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1 Introduction ther refined by[11]. Existence and uniqueness is shown for the

There are many applications in an industrial setting where it isé)emal case in which the maximum tangential force at each point

beneficial to understand the dynamics of systems with frictional 2 Pron kf.“.’W”- - .

contacts. Examples include part-feeding systéf and auto- _The _emplr_lcal nature 01_‘ frlctlc_Jn models can cause additional
matic assembly of mechanical componefisd). Examples of me- difficulties with dynamlc S|mulat|0r). The most Wldely. employed
chanical systems with frictional contacts include multifingere odel, for example, is Coulomb friction. When used in combina-

rippers([3]), multiarm manipulation systen@4]), legged loco- jon with a rigid-body contact model, the tangential force is a
gripp ’ P Y - 1ed9 discontinuous function of the sliding velocity and independent of
motion systems, and wheeled robots on uneven teit&ip. In

order to successfully desian and oofimize such mechanical si@ngential displacement. Furthermore, this model does not predict
tems or manufactu?iln r%cesses pa method for modelin a%u h phenomena as microslip, hysteresis, and local adhesion
9p ! 9 2]). Both these difficulties can be overcome by combining the

simulating mechanical systems with frictional contacts is neces: lomb fricti del with a simole | d model of i
sary ([6]). oulomb friction model with a simple lumped model of compli-

In a forward dynamics problem, it is well known that in theance(e.g., the Kelvin-Voigt model13]). At very small displace-

frictionless case there is always a unique solution for the accé]?—ems’ the tangential force opposes the tangential displacement,
erations. When the constraints are not all independent, the systg'rrﬂu'atmg an approximately linear spring. For small oscillatory

is statically indeterminate and the constraint forces cannot :aSplacementS‘ hysteric behavior is exhibited agLdl. With a
uniquely determined. In the frictional case, if all contacts ar

titable modification to the Coulomb friction model, the steady-
known to be rolling(sticking), the existence of a solution can be tate friction force can be made to decrease with increasing veloc-
shown if the constraints are independ€nt]). In all other cases,

ity thus simulating the development of a lubricant filfi2]).
. . However, while the difficulty with discontinuities is eliminated,
the initial value problem can be shown to have no solution or . s
. . X . - o such Coulomb-like friction laws are generally not smooth. The
multlple'solu.thns for speuql ch0|qes of initial coqdltlo(ﬁs,g]). . _laws are described by separate equations for rolling and sliding
The major difficulty of proving ex_lstencg anq UNIQUENESS arsey ot and are not differentiable at transitions between rolling
when rigid-body models are combined with friction laws couplin

normal and tangential contact forces. In these situations, it is ?_d sliding. We will overcome this difficulty by introducing a

tractive to pursue models in which the contact forces are expli Hction model that depends on normal force, but which is continu-
p P g;elisly differentiable.

functions of the state variables. For example, a continuum mo In this paper, we derive a simptwmpliant contact modahat
([10). Each sontact s modeled as icional elasic o viscoelastig) POV @ framework for analyzing ficional forces for con-
: sliraint dynamic systems; arfb) establishes a unique solution for

and the contact force distribution across the contact patch is Callsial value problems in dynamic simulation. We use methods

culated using a finite element mesh. This general approach is fPer singular perturbation analysis to establish conditions under
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2 Rigid-Body Models complementarity constraints can be found in the tangential direc-

The dynamic equations of motion for a mechanical syste gndtéyia?lsssummg Coulomb’s friction. We refer the reade{ 1]
comprised of rigid bodies subject to Coulomb friction can be writ- The problem of determining contact forces can be reduced to a

ten in the form linear complementarity probleitCP) that has the forng[7])
M(q)d+h(g,q)=u+dg\ @ x=0, y=Ax+B>0, y'x=0. 6)

whereq e R" is the vector of generalized coordinatd(q) isan The LCP has a unique solution for all vect@sf an only if the

nXxn positive-definite symmetric inertia matrixy(g,q) is an matrix A is a P matrix ((16]). However, even ifA is not aP

X1 vector of nonlinear inertial forces, is the vector of applied matrix, the LCP may have unique solution for special choices of
(external forces and torques, and is the vector of constraint B. For other choices oB, Eq. (6) may have no solution or mul-

forces. The system is subject kaunilateral constraints: tiple solutions. To overcome these inconsistencies, we consider
more sophisticated models of contact interactions in the next
‘I’(Q):((ﬁl(Q), x¢k(q))T>0 (2) section.

