For advising you will need:
✓ Degree Advice Report
✓ Transcript Preview
✓ Advising Worksheet
✓ Course Directory

COURSE NOTES:
Courses fulfilling breadth requirements:

Cell & Molecular (CM)
CAS BI 203 Cell Biology
CAS BI 206 Genetics
CAS BI 216 Intensive Genetics

Ecology, Behavior & Evolution (EBE)
CAS BI 225 Behavioral Biology
CAS BI 260 Marine Biology
CAS BI 303 Evolutionary Ecology
CAS BI 306 Biology of Global Change

Neurobiology & Physiology (PN)
CAS BI 315 Systems Physiology
CAS BI 325 Principles of Neuroscience

Upper Level Lab Courses Offered Spring 2023:
CAS BI 302 Vertebrate Zoology
CAS BI 303 Evolutionary Ecology
CAS BI 306 Biology of Global Change
CAS BI 315 Systems Physiology
CAS BI/CH 422 Biochemistry 2
CAS BI/NE 449 Neuroscience Design Lab
CAS BB 522 Molecular Biology Lab
CAS BI/CH 528 Biochemistry 2
CAS BI 550 Marine Genomics
CAS BI Undergrad. Research Courses (first 4-credit semester)

TABLE OF CONTENTS:
Cell & Molecular Courses Pg. 2-7
Ecology, Behavior & Evolution Courses Pg. 8-11
Physiology & Neurobiology Courses Pg. 12-14
Research & Readings Courses Pg. 15-21
Index Pg. 22

REGISTRATION NOTES:
• Permission required courses: Students may not register for these courses on their own, but need the instructor’s permission. An Add/Drop form may be required for registration (no advisor signature needed).

• Full time status is 12-18 credits per semester. Seniors are automatically awarded a fee waiver so that they may take up to 20 credits per semester without additional fees. Non-seniors with a 3.3 GPA may submit the CAS Course Overload Fee Waiver form.

• PDP, ROTC, and CAS FY/SY courses do not count toward the 128 credits needed to graduate with a BA.

• The following courses do not count toward the Biology or BMB major or minor:
 CAS BI 114 Human Infectious Diseases
 CAS/MET BI 210 Human Anatomy
 CAS BI 528 (unless both sections of BI 527/528 are taken)
 MET BI 366 Neurobio. of Consc. & Evol. of Lang.
 CAS BI Readings or Research Courses (2 credits)
CELL & MOLECULAR

CAS BI 108: BIOLOGY 2

Prereq: High school biology and one semester college chemistry strongly recommended.

For students planning to major in the natural sciences and for premedical students. Required for biology majors. It is strongly recommended students complete CAS CH 101 (or equivalent) before this course. High school biology is assumed. Biochemistry, cell & molecular biology, Mendelian & molecular genetics, physiology, and neurobiology. Three hours lecture, three hours lab. This course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry II, Quantitative Reasoning II, Teamwork/Collaboration, Critical Thinking.

Lecture
- A1 Loechler, Hartmann Mon,Wed,Fri 10:10am - 11:00am
- A2 Loechler, Hartmann Mon,Wed,Fri 11:15am - 12:05pm
- A3 Spilios Mon,Wed,Fri 1:25pm - 2:15pm

Lab
- B1 Mon - 2:30pm - 5:15pm
- B2 Mon - 2:30pm - 5:15pm
- B3 Mon - 6:30pm - 9:15pm
- B4 Mon - 6:30pm - 9:15pm
- B5 Mon - 6:30pm - 9:15pm
- B6 Mon - 6:30pm - 9:15pm
- C0 Tue - 8:00am - 10:45am
- C1 Tue - 8:00am - 10:45am
- C2 Tue - 8:00am - 10:45am
- C3 Tue - 12:30pm - 3:15pm
- C4 Tue - 12:30pm - 3:15pm
- C5 Tue - 3:30pm - 6:15pm
- C6 Tue - 3:30pm - 6:15pm
- C7 Tue - 3:30pm - 6:15pm
- C8 Tue - 6:30pm - 9:15pm
- C9 Tue - 6:30pm - 9:15pm
- D2 Wed - 8:00am - 10:45am

Notes: Meets with CAS BI 116 lecture.

Grading: Lecture exams and quizzes account for approximately 2/3 of the final grade and lab accounts for approximately 1/3 of the final grade.

CAS BI 114: HUMAN INFECTIOUS DISEASES

Prereq: None

Not for Biology major or minor credit. A study of the world's major human diseases, their causes, effects on history, pathology, and cures. Principles of immunology. Emphasis on present maladies such as AIDS, herpes, cancer, mononucleosis, tuberculosis, influenza, and hepatitis. This course is appropriate for non-majors and students in the health and paramedical sciences (Sargent College). Three hours lecture, three hours lab. This course fulfills a single unit in the following BU Hub area(s): Scientific Inquiry I, Quantitative Reasoning II, Critical Thinking.

Lecture
- A1 Staff Mon,Wed,Fri 9:05am - 9:55am

Lab
- B1 Mon,Wed 2:30pm - 4:15pm
- C3 Tue,Thu 3:30pm - 5:15pm
- C1 Tue,Thu 9:00am - 10:45am
- D1 Mon,Wed 10:10am - 11:55am
- C2 Tue,Thu 1:30pm - 3:15pm
- D2 Mon,Wed 12:20pm - 2:05pm

Notes: Not for Biology major or minor credit.

Grading: 4 lecture exams; laboratory.

CAS BI 116: BIOLOGY 2 WITH ISE LAB

Prereq: CH 101 Coreq: CH 116

Integration of general chemistry with biology and neuroscience, with an emphasis on how each discipline interacts experimentally. Laboratory focuses on projects relating to enzymes and their function. 3 lecture hours (meets with CAS BI 108 lecture), 3 hours lab. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry II, Quantitative Reasoning II, Writing-Intensive Course, Critical Thinking.

Lecture
- A1 Loechler, Hartmann Mon,Wed,Fri 10:10am - 11:00am
- A2 Loechler, Hartmann Mon,Wed,Fri 11:15am - 12:05pm
- A3 Spilios Mon,Wed,Fri 1:25pm - 2:15pm

Lab
- L1 Wed, Fri 8:00am - 10:45am
- L2 Wed, Fri 2:30pm - 5:15pm

Notes: Meets with BI 108 Lecture.

Grading: 4 lecture exams (52%), lecture homework (2%), in-lecture quizzes (4%), in-lecture TopHat questions (2%), lab (40%).
CAS BI 203: CELL BIOLOGY
Prereq: (BI 108/116 or NE 102) and CH 102 or equivalent.
Coreq: CH 203 or equivalent.

Principles of cellular organization and function: biological molecules, flow of genetic information, membranes and subcellular organelles, and cell regulation. Three hours lecture, one hour discussion. This course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry I, Quantitative Reasoning I, Critical Thinking.

Lecture
A1 Hartmann Tue, Thu 9:30am - 10:45am

Discussion
B1 Wed 12:20pm - 1:10pm
B2 Wed 3:35pm - 4:25pm
B3 Fri 8:00am - 8:50am
B4 Fri 11:15am - 12:05pm

Notes: Students may receive credit for CAS BI 203 or 213, but not both courses.

Textbook & Technology: The Cell 8e by Geoffrey Cooper, Oxford University Press, 2018, electronic access to Dashboard (supplied with certain editions of the textbook available through the BU Bookstore)

Grading: Three midterm exams, homework, in class questions, and a final examination.

CAS BI 206: GENETICS
Prereq: BI 108/116 and CH 203 or equivalent

Principles of classical, molecular, and evolutionary genetics derived from analytical, molecular, and whole genome cytological evidence in animals, plants, and microorganisms. For CMG and BMB majors, BI 216 is highly recommended instead of BI 206. Three hours lecture, one hour discussion. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Historical Consciousness, Quantitative Reasoning II, Critical Thinking.

Lecture
A1 Celenza Tue,Thu 12:30pm - 1:45pm

Discussion
B1 Mon 12:20pm - 1:10pm
B2 Mon 12:20pm - 1:10pm
B3 Mon 1:25pm - 2:15pm
B4 Mon 2:30pm - 3:20pm
C1 Tue 8:00am - 8:50am

Notes: Meets with BI 282 and with BI 216 for the first half of the semester. Students may receive credit for CAS BI 206 or 216, but not both courses.

