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Models for Simulation of Systems
With Frictional Contacts
The use of Coulomb’s friction law with the principles of classical rigid-body dynam
introduces mathematical inconsistencies. Specifically, the forward dynamics problem
have no solutions or multiple solutions. In these situations, compliant contact mo
while increasing the dimensionality of the state vector, can resolve these problems
simplicity and efficiency of rigid-body models, however, provide strong motivation
their use during those portions of a simulation when the rigid-body solution is unique
stable. In this paper, we use singular perturbation analysis in conjunction with lin
complementarity theory to establish conditions under which the solution predicted b
rigid-body dynamic model is stable. We employ a general model of contact complian
derive stability criteria for planar mechanical systems. In particular, we show that
cases with one sliding contact, there is always at most one stable solution. Our app
is not directly applicable to transitions between rolling and sliding where the Coulo
friction law is discontinuous. To overcome this difficulty, we introduce a smooth nonli
friction law, which approximates Coulomb friction. Such a friction model can also
crease the efficiency of both rigid-body and compliant contact simulation. Nume
simulations for the different models and comparison with experimental results are
presented.@DOI: 10.1115/1.1331060#
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1 Introduction

There are many applications in an industrial setting where
beneficial to understand the dynamics of systems with frictio
contacts. Examples include part-feeding systems~@1#! and auto-
matic assembly of mechanical components~@2#!. Examples of me-
chanical systems with frictional contacts include multifinger
grippers~@3#!, multiarm manipulation systems~@4#!, legged loco-
motion systems, and wheeled robots on uneven terrain~@5#!. In
order to successfully design and optimize such mechanical
tems or manufacturing processes, a method for modeling
simulating mechanical systems with frictional contacts is nec
sary ~@6#!.

In a forward dynamics problem, it is well known that in th
frictionless case there is always a unique solution for the ac
erations. When the constraints are not all independent, the sy
is statically indeterminate and the constraint forces cannot
uniquely determined. In the frictional case, if all contacts a
known to be rolling~sticking!, the existence of a solution can b
shown if the constraints are independent~@7#!. In all other cases,
the initial value problem can be shown to have no solution
multiple solutions for special choices of initial conditions~@8,9#!.
The major difficulty of proving existence and uniqueness ari
when rigid-body models are combined with friction laws coupli
normal and tangential contact forces. In these situations, it is
tractive to pursue models in which the contact forces are exp
functions of the state variables. For example, a continuum mo
for modeling the deformations at each contact is described
~@10#!. Each contact is modeled as frictional elastic or viscoelas
and the contact force distribution across the contact patch is
culated using a finite element mesh. This general approach is

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
23, 1999; final revision, June 16, 2000. Associate Editor: A. A. Ferri. Discussion
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
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ther refined by@11#. Existence and uniqueness is shown for t
special case in which the maximum tangential force at each p
is a priori known.

The empirical nature of friction models can cause additio
difficulties with dynamic simulation. The most widely employe
model, for example, is Coulomb friction. When used in combin
tion with a rigid-body contact model, the tangential force is
discontinuous function of the sliding velocity and independent
tangential displacement. Furthermore, this model does not pre
such phenomena as microslip, hysteresis, and local adhe
~@12#!. Both these difficulties can be overcome by combining t
Coulomb friction model with a simple lumped model of comp
ance~e.g., the Kelvin-Voigt model@13#!. At very small displace-
ments, the tangential force opposes the tangential displacem
simulating an approximately linear spring. For small oscillato
displacements, hysteric behavior is exhibited as in@14#. With a
suitable modification to the Coulomb friction model, the stead
state friction force can be made to decrease with increasing ve
ity thus simulating the development of a lubricant film~@12#!.
However, while the difficulty with discontinuities is eliminated
such Coulomb-like friction laws are generally not smooth. T
laws are described by separate equations for rolling and slid
contact and are not differentiable at transitions between rol
and sliding. We will overcome this difficulty by introducing
friction model that depends on normal force, but which is contin
ously differentiable.

In this paper, we derive a simplecompliant contact modelthat
~a! provides a framework for analyzing frictional forces for co
straint dynamic systems; and~b! establishes a unique solution fo
initial value problems in dynamic simulation. We use metho
from singular perturbation analysis to establish conditions un
which the solution predicted by the rigid-body model isstable.
We argue that rigid-body dynamic simulation is meaningful on
when the solution of the compliant contact model converges to
solution of the rigid-body model. Experimental results and n
merical simulations are illustrated to verify the stability analys
We also describe stability results using asmooth nonlinear fric-
tion law which is an alternative to the Coulomb’s friction mode
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2 Rigid-Body Models
The dynamic equations of motion for a mechanical syst

comprised of rigid bodies subject to Coulomb friction can be w
ten in the form

M ~q!q̈1h~q,q̇!5u1Fq
Tl (1)

whereqPRn is the vector of generalized coordinates,M (q) is an
n3n positive-definite symmetric inertia matrix,h(q,q̇) is a n
31 vector of nonlinear inertial forces,u is the vector of applied
~external! forces and torques, andl is the vector of constrain
forces. The system is subject tok unilateral constraints:

F~q!5~f1~q!,¯ ,fk~q!!T>0 (2)

andFq in Eq. ~1! is thek3n Jacobian matrix,]F/]q. We will
assume, without loss of generality, that this does not include
lateral, holonomic constraints. Further, for the sake of simplic
we will assume that nonholonomic constraints are not presen

Suppose there arec contacts, consisting ofr rolling contacts
ands sliding contacts. Let the subscriptsN andT denote quantities
in the normal and tangential contact directions and the subsc
S and R denote sliding and rolling contacts, respectively. T
Jacobian matrix and constraint forces in Eq.~1! are given by

Fq
T5~F̂Sq

T FNRq

T FTRq

T !, F̂Sq

T 5~FNSq

T 1FTSq

T ms!, (3)

l5~lNS
T lNR

T lTR
T !T, (4)

wherems52diag(m sign(ḞTS)), m is as3s diagonal matrix that
contains all the coefficients of friction at the sliding contacts,F̂Sq

is a s3n matrix, FNRq
andFTRq

are bothr 3n matrices, and the
total number of constraintsk52r 1s. lNS is the s-dimensional
vector of normal forces at sliding contacts, whilelNR andlTR are
the r 31 vectors of normal and tangential forces at rolling co
tacts, respectively.