and®, in Eq. (1) is thekXxn Jacobian matrixg®/dq. We will

assume, without loss of generality, that this does not include bi-

lateral, holonomic constraints. Further, for the sake of simplicity  Compliant Contact Models

we will assume that nonholonomic constraints are not present. . L
Suppose there are contacts, consisting af rolling contacts . Qur contact model of compllance assumes that the principles of

ands sliding contacts. Let the subscriptsand T denote quantities 191d-body dynamics are valid and the gross motion of the dy-

in the normal and tangential contact directions and the subscri Ic system Is described b_y the state variabigg). However,
S and R denote sliding and rolling contacts, respectively. Thi! addition to the gross motion, there are smiikal) deforma-
Jacobian matrix and constraint forces in E5j. are given by tlons at each contact. Thus a rl_gld body can be modeled_ asa rigid
core surrounded by a very thin deformable layer the inertia of
T_(dI pT_ el T — (T T which is considered to be negligible, as shown in the schematic in
Pa=(Ps,PrrPrr) D3 =(PngtPrgps. () Fig. 1. The gross rigid-body motion determines the relative dis-
A:()\LSNLRHR)Ty (4) placement at the contact poinp{,¢y). The actual relative dis-

placement of the contact point is given by(+ 61, ¢dn+ dn)-
whereu,= —diag(u sign(dDTS)), w is asxs diagonal matrix that The contact forces are related to the normal and tangential defor-
contains all the coefficients of friction at the sliding contadtg, ~Mmations @y, ér) of the deformable layer and their derivatives
is asXn matrix, &g and®;r are bothr X n matrices, and the Q) through the mgterlal properties of the def_ormab_le layer.
total number of constraints=2r +s. A< is the s-dimensional A general viscoelastic model for contact compliance is shown
- . NS

tor of P t slidi tacts. whil ah in Fig. 1. At contacti, the normal and tangential contact forces
vector of normal forces at sliding contacts, wiligg anda r are (\n; @and\t;) between the two contacting bodies may be mod-
ther X1 vectors of normal and tangential forces at rolling con}, " :

: eled as
tacts, respectively.

Contacts between rigid bodies generate complementary con- Ani=Fni(Oni) +Oni(Sni 15N D, i=1,...¢, 7
straints on the positiofor velocity or accelerationvariables and ’ o .
the corresponding force variables. In the normal direction, if no Npi=Ffi(0r) +07,i(6r,67), 1=1,...¢, (8)

new contact becomes active over a finite time interval, then in tha]

interval, there is a complementary equation satisfied by the re}%Eefe the functionsy,; andfy,; are the elastic stiffness terms and

. A _ gn,i andgr,; are the damping terms in the normal and tangential
tive normal accelerationpy,; , and the normal forceh,; ((8) directions, respectively. These functions depend on the geometry

v ) oy . and material properties of the two bodies in contact and may be
Pni=00 Ani=00 dyidni=0, 1=1,... . ®) honlinear. We have decoupled the modeling of the contact forces
This complementary constraint is valid for all sliding contacté.e., the force at a contact is only dependent on the deformation at
(indexed by the subscrigt=1, ... s) and rolling contactgin- that contagt We will consider the case where the tangential force
dexed byi=s+1, ... c). SubscriptR andSare omitted for con- obeys Coulomb’s frictional law:
venience. This condition allows active contacts to become inac- [EREPR )
tive. The case of inactive contacts becoming active is modeled by Til=HIAN -
rigid-body impacts and is treated elsewhe({d3]). Similar An alternative frictional model is discussed in Section 7.

RIGID CORE
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N
!

VISCOELASTIC LAYER UNDEFORMED
UNDEFORMED SHELL

SHELL

Fig. 1 A simple model of contact compliance
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The simplest viscoelastic model is the Kelvin-Voigt model(c) A model with tangential contact compliance is more realistic
given by and can better explain physical observatigris)).
. ) We do not wish to promote unnecessary model complexity,
fi=Ki6, 9i=Ci5, i=1,...¢ (10)  however, and in those situations when a compliant contact model

whereK; and C; are stiffness and damping coefficierita the is not needed, it would be desirable to retain the simpler rigid-
normal or tangential directionsespectively. The coefficients canPody model. The popularity of rigid-body models can be attrib-
be estimated using linear elastic and viscoelastic theory for hated not only to their simplicity, but also to the fact that they
spaces[17]). A more sophisticated model due to Hunt and Cros§"oduce adequate results in a broad range of applications. Clearly,

ley ([18]) incorporates nonlinear elastic and dissipation terms: fgid-body models can only be used when a unique solution can
be determined without any additional ad hoc assumptions. But

even when this is the case, it is meaningful to use the reduced-
order rigid-body model only when the solution from the more
i . . accurate compliant contact model converges to the solution ob-
where « and g are functions of the material properties and theyined from the rigid-body model. In the next section, we will use

local geometry. , singular perturbation theory to investigate stability of the so-
In any of the above models, the normal deformations are Jjjtions obtained from the rigid-body model.

rectly related to the constraints in the normal direction. The nor-
mal deformations and constraint forces are given by

3 .
fi=K;8f, gizzaKib‘iﬂéi, i=1,...c, (12)

Sn,i=max0,— ¢y i(a)}, (12) 4 Singular Perturbation Analysis
if oyi>0, The rigid-body model leads to a set of differential-algebraic
. ) _ equations as shown in Section 2. In the compliant contact model,
Oni=—¢ni(@), 1=1,...¢ 13) the deformations at the contact points are at least an order of
_ : magnitude smaller than the gross motions of the mechanical sys-
A= maX{0.f,i(On,) +On,i(O,i+ i)} tem. By setting these small deformations to zésoby allowing