Grading: Average of four exam scores given during the semester (75%); discussion (25%)
CAS BI 216: INTENSIVE GENETICS
Prereq: BI 108/116 and BI 203/213, and CH 203 or consent of instructor

Advanced alternative to CAS BI 206, emphasizing depth of coverage, class discussion, and reading research papers. BI216 (instead of BI206) is highly recommended for BMB majors and Biology majors in the CMG track. Principles of classical, molecular, and evolutionary genetics derived from analytical, molecular, and whole genome cytological evidence in animals, plants, and microorganisms. Three hours lecture, one hour discussion. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Historical Consciousness, Quantitative Reasoning II, Research and Information Literacy.

Lecture

<table>
<thead>
<tr>
<th>Section</th>
<th>Instructor(s)</th>
<th>Days</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Celenza, Loechler</td>
<td>Tue, Thu</td>
<td>12:30pm - 1:45pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thu</td>
<td>6:30pm - 8:15pm*</td>
</tr>
</tbody>
</table>

Thursday evening timeslot reserved for exams after spring break. Exams are coordinated with CH 204/214 exam blocks to avoid overlap.

Discussion

<table>
<thead>
<tr>
<th>Section</th>
<th>Days</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Mon</td>
<td>12:20pm - 1:10pm</td>
</tr>
<tr>
<td>B2</td>
<td>Mon</td>
<td>2:30pm - 3:20pm</td>
</tr>
<tr>
<td>D1</td>
<td>Wed</td>
<td>2:30pm - 3:20pm</td>
</tr>
</tbody>
</table>

Notes: Meets with BI206/282 for the first half of the semester. Students may receive credit for BI 216 or 206 but not both courses.

Textbooks & Technology: 1) Required: Hartwell et al. *Genetics: from Genes to Genomes*. McGraw-Hill: 7th edition, book or ebook. 2) Recommended, but not required: Connect subscription that includes Smartbook. Both will be available through the BU Bookstore and other sources.

Grading: Average of four exam scores given during the semester (75%); discussion (25%)

CAS BI 282: FUNDAMENTALS OF BIOLOGY
Prereq: (CAS CH182) or equivalent, and consent of instructor.

Principles of classical, molecular, and evolutionary genetics derived from analytical, molecular, and whole genome cytological evidence in animals, plants, & microorganisms. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Historical Consciousness, Quantitative Reasoning II, Critical Thinking.

Lecture

<table>
<thead>
<tr>
<th>Section</th>
<th>Instructor</th>
<th>Days</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Beffert</td>
<td>Mon, Wed, Fri</td>
<td>12:30pm - 1:45pm</td>
</tr>
</tbody>
</table>

Lab

<table>
<thead>
<tr>
<th>Section</th>
<th>Days</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Mon</td>
<td>12:20pm - 1:10pm</td>
</tr>
<tr>
<td>B4</td>
<td>Mon</td>
<td>2:30pm - 3:20pm</td>
</tr>
</tbody>
</table>

Notes: Limited to seven-year medical students. Meets with BI 206.

Textbooks & Technology: See BI 206.

Grading: See BI 206.

CAS BI 285: IMMUNOLOGY
Prereq: BI 203, BI 206 and junior standing

The constituents and regulation of mammalian immune systems are described at the levels of the gene, protein, and cell. Topics include nonspecific, T cell and B cell recognition and responses, genetics of immune receptors, inflammation, tolerance, memory, and evolution and manipulation of defense systems. Three hours lecture, one hour discussion.

Lecture

<table>
<thead>
<tr>
<th>Section</th>
<th>Instructor</th>
<th>Days</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Siggers</td>
<td>Mon, Wed, Fri</td>
<td>1:25pm - 2:15pm</td>
</tr>
</tbody>
</table>

Discussion

<table>
<thead>
<tr>
<th>Section</th>
<th>Days</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Wed</td>
<td>12:20pm - 1:10pm</td>
</tr>
<tr>
<td>D1</td>
<td>Thu</td>
<td>8:00am - 8:50am</td>
</tr>
<tr>
<td>E1</td>
<td>Fri</td>
<td>2:30pm - 3:20pm</td>
</tr>
</tbody>
</table>

Grading: 3 exams (2 midterms and 1 final) 80%; discussion/participation 20%.

CAS BI 394: TOPICS IN BIOLOGY: CELL BIOLOGY & TRANSLATIONAL MEDICINE
Prereq: CAS BI 203

This course integrates recent advances in Cell Biology research with the latest developments in translational medicine. The course includes a student-led discussion of topical articles in cell biology and translational medicine.

Lecture

<table>
<thead>
<tr>
<th>Section</th>
<th>Instructor</th>
<th>Days</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Beffert</td>
<td>Mon, Wed, Fri</td>
<td>10:10am - 11:55am</td>
</tr>
</tbody>
</table>

Textbooks & Technology: Scientific papers will be made available to the students throughout the course via Blackboard.

Grading: 2 midterms, oral presentation, participation
CELL & MOLECULAR

CAS BI 411: MICROBIOME: OUR INTIMATE RELATIONSHIP WITH MICROORGANISMS
Prereq: BI 203 (or equivalent) and BI 206 (or equivalent)

There are more bacterial cells inhabiting our bodies than actual human cells. This abundant and diverse population of microbes – referred to as the “microbiome” – colonizes several tissues in our body and plays important roles in maintaining our health. Topics will include the evolutionary, ecological, cellular, molecular and medical aspects of the interactions between animals and the bacterial communities that have evolved with them. Three hours lecture; one hour discussion.

Lecture and Discussion
A1 Frydman Tue,Thu 3:30pm - 4:45pm
Thu 5:00pm - 5:50pm

Notes: Meets with GRS BI 611.

Textbooks & Technology: Scientific papers will be made available to the students throughout the course via Blackboard.

Grading: Midterm 30%; Oral Presentation and Discussion 20%; Final Exam 40%; Participation 10%.

CAS BI 422: BIOCHEMISTRY 2
Prereq: BI/CH 421 or equivalent

Cell metabolism, with special emphasis on the uptake of food materials, the integration and regulation of catabolic, anabolic, and anaplerotic routes, and the generation and utilization of energy. Lectures include consideration of events in prokaryotic and eukaryotic organisms.

Lecture
A1 Staff Mon,Wed,Fri 9:05am - 9:55am
Wed 7:00pm - 9:00pm

*Wednesday evening timeslot reserved for exams

Lab & Discussion
B1 Mon 1:25pm - 5:25pm Lab
B2 Tue 8:00am - 12:00pm Lab
B3 Tue 5:30pm - 9:30pm Lab
B5 Thu 8:00am - 12:00pm Lab
B6 Thu 5:30pm - 9:30pm Lab
B7 Fri 10:10am - 2:10pm Lab
B8 Fri 3:35pm - 7:35pm Lab
C1 Fri 10:10am - 11:55am Discussion
C2 Mon 2:30pm - 4:15pm Discussion
C3 Tue 3:30pm - 5:15pm Discussion

Notes: Meets with CAS CH 422 A1 and GRS BI/CH 622 A1.

Grading: Homework, hour exams, creativity project, lab, final.

CAS BI 481: MOLECULAR BIOLOGY OF THE NEURON
Prereq: BI 325 (preferred) or BI 203.

Topics include electrical properties of neurons, a survey of neurotransmitters, molecular structure and function of receptors, synaptic transmission, intracellular signaling, and the molecular biology of sensory transduction.

Independent
A1 Ho Mon, Wed 2:30pm - 4:15pm

Notes: Meets with CAS NE 481 and GRS BI 681.

Textbooks & Technology: none.

Grading: 2 midterms, 1 final exam, and discussion.
CAS BI 510: INSTITUTIONAL RACISM IN HEALTH AND SCIENCE
Prereq: CAS BI 126 or CAS 206/216 or ENG BE 209 and senior standing
Historically, pseudoscientific theories have provided the justification for establishing and maintaining racial hierarchies, which resulted in centuries of dehumanizing and unethical practices meted out to Blacks, Indigenous, and People of Color (BIPOC). Unfortunately, many of these pernicious ideas persist, such that they hinder BIPOC’s opportunities in Science and exacerbate their health outcomes. This course traces the historical roots (e.g. mischaracterization of race as a biological construct) and physiological manifestations of racism in science, and examines harmful consequences on victims’ health outcomes.