Contacts between rigid bodies generate complementary
straints on the position~or velocity or acceleration! variables and
the corresponding force variables. In the normal direction, if
new contact becomes active over a finite time interval, then in
interval, there is a complementary equation satisfied by the r
tive normal acceleration,f̈N,i , and the normal force,lN,i ~@8#!

f̈N,i>0, lN,i>0, f̈N,ilN,i50, i 51, . . . ,c. (5)

This complementary constraint is valid for all sliding contac
~indexed by the subscripti 51, . . . ,s! and rolling contacts~in-
dexed byi 5s11, . . . ,c!. SubscriptsR andSare omitted for con-
venience. This condition allows active contacts to become in
tive. The case of inactive contacts becoming active is modeled
rigid-body impacts and is treated elsewhere~@13#!. Similar
Journal of Applied Mechanics
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complementarity constraints can be found in the tangential di
tion by assuming Coulomb’s friction. We refer the reader to~@15#!
for details.

The problem of determining contact forces can be reduced
linear complementarity problem~LCP! that has the form~@7#!

x>0, y5Ax1B.0, yTx50. (6)

The LCP has a unique solution for all vectorsB if an only if the
matrix A is a P matrix ~@16#!. However, even ifA is not a P
matrix, the LCP may have unique solution for special choices
B. For other choices ofB, Eq. ~6! may have no solution or mul-
tiple solutions. To overcome these inconsistencies, we cons
more sophisticated models of contact interactions in the n
section.

3 Compliant Contact Models
Our contact model of compliance assumes that the principle

rigid-body dynamics are valid and the gross motion of the d
namic system is described by the state variables (q,q̇). However,
in addition to the gross motion, there are small~local! deforma-
tions at each contact. Thus a rigid body can be modeled as a
core surrounded by a very thin deformable layer the inertia
which is considered to be negligible, as shown in the schemati
Fig. 1. The gross rigid-body motion determines the relative d
placement at the contact point (fT ,fN). The actual relative dis-
placement of the contact point is given by (fT1dT ,fN1dN).
The contact forces are related to the normal and tangential de
mations (dN ,dT) of the deformable layer and their derivative
( ḋN ,ḋT) through the material properties of the deformable lay

A general viscoelastic model for contact compliance is sho
in Fig. 1. At contacti, the normal and tangential contact force
(lN,i and lT,i! between the two contacting bodies may be mo
eled as

lN,i5 f N,i~dN,i !1gN,i~dN,i ,ḋN,i !, i 51, . . . ,c, (7)

lT,i5 f T,i~dT,i !1gT,i~dT,i ,ḋT,i !, i 51, . . . ,c, (8)

where the functionsf N,i and f T,i are the elastic stiffness terms an
gN,i andgT,i are the damping terms in the normal and tangen
directions, respectively. These functions depend on the geom
and material properties of the two bodies in contact and may
nonlinear. We have decoupled the modeling of the contact for
~i.e., the force at a contact is only dependent on the deformatio
that contact!. We will consider the case where the tangential for
obeys Coulomb’s frictional law:

ulT,i u<m ilN,i . (9)

An alternative frictional model is discussed in Section 7.
Fig. 1 A simple model of contact compliance
JANUARY 2001, Vol. 68 Õ 119
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The simplest viscoelastic model is the Kelvin-Voigt mod
given by

f i5Kid i , gi5Ci ḋ i , i 51, . . . ,c, (10)

where Ki and Ci are stiffness and damping coefficients~in the
normal or tangential directions! respectively. The coefficients ca
be estimated using linear elastic and viscoelastic theory for h
spaces~@17#!. A more sophisticated model due to Hunt and Cro
ley ~@18#! incorporates nonlinear elastic and dissipation terms

f i5Kid i
b , gi5

3

2
aKid i

bḋ i , i 51, . . . ,c, (11)

where a and b are functions of the material properties and t
local geometry.

In any of the above models, the normal deformations are
rectly related to the constraints in the normal direction. The n
mal deformations and constraint forces are given by

dN,i5max$0,2fN,i~q!%, (12)

if dN,i.0,

H ḋN,i52ḟN,i~q!, i 51, . . . ,c

lN,i5max$0,f N,i~dN,i !1gN,i~dN,i1 ḋN,i !%.
(13)

In the tangential direction we define a new variable,s i , to denote
the relative sliding velocity between the~deformed! contact points
at contacti. This quantity is theslip rate, the sum of the tangentia
rigid-body velocity at the contact and the rate of tangential de
mation:

s i5ḟT,i1 ḋT,i .

