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Abstract: This paper presents an approach to estimating the contact state between 
a robot and its environment during task execution. Contact states are modeled by 
constraint equations parameterized by time-dependent sensor data and time-
independent object properties. At each sampling time, multiple model estimation is 
used to assess the most likely contact state. The assessment is performed by a 
Hidden Markov Model, which combines a measure of how well each set of 
constraint equations fit the sensor data with the probability of specific contact state 
transitions. The latter is embodied in a task-based contact state network. The 
approach is illustrated for a three dimensional peg-in-hole insertion using a 
tabletop manipulator robot. Using only position sensing, the contact state sequence 
is successfully estimated. Property estimates are obtained for the peg dimensions 
as well as the hole position and orientation. 

1 Introduction 
One aspect of machine perception is the automatic determination of contact states 
and the object properties associated with those states. Such information is useful in 
a broad range of manipulation problems. For example, in many tasks, the values of 
object properties (e.g., location, dimensions, mass, stiffness) determine the 
subsequent handling strategy. The use of such a system for undersea connector 
mating during oil platform maintenance was explored in [1]. A second category 
involves those tasks for which the current contact state dictates the motion or 
control strategy to be applied.  

Force controlled assembly represents a class of problems for which knowledge 
of both contact states and property values is important. The control law depends on 
the contact state; and accurate knowledge of the geometric parameters improves 
controller performance. Significant progress for this application has been made by 
De Schutter et al. [2]. In their approach, contacts between a manipulated object and 
the environment are modeled as virtual mechanisms whose geometry and nominal 
parameter values are known. Geometric uncertainties are estimated with Kalman 
filters using motion data, force data or both. This approach also allows the 
estimation of contact state.  

Our approach assumes that the geometry of possible contact states is known; 
however, nominal parameter values are not assumed. Thus, the contact state of a 
cylinder sliding on a plane can be distinguished regardless of the cylinder�s radius 
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and an estimate of the unknown radius is also obtained. Without the assumption of 
nominal contact parameters, however, the estimation problem is nonlinear. In this 
paper, contact states are described by nonlinear kinematic constraint equations.  

The paper is arranged as follows. Section 2 presents an overview of the 
approach and provides a brief summary of related literature. The following section 
describes the kinematic contact state models. Section 4 provides the details of the 
segmentation and estimation algorithms. Experimental results appear in Section 5, 
which is followed by concluding remarks.  

2 Approach 
The work described in this paper builds on the framework for a robotic perceptual 
system first proposed in [3]. The structure of the perceptual system is motivated by 
three fundamental observations involving contact states, constraints equations, and 
task descriptions: 

� Object properties are measurable only in certain contact states, 
� Each contact state can be described by a set of constraint equations, and 
� Manipulation tasks are readily described as a succession of contact states. 

 
A variety of modeling approaches have been reported for use in segmenting a 
sensor data stream by contact state. De Schutter et al. employed Kalman filtering 
of position and force data to estimate geometric contact uncertainties and used a 
Bayesian approach to monitor the change of contact state during a peg-in-hole task 
[2]. Eberman used generalized likelihood ratio tests [4]. McCarragher has 
employed qualitative reasoning with thresholding [5] as well as Petri nets [6]. 
Hidden Markov models have also been used. For example, Hannaford and Lee 
used force and torque signals as the inputs to an HMM to monitor contact states 
during peg-in-hole insertion [7]. 

In this paper, contact state estimation is performed by combining multiple model 
estimation (comparing how well each contact  model fits the data) with a Hidden 
Markov Model (HMM) representation of the robot�s task (providing a network of 
allowable contact states and probabilities of transitions).  Our approach is depicted 
in Fig. 3 with the HMM incorporated in the acceptance test. This approach 
contrasts with prior use of HMM�s in which the HMM input consisted of raw 
sensor data. Instead, the HMM developed here employs estimation residuals 
corresponding to object penetration distances for each contact state. 

3 Modeling 
In this paper, contact states are modeled using their kinematic constraints. The 
associated properties are the dimensions and locations of objects, all of which can 
be estimated based on point contact locations. For example, the typical contact 
states comprising a spatial peg-in-hole insertion are depicted in Fig. 1. 
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Contact 2Contact 1 Contact 3 Contact 4Contact 2Contact 1 Contact 3 Contact 4  
Fig. 1.  Peg-in-hole contact states. 