In the tangential direction we define a new varialtg, to denote the corresponding stiffnesses to be infinitely 1argee recover the
the relative sliding velocity between tligeformed contact points equations of the rigid-body model. This suggests that we can use
at contaci. This quantity is theslip rate, the sum of the tangential singular perturbation theory to decompose the system model into
rigid-body velocity at the contact and the rate of tangential deforeduced(slow time scalg and boundary laye(fast time scalg
mation: models([19]). In mechanical systems described by E®), the
. ) slow time scale corresponds to the reduced-order rigid-body
o= ¢1,i+ o1 - model dynamics and the fast time scale is the time scale that
characterizes the contact dynamif20,21)). The response of the

For rolling contacts, we have . ;
system then consists of a slow response and a fast transient. If the

Ari=fri(Sri) +97i( 81 ,;5Ti) (14) boundary layer model is exponentially stable, the fast transient
o R will exponentially converge to zero and it is reasonable to neglect
ori=—¢ri(q), i=s+1,...c, (15) the high-frequency contact dynamics. In such a situation, the

reduced-order model obtained by neglecting the compliance is

in conjunction with the frictional inequality of EqS). For sliding robust to the unmodeled dynamics. If the boundary layer model is

contacts, not stable, we cannot neglect these terms and it is necessary to use
S _ the complete dynamic model given by E¢$2)—(18).
ori=hyiN;—f1i(S7.4)), 16 : 7. . : X
ri=hril = fri(dr) (16) We first partition the generalized coordinatgsnto the fast
N7i=—physignioy), i=1,...5, (17) variablesq, related to the contact deformations, and the remain-
. . . . i I iables,q,. W ingl fi t of
whereh+;(.) is the inverse of the functiogy; in Eq. (8) for a i/nagri;b?ev;.varlab €S0z e accordingly define a new set o

given 67 ;. For both sliding and rolling contacts, we track the

tangential deformations by integrating the expression for its b D\(91,02)
derivative: p= 1) =| ®1r(01,0) | eR",
t P q
Sri= | Spidt+S7i(to) (18) ?
E e TR where p;,q; € R* and p,,q,e ®" k. Recall thatk is the total

number of constraints. In order to mage valid choice of coor-

In order to determine which set of equations apply, we stfinates, the implicit function theorem requires that the Jacobian
with the assumption that any contact is rolling. If the tangentig},airix

force from Eq.(15) violates the frictional constraint if9), the

contact is sliding and Eq$16)—(17) yield the correct force with Dngexn)
sign(o;) taken to be the opposite of the sign of the tangential r= Drryrxn) e ;XN
force in Eqg.(15). It is clear that Eqs(12)—(18) always provide a On—toxk | (n—kyx(n—k)

unique answer for the normal and tangential contact forces and the ) ) .

positive-definiteness d#l in Eq. (1) yields a unique solution for be nonsingular, th.at is, the contact normals and th.e. rolling tan-

gents have to be linearly independent. If these conditions are sat-
There are two disadvantages of the compliant contact modified, we may write

First it is clear that we now need to model the contacts and this o b,

increases the possibility of modeling errors. Second, and more ( )=J(pl,p2)(- )

importantly from an computational standpoint, there is a need to 42 P2,

extend the dimension of the state space from-2(c+r) to whereJ=I""1. Note that the choice of the-coordinates is arbi-

2n+c in order to track the tangential deformatiofy;;, at each trary as long asI'"! exists. The time variable and the

contact. The three main advantages, which outweigh the disadvpreoordinates can be nondimensionalized by letting

tages, arefa) The normal and tangential forces are now uniquely ‘

determined and there is no question of static indetermindvy; S =_p-1 —~_pn-1

The difficulties with uniqueness and existence no longer arise; and T+ P1=Di7P1 P2=D:7p2, (19)
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whereT is the characteristic time scale ahds dimensionlesp; motions. Asd, tends to zeroge goes to zero, and the compliant
andp, are the nondimensionalized fast and slow variables, reentact model degenerates into the rigid-body model.
spectively.D; is a diagonal matrix whose components are the We usee and the dimensionless variables(®) to perform a
deformation length scales whilB, is a diagonal matrix of the second change of coordinates. Let

characteristic scales of the slow variables. For the sake of simplic-

ity, all contacts are assumed to have similar physical properties, x=(x1,%)"=(P2,05)", yY=(y1.Y2)"=(P1,Vep;)" (20)
and the diagonal matrix of the deformation scales can be defined

asD;=d;-l,«x. We also define a parameteas the dimension- be the new state variables and rewrite the dynamic Elsin
less ratio,d, /L, whereL is the length scale for gross rigid-bodystate space notation:

Jey; Ya
X1 X2

- , 1)
f}” (T2D 1 M2\ + | T2D 1372~ Hu—h)—TJ- 13([3’2 )

2

where ' denotes the differentiation with respect tn D Perform a linearization of the boundary layer mo¢4) around
(L Tkxk 0 ) and \;=f;(—eLyy;)+0i(—eLyi;,— ey, L/T). the equilibrium solutionyy(xy). We obtain the homogeneous

Here we use the notatioy ; to refer thejth component of the boundary layer dynamics of the form

vectory; . x(t) andy(t) represent the dimensionless slow and fast Z'+PZ' +Qz=0y«1, (25)
trajectories, respectively.
The differential equations for the fast variables are given by with

- Rz 3(A(X0,Y.0N(y,0)+ B(X0,y.0))
vey'= (A(x YNy, e)+ B(X,y,e)) #2) P=- 7y ’
. 2 Y=Yo(Xo)
with
o YN(y 6) T2 )\N \ o _ 5(A(X0:Y:O))\(yvo)+B(XOvaO))
=" = = - :
e ()\TR(y, €) Dul )\TR)’ Mniy.€)=0, V1 ¥Y=Yo(%o)
A(X,Y, E)ZDML(Dfl\Jflelq)g)kk, The response of the above system equati¢n), is the transient
e that describes the dynamics associated with the compliance at the
e laias—1 B 1 €Y, contact points. The stability of the system implies the convergence
B(X,y,€)=(T°D™"J" "M~ 7)n(u—h)=(TI""J)y ( ' of the compliant contact model solutiotft, €) to the rigid-body

model solutionxy(t). We can directly apply Tikhonov’s theorem
[19] to get the following result:
THEOREM 4.1 Consider the system described by (21) and let
Yo(X) be an isolated solution of (23). If the following three con-
ditions are satisfied byx(t),y(t),e) for all te[0,t;] and €
Yo ) e[0,60]: (a) the terms on the right-hand side of (21) and their
N, =021 (23) first partial derivatives with respect t(x,y,e) are bounded and
ACGY.OMY,0+B(Xy,0 continuous; (b) the origin of the boundary layer system (25) is
We say that the singular perturbation mod21) is in standard exponentially stable; and (¢)o(x) has continuous first partial
form if and only if the above algebraic equations have at least oderivatives with respect to its arguments, then the following are
isolated real root fol in terms ofx. We will proceed with the true:
stability analysis with the assumption that E2@3) has at least one . . .
feasible solutionyy(x). We now look at the solution to E@21) * The reduced rigid-body model, obtained fr¢&1) by substi-
. - 7 . . el tution of y=yq(x) and e=0, has a unique bounded solution
with y=y,(x) and e=0. This solution, denoted byy(t), is the for all h 0
solution of the reduced rigid-body system. Xo(1), for all te[to,t,], where e [0t;].
» There exist positive constant, and ¢, such that for the
Assume thaxo(t) is defined fort €[ 0,t,]. At an arbitrary time I - — — S -
initial conditions x(tq,€) and y(ty,€) satisfying|y(tq,e€)
|nstancetoe[0t1] the boundary layer system @¢22) can be B 0 <8, and0< e<e,. the singul turbati
introduced through a “stretch” of the time scatest —to/ €. In ry%(IX(mOH ) ;,"an |6tl fot, € s;:ggutar pernutrh allr?n
the stretched time scale the variables andx(t,e) are slowly problem has a unique solutiak(t, €) andy(t, ) on the in-
- = L terval[to, 1] and
varying. Sincet, is allowed to take any value ih0O,t;], the — —
boundary layer system @22) can be written withr as the inde- X(t,€)=xo(1)=0( ), y(t,e)—yo(t)=0(1/e).
pendent variable:

where Dy, is the characteristic mass. Here)) (s refers to the
submatrix in(.) consisting of the firsta rows and the first3
columns. Ase goes to zero, Eq22) degenerates into the follow-
ing algebraic equations:

Proof. The proof of this theorem follows directly from
( Yo Tikhonov’s theorem, and is a direct application of Theorem 9.1 in
y!
(

~ L AX0,Y,ON(Y,00+B(%0,y,0 (24) [19].

Remark 4.1

where’ now denotes differentiation with respect toLet
z
Z/
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» The stability of the boundary layer system is determined by

the matricesP and Q, or specifically, the eigenvalues of
=Y—Yo(Xo)- (kaklkxk)




e Other than the general constitutive model described by Eqgs. 1 L2cosf

(7) and (8), no specific compliant contact models are intro- A= = + I (cosf— ugsinb),

duced in the discussion, therefore the stability results will not

change when different compliant models are employed. _— F, LcoséF,

. . . - B=L6# sinf+ —— .
It is worth noting that the requirements on the continuity of the m |

first partial derivatives in Theorem 4.1 are not satisfied WhenevE
there are transitions from rolling to sliding or sliding to rolling arantees a unique solution. BE0 we are guaranteed of the
because of the nonsmooth nature of Coulomb’s law. In the n istence of a solution regar.dless of whether or Aok a P
section, we will apply Theorem 4.1 to planar mechanical systern§