For rolling contacts, we have

lT,i5 f T,i~dT,i !1gT,i~dT,i ,ḋT,i ! (14)

ḋT,i52ḟT,i~q!, i 5s11, . . . ,c, (15)

in conjunction with the frictional inequality of Eq.~9!. For sliding
contacts,

ḋT,i5hT,i~lT,i2 f T,i~dT,i !!, (16)

lT,i52mlN,isign~s i !, i 51, . . . ,s, (17)

wherehT,i(.) is the inverse of the functiongT,i in Eq. ~8! for a
given dT,i . For both sliding and rolling contacts, we track th
tangential deformations by integrating the expression for
derivative:

dT,i5E
t0

t

ḋT,idt1dT,i~ t0!. (18)

In order to determine which set of equations apply, we s
with the assumption that any contact is rolling. If the tangen
force from Eq.~15! violates the frictional constraint in~9!, the
contact is sliding and Eqs.~16!–~17! yield the correct force with
sign(s i) taken to be the opposite of the sign of the tangen
force in Eq.~15!. It is clear that Eqs.~12!–~18! always provide a
unique answer for the normal and tangential contact forces and
positive-definiteness ofM in Eq. ~1! yields a unique solution for
q̈.

There are two disadvantages of the compliant contact mo
First it is clear that we now need to model the contacts and
increases the possibility of modeling errors. Second, and m
importantly from an computational standpoint, there is a need
extend the dimension of the state space from 2n22(c1r ) to
2n1c in order to track the tangential deformation,dT,i , at each
contact. The three main advantages, which outweigh the disad
tages, are:~a! The normal and tangential forces are now uniqu
determined and there is no question of static indeterminacy;~b!
The difficulties with uniqueness and existence no longer arise;
120 Õ Vol. 68, JANUARY 2001
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~c! A model with tangential contact compliance is more realis
and can better explain physical observations~@13#!.

We do not wish to promote unnecessary model complex
however, and in those situations when a compliant contact mo
is not needed, it would be desirable to retain the simpler rig
body model. The popularity of rigid-body models can be attr
uted not only to their simplicity, but also to the fact that the
produce adequate results in a broad range of applications. Cle
rigid-body models can only be used when a unique solution
be determined without any additional ad hoc assumptions.
even when this is the case, it is meaningful to use the reduc
order rigid-body model only when the solution from the mo
accurate compliant contact model converges to the solution
tained from the rigid-body model. In the next section, we will u
singular perturbation theory to investigate thestability of the so-
lutions obtained from the rigid-body model.

4 Singular Perturbation Analysis
The rigid-body model leads to a set of differential-algebra

equations as shown in Section 2. In the compliant contact mo
the deformations at the contact points are at least an orde
magnitude smaller than the gross motions of the mechanical
tem. By setting these small deformations to zero~or by allowing
the corresponding stiffnesses to be infinitely large!, we recover the
equations of the rigid-body model. This suggests that we can
singular perturbation theory to decompose the system model
reduced~slow time scale! and boundary layer~fast time scale!
models~@19#!. In mechanical systems described by Eq.~1!, the
slow time scale corresponds to the reduced-order rigid-b
model dynamics and the fast time scale is the time scale
characterizes the contact dynamics~@20,21#!. The response of the
system then consists of a slow response and a fast transient.
boundary layer model is exponentially stable, the fast trans
will exponentially converge to zero and it is reasonable to neg
the high-frequency contact dynamics. In such a situation,
reduced-order model obtained by neglecting the complianc
robust to the unmodeled dynamics. If the boundary layer mode
not stable, we cannot neglect these terms and it is necessary t
the complete dynamic model given by Eqs.~12!–~18!.

We first partition the generalized coordinatesq into the fast
variablesq1 , related to the contact deformations, and the rema
ing slow variables,q2 . We accordingly define a new set o
variables:

p5S p1

p2
D5S FN~q1 ,q2!

FTR~q1 ,q2!

q2

D PRn,

where p1 ,q1PRk and p2 ,q2PRn2k. Recall thatk is the total
number of constraints. In order to makep a valid choice of coor-
dinates, the implicit function theorem requires that the Jacob
matrix

G5S FNq~c3n!

FTRq~r 3n!

0~n2k!3k I ~n2k!3~n2k!

D PRn3n

be nonsingular, that is, the contact normals and the rolling t
gents have to be linearly independent. If these conditions are
isfied, we may write

S q̇1

q̇2
D5J~p1 ,p2!S ṗ1

ṗ2
D

whereJ5G21. Note that the choice of thep-coordinates is arbi-
trary as long asG21 exists. The time variable and th
p-coordinates can be nondimensionalized by letting

t̄ 5
t

T
, p̄15D1

21p1 , p̄25D2
21p2 , (19)
Transactions of the ASME
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whereT is the characteristic time scale andt̄ is dimensionless.p̄1
and p̄2 are the nondimensionalized fast and slow variables,
spectively.D1 is a diagonal matrix whose components are
deformation length scales whileD2 is a diagonal matrix of the
characteristic scales of the slow variables. For the sake of sim
ity, all contacts are assumed to have similar physical proper
and the diagonal matrix of the deformation scales can be defi
asD15d1•I k3k . We also define a parametere as the dimension-
less ratio,d1 /L, whereL is the length scale for gross rigid-bod
a

y

-

o
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motions. Asd1 tends to zero,e goes to zero, and the complian
contact model degenerates into the rigid-body model.

We usee and the dimensionless variables in~19! to perform a
second change of coordinates. Let

x5~x1 ,x2!T5~ p̄2 ,p̄28!T, y5~y1 ,y2!T5~ p̄1 ,Ae p̄18!T (20)

be the new state variables and rewrite the dynamic Eqs.~1! in
state space notation:
S Aey18

x18

Aey28

x28

D 5S y2

x2

~T2D21J21M 21Fq
T!l1S T2D21J21M 21~u2h!2TJ21J̇SAey2

x2
D D D , (21)
s

t the
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let
n-
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are

in

by
f

where 8 denotes the differentiation with respect tot̄ , D
5(0

L•I k3k
D2

0 ), and l i5 f i(2eLy1,i)1gi(2eLy1,i ,2Aey2,iL/T).
Here we use the notationyi , j to refer the j th component of the
vectoryi . x( t̄ ) andy( t̄ ) represent the dimensionless slow and f
trajectories, respectively.