3.1 Modeling Contact States Using Position Based Constraint Equations 
Each contact state can be expressed using sets of parameterized constraint 
equations that describe the position of the contact point. For example, in Contact 2, 
the contact point belongs to the bottom rim of the peg and to a plane in the 
environment frame. For the general case, constraints on the point contact 
coordinates can be expressed as 
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Here, jf  and jg  are vector-valued functions of the contact�s coordinates written 

with respect to body frames of the manipulated object, ( ) [ ( ), ( ), ( )]m m m m T
c c c cX t x t y t z t� , 

and the environment object, ( ) [ ( ), ( ), ( )]e e e e T
c c c cX t x t y t z t� .  

These functions are related through the following kinematic closure equation: 
  

      ( ) ( ) ( ) ( ) ( )g m m e e
o g c o cT t T t X t T t X t�                           (2) 

 
( )g

oT t is a homogeneous transform matrix which relates the gripper frame to the 
sensor frame based on the geometry of the remote manipulator. Similarly ( )m

gT t  
relates the manipulated object to the gripper frame, and ( )e

oT t  relates the 
environment object body frame to the sensor frame. 

 By substituting the contact constraints (1) into the kinematic closure equation 
(2) we can express the geometric constraints characterizing the contact states in 
terms of the sensor measurements and the properties associated with the objects in 
contact. Techniques from the robot calibration literature, e.g., [8], can be applied 
to obtain the best form of these equations for estimation.    

3.2 Contact equations reformulation as penetration constraints  
In the kinematic closure equation, (2), the left and right sides represent the fixed-
frame coordinates of the contact point on the manipulated object and on the 
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environment object, respectively. When the contact constraints (1) are substituted 
into (2), the equality of the latter holds if the contact state is active and there is no 
error in the sensor data and in the property estimates. Otherwise, (2) can be 
modified to obtain a residual vector, 0� , indicating the error in the closure 
equation:   
    ( ) ( ) ( ) ( ) ( ) ( )g m m e e

o o g c o ct T t T t X t T t X t� ��           (3)
  

For those point contacts with a well-defined contact normal, n , the residual 
vector o� can be projected along the normal direction to obtain the distance by 
which the contact constraint is violated.  

       0p n� �� �              (4) 
 

Depending on its sign, the penetration distance p�  indicates interpenetration of 
the objects or the distance between them. Fig. 2 shows examples of penetration 
distance for two contact states of a planar peg-in-hole insertion. As can be 
expected, the projection of (4) preserves those variables directly associated with 
the contact constraints while eliminating those that are not. Section 4 explains how 
penetration distance can be used in contact state and property estimation.   

 

p�

 Peg modeling error 

 
Fig. 2.  Penetration distance, due to error modeling, for two contact states of planar peg-in-
hole insertion 

3.3 Anticipated Path Constraints 
To ensure that the unknowns of equation (4) are time-independent, path 

restrictions are imposed on the estimable motion associated with the different 
contact states. The assumption is made that, for some portion of a contact state, the 
operator will follow an anticipated path within that contact state. In Contact 2, for 
example, the operator is likely to slide the peg without changing the point of 
contact on the peg for some segment of motion. In this approach, the success of 
data segmentation and property estimation depends on the operator producing 
those constrained motions for at least some short time interval during the 
associated contact states. An example is provided in section 5.2. 
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4 Contact State and Property Estimation  
The technique of simultaneously comparing a set of models to a data stream and 
using a statistical test to select the model which best fits the data is known as 
multiple model estimation. Its application to contact state and property estimation 
is illustrated in Fig. 3. Note that the approach provides a unified solution to the 
segmentation and the estimation problems. 

With this technique, the parameters (properties) of all contact states are 
estimated simultaneously in a moving data window of fixed length. To implement 
nonlinear least squares based on penetration distance, the Levenberg-Marquardt 
algorithm is used since it is robust to the choice of initial parameter values. The 
condition number of the Jacobian relating parameters to penetration distance is 
evaluated and those data windows exceeding a threshold are discarded [8]. Finally, 
the estimation residuals of well-conditioned data windows become the inputs to an 
acceptance test that provides an estimate of the contact state.   
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Fig. 3.   Multiple model estimation 

4.1 Acceptance test by Hidden Markov Model 
The acceptance test is implemented with a Hidden Markov Model (HMM). To 
estimate the contact state of a data window, the HMM uses the estimation 
residuals, an estimate of the previous contact state and the probability of specific 
contact state transitions.  

An HMM can be described as a probabilistic observer by which a stochastic 
hidden process can be observed using the probabilistic structure of the state 
network and a probabilistic relationship between the states and one or several 
observable stochastic signals. The contact state network of the HMM is described 
by n, the number of states, � , the n-vector of initial state probabilities, and A , the 
n n�  state transition probability matrix [9].  

