeled full or empty by checking
for interference between the robot’s swept volume and the
world model.

At each step of the algorithm, heuristics are used to select
the best candidate cell for path extension. The heuristics,
codified as sets of fuzzy production rules, include favoring the
direction of the closest goal configuration, discouraging c-
space direction changes and, when motion is impeded, moving
perpendicular to and, if necessary, away from an obstacle.
The algorithm incorporates backtracking and loop elimina-
tion. In the worst case, it will map the free-space region con-
taining the initial configuration and those full cells which
bound the region. In the average case, it was hoped that the
planner would search efficiently and map just a small portion
of this space.

In an environment of moderate complexity, the heuristics
do not perform an efficient search. Erratic changes in search
direction occur in high dimensions. The heuristics tend to em-
phasize aligning individual joints to their goal values as op-
posed to moving the entire arm to the proximity of the goal
configuration. A conflict exists between moving towards the
goal and avoiding obstacles which these heuristics are not
powerful enough to resolve. The real weakness of this
algorithm is that while knowledge of the entire world is
available, only local information is being used. The algorithm
differs from local-information, iterative methods only in that
a map is compiled during the search. Therefore, it is not sur-
prising that the method shares some of their drawbacks.

This experience indicates that any high-dimensional search
algorithm must do two things. First, it must organize its search
in a global sense. Secondly, it must develop search strategies
based on its robot and world models. The method described
below incorporates these ideas.

3 Two-Phase Planning: A String-Stretching Search
Strategy

The basic method can be described using the analogy of a
point path in c-space being represented by a string. The
algorithm operates in two phases. In the first phase, a string is
tightly connected between the initial configuration and the
closest, obstacle-free goal configuration. At this point, the
string is straight and may pass through obstacles. The path
along the string is now checked to identify the segments which
pass through empty space and those which pass through
obstacles.

The second phase of the algorithm uses information from
the world model to incrementally modify the path. The
obstacle segments are stretched along the sides of the obstacles
until they lie entirely outside of them. This process is depicted
for a two-dimensional ¢-space in Fig. 1. The final modified
segments lie on the (n—1)-dimensional surfaces of the
obstacles.

In the second phase, the string could be moved around
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Fig. 1 Path modification by string stretching: (a) Straight-line path
from phase 1 (b) Partially stretched obstacle segment during phase 2 (c)
Final path following obstacle boundary

obstacles individually or as a group. It is generally easier to use
a divide-and-conquer approach and avoid obstacles in-
dividually. In most applications of interest, path modification
(string-stretching) can be first performed in the most promis-
ing direction. This direction can be chosen using robot and
world model information and is called the strategy direction.

It is possible that no path exists for certain segments even
when a path for the entire string exists. In these cases, it is
necessary to modify the string for several obstacle segments at
once. An example of this is shown in Fig. 2.

By using strategies developed from global information, the
most promising regions of ¢-space are explored first. It is sug-
gested that most problems can be solved using these strategies.
In more difficult situations, a systematic exploration of the
obstacle surfaces defining the segment must be performed
since any path around an obstacle will lie on its surface or be
in the same class of paths.

Failure occurs if the entire obstacle surface is explored and
no passageway through it or around it is found for the string.
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Fli‘g. 2 The two obstacle segments must be combined to find the path
shown

string tightened path

Fig.3 Local path optimization by string tighleﬁiﬁi The phasie' 1, phase
2, and string-tightened paths are shown.

Note that many potential goal configurations may exist due to
redundancy and failure for one does not imply failure for all.
When failure for a particular goal configuration occurs, the
initial point is isolated from the region containing the goal by
some combination of obstacles and joint limits. When select-
ing an alternate goal, care should be taken to choose one
within the region of the initial configuration as determined by
the current c-space map.

The string-stretching search strategy removes the conflict
experienced by the authors’ simple heuristic planner by
separating the problem into two phases. The first phase forms
a path connecting the initial configuration to the goal. The
second phase modifies this path in a systematic and intelligent
fashion until it is collision-free or it is determined that no solu-
tion exists. If desired, the collision-free path can be locally op-
timized by string-tightening as shown in Fig. 3. For this
process, the obstacles are considered impervious to the string
which is tightened between START and GOAL.