The differential equations for the fast variables are given b

Aey85S y2

A~x,y,e!l̄~y,e!1B~x,y,e!
D (22)

with

l̄~y,e!5S l̄N~y,e!

l̄TR~y,e!
D 5

T2

DML
S lN

lTR
D , l̄N~y,e!>0,

A~x,y,e!5DML~D21J21M 21Fq
T!kk ,

B~x,y,e!5~T2D21J21M 21!kn~u2h!2~TJ21J̇!knSAey2

x2
D ,

where DM is the characteristic mass. Here, (•)ab refers to the
submatrix in ~.! consisting of the firsta rows and the firstb
columns. Ase goes to zero, Eq.~22! degenerates into the follow
ing algebraic equations:

S y2

A~x,y,0!l̄~y,0!1B~x,y,0!
D 502k31 . (23)

We say that the singular perturbation model~21! is in standard
form if and only if the above algebraic equations have at least
isolated real root fory in terms ofx. We will proceed with the
stability analysis with the assumption that Eq.~23! has at least one
feasible solutiony0(x). We now look at the solution to Eq.~21!
with y5y0(x) and e50. This solution, denoted byx0( t̄ ), is the
solution of the reduced rigid-body system.

Assume thatx0( t̄ ) is defined fort̄ P@0,t̄ 1#. At an arbitrary time
instance t̄ 0P@0,t̄ 1#, the boundary layer system of~22! can be
introduced through a ‘‘stretch’’ of the time scale,t5 t̄ 2 t̄ 0 /Ae. In
the stretched time scalet, the variablest̄ and x( t̄ ,e) are slowly
varying. Since t̄ 0 is allowed to take any value in@0,t̄ 1#, the
boundary layer system of~22! can be written witht as the inde-
pendent variable:

y85S y2

A~x0 ,y,0!l̄~y,0!1B~x0 ,y,0!
D (24)

where8 now denotes differentiation with respect tot. Let

S z
z8 D5y2y0~x0!.
st

ne

Perform a linearization of the boundary layer model~24! around
the equilibrium solutiony0(x0). We obtain the homogeneou
boundary layer dynamics of the form

z91Pz81Qz50k31 , (25)

with

P52
]~A~x0 ,y,0!l̄~y,0!1B~x0 ,y,0!!

]y2
U

y5y0~x0!

,

Q52
]~A~x0 ,y,0!l̄~y,0!1B~x0 ,y,0!!

]y1
U

y5y0~x0!

.

The response of the above system equation,z(t), is the transient
that describes the dynamics associated with the compliance a
contact points. The stability of the system implies the converge
of the compliant contact model solutionx( t̄ ,e) to the rigid-body
model solutionx0( t̄ ). We can directly apply Tikhonov’s theorem
@19# to get the following result:
THEOREM 4.1 Consider the system described by (21) and
y0(x) be an isolated solution of (23). If the following three co
ditions are satisfied by(x( t̄ ),y( t̄ ),e) for all t̄ P@0,t̄ 1# and e
P@0,e0#: (a) the terms on the right-hand side of (21) and the
first partial derivatives with respect to(x,y,e) are bounded and
continuous; (b) the origin of the boundary layer system (25)
exponentially stable; and (c)y0(x) has continuous first partial
derivatives with respect to its arguments, then the following
true:

• The reduced rigid-body model, obtained from~21! by substi-
tution of y5y0(x) and e50, has a unique bounded solution,
x0( t̄ ), for all t̄ P@ t̄ 0 , t̄ 1#, where t̄0P@0,t̄ 1#.

• There exist positive constantsd0 and e0 such that for the
initial conditions x( t̄ 0 ,e) and y( t̄ 0 ,e) satisfying iy( t̄ 0 ,e)
2y0(x( t̄ 0,0))i,d0 and0,e,e0 , the singular perturbation
problem has a unique solutionx( t̄ ,e) and y( t̄ ,e) on the in-
terval @ t̄ 0 , t̄ 1# and

x~ t̄ ,e!2x0~ t̄ !5O~Ae!, y~ t̄ ,e!2y0~ t̄ !5O~Ae!.

Proof: The proof of this theorem follows directly from
Tikhonov’s theorem, and is a direct application of Theorem 9.1
@19#.
Remark 4.1

• The stability of the boundary layer system is determined
the matricesP and Q, or specifically, the eigenvalues o
(

2Q
0k3k

2P
I k3k).
JANUARY 2001, Vol. 68 Õ 121
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• Other than the general constitutive model described by E
~7! and ~8!, no specific compliant contact models are intr
duced in the discussion, therefore the stability results will
change when different compliant models are employed.

It is worth noting that the requirements on the continuity of t
first partial derivatives in Theorem 4.1 are not satisfied whene
there are transitions from rolling to sliding or sliding to rollin
because of the nonsmooth nature of Coulomb’s law. In the n
section, we will apply Theorem 4.1 to planar mechanical syste
with one contact and discuss the cases of sliding and rol
separately.