Independent
A1 Osborne Tue, Thu 12:30pm - 3:15pm

Notes: Meets with ENG BF 510.

Grading: Writing assignments/homework, discussion, capstone project

CAS BB 522: MOLECULAR BIOLOGY LAB
Prereq: BI 552
Introduction to techniques of cellular and molecular biology research, including analysis of DNA and protein molecules, by techniques such as plasmid isolation, restriction enzyme digestions, PCR, subcloning, DNA sequence analysis, reporter gene assays, mammalian cell culturing, immunofluorescence, yeast molecular biology, RNA isolation and quantification, RT-qPCR analysis and introduction to RNA-seq bioinformatic analysis.

Lab
A1 Wunderlich Tue,Thu 1:00pm - 4:45pm

Notes: Permission required.

Textbooks & Technology: Lab guide provided on Blackboard

Grading: Midterm (20%); final (20%); lab reports (35%); lab participation and preparation (25%).

CAS BI 528: BIOCHEMISTRY LABORATORY 2
Prereq: BI/CH 421 or BI/CH 527
[2 cr] Not for Biology major or minor credit unless both BI 527 and BI 528 are taken. Emphasizes protein, carbohydrate, nucleic acid, and lipid chemistry. Development and use of modern instrumentation and techniques. Same as CAS CH 528 and laboratory portion of CAS BI/CH 422.

Lecture
A1 Staff Fri 10:10am - 11:55am
A2 Staff Mon 2:30pm - 4:15pm
A3 Staff Tue 3:30pm - 5:15pm

Lab
B1 Staff Mon 1:25pm - 5:25pm
B2 Staff Tue 8:00am - 12:00pm
B3 Staff Tue 5:30pm - 9:30pm
B5 Staff Thu 8:00am - 12:00pm
B6 Staff Thu 5:30pm - 9:30pm
B7 Staff Fri 10:10am - 2:10pm
B8 Staff Fri 3:35pm - 7:35pm

Notes: Meets with CAS CH 422, CAS BI 422, CAS CH 528, GRS CH 622 and GRS BI 622. Not for Biology major or minor credit unless both BI 527 and BI 528 are taken.

Grading: Lab preparation, lab reports, and one exam.

CAS BI 553: MOLECULAR BIOLOGY 2
Prereq: BI 552, recommended: BI/CH 421/422
This course focuses on gene regulatory mechanisms with emphasis on eukaryotes, and current research in molecular biology. General areas of focus include genomics, gene regulation, and cell signaling. Course topics include genome organization and DNA rearrangement, RNA interference and noncoding RNAs, gene editing, mouse transgenic approaches, signal transduction pathways, chromatin structure, and cell cycle. Research articles and molecular biology approaches will be discussed.

Independent
A1 Naya Tue,Thu 9:00am - 10:45am

Textbooks & Technology: none.

Grading: Three exams, discussion, participation.
CAS BI 559: QUANTITATIVE MICROBIOLOGY
Prereq: BI 108 or equivalent, MA 121 or equivalent, and PY 105 or equivalent

Important bacterial behaviors and phenomena are described with mathematical models including growth, multispecies interactions, motility, and cell differentiation. Every subject is motivated directly by experimental data, with specific discussion of the techniques used to collect the data, their biases, and their limitations. The goal is to show how quantitative models can give a unified, conceptual understanding of complicated, living systems and generate new hypotheses for experiments. Homework assignments will be in python and the course will include an introduction to python. No prior programming experience needed. Even though the course deals specifically with prokaryotes, the techniques and approaches learned are applicable to any area of the life sciences.

Independent
L1 Larkin Mon, Wed, Fri 4:30pm - 6:15pm

Notes: Meets with GRS PY 896

Textbooks & Technology: None. Required reading will be provided by the instructor.

Grading: Homework (75%), Final presentation or project (25%)

CAS BI 576: CARCINOGENESIS
Prereq: BI 203, BI 206, BI 552

The course covers multiple aspects of cancer biology with a focus on molecular mechanisms underlying cancer development and progression, and the implications for therapy. Topics include oncogenes, tumor suppressors, apoptosis, angiogenesis, metastasis, mouse models, cancer immunity, immunotherapy, and chemotherapy. Emphasis on current research.

Lecture
A1 Tullai Mon 2:30pm - 4:15pm
 Wed 2:30pm - 3:20pm

Discussion
B1 Wed 3:35pm - 4:25pm
B2 Wed 4:40pm - 5:30pm
B3 Thu 3:35pm - 4:25pm

Notes: No credit if CAS BI 327 or GMS BT 520 were taken previously.

Grading: Three exams, presentation, participation.

CAS BI 565: FUNCTIONAL GENOMICS
Prereq: BI 552

Recent years have seen an explosion in the number of organisms for which sequenced genomes are available. However, we are only beginning to understand how the information encoded in the million/billion DNA bases of eukaryotic genomes is organized and how that information is translated into function. Throughout this course, we will start to answer central questions in the molecular biology and functional genomics fields, including: Given that only ~2% of the genome encodes for proteins, what is the function of the rest of the genome? How is it possible that yeast, worms and humans have a similar number of genes? What is the flow of information in the cell that controls gene function and activity? Which experimental approaches allow us to tackle these questions? This course fulfills a single unit in each of the following BU Hub areas: Oral and/or Signed Communication, Writing-Intensive Course, Critical Thinking.

Independent
A1 Fuxman Bass Tue, Thu 9:00am - 10:45am

Textbooks & Technology: Review articles and research papers on Blackboard.

Grading: Exam I: 30 %, Exam II: 30 %, Project: 15 %, Assignments: 8%, Participation: 7%, Paper presentation: 10%.

Additional electives for the CMG specialization can be found in other sections of the Course Directory.

A list of courses accepted toward the CMG specialization can be found in the Bulletin at www.bu.edu/biology/cmg-bulletin.
CAS BI 225: BEHAVIORAL BIOLOGY

Prereq: BI 107, BI 108 and sophomore standing. Seats reserved for Behavioral Biology majors; other students must receive consent of instructor. BI 225 and BI 407 cannot be taken concurrently, and BI 225 cannot be taken following completion of BI 407.

Introduction to the evolution, ecology, physiology, neurobiology and genetics of behavior, from classic studies to current trends. Topics include behavioral adaptation, hormones and behavior, nerve cells, circuits, neuromodulators and behavior, behavioral genetics and genomics, the development of behavior, communication, reproductive behavior, social evolution and culture, cooperation and altruism, sociality and brain evolution. Emphasis on the integrative analysis of behavior. This course fulfills a single unit in each of the following BU Hub areas: Oral and/or Signed Communication, Writing-Intensive Course, Philosophical Inquiry and Life's Meanings.

Lecture
A1 Muscedere Tue, Thu 12:30pm - 1:45pm

Discussion
B1 Muscedere Thu 3:35pm - 4:25pm
B2 Muscedere Fri 9:05am - 9:55am

Grading: 3 quizzes, research paper and class presentation, article analysis and discussion, engagement, and participation.

CAS BI 260: MARINE BIOLOGY

Prereq: BI 107

Life in the seas: its ecology, evolution, and human impacts. Includes behavioral, physiological, structural, ecological, and evolutionary perspectives. A prerequisite for the Marine Semester. Effective Spring 2019, this course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry I, Critical Thinking, Research and Information Literacy.

Lecture
A1 Staff Mon, Wed, Fri 10:10am - 11:00am

Discussion
B1 Mon 2:30pm - 3:20pm
B2 Wed 4:40pm - 5:30pm
C1 Thu 3:35pm - 4:25pm
C2 Tue 11:15am - 12:05pm

Textbooks & Technology: Castro & Huber, *Marine Biology*. 9th Edition

Grading: Three exams, discussion, and participation.

CAS BI 302: VERTEBRATE ZOOLOGY

Prereq: BI 107

Methods and principles of comparative vertebrate zoology. Phylogeny, natural history, adaptation, and taxonomy. Laboratory emphasis on correlation among structural, physiological, and evolutionary features of selected vertebrates by both dissection and experimentation. Field trips. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Historical Consciousness, Scientific Inquiry II, Critical Thinking.