with one contact and discuss the cases of sliding and rollin atrix.
separately 9 9we now proceed with the singular perturbation approach to the

problem. A transformation to a system of fast and slow variables
can be accomplished by making the change of variables as

bte with ms=0,A>0 and thereford is a 1xX 1 P matrix, which

5 Planar Mechanical Systems With One Contact

Consider the planar rigid body depicted in Fig. 2 in contact with

a horizontal surface, wheteis the distance from the contact pointUse (19) and(20) to nondimensionalize the state variables with
to the center of mas¢CM). The rigid body has masm and

centroidal moment of inertia q=(y x 6)T represent the general- L0 d

D]_:dl, D2= 0 1 f and E=r.

ized coordinates for the rigid body which are the position of the
CM and the angular orientationF(,F,) are the external forces . _ -
scing on the biody an, s he exterl moment about the G141 HAISCETSAE i, the mass of e tidboy
w is the coefficient of friction between the rigid body and surface, stem with one slidina contact is given b
The equations of motion for the system with one contact are givgx 9 9 y
, \
Vey'=

by Eqg. (1) with (
y m 0 0 F, ACOM(Y,€) +B(X)
q:(x), M=[ 0 m 0], U:(Fx), and h=03,,. X2
0 O

X
qi1=Y, QZ:(G)- p1=Py, and p,=d;.

’ | P . nn(y e+,
(26) X= m LZ
For sliding contact: 7 (s SinX, = COSXy IAn(Y,€) +Fy
\
Di=(1 ps plsing—Lcosd)T, N\=Ay=\ys, (27) (30)
and for rolling contact: where

1 0 el
T 0 1 ANR . fn(—eLlys) +on —eLyl,—?yz
o™ I PRI (Y€)= -0,

—Lcosé Lsing m_L
. T?
where ug=— u sign(®y).
- . - L?
5.1 _Slldlng Contact. For the sliding case, the rigid-body A(X)=1+ m—COSX1,2(COSX1,2—,ussinxl,g),
dynamics can be modeled as a LCP of the form ' (31)
by=ANy+B (29) B(X) =X3 ,SiNX, ,— F  COSXy o+ Fy,
where _ F, _ F I =
. . Fi=—r, Fy=—2, and F,=—".
®y=0, \y=0, and PdN\\ =0, m_L m_L I_
T? T T?

Note that the symbot; ; refers to theth component of the vector
X; . By following through the same derivations given by Egs.
(21)—(25) in Section 4, the linearized boundary layer model of
(30) can be obtained as

é&wm)

z' —A(X
oy (%)

Y=Yo(Xg)

z”—A(xo)(

z=0, (32)
Y=Yo(Xg)

XVMW@)
ay1

whereyg(x) is a solution of the algebraic equations obtained by
setting e=0 in (30), and xy(t) is the solution of the reduced
system 0f(30) corresponding tgy .

__In a general viscoelastic model, it is reasonable to assume that
A\ is @a monotonically decreasing function with respecytcand

y,. With this assumption, ifA(X,,0) is positive, the boundary
Fig. 2 Planar rigid body in contact with a rough surface layer system(25) is stable, and the stability of the solution for the
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Table 1 LCP and stability results for one sliding contact (C 1. For the contact maintaining solutions, the result of the singular

=contact, NC=no contact, NS=nosolution, ~  RB  perturbation analysis states that stability only occurs where the

=rigid-body model, ~CC=compliantcontactmodel;, * indicates  quantity A in the LCP formulation is positivéP matrix). If the

that the stability result comes from the fact that the noncontact LCP reports an unique solution, we use the rigid-body model to

solutions  (free falling ) are always stable ) simulate the dynamic motion. For the case when the LCP has two
Conditions Soluions  Stability  Preferred Model ~ Solutions A<0,8=0), we can still use the rigid-body model

since the stability analysis shows a unique stable solution.

A>0 B=0 NC stablé RB

A>0 B<0 C stable RB 5.2 Rolling Contact. The rigid-body dynamics can once
ﬁzg Ezg w 's\‘cﬁns statzlé gg again be formulated as an LCP with the help of surplus and slack
A=0 B<0 NS N/A cC variables([7]). The singular perturbation analysis proceeds in ex-
A<0 B=0 C unstable discard actly the same way as in the previous section. The following is a

NC stable RB partition of the generalized coordinates for the rolling case:
A<O0 B<0 NS N/A CcC
Y _ _[®n _
%*(X v 02=0, p1= (DT)' and p;=0;.