The probabilistic relationship between the observable signal and the different 
states that comprise the task network is given by the observation sequence O . For 
a continuous signal this relationship can be described using a probability density 
function (pdf), ( )B O . Gaussians are used here for practicality. 

As described in [9], the computation of the estimated sequence of states 
associated with the observable signal O is a minimization problem that can be 
efficiently solved using dynamic programming techniques such as the Viterbi 
algorithm. Once the state sequence is estimated, the object properties 
parameterizing the contact state constraint equations can be estimated.  
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4.2 Multi-pass Data Segmentation 
Note that while contact state constraints can have some parameters in common 
(e.g., peg radius appears in contacts 2-4), the estimated values of these common 
parameters (in , 2 4eip i � �  of Fig. 3) can differ as they are determined 
independently in the multiple model approach. It can be anticipated that these 
parameters will be well conditioned in some contact states and poorly conditioned 
in others.  

Constraint conditioning can be greatly improved by setting one or more 
common parameters to their correct values. While the correct values are assumed 
unknown a priori, a multi-pass approach to segmentation can be implemented to 
estimate them. This technique is based on segmenting a well-conditioned subset of 
the contact states on each pass. Estimates of common parameters are used to 
augment the subset of well-conditioned contact states for the subsequent pass. The 
technique can successfully segment all contact states if at least one additional state 
becomes well conditioned with each pass. Note that all passes are performed on 
the same data set. 

5 Experiment results 
The proposed contact state and property estimation techniques are implemented 
for peg-in-hole insertion using a tabletop manipulator system. The goal of the 
experiment is to estimate the sequence of contact states composing the task and to 
extract the associated task properties. These properties include the radius and 
length of the peg as well as the location and orientation of the hole. 

5.1 System configuration 
A PHANToM� haptic device is used as the manipulating robot. The positions 

of the six joints of the system are measured using high resolution optical encoders. 
The kinematics of the robot are known, and a closed loop calibration technique [8] 
is used to improve the absolute accuracy of the system. 

The peg and hole apparatus is constructed as follows. A cylindrical peg is 
attached through the spherical wrist of the manipulator robot. The hole is drilled 
perpendicularly to the surface of a rectangular aluminum block that is mounted on 
a 3-DOF vice. The insertion is done manually, using the manipulating robot as a 
way of recording the kinematic data.  

5.2 Contact equations 
As a first step, the position-based constraint equations of  (1) need to be written for 
each contact state. For Contact 2, this can be written as follows:    
 

2 2 22 : ( ) 0, ( ) ( ) , ( ) 0m m m e
c c c peg cContact z t x t y t R z t� � � �                    (5) 

 
Then, to obtain the penetration distance for each contact state, the corresponding 
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constraint equations are combined with the kinematic closure equation (2) and 
projected along the contact�s surface normal as in (4). For example, in contact 2 of 
Fig. 1, the peg is constrained to slide on the planar surface. The resulting 
expression for penetration distance is given by 

 
z

2 o e( ) n =o
p e

t t t t t t
33 23 13 31 21 11

t t t t t
32 22 12 14 24

R - - +

(-q +q )+q + (- q +q )- q
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� �� � z 1 2 x 2 y 2 1

p 2 1 1 2 p 2 1 1 2

p 2 1 1 2 2

H cosβ cosβ H sinβ H cosβ sinβ

L (cosβ cosβ sinβ sinβ ) R cosα(cosβ cosβ sinβ sinβ )
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34- q2 1 1 2cosβ sinβ cosβ cosβ

 (6) 

 
The bolded variables in this equation are the unknown parameters: 1β and 

2β describe the orientation of the plane; pR and pL  are the radius and length of the 

peg; , ,x y zH H H  describe the hole�s center coordinates; and α  is the angular 

coordinate locating the contact point on the rim of the peg. The ijq  are functions of 
the robot�s kinematic parameters and joint angles. In the general case, α  is time 
dependent, however, for contact 2, a constant value is assumed as an anticipated 
path constraint. Note the terms forming the first line of (6) do not multiply any 
input and so together form a single unknown parameter. Expressions for 3ε p  and 

4ε p  take a similar form. 

5.3 State Network Modeling 
Possible transitions between the contact states of figure 1 can be represented by a 
state network as shown in the figure below. As modeled, all the possible state 
transitions are represented (i.e., an ergodic model). Each transition is labeled by its 
transition probability, ija , from the transition probability matrix A defined in 
section 4.1. For example, a direct transition from state S2 to state S4 is physically 
impossible and thus, a24 is set to zero.  Selection of the remaining probability 
values is discussed in the following section. 