Lecture
A1 Wasserman Tue, Thu 11:00am - 12:15pm

Lab
B1 Tue, Thu 8:00am - 10:45am
B2 Tue, Thu 12:30pm - 3:15pm

Textbooks & Technology: Pough, et al. *Vertebrate Life*. 10th edition

Grading: Multiple lecture quizzes, lab quizzes, and class participation.

CAS BI 303: EVOLUTIONARY ECOLOGY

Prereq: BI 107 recommended; BI 206, MA 121/123

Investigation of ecological processes and patterns at the individual, population, and community level. An evolutionary approach is emphasized. One day-long field trip required. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry II, Quantitative Reasoning II, Digital/Multimedia Expression.

Lecture
A1 Staff Mon, Wed, Fri 11:15am - 12:05pm

Lab
B1 Mon 2:30pm - 5:15pm
C1 Tue 3:30pm - 6:15pm
E1 Thu 12:30pm - 3:15pm
F1 Fri 2:30pm - 5:15pm

Grading: Two exams, a final exam, lab, 3-minute video assignment, and participation.
CAS BI 306: BIOLOGY OF GLOBAL CHANGE
Prereq: BI 107, Recommended: CH 101 or CH 171

The ecological impacts of human activity on the Earth’s climate and terrestrial and aquatic ecosystems. Climate change, productivity and land-atmosphere feedbacks. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry II, Ethical Reasoning, Research and Information Literacy.

Lecture
A1 Staff Tue,Thu 9:30am - 10:45am

Lab
B1 Mon 2:30pm - 5:15pm
D1 Wed 2:30pm - 5:15pm

CAS BI 413: MICROBIAL ECOLOGY
Prereq: BI 107 & BI 108 and CH 101 & CH 102

Microbes (bacteria, archaea, and fungi) are the most diverse and abundant living organisms on the planet and microbial communities are key contributors to ecosystems and their functioning. This course studies how microbes interact with each other and with the environment. Topics will include microbial cell structure and physiology, microbe-microbe interactions including biofilm formation and quorum sensing, and microbe-environment interactions including microbiomes and geochemical cycling.

Lecture and Discussion
A1 Marlow Tues, Thu 9:30am - 10:45am
Wed 9:05am - 9:55am

CAS BI 414: ORNITHOLOGY
Prereq: BI 107

Examines the behavior, ecology and morphology, physiology, classification, and evolution of birds. Flight, navigation, migration, territorial courtship, nesting, and parental behavior. Field trips. Three hours lecture, one hour discussion and demonstrations. Effective Fall 2020, this course fulfills a single unit in each of the following BU Hub areas: Historical Consciousness, Scientific Inquiry II, Critical Thinking.

Independent
A1 Wasserman Tue,Thu 12:30pm - 1:45pm

Notes: Meets with GRS BI 614.

Textbooks & Technology: none

Grading: Multiple quizzes and class participation.

CAS BI 423: MARINE BIOGEOCHEMISTRY
Prereq: EE 144 and (CH 102 or Marine Semester).

Oceanic nutrient and biogeochemical cycling in the context of the marine response to global change. Links between local and global scales are emphasized. Topics include oceanic productivity, iron limitation, oceanic glacial carbon dioxide budget, biogenic particle fluxes, oceanic glacial-interglacial biogeochemistry.

Independent
A1 Fulweiler Tue,Thu 12:30pm - 1:45pm

Notes: Meets with CAS EE 423 and GRS BI/EE 623.

Textbooks & Technology: All readings will come from the scientific literature and will be available through Blackboard.

Grading: Two exams (20%), final exam (30%), lab and participation (30%).

CAS BI 448: CONSERVATION BIOLOGY
Prereq: BI 303 or BI 306

The study of biological diversity and modern methods to protect endangered plant and animal species. The environment, population, and genetic and human factors that affect the survival of species are examined for temperate and tropical communities, as well as terrestrial and aquatic habitats. Three hours lecture, one hour discussion. Effective Fall 2020, this course fulfills a single unit in the following BU Hub areas: Oral and/or Signed Communication, Ethical Reasoning.

Lecture and Discussion
A1 Primack Mon, Wed, Fri 1:25pm - 2:15pm
Wed 2:30pm - 3:20pm

Notes: Meets with GRS BI 648.

Grading: Two exams, oral presentations, term paper, and quizzes.
CAS BI 475: URBAN ECOLOGY

Prereq: (EE 100 or EE 101) and one of the following: BI 306, BI 443, EE 456, or BI 530

The biophysical environments and ecology of urban settlements. Key topics include the physical environment, patterns in human population growth and development, ecosystem structure and function, global change, urban environment pollution and management, and sustainable urban development.

Independent

A1 Hutyra
Tuesday, Wednesday, Friday 12:30pm - 3:15pm

Notes: Meets with CAS EE 475 and GRS BI/EE 675.

Textbooks & Technology: None

Grading: TBA

CAS BI 500: SHARK BIOLOGY & CONSERVATION

Prereq: some background in ecology and/or evolution recommended.

Explores the natural history and behavior of sharks and their relationship to other animals in the ecosystem. Conservation of sharks and other elasmobranchs is crucial to ecosystem function and requires accurate scientific knowledge to implement the best conservation practices. Effective Spring 2021, this course fulfills a single unit in each of the following BU Hub areas: Oral and/or Signed Communication, Scientific Inquiry II, Research and Information Literacy.

Independent

A1 Lobel
Tuesday, Thursday 9:00am - 10:45am

Textbooks & Technology: All materials provided in class.

Grading: Midterm 40%; Project and Discussion 40%; Dissection lab 10%; Participation 10%

CAS BI 506: PHENOTYPIC PLASTICITY

Prereq: BI 107 and one of the following: BI 303, BI 309, BI 315, or BI 410

Explores the flexible phenotype as a product of development and a target of natural selection, and addresses the role of phenotypic plasticity in ecological interactions and evolutionary diversity. Topics: mechanisms and evolution of plasticity; role of plasticity in ecology, diversification of life, and conservation in a changing environment.

Lecture and Discussion

A1 Warkentin
Monday, Wednesday, Friday 9:05am - 9:55am

Wednesday 10:10am - 11:00am

Textbooks & Technology: Chapters from Gibert & Epel, Ecological Developmental Biology (2nd edition 2015), West-Eberhard Developmental Plasticity and Evolution (2003), Papers from the scientific literature and chapters from other books posted on the course website.

Grading: Multi-stage project, peer reviews, leading discussion, class participation, quizzes

CAS BI 530: FOREST ECOLOGY

Prereq: BI 107 and (BI 303 or BI 306)

The major biotic and abiotic factors influencing forest ecosystem composition, structure, and function. Role of solar radiation, hydrology, soils, succession, and management of forest ecosystems. Includes New England case study. Three hours lecture plus discussion. Effective Spring 2023, this course fulfills a single unit in each of the following BU Hub areas: Oral and/or Signed Communication, Scientific Inquiry II, Research and Information Literacy.

Lecture and Discussion

A1 Staff
Tuesday, Thursday 11:00am - 12:15pm

Notes: Meets with EE 530.

Grading: Two exams (40%), Class assignments (55%), Class participation (5%)
CAS BI 550: MARINE GENOMICS

Prereq: BI 108/116 or equivalent.

Covers the evolution of genomes, the architecture of gene networks, and the connection between genotype and phenotype in marine organisms, as well as the technical development of modern genomics. Student research projects utilize modern genomics experimental approaches. Effective Fall 2019, this course fulfills a single unit in the following BU Hub area: Teamwork/Collaboration.

Independent
A1 Finnerty Tue, Thu 12:30pm - 3:15pm

Textbooks and Technology: Readings are from lecture handouts prepared by the professor and articles in the primary literature.

Grading: TBA

Additional electives for the ECB specialization can be found other sections of the Course Directory.

A list of courses accepted toward the ECB specialization can be found in the Bulletin at www.bu.edu/biology/ecb-bulletin.

Additional electives for the SBB specialization can be found in other sections of the Course Directory.