5 Planar Mechanical Systems With One Contact
Consider the planar rigid body depicted in Fig. 2 in contact w

a horizontal surface, whereL is the distance from the contact poin
to the center of mass~CM!. The rigid body has massm and
centroidal moment of inertiaI. q5(y x u)T represent the genera
ized coordinates for the rigid body which are the position of
CM and the angular orientation. (Fx ,Fy) are the external forces
acting on the body andFu is the external moment about the CM
m is the coefficient of friction between the rigid body and surfa
The equations of motion for the system with one contact are gi
by Eq. ~1! with

q5S y
x
u
D , M5S m 0 0

0 m 0

0 0 I
D , u5S Fy

Fx

Fu

D , and h50331 .

(26)

For sliding contact:

Fq
T5~1 ms msL sinu2L cosu!T, l5lN5lNS, (27)

and for rolling contact:

Fq
T5S 1 0

0 1

2L cosu L sinu
D , l5S lNR

lTR
D , (28)

wherems52m sign(ḞT).

5.1 Sliding Contact. For the sliding case, the rigid-bod
dynamics can be modeled as a LCP of the form

F̈N5AlN1B (29)

where

F̈N>0, lN>0, and F̈NlN50,

Fig. 2 Planar rigid body in contact with a rough surface
122 Õ Vol. 68, JANUARY 2001
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A5
1

m
1

L2 cosu

I
~cosu2ms sinu!,

B5L u̇2 sinu1
Fy

m
2

L cosuFu

I
.

Note withms50, A.0 and thereforeA is a 131 P matrix, which
guarantees a unique solution. IfB>0 we are guaranteed of th
existence of a solution regardless of whether or notA is a P
matrix.

We now proceed with the singular perturbation approach to
problem. A transformation to a system of fast and slow variab
can be accomplished by making the change of variables as

q15y, q25S x
u D , p15FN , and p25q2 .

Use ~19! and ~20! to nondimensionalize the state variables with

D15d1 , D25S L 0

0 1D , and e5
d1

L
.

Let the characteristic massDM5m, the mass of the rigid body
The standard singular perturbation form of the planar rigid-bo
system with one sliding contact is given by

5
Aey85S y2

A~x!l̄N~y,e!1B~x!
D

x85S x2

msl̄N~y,e!1F̄x

mL2

I
~ms sinx1,22cosx1,2!l̄N~y,e!1F̄u

D
(30)

where

l̄N~y,e!5

f N~2eLy1!1gNS 2eLy1 ,2
eL

T
y2D

mL

T2

>0,

A~x!511
mL2

I
cosx1,2~cosx1,22ms sinx1,2!,

(31)

B~x!5x2,2
2 sinx1,22F̄u cosx1,21F̄y ,

F̄x5
Fx

mL

T2

, F̄y5
Fy

mL

T2

, and F̄u5
Fu

I

T2

.

Note that the symbolxi , j refers to thej th component of the vecto
xi . By following through the same derivations given by Eq
~21!–~25! in Section 4, the linearized boundary layer model
~30! can be obtained as

z92A~x0!S ]l̄N~y,0!

]y2
D U

y5y0~x0!

z82A~x0!

3S ]l̄N~y,0!

]y1
D U

y5y0~x0!

z50, (32)

wherey0(x) is a solution of the algebraic equations obtained
setting e50 in ~30!, and x0( t̄ ) is the solution of the reduced
system of~30! corresponding toy0 .

In a general viscoelastic model, it is reasonable to assume
l̄N is a monotonically decreasing function with respect toy1 and
y2 . With this assumption, ifA(x0,0) is positive, the boundary
layer system~25! is stable, and the stability of the solution for th
Transactions of the ASME
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singular perturbation problem~21! is guaranteed if all other con
ditions in Theorem 4.1 are satisfied. In a single point sliding c
tact problem, the rigid-body LCP formulation~29! has a unique
solution if and only ifA(x0,0) is positive. The above conclusio
can be summarized into the following theorem.
THEOREM 5.1 For a planar rigid body with a single sliding con
tact described by (1) and (27), the solution obtained from
compliant contact model converges to that obtained from
rigid-body model if and only if there exists a unique solution
the rigid body LCP formulation (29). This result is independent
the compliant contact models as long as the monotonicity co
tion, 2]l̄N(y(t),0)/]y1,2.0, is satisfied.

As examples, we show that the stability results are the same
both the Kelvin-Voigt and the Hunt-Crossley models. From E
~10! and the expression in~31!, the dimensionless normal conta
force for Kelvin-Voigt model can be written as

l̄N~y,e!5l̄N~y!52K̄y12C̄y2 . (33)

where the nondimensional stiffness and the damping are defi
as

K̄5
K

1

eL

mL

T2

.0 and C̄5
C

1

AeL/T

mL

T2

.0. (34)

The boundary layer system is obtained as

z91A~x0!C̄z81A~x0!K̄z50. (35)

For Hunt-Crossley model, the normal contact force can be
pressed as

l̄N~y,e!5l̄N~y!5K̄~2y1!b2āK̄~2y1!by2 , (36)

where

K̄5
K

1

~eL !b

mL

T2

.0 and ā5
3

2

a

1

AeL/T

.0. (37)

The linearized boundary layer system for Hunt-Crossley mode
given by

z91A~x0!āK̄~2y1!buy5y0~x0!z81A~x0!bK̄~2y1!b21uy5y0~x0!z

50. (38)

Sincey1<0 for any active constraint, it is clear that the stab
ity of the boundary layer dynamics, described by either~35! or
~38!, depends entirely on the value ofA(x0). Thus, independen
of the choice of contact model,A(x0) may used to test contac
force stability in those situations where the LCP tells us that
contact is maintained. A summary of the results is given in Ta