 
Fig. 4.  Contact state network 

5.4 Contact State and Property Estimation 
The multiple model estimation approach of Fig. 3 is used to segment the data 
stream by contact state. Orientation and position of the robot's tip are recorded at a 
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rate of 25 Hz, and the penetration distances are computed at each time step for 
contacts 2, 3 and 4. These three distances constitute the observation signal used as 
the input of a four-state HMM.  

To obtain values for the initial probability vector, ρ , probability transition 
matrix, A , and probability density function, B , defining the HMM, training 
techniques like as the Baum-Welch algorithm can be used [9]. Such techniques are 
best suited for applications with large numbers of states, e.g., speech recognition. 
Since the task under consideration is comprised of only four states, it is possible to 
assign the HMM parameters manually.  

To illustrate the dependence of contact state estimation on parameters of the 
HMM, figure 5 and 6 compare the output of two models, 2rHMM  and 2 fHMM , 
with manual segmentation. The latter was performed by the operator who pressed 
a switch at each perceived state transition. 

In both cases, the multi-pass estimation strategy described in section 4.2 is used 
to estimate the different contact states and associated properties during task 
execution. For peg insertion only two passes are needed. The well-conditioned 
subset employed in the first pass consists of Contact 2 alone. This contact is 
selected since it allows for the largest range of peg pitch and yaw angles. 
Consequently, it provides the best estimates of the common parameters describing 
peg length, radius and orientation of the hole.  The first pass uses a two-state 
HMM to distinguish between Contact 2 and every other contact state. Results of 
the first pass estimation is shown in 1HMM  of figure 5 and 6. Estimates of 1 2,β β , 

pegR and pegL  from this pass are used to simplify the constraints of Contacts 3 and 

4. The second pass ( 2HMM ) uses a four-state HMM to distinguish all task contact 
states.  

Figure 5 described the case where the experimental data on which these models 
were tested corresponds to the most likely (most often observed) sequence of 
contact states for peg insertion, 1 2 3 4 1{ , , , , }S S S S S . 2rHMM  assumes the task starts 
in state 1S  and only permits the most likely transitions. 2 fHMM  accords the 
largest transition probabilities to the most likely transitions, but also allows all 
other possible transitions. While this additional flexibility produces two short time 
segments in which the state is falsely identified for 2 fHMM , both models 
successfully match manual segmentation for states 1-4. 

Figure 6 illustrates the case when the task involves unexpected state transitions.  
In that situation the use of a rigid state transition matrix, as shown in 2rHMM , 
results in a poor segmentation of the data set.  The state transition matrix can be 
seen as a weighting matrix of the input signals. Therefore, when an unexpected 
state sequence occurs, a rigid state transition matrix does not provide enough 
information to differentiate the different states.  This is particularly noticeable 
when state transitions occur, since it is always expected than a state has a higher 
probability to stay in its current state than moving to another one.  However when 
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some flexibility is added to the HMM, as shown in 2 fHMM , the ε p �s combined 
to the state transition weights provide sufficient information to successfully 
estimate all the contact states composing the task.  Consequently, in order for an 
HMM to be successful, the input signals (i.e, ε p ) must be discriminatory enough 
to  overcome a potentially low-information transition matrix.  
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Fig. 5.  Segmentation of most likely   
sequence of task states using HMM. 

Fig. 6.  Segmentation of unexpected 
state sequence using HMM 

 
This two-pass technique using a flexible state transition matrix was found to be 

robust to variations in state sequence. Parameter estimates for a typical trial were 
found to be within 5 percent of the measured properties. Note that a relatively 
large ratio of peg to hole diameters (0.98) was employed to facilitate manual 
segmentation during algorithm development. Automatic segmentation of smaller 
ratios has also been performed successfully. 

6 Conclusion 
The combined property and contact state estimation method developed in this 

paper is based on multiple model estimation using a Hidden Markov model as a 
decision test. The experimental implementation demonstrates that the algorithm 
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can successfully estimate various contact state sequences composing a task. Object 
properties are estimated to a level of accuracy far exceeding what could be 
achieved by an operator. The only inputs needed by the algorithm are the forward 
kinematics of the robot, a description of the contact states, and an HMM 
description of the task to be performed.  

The flexibility of the proposed approach makes it straightforward to augment 
the perceptual capabilities of an existing system. The technique can be easily 
extended to consider additional sensors (e.g., force) and the estimation of other 
properties (e.g., inertia, friction). It can also be combined with a linearized 
approach to estimating contact uncertainties with the former providing initial 
parameter values for the latter.  
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