A list of courses accepted toward the SBB specialization can be found in the Bulletin at www.bu.edu/biology/sbb-bulletin.
CAS BI 210: HUMAN ANATOMY

Prereq: BI 105 or equivalent

Not for Biology major or minor credit. Intensive pre-professional course for students whose programs require anatomy. Gross structure of the human body; skeletal, muscular, nervous, respiratory, circulatory, digestive, urinary, and reproductive systems. Lab requires dissection. Effective Spring 2020, this course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry I, Digital/Multimedia Expression, Creativity/Innovation.

Lecture
A1 Co Mon, Wed, Fri 11:15am - 12:05pm

Lab
B1 Mon 9:00am - 10:45am
B2 Mon 12:20pm - 2:05pm
C1 Tue 1:30pm - 3:15pm
D1 Wed 9:00am - 10:45am
F2 Fri 12:20pm - 2:05pm

Notes: Not for Biology major or minor credit.

Grading: 3 midterm lecture exams; 1 cumulative lecture final; 2 laboratory practical exams.

CAS BI 315: SYSTEMS PHYSIOLOGY

Prereq: (BI 108 or ENG BE 209), and CH 101 & CH 102, and First-Year Writing Seminar (e.g., CAS WR 120), or equivalent.

An introduction to physiological principles applied across all levels of organization (cell, tissue, organ system). Preparation for more advanced courses in physiology. Topics include homeostasis and neural, muscle, respiratory, cardiovascular, renal, endocrine, gastrointestinal, and metabolic physiology. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry II, Writing-Intensive Course, Critical Thinking, Teamwork/Collaboration.

Lecture
A1 Muscedere Mon, Wed, Fri 12:20pm - 1:10pm

Lab
B1 Mon 2:30pm - 5:15pm
B2 Mon 2:30pm - 5:15pm
B3 Mon 6:30pm - 9:15pm
B4 Mon 6:30pm - 9:15pm
C1 Tue 8:00am - 10:45am
C2 Tue 12:30pm - 3:15pm
C3 Tue 6:30pm - 9:15pm
C4 Tue 6:30pm - 9:15pm
D1 Wed 8:00am - 10:45am

Grading: Lecture (60%: 4 exams, small assignments); Lab (40%, 4 writing assignments, teamwork assignments).
CAS BI 325: PRINCIPLES OF NEUROSCIENCE
Prereq: BI 203

This course will introduce fundamentals of the nervous system at descriptive scales ranging from individual cells to the entire brain. Topics will include biophysics of excitable membranes, synaptic transmission, sensory and motor systems, learning and memory, plasticity, neuromodulation, and the biological basis of complex behaviors. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Scientific Inquiry II, Critical Thinking.

Lecture
A1 Cruz-Martin Tue,Thu 2:00pm - 3:15pm

Discussion
B1 Mon 2:30pm - 3:20pm
B2 Wed 3:35pm - 4:25pm
B3 Thu 3:35pm - 4:25pm

Grading: Three midterms.

CAS BI 349: NEUROTOXINS IN BIOLOGY, MEDICINE, AGRICULTURE AND WAR
Prereq: BI 108 or NE 102 or equivalent.

We will start by examining how neurotoxins in different animals are used for distinct behavioral needs, such as defense versus predation. Examining evolutionary lineage of different types Neurotoxins will also be discussed and give us insights on how neurotoxins evolved and their roles in evolutionary "arm race". We will also cover mechanisms of neurotoxin actions at cellular and molecular levels. At system level, envenomation by poisonous animal is of clinical importance in many parts of the world, consequences of venoms on mammalian physiological systems will be discussed. In additional to naturally occurring neurotoxins, many synthetic chemicals used as pesticides and chemical weapons are also neurotoxins. We will discuss the history, mechanisms and physiological effects of these manmade agents. Effective Fall 2019, this course fulfills a single unit in each of the following BU Hub areas: Quantitative Reasoning I, Critical Thinking.

Independent
A1 Lin Tue,Thu 3:30pm - 5:15pm

Notes: Meets with CAS NE 349.

Grading: Midterm 1 (25%); Midterm 2 (25%); Final (25%)
Discussion/presentation (25%)

CAS BI 449: NEUROSCIENCE DESIGN LAB
Prereq: (BI 315 OR BI 325 OR NE 203) or consent of instructor.

Design and build devices for neuroscience experiments. Interface sensors with computers using Arduino microprocessors. Guided exercises followed by independent design projects to quantify human sensory and motor performance, or emulate animal sensory-motor circuits. All levels of programming experience accepted.

Lab
A1 Gavornik Tue,Thu 12:30pm- 3:15pm

Notes: Meets with CAS NE 449 and GRS BI/NE 649.

Textbooks & Technology: Purchase of an Arduino kit.

Grading: Lab notebook, project and participation.

CAS BI 481: MOLECULAR BIOLOGY OF THE NEURON
Prereq: BI 325 (preferred) or BI 203.

Topics include electrical properties of neurons, a survey of neurotransmitters, molecular structure and function of receptors, synaptic transmission, intracellular signaling, and the molecular biology of sensory transduction. This course fulfills a single unit in each of the following BU Hub areas: Oral and/or Signed Communication, Scientific Inquiry II, Research and Information Literacy.

Independent
A1 Ho Mon, Wed 2:30pm - 4:15pm

Notes: Meets with CAS NE 481 and GRS BI/NE 649.

Textbooks & Technology: none

Grading: 2 midterms, 1 final exam, and discussion.
CAS BI 520: SENSORY NEUROBIOLOGY
Prereq: BI 325 or NE 203
A broad survey of sensory system function in model organisms and humans, focusing on fundamental principles of neural processing. Topics include basic cellular transduction, neural coding, and links between neural activity and sensory perception.

Lecture and Discussion
A1 Younger Tue, Thu 9:30am - 10:45am
Wed 10:10am - 11:00am

Notes: Meets with CAS NE 520.
Textbooks & Technology: TBA
Grading: TBA

CAS BI 525: BIOLOGY OF NEURODEGENERATIVE DISEASES
Prereq: (NE 102 or BI 203) and (NE 203 or BI 325).
This course focuses on understanding the molecular mechanisms that are at the basis of neurodegenerative diseases and on their impact and relevance in clinical diagnosis and treatment. Neurodegenerative diseases like Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis, Huntington’s Disease and Creutzfeldt-Jakob disease are becoming more and more common since people are more exposed to pathogenic agents (as in Creutzfeldt-Jakob disease and Mad Cow disease) or just encounter these diseases as a result of aging (like Alzheimer’s or Parkinson’s disease). Although very different from one another, these diseases share common mechanisms and features leading to neuronal death, including protein misfolding and aggregation, oxidative stress, impaired protein degradation, and apoptosis. This course will study how these molecular pathways define each disease, contributing to neurodegenerative phenomena. Relevance will be given to Alzheimer’s disease. This course fulfills a single unit in each of the following BU Hub areas: Oral and/or Signed Communication, Ethical Reasoning, Research and Information Literacy.

Independent
A1 Pastorino Mon, Wed, Fri 9:05am - 9:55am
Wed 10:10am - 11:00am

Notes: Meets with CAS NE 525.
Textbooks & Technology: Powerpoint presentations on research articles will be provided to students the day before class.
Grading: Exams (66%), assignments (12%), paper presentation (12%), and participation in class (10%).

CAS BI 599: PHYSIOLOGY OF THE SYNAPSE
Prereq: Junior standing and BI 325 or BI 481 or BI 445 recommended.
Neuron development and maturation, synapse formation, structure and molecular components of synapses, synaptic transmission, synaptic plasticity, neurotransmitter receptors, cellular basis for learning and memory, synaptic pathology in neurological diseases. Two hours lecture, two hours paper presentation and discussion.

Lecture and Discussion
A1 Man Wed, Fri 10:10am - 11:55am

Notes: Wednesday meetings are for paper presentations and Friday meetings are for lecture
Textbooks & Technology: Synapses (2003) by W. Maxwell Cowan and Thomas C. Südhof
Grading: Midterm and final exams (85%); paper presentation and attendance (15%)
CAS BI 140: FIRST YEAR RESEARCH IN BIOLOGY 1

Prereq: first year standing, consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for Biology major or minor credit. First semester first year laboratory research under the supervision of a Biology faculty mentor. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor.