singular perturbation probleif21) is guaranteed if all other con- The linearized boundary layer model for this case is given by
ditions in Theorem 4.1 are satisfied. In a single point sliding con-

tact problem, the rigid-body LCP formulatidi29) has a unique (;f(y,o) (;f(y,o)
solution if and only ifA(x,,0) is positive. The above conclusion 2"~ A(xo)| — Z'=AXo)| —
can be summarized into the following theorem. Y2 Y=Yo(%o) Y1 Y=Yo(%g)
THEOREM5.1 For a planar rigid body with a single sliding con- —0 39
tact described by (1) and (27), the solution obtained from the 2 (39)
compliant contact model converges to that obtained from thenqre
rigid-body model if and only if there exists a unique solution for
the rigid body LCP formulation (29). This result is independent of — T T T
the compliant contact models as long as the monotonicity condi- =(Anr MR
tion, —d\(y(t),0)/dy, >0, is satisfied.
As examples, we show that the stability results are the same for mL? mL*
both the Kelvin-Voigt and the Hunt-Crossley models. From Eq. 1+ |_CO§ X1 7 T SINXp €0SXy
(10) and the expression if81), the dimensionless normal contact ~ A(x)= 2 mL2 ,
force for Kelvin-Voigt model can be written as - |—SinX1 cosx, 1+ I—sinz Xy
An(Y,€)=An(y)=—Ky;=Cy,. (33)
where the nondimensional stiffness and the damping are defined (x)= Fy—Fgcosx;+ X5 sinxy (40)
as F ot Fysinx;+x5 cosxy |
— K = C In the above systemA(xg) is symmetric, and its eigenvalues
K= 1 mL>0 and C= 1 mL>O' (34) are given bya; =1, a,=1+mL?/| which are positive real num-
e T2 m Tz bers. Also if\ is a monotonically decreasing function with respect
€ to y, both —d\(yq,0)/dy, and —d\(y,,0)/dy, are diagonal ma-
The boundary layer system is obtained as trices with positive entries. In this situation, the stability of the
boundary layer systerf89) follows from the Routh-Hurwitz cri-
z”+A(x0)Ez’ +A(X0)EZ=0. (85) terion. The reason is that for rolling constraints, the contact model

corresponds instantaneously to a frictionléss dissipatioh com-
€¥raint pin joint. Viewed in this context, the contact forces corre-
spond to the joint constraint forces. It is not surprising that, in the
— — — _— rigid-body limit, these forces are always stable. In contrast, the
An(Y,€) = Ay(Y) =K(—y1)#—aK(—y;)Py,, (36)  singular perturbation analysis of sliding included the dependence
where of tangential friction force on normal force. This dependence pro-
duced the potential for instability during sliding. Since the LCP
K — 3 «a and singular perturbation analyses for sliding both included this
m>0 and a= 271 >0. (37) dependence, it was possible in Theorem 5.1 to relate the LCP
——5—r existence and unigueness results to the singular perturbation sta-
(eL)” T Jel/T bility result.
There are three possible solutions for the LCP formulation of a
stem with a rolling contacta) breaking contact(b) continued
rolling, and (c) transition to sliding. The conditions of Theorem
) _— P , — p-1 4.1 for use of the rigid-body model include continuity and differ-
2"+ A(Xo) aK (= y1)Ply—y )2 +AMX0) BK(= YD) Hymy 42 entiability of the tangential contact forces. These conditions are
—o 38 not met during(a) or (c) because the contact forces need only be
e (38) C° continuous at a transition. Therefore, we cannot derive a result
Sincey, =<0 for any active constraint, it is clear that the stabilsimilar to Theorem 5.1 for rolling contacts. It is possible, how-
ity of the boundary layer dynamics, described by eitt®5) or ever, to state the more conservative result:
(38), depends entirely on the value A{xy). Thus, independent THEOREM5.2 For a planar rigid-body with a single rolling con-
of the choice of contact modef(x,) may used to test contacttact described by (1) and (28), the solution obtained from the
force stability in those situations where the LCP tells us that tleampliant contact model converges to that obtained from the
contact is maintained. A summary of the results is given in Tabiegid-body model whenever the LCP formulation yields a unique

For Hunt-Crossley model, the normal contact force can be
pressed as

K=

The linearized boundary layer system for Hunt-Crossley model@
given by
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solution corresponding to continued rolling. This result is indeat approximately 0. sec, the sliding velocity changes direction
lut ding t tinued roll Th It deat tely 0.205 the slid locity ch direct
pendent of the compliant contact models as long as the monoso-that the contact point slides to the right. In Fig. 4, we show the
nicity condition of\ is satisfied. experimentally observed trajectory and the simulation results for
a) the trajectory of contact pointb) the normal contact force,
. . - . . ; - and (c) the tangential contact force. The simulation results are
dynamics of a single rigid body in which the unilateral constrainis, . ;e for the rigid-body LCP solution and for the compliant
were due to one contaaﬁi;l@ng or rolling with a second fixed contact model for a range efvalues. The coefficient of friction
rigid body. When we consider multiple planar rigid bodies with sed in the simulation is —0.27
bilateral constraints, but only one contact, a similar result can HeThe first thing to note?sthét tHere is a close agreement between
ggr'lvidé(l:g s;nc dh t?leciso?l’si?:in(:)sm(?anr]llcsstiIfloérgucigtsigﬂzéglg enga”ﬁﬁé experimental trajectory and the rigid-body LCP solution with
27) (58) if the operational space inertia matrid, exists F'il'he the same initial condition as expected. The second issue to focus
P! ; . e T e n is the set of results from the simulation of the compliant con-
o_nly differences are th_at the inertia matrix, i It exists, s no I_onge%ct model. Even though the initial condition for the F():ompliant
diagonal but symmetric and siill positive definite, amlq) is &)ntact model solution is different from the equilibrium solution,

no longer zero. But these differences will not affect the properti ; i )
of the A matrix in the boundary layer systent32) and (39) it quickly converges to the equilibrium solution. The convergence
: é an absolute time scale is faster abecomes smaller. This is