3.1 String Modification Strategies. In order to devise
strategies for path modification, we wish to make full use of
the information contained in the models of the robot and
world. Ideally, this information is obtained through simple
calculations by considering such things as:

¢ the approach and departure directions of the robot with
respect to the obstacle,

Transactions of the ASME

|
|
|

ol




Fig. 4 Path modification strategies

DESIRED MOTION
DIRECTION

POSSIBLE STRATEGY DIRECTIONS

Fig. 5 Strategy selection example

* the relative location of the obstacle with respect to all the
robot’s links,

¢ the geometry of the obstacle,

¢ the proximity of other obstacles to the one in question
and

¢ the location of the detected interference on the robot
and on the obstacle.

A list of possible strategies can be developed for a robot
based on its geometry. For an articulated arm, as shown in
Fig. 4, these might be UP, DOWN, LEFT, RIGHT, IN, and
OUT. These strategies are applied to those parts of the robot
which cause interference. In c-space, they correspond to direc-
tions which depend on the current manipulator configuration
and can be found using the Jacobian. The list of strategies can
be reduced as follows:

¢ Eliminate those strategies disallowed by the obstacle.
For example, a robot cannot move under an obstacle attached
to the floor or inside an obstacle located near the robot’s base.

¢ Eliminate or discourage those strategies which will lead
other links into the obstacle.

¢ Eliminate or discourage those strategies which may lead
any link into a nearby obstacle.

The best strategy of those remaining can be chosen by con-
sidering the interference locations on the robot and obstacle.
Consider the example in Fig. 5. The arm configuration at
which interference begins is shown. If the possible strategies
are UP and IN, clearly UP is preferred. This can be deduced
from the fact that the arm is extended radially well beyond the
obstacle, but is near its top. Another consideration is any
strategies previously selected for adjacent segments. If string-
tightening optimization is to be used later, the final path may
be shorter if the same strategy is used for adjacent segments.

If a single obstacle segment passes through several obstacles
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Fig. 6 Selecting a strategy for a complex obstacle shape

or segment modification introduces new obstacles, a strategy
should be selected based on criteria for all of them. Strategy
selection can seem difficult in some cases. Consider the exam-
ple in Fig. 6. The START configuration in this figure suggests
the use of the strategy UP. However, the arch over the GOAL
seems to preclude the use of UP and suggests instead the use of
IN. The wedge under the START configuration, however,
seems to prevent the use of IN. This dilemma is solved by in-
troducing a back-off direction as described in Section 3.3. The
obstacle can be avoided by choosing either UP or IN as the
strategy direction and the other as the back-off direction.

3.2 Two-Phase Planning in a Discretized Joint
Space. Configuration space can be discretized into a hierar-
chical tree similar to an octree [32, 33]. For a robot with n
joints, the tree would have a branching factor of 2”. However,
for ease of description and implementation, we use a uniform
discretization in this paper. Each joint range is divided into
equally sized increments. The resulting cells are called voxels,
using octree terminology. Octrees and their properties are
discussed in Section 4.1.1. Voxels correspond to the volume
swept out by the robot as its joints vary between the voxel
limits.

The swept volume of a link depends on the range of joint
values for that link and for all links preceding it. This volume
can be computed by a series of sweeps beginning with the link
of interest and proceeding backwards to the base. The status
of a voxel as empty or obstacle-filled space is determined by an
interference check between the robot’s swept volume and the
world model. Smaller voxels yield a better representation of c-
space, but, since a larger number must be used, require more
computation. If an algorithm fails to find a path at a par-
ticular c-space resolution, it does not mean that one could not
be found at a higher resolution.

In a discretized joint space, the tight string of phase one cor-
responds to a set of contiguous voxels enclosing the initial con-
figuration, goal configuration and the straight line between
them. Each of these voxels is checked for interference. During
modification, the full voxels forming obstacle segments are
replaced by sets of voxels lying on the (n— 1)-dimensional, c-
space obstacle surfaces.

3.3 Discretized-Space String Stretching. A brute force
approach to string stretching would be to map with voxels the
entire surfaces of interfering obstacles and to perform a graph
search for the minimal length path. Instead, world model in-
formation is used to stretch the voxel “‘string”’ around
obstacles in the most promising c-space directions.