Grading: Course grade is determined by laboratory/field work performance.

CAS BI 141: FIRST YEAR RESEARCH IN BIOLOGY 2

Prereq: first year standing, (BI 140 or UROP semester or equivalent), consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for Biology major or minor credit. Second semester first year laboratory research under the supervision of a Biology faculty mentor. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor.

Grading: Course grade is determined by laboratory/field work performance.

CAS BI 240: SOPHOMORE RESEARCH IN BIOLOGY 1

Prereq: sophomore standing, consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for Biology major or minor credit. First semester sophomore laboratory research under the supervision of a Biology faculty mentor. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor.

Grading: Course grade is determined by laboratory/field work performance.

CAS BI 241: SOPHOMORE RESEARCH IN BIOLOGY 2

Prereq: sophomore standing, (BI 140 or BI 240 or UROP semester or equivalent), consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for Biology major or minor credit. Second semester sophomore laboratory research under the supervision of a Biology faculty mentor. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor.

Grading: Course grade is determined by laboratory/field work performance.

CAS BI 340: JUNIOR RESEARCH IN BIOLOGY 1 (2 CREDITS)

Prereq: junior standing, consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for Biology major or minor credit. First semester junior research including the use of research literature. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings required. This course fulfills a single unit in the following BU Hub area: Research and Information Literacy.

Grading: Course grade is determined by laboratory/field work performance.

CAS BI 341: JUNIOR RESEARCH IN BIOLOGY 2 (2 CREDITS)

Prereq: junior standing, consent of instructor (faculty research mentor/sponsor), BI 340 or BI 350 or 2 semesters of first year (BI 140/141) or sophomore research (BI 240/241) or UROP semester or equivalent, and approved application.

[2 cr] Not for Biology major or minor credit. Second semester junior research including the use of research literature and active participation at group meetings. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance with oral presentations at group meetings required. This course fulfills a single unit in the following BU Hub area: Oral/Signed Communication.

Grading: Course grade is determined by laboratory/field work performance.
CAS BI 350: JUNIOR RESEARCH IN BIOLOGY 1 (4 CREDITS)

Prereq: junior standing, consent of instructor (faculty research mentor/sponsor), and approved application.

First semester junior research including the use of research literature and active participation at group meetings. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance with oral presentations at group meetings required. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy and Oral/Signed Communication.

Grading: Course grade is determined by laboratory/field work performance.

CAS BI 450: SENIOR RESEARCH IN BIOLOGY 1

Prereq: senior standing, consent of instructor (faculty research mentor/sponsor), and approved application.

First semester senior research including the use of research literature and active participation at group meetings. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings required. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy and Oral/Signed Communication.

Grading: Course grade is determined by laboratory/fieldwork performance.

CAS BI 351: JUNIOR RESEARCH IN BIOLOGY 2 (4 CREDITS)

Prereq: junior standing, (BI 340 or BI 350 or 2 semesters of first year (BI 140/141) or sophomore research (BI 240/241) or UROP semester or equivalent), consent of instructor (faculty research mentor/sponsor), and approved application.

Second semester junior research including the use of research literature. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor. Students conduct research under supervision of a faculty mentor. Students expected to attend group meetings and take a lead and make creative contributions to projects. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy and Creativity/Innovation.

Grading: Course grade is determined by laboratory/field work performance.

CAS BI 451: SENIOR RESEARCH IN BIOLOGY 2

Prereq: senior standing, (BI 340 or BI 350 or BI 450 or 2 semesters of first year (BI 140/141) or sophomore research (BI 240/241) or UROP semester or equivalent), consent of instructor (faculty research mentor/sponsor), and approved application.

Second semester senior research including the use of the research literature. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor. Students conduct research under supervision of a faculty mentor. Students expected to attend group meetings and take a lead and make creative contributions to projects. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy and Creativity/Innovation.

Grading: Course grade is determined by laboratory/fieldwork performance.

CAS BI 352: JUNIOR RESEARCH IN BIOLOGY 3 (4 CREDITS)

Prereq: junior standing, (BI 341 or BI 351 or equivalent), consent of instructor (faculty research mentor/sponsor), and approved application.

Third semester junior research including the use of the research literature. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings and final report required. Students expected to take a lead and make creative contributions to projects. This course fulfills a single unit in the following BU Hub areas: Writing-Intensive and Creativity/Innovation.

Grading: Course grade is determined by laboratory/field work performance.

CAS BI 452: SENIOR RESEARCH IN BIOLOGY 3

Prereq: senior standing, (BI 341 or BI 351 or BI 451 or equivalent), consent of instructor (faculty research mentor/sponsor), and approved application.

Third semester senior research including the use of research literature. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings and final report required. Students expected to take a lead and make creative contributions to projects. This course fulfills a single unit in the following BU Hub areas: Writing-Intensive and Creativity/Innovation.

Grading: Course grade is determined by laboratory performance.
CAS BI 453: SENIOR RESEARCH IN BIOLOGY 4
Prereq: senior standing, (BI 352 or BI 452 or equivalent), consent of instructor (faculty research mentor/sponsor), and approved application.
Coreq: CAS BI 497 or BI 498
Fourth semester senior research including the use of research literature. Application through the Biology Department. Research outside the Biology Department is acceptable if approved and overseen by a Biology faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings and final report required.
Grading: Course grade is determined by laboratory performance.

HONORS RESEARCH IN BIOLOGY
Honors Research in Biology offers students the ability to participate in two semesters of mentored 4-credit research (CAS BI 401 and 402) and a 2-credit research seminar (CAS BI 497 or 498). Students also write and defend an honors thesis on their research. For more information on research requirements and to apply, visit www.bu.edu/biology/research-credit. Time commitment is minimum 12 hours/week in lab or fieldwork, meetings, data analysis, and writing.

CAS BI 401: HONORS RESEARCH IN BIOLOGY 1
Prereq: senior standing, cumulative GPA of at least 3.5, and approval of the Biology Research and Honors Committee.
First semester of Honors-level mentored laboratory or field research with a faculty member of the Biology Department leading to graduation with Honors in Biology. A minimum grade of B+ in this course and in BI 497 or 498 and BI 401/402 is required to graduate with Honors in Biology. Application through the Biology Department including use of research literature and active participation at group meetings. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy and Oral/Signed Communication.
Grading: Course grade for both BI 401 and 402 is determined by laboratory performance, oral presentation, written thesis, and defense of the thesis before a committee of three faculty members. Grades for both BI 401 and 402 are determined upon completion of BI 402.

CAS BI 402: HONORS RESEARCH IN BIOLOGY 2
Prereq: senior standing, cumulative GPA of at least 3.5, and approval of the Biology Research and Honors Committee.
Honors-level mentored laboratory or field research with a faculty member of the Biology Department leading to graduation with Honors in Biology. A minimum grade of B+ in this course and in BI 497 or 498 and BI 402 is required to graduate with Honors in Biology. Application through the Biology Department including use of research literature. Students expected to attend and participate at group meetings and take a lead and make creative contributions to projects. This course fulfills a single unit in the following BU Hub areas: Oral/Signed Communication, Writing-Intensive, and Creativity/Innovation.
Grading: Course grade for BI 402 is determined by laboratory performance, oral presentation, written thesis, and defense of the thesis before a committee of three faculty members. Grades for both BI 401 and 402 are determined upon completion of BI 402.

CAS BI 498: HONORS RESEARCH IN BIOLOGY SEMINAR 2
Prereq: For students currently enrolled in BI 401, BI 402, or BI 453 in the spring semester.
[2 cr] A 2-credit weekly research seminar for students in BI 401, BI 402, or BI 453 in the spring semester. Students learn and present digitally produced descriptions of their research and prepare their theses for defense under the guidance of the Research and Honors Committee. A minimum grade of B+ in this course and BI 402 is required to graduate with honors. Students participate in only one course, either BI 497 or BI 498. This course fulfills a single unit in the following BU Hub areas: Digital/Multimedia Expression.
Grading: Attendance and participation.
CAS BI 172: READINGS IN BIOLOGY 1
Prereq: freshman standing, consent of instructor (Biology faculty mentor), and approved application.

[2 cr] Not for Biology major or minor credit. Library research on a well-defined topic in the biological sciences, chosen in conjunction with a Biology faculty member.