Consequently, the basic ideas developed in this section are so evident at the transition from reverse to forward sliding,

valid, and the main results are applicable to any mechanical s ich includes a very brief period of rolling. The discontinuity of

tem in which the unilateral constraints are due to a single contagt. . . . . S X
9 the rigid-body dynamic model with Coulomb friction is seen in

. . . the contact force variation in Figs(B) and 4c). However, the
6 Results From Experiments and Simulations compliant contact model yields a continuous solution that can be
In this section, we compare the results of numerical simulatiof@ade to approach the solution of the LCP model arbitrarily
with experimental observations. In the experiments, an aluminugtpsely by lettinge assume very small values.
;Iod with spherical ends is released from rest, while contacting 455 Case 2: The LCP has Two Solutions. In Section 5 we
at, rough, fixed surface, with different initial positions. We useghowed that. in cases when the LCP formulation for sliding con-
the OPTOTRAK-3020(Northern Digital, Inc), a noncontact t has tw ’ uti th del of the bound | 9 i
three-dimensional motion measurement system with an accuré?c as two sofutions, the model o7 the boundary fayer system

better than 0.1 mm in each coordinate direction and a tracking r é) predicts that the contact maintaining solution is unstable. In

can be as high as 1000Hz. The experimental setup is shownjich Cases, at any instant, the LCP predicts two possible out-
Fig. 3 ' comes. While it is possible to simulate either outcome using the

The numerical simulation is based on the dynamics given %\?mp"?”‘ contact model, a simulation based on the rigid-body
Egs. (1) and (27). The length and diameter of the tested rod ar odel_ |nvolve_s making a_ch0|_ce at each EUCh point.

0.468 m and 0.00948 m, respectively. The mass is 0.088 kg. Thd'" ideal uniform rod withL =1 m andm=1 kg is used in the
compliant model used in the simulations is the Hunt-Crossiéymulation. The initial condition of the rod aré=70 deg, §=0,
model expressed by Eq86)—(37). The only unknown parameter @1dX=Yy=0. The external forces af,=0, F,=—mg, andM,

in the equations is the coefficient of friction. The coefficient off —1 Nm. The coefficient of friction ig.= 1. The compliant con-
friction for the simulation is chosen to be the value that be&Ct model used in the simulation is the Hunt-Crossley model with

approximates experimentally observed trajectories in a leat?e same parameters as in Case 1. Because this case can only be

5.3 Extensions. In the treatment thus far, we considered th

squares sense. achieved at carefully chosen values of external forces or initial
) . . velocities, we were unable to reproduce this case experimentally.
6.1 Case 1: The LCP has a Unique Solution. We firstcon-  |n Fig. 5, we show the results of the rigid-body solution assum-

sider an experiment in which our rigid-body LCP predicts gng that(a) the contact breaks &t 0—the first solution; andb)
unique solution throughout the duration of the experiment. Thae contact is maintained @t=0—the second solution, and at
initial conditions of the rod ar@=42.3 deg,6=0, andx=y=0. future time instants as well. The main point to be observed in Fig.
The external force aré,=0, F,=—mg, andM,=0. The related 5 is the performance of the compliant contact model. As shown in
parameters used in Hunt-Crossley model lérel, =1, andB Fig. 5b), even when started from the condition of maintaining
=2. The trajectory corresponds to a condition of sliding where tlentact, the solution for the compliant contact model exponen-
contact point slides to the left. The sliding velocity decreases, atidlly converges to the stable solution of no contact. The rate of

M

Position Sensors

N

Infrared LEDs

Fig. 3 The experimental setup
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Fig. 4 Case 1: The LCP has a unique solution and the compliant contact model solution converges to
the rigid-body model solution as the perturbation parameter egoesto 0

convergence increases with decreasiag In contrast, att tions, one stable and one unstable, we can always choose the
=0.163 sec, the rigid-body solution corresponding to maintainirgjable solution and use the rigid body model to continue the

contactdreaches a state where the IBCP hasba unique solution &jnulation.

responding to contact separation. This can be seen in FyaS inti

thepdiscon%nuous drop inp normal contact force. The fafggthat th7e Friction Models

compliant model solution converges to the stable rigid-body There are many types of friction phenomena and equations to
model solution indicates that in cases when LCP has two solwmodel them. Coulomb friction is one of the simplest and in many
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Fig. 5 Case 2: The LCP has two solutions, maintaining contact (unstable ) and separation (stable). If
the compliant model solution is started with the unstable maintaining contact solution, it quickly con-
verges to the separation solution  (stable).