In the discretized space, an obstacle segment includes the set
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Fig. 7 Segment modification. While all voxels were checked for in-
terference in phase 1, only the surface voxels are checked here. (a)
Obstacle segment length is unchanged. (b) Length of obstacle segment
is decreased by one voxel. (c) Motion in strategy direction requires back-
ing off from obstacle. Segment length increases by one voxel.

of voxels between the first and last contact with an obstacle
along the straight-line path. It begins and ends with the single
empty voxels which precede and follow the set. In path
modification, we wish to move an obstacle segment toward the
edge of an obstacle in the strategy direction. In our discretized
space, each voxel has 27 side neighbors. Since the direction in-
to the obstacle is blocked and we would prefer not to
backtrack, there are at most (2n—2) possible directions in
which to move the segment.

The direction is chosen to most closely correspond to the
3-D world strategy direction. Note that while the world
strategy direction usually stays the same during segment

modification, this is not necessarily true of the corresponding-

c-space direction since it depends on the current manipulator
configuration.
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When modifying a segment by string stretching, the idea is
to maintain a contiguous set of voxels leading from one empty
segment to the next. At each step of modification, the empty
ends of the segment are stretched one voxel in the strategy
direction and the new segment is shortened to maintain a
single empty voxel on each end.

Figure 7 contains a two-dimensional example. There are
three cases to consider. The neighbor in the strategy direction
of the empty end voxel is checked first. If, as in Fig. 7(a), it is
empty, it becomes the new end voxel. The original empty voxel
is added to the end of the adjacent empty segment. The
strategy direction neighbor of the first full voxel is now
checked.

If it is full, then all checking for this end of the segment is
complete. If it is empty, as in Fig. 7(b), then shortening is
possible. This voxel becomes the new end voxel with its
predecessor transferred to the adjacent empty segment. The
next full voxel’s neighbor must now be checked with this
process continuing until the neighbor is full. This procedure
trims the obstacle segment length.

If the neighbor of the original empty end voxel is full, as in
Fig. 7(c), it is necessary to back off from the obstacle. This is
done by adding empty voxels one at a time to the end of the
original segment in a direction opposite blockage. In the
figure, this means backing into the empty segment. Backing
off is stopped as soon as the strategy direction neighbor is
empty. If a back-off voxel is full, alternate back-off directions
which move the interfering link away from the obstacle can be
tried. Otherwise, the algorithm can backtrack to the previous
step in segment stretching. If these fail, alternate strategies can
be employed followed by a complete surface mapping.

Interference checking occurs only at the ends of the obstacle
segments. The interior voxels remain in a straight line and are
carried along only as a sequence of directions with respect to
the segment end voxels. Since the interior voxels are never
checked, string stretching has the effect of mapping a curve on
the obstacle surface. The minimum number of interference
checks during a modification step is four, covering the two
empty ends and their full neighbors. These checks guarantee
that the two ends of the path are empty and that the segment
cannot be shortened. If any interference checks identify addi-
tional obstacles, the current strategy may need to be updated.
Segment modification is complete when the obstacle-segment
length goes to zero or the entire surface has been mapped.

3.4 Algorithm Performance. In the worst case, the
string-stretching algorithm maps only the straight-line path to
the goal and the c-space surface voxels of interfering obstacles
along this path. This is an improvement over algorithms which
compute the c-space bounding joint values for all obstacles in
all cases. Given the same problem dimension, string stretching
is comparable in the worst case to those methods which com-
pletely map the obstacle boundaries of the free-space region
bounded by the initial and final joint values.

By simple analysis of the robot and world models, it is often
possible to select the most promising search directions which
we have called strategy directions. In many useful cases, a
strategy directed search can drastically reduce the amount of
obstacle-surface mapping needed to find a path. This is im-
portant since the most time-consuming part of path planning
is often mapping. In addition, since strategies are devised
from world model information as the easiest ways around
obstacles, the paths generated from them are likely to be
efficient.

4 Implementation

4.1 Solid Modeling. The planning algorithm was tested
with two different methods for calculating interference be-
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Fig. 8 Octree example

tween the robot and its environment. In the first, an exact
swept-volume calculation was used with octrees to represent
the robot and obstacles. The second method used a swept
volume approximation with polytope models of the robot and
workspace. Each method is discussed below.