Grading: Individual discussions and/or a paper presentation may be required.

CAS BI 272: READINGS IN BIOLOGY 2
Prereq: sophomore standing, consent of instructor (Biology faculty mentor), and approved application.

[2 cr] Not for Biology major or minor credit. Library research on a well-defined topic in the biological sciences, chosen in conjunction with a Biology faculty member.

Grading: Individual discussions and/or a paper presentation may be required.

CAS BI 372: READINGS IN BIOLOGY 3
Prereq: junior standing, consent of instructor (Biology faculty mentor), and approved application.

[2 cr] Not for Biology major or minor credit. Library research on a well-defined topic in the biological sciences, chosen in conjunction with a Biology faculty member.

Grading: Individual discussions and/or a paper presentation may be required.

CAS BI 472: READINGS IN BIOLOGY 4
Prereq: junior or senior standing, cumulative GPA in biology of at least 3.0, and consent of instructor (Biology faculty mentor).

[2 cr] Not for Biology major or minor credit. Intensive library research on a well-defined topic in the biological sciences, chosen in conjunction with a Biology faculty member. May be taken as preparation for Undergraduate Research or Honors Research in Biology.

Grading: Individual discussions and/or a paper presentation may be required.

CAS BI 595: MASTER'S RESEARCH IN BIOLOGY
Prereq: Admission into the MS or BA/MS combined program

Biology laboratory research conducted under supervision of a faculty member. Externships are acceptable with prior approval. Minimum of 7.5 or 15 hours per week in the lab, culminating in submission of a written progress report.

Grading: Course grade is determined by laboratory performance.

READINGS IN BIOLOGY
Readings in Biology offers students the opportunity to do library research on a chosen topic in the biological sciences. Students must ask a Biology faculty member familiar with the topic to be their sponsor and submit the application found at www.bu.edu/biology/forms. These courses are often used as preparation for Undergraduate Research in Biology or Honors Research in Biology.

GRADUATE RESEARCH IN BIOLOGY
Graduate Research in Biology is offered as part of the BA/MS program. This dual degree program is only open to Biology and specialization majors. Students will receive both Bachelor’s of Arts and Master’s of Science degrees upon graduation. For more information on the BA/MS program, visit https://www.bu.edu/biology/undergrad/bams/.

GRADUATE READINGS IN BIOLOGY
Graduate Readings in Biology is offered as part of the BA/MS program. This dual degree program is only open to Biology and specialization majors. Students will receive both Bachelor’s of Arts and Master’s of Science degrees upon graduation. For more information on the BA/MS program, visit https://www.bu.edu/biology/undergrad/bams/.

GRS BI 701: GRADUATE READINGS IN BIOLOGY
Prereq: consent of instructor, limited to BA/MS students and graduate students in the scholarly paper MS program.

Library research on well-defined subjects determined in consultation with faculty member.

Grading: Individual discussions and/or a paper presentation may be required.
CAS BB 140: FIRST YEAR RESEARCH IN BMB 1
Prereq: first year standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for BMB major credit. First semester first year laboratory research under the supervision of a BMB faculty mentor. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty mentor.

Grading: Course grade is determined by laboratory performance.

CAS BB 141: FIRST YEAR RESEARCH IN BMB 2
Prereq: first year standing, (BB 140 or UROP semester or equivalent), GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for BMB major credit. Second semester first year laboratory research under the supervision of a BMB faculty mentor. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty mentor.

Grading: Course grade is determined by laboratory performance.

CAS BB 240: SOPHOMORE RESEARCH IN BMB 1
Prereq: sophomore standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for BMB major credit. First semester sophomore laboratory research under the supervision of a BMB faculty mentor. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty mentor.

Grading: Course grade is determined by laboratory performance.

CAS BB 241: SOPHOMORE RESEARCH IN BMB 2
Prereq: sophomore standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, BB 140 or BB 141 or BB 240 or UROP semester or equivalent, consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for BMB major credit. Second semester sophomore laboratory research under the supervision of a BMB faculty mentor. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty mentor.

Grading: Course grade is determined by laboratory performance.

CAS BB 340: JUNIOR RESEARCH IN BMB 1 (2 CREDITS)
Prereq: junior standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for BMB major credit. First semester junior research including the use of research literature. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty mentor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings required. This course fulfills a single unit in the following BU Hub area: Research and Information Literacy.

Grading: Course grade is determined by laboratory performance.

CAS BB 341: JUNIOR RESEARCH IN BMB 2 (2 CREDITS)
Prereq: junior standing, [BB 340 or BB 350 or 2 semesters of first year (BB 140/141) or sophomore research (BB 240/241) or UROP semester or equivalent], GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

[2 cr] Not for BMB major credit. Second semester junior research including the use of research literature. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty mentor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings required. This course fulfills a single unit in the following BU Hub area: Research and Information Literacy.

Grading: Course grade is determined by laboratory performance.

CAS BB 350: JUNIOR RESEARCH IN BMB 1 (4 CREDITS)
Prereq: junior standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

First semester junior research including the use of research literature and active participation at group meetings. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty mentor. Students conduct research under supervision of a faculty mentor. Attendance with oral presentations at group meetings required. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy and Oral/Signed Communication.

Grading: Course grade is determined by laboratory performance.
CAS BB 351: JUNIOR RESEARCH IN BMB 2 (4 CREDITS)
Prereq: junior standing, BB 340 or BB 350 or 2 semesters of first year (BB 140/141) or sophomore research (BB 240/241) or UROP semester or equivalent, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

Second semester junior research including the use of research literature. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. Students conduct research under supervision of a faculty mentor. Students expected to attend group meetings and take a lead and make creative contributions to projects. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy and Creativity/Innovation.

Grading: Course grade is determined by laboratory performance.

CAS BB 352: JUNIOR RESEARCH IN BMB 3 (4 CREDITS)
Prereq: junior standing, BB 341 or BB 351 or equivalent, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

Third semester junior research including the use of the research literature. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings and final report required. Students expected to take a lead and make creative contributions to projects. This course fulfills a single unit in the following BU Hub areas: Writing-Intensive and Creativity/Innovation.

Grading: Course grade is determined by laboratory performance.

CAS BB 450: SENIOR RESEARCH IN BMB 1
Prereq: senior standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

First semester senior research including the use of research literature and active participation at group meetings. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance with oral presentations at group meetings required. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy and Oral/Signed Communication.

Grading: Course grade is determined by laboratory performance.

CAS BB 451: SENIOR RESEARCH IN BMB 2
Prereq: senior standing, BB 340 or BB 350 or BB 450 or 2 semesters of first year (BB 140/141) or sophomore research (BB 240/241) or UROP semester or equivalent, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

Second semester senior research including the use of the research literature. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. Students conduct research under supervision of a faculty mentor. Students expected to attend group meetings and take a lead and make creative contributions to projects. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy and Creativity/Innovation.

Grading: Course grade is determined by laboratory performance.

CAS BB 452: SENIOR RESEARCH IN BMB 3
Prereq: senior standing, BB 341 or BB 351 or BB 451 or equivalent, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.

Third semester senior research including the use of research literature. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings and final report required. Students expected to take a lead and make creative contributions to projects. This course fulfills a single unit in the following BU Hub areas: Writing-Intensive and Creativity/Innovation.

Grading: Course grade is determined by laboratory performance.

CAS BB 453: SENIOR RESEARCH IN BMB 4
Prereq: senior standing, BB 352 or BB 452 or equivalent, GPA in biochemistry and molecular biology (BMB) courses of at least 3.0, consent of instructor (faculty research mentor/sponsor), and approved application.
Coreq: CAS BB 497 or BB 498

Fourth semester senior research including the use of research literature. Application through the BMB Program. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. Students conduct research under supervision of a faculty mentor. Attendance at group meetings and final report required.

Grading: Course grade is determined by laboratory performance.
HONORS RESEARCH IN BMB

Honors Research in BMB offers students the ability to participate in two semesters of mentored 4-credit research (CAS BB 401 and 402) and 1-credit research seminars (CAS BB 497 and 498). Students also write and defend an honors thesis on their research. For more information on research requirements and to apply, visit www.bu.edu/bmb/research. Time commitment is a minimum of 12 hours a week, not including preparation and evaluation.