Table 1 LCP and stability results for one sliding contact „C
Äcontact, NCÄno contact, NSÄno solution, RB
Ärigid-body model, CCÄcompliant contact model; * indicates
that the stability result comes from the fact that the noncontact
solutions „free falling … are always stable …

Conditions Solutions Stability Preferred Model

A.0 B>0 NC stable* RB
A.0 B,0 C stable RB
A50 B.0 NC stable* RB
A50 B50 ` solns. - CC
A50 B,0 NS N/A CC
A,0 B>0 C unstable discard

NC stable* RB
A,0 B,0 NS N/A CC
Journal of Applied Mechanics
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1. For the contact maintaining solutions, the result of the singu
perturbation analysis states that stability only occurs where
quantity A in the LCP formulation is positive~P matrix!. If the
LCP reports an unique solution, we use the rigid-body mode
simulate the dynamic motion. For the case when the LCP has
solutions (A,0,B>0), we can still use the rigid-body mode
since the stability analysis shows a unique stable solution.

5.2 Rolling Contact. The rigid-body dynamics can onc
again be formulated as an LCP with the help of surplus and s
variables~@7#!. The singular perturbation analysis proceeds in e
actly the same way as in the previous section. The following i
partition of the generalized coordinates for the rolling case:

q15S y
xD , q25u, p15S FN

FT
D , and p25q2 .

The linearized boundary layer model for this case is given by

z92A~x0!S ]l̄~y,0!

]y2
D U

y5y0~x0!

z82A~x0!S ]l̄~y,0!

]y1
D U

y5y0~x0!

z

50231 , (39)

where

l̄5~ l̄NR
T l̄TR

T !T,

A~x!5S 11
mL2

I
cos2 x1 2

mL2

I
sinx1 cosx1

2
mL2

I
sinx1 cosx1 11

mL2

I
sin2 x1

D ,

B~x!5S F̄y2F̄u cosx11x2
2 sinx1

F̄x1F̄u sinx11x2
2 cosx1

D . (40)

In the above system,A(x0) is symmetric, and its eigenvalue
are given bya151, a2511mL2/I which are positive real num-
bers. Also ifl̄ is a monotonically decreasing function with respe
to y, both 2]l̄(y0,0)/]y1 and 2]l̄(y0,0)/]y2 are diagonal ma-
trices with positive entries. In this situation, the stability of th
boundary layer system~39! follows from the Routh-Hurwitz cri-
terion. The reason is that for rolling constraints, the contact mo
corresponds instantaneously to a frictionless~no dissipation! com-
plaint pin joint. Viewed in this context, the contact forces corr
spond to the joint constraint forces. It is not surprising that, in
rigid-body limit, these forces are always stable. In contrast,
singular perturbation analysis of sliding included the depende
of tangential friction force on normal force. This dependence p
duced the potential for instability during sliding. Since the LC
and singular perturbation analyses for sliding both included
dependence, it was possible in Theorem 5.1 to relate the L
existence and uniqueness results to the singular perturbation
bility result.

There are three possible solutions for the LCP formulation o
system with a rolling contact:~a! breaking contact,~b! continued
rolling, and ~c! transition to sliding. The conditions of Theorem
4.1 for use of the rigid-body model include continuity and diffe
entiability of the tangential contact forces. These conditions
not met during~a! or ~c! because the contact forces need only
C0 continuous at a transition. Therefore, we cannot derive a re
similar to Theorem 5.1 for rolling contacts. It is possible, ho
ever, to state the more conservative result:
THEOREM 5.2 For a planar rigid-body with a single rolling con-
tact described by (1) and (28), the solution obtained from
compliant contact model converges to that obtained from
rigid-body model whenever the LCP formulation yields a uniq
JANUARY 2001, Vol. 68 Õ 123
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solution corresponding to continued rolling. This result is ind
pendent of the compliant contact models as long as the mon
nicity condition ofl is satisfied.

5.3 Extensions. In the treatment thus far, we considered t
dynamics of a single rigid body in which the unilateral constrai
were due to one contact~sliding or rolling! with a second fixed
rigid body. When we consider multiple planar rigid bodies w
bilateral constraints, but only one contact, a similar result can
derived. In such a case, the dynamics formulations in the Ca
sian space and the constraints can still be described by~1! and
~27!, ~28!, if the operational space inertia matrix,M, exists. The
only differences are that the inertia matrix, if it exists, is no long
diagonal but symmetric and still positive definite, andh(q,q̇) is
no longer zero. But these differences will not affect the proper
of the A matrix in the boundary layer systems~32! and ~39!.
Consequently, the basic ideas developed in this section are
valid, and the main results are applicable to any mechanical
tem in which the unilateral constraints are due to a single cont

6 Results From Experiments and Simulations
In this section, we compare the results of numerical simulati

with experimental observations. In the experiments, an alumin
rod with spherical ends is released from rest, while contactin
flat, rough, fixed surface, with different initial positions. We us
the OPTOTRAK-3020~Northern Digital, Inc.!, a noncontact
three-dimensional motion measurement system with an accu
better than 0.1 mm in each coordinate direction and a tracking
can be as high as 1000Hz. The experimental setup is show
Fig. 3.

The numerical simulation is based on the dynamics given
Eqs. ~1! and ~27!. The length and diameter of the tested rod a
0.468 m and 0.00948 m, respectively. The mass is 0.088 kg.
compliant model used in the simulations is the Hunt-Cross
model expressed by Eqs.~36!–~37!. The only unknown paramete
in the equations is the coefficient of friction. The coefficient
friction for the simulation is chosen to be the value that b
approximates experimentally observed trajectories in a le
squares sense.