4.1.1 Octree Method. An octree is a tree structure of
degree eight. The octree universe is a cube which can be
divided into eight octants. Each of these octants can be recur-
sively subdivided to obtain any desired resolution. Within the
tree structure, a node corresponds to a cube. If the cube is sub-
divided, the node has eight children corresponding to the eight
octants. (See Fig. 8 for an example of a simple object and its
octree). Nodes are labeled full, partial or empty, according to
the cube’s contents. Full or empty nodes are terminal while
partial nodes have children. Cubes are called object elements
or obels. Obels at the lowest level are called voxels.

Octree solid modeling has several advantages. Algorithms
exist to perform all of the usual solid modeling operations on
octrees using mostly integer arithmetic [32]. Real-time per-
formance has been demonstrated on parallel processors [33].
Variable resolution operations can be performed with octrees
simply by limiting tree descent to the appropriate depth.

Along with these advantages come some disadvantages. The
number of nodes in the tree increases exponentially with the
number of levels in the tree. This means that the time required
for translations, rotations, and swept volumes is also exponen-
tial in the number of tree levels. Our implementation in C on 2
uVAXII was very slow for these operations. The interference,
difference, and union operations were fast, however.

Another problem with the octree structure is that tree opera-
tions require rounding to full or empty at the voxel level. To
be conservative, all partial voxels must be rounded to full. As
a result, the object grows with each operation. This can be
controlled by operating on the original octree whenever possi-
ble and by using a high-resolution tree. Since our implementa-
tion was so slow, use of a high-resolution tree was not
possible.

Determining the contents of a c-space voxel involves com-
puting the swept-volume octree of the robot corresponding to
the voxel and checking for interference. To form the exact
swept volume of link j requires j sweeps and j — 1 concatenated
translations and rotations. As discussed above, round-up er-
ror is introduced with each operation. If tree depth is not suf-
ficient, the transformed object appears to have grown. This
accumulated growth is greatest in the swept volumes of the
distal links which require the most operations to generate.
Because only eight levels were used, this growth was
significant.

4.1.2 Polytope Method. While inherently approx-
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Fig.9 Octree model of seven-jointed robot. Joint 3 increases arm dex-
terity by allowing it to move out of a vertical plane.

imate, this method was adopted for its high speed. The robot
and obstacles are represented as unions of polytopes. A simple
approximation to swept volume is used with a distance func-
tion to check for interference.

The swept volume approximation is similar to one described
in [28]. Each link is placed at the mid-range joint value of the
sweep and grown by the largest linear displacement associated
with the sweep ranges. This is a conservative upper bound on
the swept volume which is very easy to compute. Its accuracy
is related to the size of the joint intervals.

For a planar robot with revolute joints, the growth radius,
d,, for link k is given by

dk=%§ [(sz 7 N2~ cose) |

where ¢; is the sweep range of joint i, /; is the distance from
joint j to joint j+ 1 and r, is the distance from joint & to the
most distant point on link k. The term in square brackets cor-
responds to the length of a chord subtending an arc with in-
cluded angle ¢; and a radius extending from joint i to the far-
thest point on link k. Since the c-space voxels are of constant
size, d,, k=1 ..., n are also constant.

Since a distance function is used [34], the links are never ac-
tually grown by d,. As long as the distance between link k and
the obstacles is greater than d,, there is no interference.
Checking a c¢-space voxel’s status consists of two steps. The
vertices of each link’s polytopes are transformed to place the
robot at the mid-range joint configuration. Then the distances
to the obstacles are computed and compared with the ap-
propriate d,.

The accuracy of the robot and obstacle models can be in-
creased by using more polytopes or polytopes with more ver-
tices. Both will increase solution time, but especially the
former since pair-wise distance checking is performed.

4.2 Two-Phase Planning. Currently, the algorithm
searches using only the best strategy. The Jacobian is used to
find the c-space neighbor direction from the world strategy
direction based on the current robot configuration. The
strategy is applied to the link(s) causing interference.