situations can adequately predict the system’s behavior. Neverteaggested ir[23]). Many others([12]), including Dahl's model
less, its mathematical properties complicate dynamic simulatiamd the bristle model, can be considered to be extensions of the
for both rigid-body and compliant contact models. The difficultiesompliant contact model.
caused by Coulomb'’s friction model in rigid-body dynamic simu- Our interest is in the simplest friction law that approximates
lation are due to the following issued) the friction force is not Coulomb friction and is a continuously differentiable function of
smooth during rolling-sliding transitions; ani@) during rolling, the system states. Such a model would allow us to formulate the
the friction force cannot be directly determined from the statdynamics using either rigid-body models or compliant contact
variables. When solving the forward dynamic problem, these two
issues can either increase the complexity of the system or cause
analytical difficulties. Specifically the rolling and sliding con- X\
straints need to be handled differently in the rigid-body formula- 2T
tions([7]). This is also the main reason that our stability results in BAN
Section 4 are not applicable to transitions from rolling to sliding. 1
Furthermore, cases arise in which a unique solution to the forward | .
dynamics problem does not exist. |
Since these difficulties are due to the Coulomb model, it is |
possible to overcome them by substituting a model with the reqg- |
|
|
|

Coulomb's law

o
tanh —

uisite mathematical properties. In fact, nonclassical friction laws —
which are nonlinear and nonlocal have been found to be superior
to pointwise Coulomb models from both a phenomenological and
a computational viewpoin{(22]). A few of these models were
developed specifically for rigid-body dynamics. For example, a
discontinuous model that extends the Coulomb’s stiction zomgy. 6 A smooth, nonlinear friction law with two parameters 7
from zero velocity to a small neighborhood of zero velocity ia characteristic speed, and  u, the coefficient of friction

|
|
1 ;
<
l

-1
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Fig. 7 Results with the smooth nonlinear friction law (y=107%). The transition from reverse sliding to
rolling to forward sliding at  t=0.205 sec is characterized by a smooth variation of contact forces.

models while improving the performance of both. A friction lawations with no solution or multiple solutions. And, as before, the
with these properties is shown in Fig. 6. It has a one-to-one caempliant contact model given by Eq4.2) and(42) resolves the

respondence between the friction fobcgand the relative tangen- difficulties with uniqueness and existence. Since the stability
tial velocity @ . The small parametey defines the extent of the analysis in Section 4 can be easily applied to this new frictional

D= (41)

“rolling” regime: ®te[—1v,y]. By letting y tend to zero, we model without worrying about transitions between rolling and
can obtain an arbitrarily close approximation to Coulomb’s lavgliding contacts, Theorem 5.1 can be directly extended to any
albeit with some sliding in the “rolling” regime. Using this fric- planar mechanical system with a single rolling or sliding contact.
tion law with the rigid-body dynamic model expressed in Eq®ecause the rolling constraint is now replaced by “microsliding”
(1)—(2), we no longer need to differentiate between rolling angith the tangential contact velocity smaller thgnthe proof fol-
sliding contacts. Instead, the Jacobian matrix) in Eq. (3) al-  |ows exactly the same lines of the proof in Section 5.1.
ways takes the form To illustrate the effect of the smooth friction law, we consider
. the same situation shown in Fig.(€ase 1 in Section)6 Recall
o7 — T dia tan % the transition from reverse sliding to rolling to forward sliding in
Ng ' Tq m v/ Fig. 4 att=0.205 sec. Figure 7 shows the results of the simulation
This gives rise to a unified LCP formulation that works for botr\{ylt.lzj tgedsmoot(? I”CUO;. I?de.v'th ﬂ:.e sime .m'tt'ﬁl condtltlopsf. The
rolling and sliding constraints. The smooth friction law can alspdid-Pody MOdel predicts discontinuities in the contact forces.
improve numerical performance of the compliant contact mod Jowever, th_e (_:ompllan_t contact_predlcts a smooth transition from
since we no longer need the deformation state veétorto com- sr!d!ng to shckmg(rglanvg vglocny less than the threshoyi to
pute the tangential force which is uniquely defined by the normaiding in the opposite direction. _ . _
contact force and the relative velocity. The main dlsadyantage of the nonlinear frlctl_on I_aw is due to
the fact a static friction force can only be maintained through
r(ch i “creep” in the tangential direction. While the “creep” rate is less
Nri=—ptanh —— | \y; (42) thanvy, andy can be set to a very small value, it is not a very
Y attractive solution because it has the adverse effect of making the
As is the case with rigid-body dynamics and Coulomb’s lawsystem of ODEs stiff. There is a natural tradeoff that must be
the LCP formulation with the smooth friction law will have situ-considered in selecting the paramejer
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