6.1 Case 1: The LCP has a Unique Solution. We first con-
sider an experiment in which our rigid-body LCP predicts
unique solution throughout the duration of the experiment. T
initial conditions of the rod areu542.3 deg,u̇50, andẋ5 ẏ50.
The external force areFx50, Fy52mg, andMz50. The related
parameters used in Hunt-Crossley model areK̄51, ā51, andb
52. The trajectory corresponds to a condition of sliding where
contact point slides to the left. The sliding velocity decreases,
124 Õ Vol. 68, JANUARY 2001
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at approximately 0.205 sec, the sliding velocity changes direc
so that the contact point slides to the right. In Fig. 4, we show
experimentally observed trajectory and the simulation results
~a! the trajectory of contact point,~b! the normal contact force
and ~c! the tangential contact force. The simulation results
provided for the rigid-body LCP solution and for the complia
contact model for a range ofe values. The coefficient of friction
used in the simulation ism50.27.

The first thing to note is that there is a close agreement betw
the experimental trajectory and the rigid-body LCP solution w
the same initial condition as expected. The second issue to fo
on is the set of results from the simulation of the compliant co
tact model. Even though the initial condition for the complia
contact model solution is different from the equilibrium solutio
it quickly converges to the equilibrium solution. The convergen
in an absolute time scale is faster ase becomes smaller. This is
also evident at the transition from reverse to forward slidin
which includes a very brief period of rolling. The discontinuity o
the rigid-body dynamic model with Coulomb friction is seen
the contact force variation in Figs. 4~b! and 4~c!. However, the
compliant contact model yields a continuous solution that can
made to approach the solution of the LCP model arbitra
closely by lettinge assume very small values.

6.2 Case 2: The LCP has Two Solutions. In Section 5 we
showed that, in cases when the LCP formulation for sliding c
tact has two solutions, the model of the boundary layer sys
~32! predicts that the contact maintaining solution is unstable
such cases, at any instant, the LCP predicts two possible
comes. While it is possible to simulate either outcome using
compliant contact model, a simulation based on the rigid-bo
model involves making a choice at each such point.

An ideal uniform rod withL51 m andm51 kg is used in the
simulation. The initial condition of the rod areu570 deg,u̇50,
and ẋ5 ẏ50. The external forces areFx50, Fy52mg, andMz
521 Nm. The coefficient of friction ism51. The compliant con-
tact model used in the simulation is the Hunt-Crossley model w
the same parameters as in Case 1. Because this case can o
achieved at carefully chosen values of external forces or in
velocities, we were unable to reproduce this case experiment

In Fig. 5, we show the results of the rigid-body solution assu
ing that ~a! the contact breaks att50—the first solution; and~b!
the contact is maintained att50—the second solution, and a
future time instants as well. The main point to be observed in F
5 is the performance of the compliant contact model. As shown
Fig. 5~b!, even when started from the condition of maintainin
contact, the solution for the compliant contact model expon
tially converges to the stable solution of no contact. The rate
Fig. 3 The experimental setup
Transactions of the ASME
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Fig. 4 Case 1: The LCP has a unique solution and the compliant contact model solution converges to
the rigid-body model solution as the perturbation parameter e goes to 0
o

the
the

s to
ny
convergence increases with decreasinge. In contrast, at t
50.163 sec, the rigid-body solution corresponding to maintain
contact reaches a state where the LCP has a unique solution
responding to contact separation. This can be seen in Fig. 5~b! as
the discontinuous drop in normal contact force. The fact that
compliant model solution converges to the stable rigid-bo
model solution indicates that in cases when LCP has two s
pplied Mechanics
ing
cor-

the
dy
lu-

tions, one stable and one unstable, we can always choose
stable solution and use the rigid body model to continue
simulation.

7 Friction Models
There are many types of friction phenomena and equation

model them. Coulomb friction is one of the simplest and in ma
JANUARY 2001, Vol. 68 Õ 125
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Fig. 5 Case 2: The LCP has two solutions, maintaining contact „unstable … and separation „stable …. If
the compliant model solution is started with the unstable maintaining contact solution, it quickly con-
verges to the separation solution „stable ….
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situations can adequately predict the system’s behavior. Neve
less, its mathematical properties complicate dynamic simula
for both rigid-body and compliant contact models. The difficulti
caused by Coulomb’s friction model in rigid-body dynamic sim
lation are due to the following issues:~1! the friction force is not
smooth during rolling-sliding transitions; and~2! during rolling,
the friction force cannot be directly determined from the st
variables. When solving the forward dynamic problem, these
issues can either increase the complexity of the system or c
analytical difficulties. Specifically the rolling and sliding con
straints need to be handled differently in the rigid-body formu
tions ~@7#!. This is also the main reason that our stability results
Section 4 are not applicable to transitions from rolling to slidin
Furthermore, cases arise in which a unique solution to the forw
dynamics problem does not exist.

Since these difficulties are due to the Coulomb model, it
possible to overcome them by substituting a model with the r
uisite mathematical properties. In fact, nonclassical friction la
which are nonlinear and nonlocal have been found to be supe
to pointwise Coulomb models from both a phenomenological
a computational viewpoint~@22#!. A few of these models were
developed specifically for rigid-body dynamics. For example
discontinuous model that extends the Coulomb’s stiction z
from zero velocity to a small neighborhood of zero velocity
68, JANUARY 2001
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suggested in~@23#!. Many others~@12#!, including Dahl’s model
and the bristle model, can be considered to be extensions o
compliant contact model.