For the case of a robot with # joints, our uniform discretiza-
tion of c-space is equivalent to using a tree structure of degree
2" and ignoring all nodes but the voxels. The number of vox-
els in a c-space with k joint subdivisions is k”. For reasonable
values of &k and »n, this number of voxels would consume a
large amount of memory. However, we really only need to
store voxels which are checked for interference. This number
is proportional to the c-space surface area of the obstacles in
the worst case. In most cases, it is much less.
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Fig. 10 Path example. All seven joints were free to move along the en-
tire path. The coarse image of the robot, especially noticeable near the
gripper, is due to the octree rounding error discussed in section 4.1.1.

4.3 Example. Paths were planned for redundant robots
such as the one depicted in Fig. 9. The possible strategies were
UP, DOWN, IN, OUT, LEFT, and RIGHT as shown in Fig.
4. An example path appears in Fig. 10. The limits on joint 1
forced the arm to rotate clockwise about the base to reach the
goal. The strategies chosen for the obstacles from left to right
were IN, UP, and UP. Notice that the path requires the con-
figuration point to go outside the c-space region defined by the
initial and goal joint values for joints 1, 2, and 4.

String-tightening optimization would improve this path.
This can be seen by considering frames 2, 3, and 4. The con-
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figuration of frame 3 lies on the straight-line path of phase 1.
String tightening would produce a more direct motion between
the configurations of frames 2 and 4.

Table 1 lists performance data for this example. The
discretization interval for all joints was 5 degrees. The number
of voxels checked for interference was 119 in phase 1 and 235
in phase 2. These numbers should be compared with the total
number of voxels in ¢c-space which is greater than 2 10'2. As
expected, a path was found while mapping a very small por-
tion of c-space.

The execution times corresponding to the planning and in-
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Fig. 10. (Continued)

Table 1 Example performance data

Voxel Edge Length = 5°
Total Number of C-space Voxels > 2. 1012
Phase 1 Phase 2
Number of Voxels in Path 114 200
Number of Voxels Checked for 119 235

Interference

CPU Time (Phases 1 & 2)

Polytope Method (Sun 4) | Octree Method {(uVAX 11)
23.27 seconds 25 hours, 19 minutes

1 minute, 22 seconds

Interference Checking
Planning Algorithm (¢VAX II)
Total Time

1 minute, 45.27 seconds } 25 hours, 20.3 minutes

interference-checking portions of the code are listed separate-
ly. The planning time was the same for both modeling
methods. Using the polytope approximation method, total
CPU time was less than two minutes. Total CPU time using
octrees was over 25 hours.

The solution time of the polytope approximation technique
is excellent despite the fact that the code was not optimized.
The expected high-speed performance of octree solid modeling
was not achieved on our serial computer. The maximum tree
level was limited to eight to keep the run times in hours. With
only eight levels, the growing error resulting from multiple
operations was significant. In fact, the accuracy was com-
parable to that achieved by the polytope approximation
method.

5 Conclusions

A new algorithm for planning collision-free paths has been
described. The basic algorithm can be used with any solid
modeling representation of the robot and obstacles. Used with
the polytope modeling scheme, it is fast.

For redundant robots, or any applications for which arm
decomposition is not feasible, the algorithm provides the
means to find reasonable paths while often performing fewer
computations than other methods. This is possible because
full use is made of the robot and world models to develop path
modification strategies. The example in the previous section
demonstrates that in a reasonably complicated case, a solution
can be found using simple strategies.

While the algorithm is heuristic in that the most promising
search directions are explored first, the search can continue
until a path is found or it is determined that no path exists.
The algorithm does not exhibit the erratic search behavior
which characterized the authors’ local heuristic planner. It
also avoids the deadlocks experienced by iterative planners.
This is accomplished by separating the planning problem into
two phases. The first phase forms a path to the goal. The sec-
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ond phase modifies this path in a systematic and intelligent
fashion to avoid all interfering obstacles.

In many instances, the algorithm avoids the complete c-
space mapping inherent in many global, path-planning
algorithms. In the worst case, it maps a straight-line, voxel
path from the initial point to the goal and the c-space surface
voxels of the interfering obstacles along this path. As our ex-
ample demonstrates, the use of search strategies often
eliminates the need to map the majority of these surface
voxels.
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