Our interest is in the simplest friction law that approximat
Coulomb friction and is a continuously differentiable function
the system states. Such a model would allow us to formulate
dynamics using either rigid-body models or compliant cont

Fig. 6 A smooth, nonlinear friction law with two parameters g,
a characteristic speed, and m, the coefficient of friction
Transactions of the ASME
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Fig. 7 Results with the smooth nonlinear friction law „gÄ10À3
…. The transition from reverse sliding to

rolling to forward sliding at tÄ0.205 sec is characterized by a smooth variation of contact forces.
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models while improving the performance of both. A friction la
with these properties is shown in Fig. 6. It has a one-to-one
respondence between the friction forcelT and the relative tangen
tial velocity ḞT . The small parameterg defines the extent of the
‘‘rolling’’ regime: ḞTP@2g,g#. By letting g tend to zero, we
can obtain an arbitrarily close approximation to Coulomb’s la
albeit with some sliding in the ‘‘rolling’’ regime. Using this fric-
tion law with the rigid-body dynamic model expressed in Eq
~1!–~2!, we no longer need to differentiate between rolling a
sliding contacts. Instead, the Jacobian matrix (Fq) in Eq. ~3! al-
ways takes the form

Fq
T5FFNq

T 2FTq

T diagS m tanhS ḞT

g
D D G . (41)

This gives rise to a unified LCP formulation that works for bo
rolling and sliding constraints. The smooth friction law can a
improve numerical performance of the compliant contact mod
since we no longer need the deformation state vector,dT , to com-
pute the tangential force which is uniquely defined by the norm
contact force and the relative velocity.

lT,i52m tanhS ḞT,i

g
D lN,i (42)

As is the case with rigid-body dynamics and Coulomb’s la
the LCP formulation with the smooth friction law will have situ
pplied Mechanics
or-

w,

s.
d

th
so
el,

al

w,
-

ations with no solution or multiple solutions. And, as before, t
compliant contact model given by Eqs.~12! and~42! resolves the
difficulties with uniqueness and existence. Since the stab
analysis in Section 4 can be easily applied to this new frictio
model without worrying about transitions between rolling a
sliding contacts, Theorem 5.1 can be directly extended to
planar mechanical system with a single rolling or sliding conta
Because the rolling constraint is now replaced by ‘‘microsliding
with the tangential contact velocity smaller thang, the proof fol-
lows exactly the same lines of the proof in Section 5.1.

To illustrate the effect of the smooth friction law, we consid
the same situation shown in Fig. 4~Case 1 in Section 6!. Recall
the transition from reverse sliding to rolling to forward sliding
Fig. 4 att50.205 sec. Figure 7 shows the results of the simulat
with the smooth friction law with the same initial conditions. Th
rigid-body model predicts discontinuities in the contact forc
However, the compliant contact predicts a smooth transition fr
sliding to sticking~relative velocity less than the thresholdg! to
sliding in the opposite direction.

The main disadvantage of the nonlinear friction law is due
the fact a static friction force can only be maintained throu
‘‘creep’’ in the tangential direction. While the ‘‘creep’’ rate is les
than g, and g can be set to a very small value, it is not a ve
attractive solution because it has the adverse effect of making
system of ODEs stiff. There is a natural tradeoff that must
considered in selecting the parameterg.
JANUARY 2001, Vol. 68 Õ 127
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8 Concluding Remarks
When rigid-body models are used in conjunction with Coulom

friction for dynamic simulation of systems with frictional con
tacts, there may be situations in which there are no solution
multiple solutions for the contact forces and the accelerations
this paper, we describe a contact model that models the s
compliance in the normal and tangential directions. We show
this compliant contact model, when used with the rigid-body d
namic equations of motion, always yields a unique solution for
accelerations and the forces. While this model is superior to
traditional rigid-body model in terms of accuracy and robustne
it is also more complex and requires a larger number of par
eters. Therefore, it is appealing to use rigid-body models, wh
ever concerns of uniqueness and existence do not arise.

The main contribution of this paper is the use of singular p
turbation theory to establish conditions under which solutio
from the rigid-body model are stable, or in other words, con
tions in which the compliant contact model solution converg
exponentially to the rigid-body model solution. In situations wh
rigid-body LCP analysis reveals multiple solutions, stabil
analysis can resolve the ambiguity. We can simply discard
unstable solutions and retain the stable one. The stability ana
shows when it is essential to pursue the more sophisticated c
pliant contact model, and when it is satisfactory to neglect the
dynamics. The basic issues are illustrated with the help o
simple example with one contact that may be rolling, sliding,
separating. The case of rolling contacts poses an additional d
culty because of the fact the tangential forces obtained
Coulomb-like frictional laws, even when used with complia
contact models, are not smooth functions of the state. The se
main contribution of the paper is the result that a smooth non
ear friction law, inspired by Oden and Pires’ nonlinear frictio
law ~@22#!, overcomes this difficulty. We show that in the case
planar mechanical systems with one contact, there are at mos
solutions, and there is only one stable solution.

The basic ideas of this paper are applicable to any situa
with frictional contacts. However, in order for the rigid-bod
model, and therefore the perturbation analysis to be applicable
are limited to planar problems with three or less independent c
straints and spatial problems with six or less independent c
straints. Note the compliant contact model can always be app
without such limitations. Since not all of the constraints of t
physical system are embodied in the rigid-body mathemat
model, a study of the stability of these solutions based solely
the structure of the LCP itself is not justified. Existence a
uniqueness problems suggest the inapplicability of the rigid-b
model altogether and not simply uncertainty in or sensitivity
model parameter values.

Our future work addresses incorporating stability analysis a
diagnostic tool in real-time simulation where it is prudent to che
for stability and warn the user in unstable regimes.
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