CAS BB 401: HONORS RESEARCH IN BMB 1

Prereq: senior standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.5, consent of instructor (faculty research mentor/sponsor), and approval of application by the BMB Research and Honors Committee. Coreq: CAS BB 497

First semester of Honors-level undergraduate research in BMB. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. A minimum grade of B+ in this course and in BB 497/498 and BB 401/402 is required to graduate with Honors in BMB. Students must also present a research talk at the BMB symposium at the end of the spring semester of the academic year. Students will conduct mentored laboratory research with a faculty member of the BMB Program leading to graduation with Honors in BMB. Application through the BMB Program including use of research literature and active participation at group meetings. Oral presentations at group meetings required. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy, Writing-Intensive, and Creativity/Innovation.

Grading: Course grade for both BB 401 and 402 is determined by laboratory performance, oral presentation, written thesis, and defense of the thesis before a committee of three faculty members. Grades for both BB 401 and 402 are determined upon completion of BB 402.

CAS BB 402: HONORS RESEARCH IN BMB 2

Prereq: senior standing, GPA in biochemistry and molecular biology (BMB) courses of at least 3.5, consent of instructor (faculty research mentor/sponsor), and approval of application by the BMB Research and Honors Committee. Coreq: CAS BB 498

Second semester of Honors-level undergraduate research leading to graduation with Honors in BMB (continuation of BB 401). Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. A minimum grade of B+ in this course and in BB 497/498 and BB 401/402 is required to graduate with Honors in BMB. Students must also present a research talk at the BMB symposium at the end of the spring semester of the academic year. Students expected to attend and participate at group meetings and take a lead and make creative contributions to projects ending in writing and defending an original thesis with guidance from their mentor. This course fulfills a single unit in the following BU Hub areas: Research and Information Literacy, Writing-Intensive, and Creativity/Innovation.

Grading: Course grade is determined by laboratory performance, oral presentation, written thesis, and defense of the thesis before a committee of BMB faculty members. Grades for both BB 401 and 402 are determined upon completion of BB 402.

CAS BB 498: HONORS RESEARCH IN BMB SEMINAR 2

Prereq: For students currently enrolled in the Honors BMB Program or BB 453 in the spring semester.

Coreq: CAS BB 402 or BB 453 in the spring semester.

[1 cr] A one-credit continuation of BB 497 for students enrolled in Honors Research in BMB (BB 402) or BB 453 in the spring. Students learn and present digitally produced descriptions of their research and prepare their theses for defense under the guidance of the Research and Honors Committee and present at the BMB Symposium at the end of the semester. A minimum grade of B+ in this course and in BB 497 and BB 401/402 is required to graduate with Honors in BMB. This course fulfills a single unit in the following BU Hub areas: Digital/Multimedia Expression.

Grading: Attendance and participation.

GRADUATE RESEARCH IN BMB

Graduate Research in BMB is offered as part of the BA/MA program. This duel-degree program is only open to BMB majors and earns students a Bachelor’s degree in BMB and a Master’s degree in Biotechnology. For more information on the BA/MA program, visit www.bu.edu/bmb/bama-bulletin.

CAS BB 592: GRADUATE RESEARCH IN BIOCHEMISTRY AND MOLECULAR BIOLOGY

Prereq: Admission to the BA/MA Program.

Laboratory research conducted under the supervision of a BMB faculty sponsor. Research outside the BMB Program is acceptable if approved and overseen by a BMB faculty sponsor. Minimum of 15 hours per week in the lab, culminating in submission to the BMB Director of a written progress report and research outline for CAS BB 592. This course fulfills a single unit in the following Hub areas: Digital/Multimedia Expression and Creativity/Innovation

Grading: Course grade is determined by laboratory performance.

Electives for the BMB major can be found in other sections of the Course Directory.

A list of courses accepted toward the BMB major can be found in the Bulletin at www.bu.edu/bmb/bulletin.
INDEX

<table>
<thead>
<tr>
<th>CAS</th>
<th>CAS (cont.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB 140-453</td>
<td>Undergraduate Research in BMB pg. 19-20</td>
</tr>
<tr>
<td>BB 401-402</td>
<td>Honors Research in BMB pg. 21</td>
</tr>
<tr>
<td>BB 498</td>
<td>Honors Research in BMB Seminar 2 pg. 21</td>
</tr>
<tr>
<td>BB 592</td>
<td>Graduate Research in BMB pg. 21</td>
</tr>
<tr>
<td>BI 108</td>
<td>Biology 2 pg. 2</td>
</tr>
<tr>
<td>BI 114</td>
<td>Human Infectious Diseases pg. 2</td>
</tr>
<tr>
<td>BI 116</td>
<td>Biology 2 with ISE Lab pg. 2</td>
</tr>
<tr>
<td>BI 140-453</td>
<td>Undergraduate Research in Biology Pg. 15-17</td>
</tr>
<tr>
<td>BI 172-472</td>
<td>Readings in Biology Pg. 18</td>
</tr>
<tr>
<td>BI 203</td>
<td>Cell Biology pg. 3</td>
</tr>
<tr>
<td>BI 206</td>
<td>Genetics pg. 3</td>
</tr>
<tr>
<td>BI 210</td>
<td>Human Anatomy pg. 12</td>
</tr>
<tr>
<td>BI 216</td>
<td>Intensive Genetics pg. 4</td>
</tr>
<tr>
<td>BI 225</td>
<td>Behavioral Biology pg. 8</td>
</tr>
<tr>
<td>BI 260</td>
<td>Marine Biology pg. 8</td>
</tr>
<tr>
<td>BI 282</td>
<td>Fundamentals of Biology 2 pg. 4</td>
</tr>
<tr>
<td>BI 302</td>
<td>Vertebrate Zoology pg. 8</td>
</tr>
<tr>
<td>BI 303</td>
<td>Ecology pg. 8</td>
</tr>
<tr>
<td>BI 306</td>
<td>Biology of Global Change pg. 9</td>
</tr>
<tr>
<td>BI 315</td>
<td>Systems Physiology pg. 12</td>
</tr>
<tr>
<td>BI 325</td>
<td>Principles of Neuroscience pg. 13</td>
</tr>
<tr>
<td>BI 349</td>
<td>Neurotoxins in Biology, Medicine, Agriculture, and War pg. 13</td>
</tr>
<tr>
<td>BI 385</td>
<td>Immunology pg. 4</td>
</tr>
<tr>
<td>BI 394</td>
<td>Topics in Biology: Cell Biology & Translational Medicine pg. 4</td>
</tr>
<tr>
<td>BI 401-402</td>
<td>Honors Research in Biology pg. 17</td>
</tr>
<tr>
<td>BI 411</td>
<td>Microbiome: Our Intimate Relationship with Microorganisms pg. 5</td>
</tr>
<tr>
<td>BI 413</td>
<td>Microbial Ecology pg. 9</td>
</tr>
<tr>
<td>BI 414</td>
<td>Ornithology pg. 9</td>
</tr>
<tr>
<td>BI 422</td>
<td>Biochemistry 2 pg. 5</td>
</tr>
<tr>
<td>BI 423</td>
<td>Marine Biogeochemistry pg. 9</td>
</tr>
<tr>
<td>BI 448</td>
<td>Conservation Biology pg. 9</td>
</tr>
<tr>
<td>BI 449</td>
<td>Neuroscience Design Lab pg. 13</td>
</tr>
<tr>
<td>BI 475</td>
<td>Urban Ecology pg. 10</td>
</tr>
<tr>
<td>BI 481</td>
<td>Molecular Biology of the Neuron pg. 5, 13</td>
</tr>
<tr>
<td>BI 498</td>
<td>Honors Research in Biology Seminar 2 pg. 17</td>
</tr>
<tr>
<td>BI 500</td>
<td>Shark Biology & Conservation pg. 10</td>
</tr>
<tr>
<td>BI 506</td>
<td>Phenotypic Plasticity pg. 10</td>
</tr>
<tr>
<td>BI 510</td>
<td>Institutional Racism in Health & Science pg. 6</td>
</tr>
<tr>
<td>BI 520</td>
<td>Sensory Neurobiology pg. 14</td>
</tr>
<tr>
<td>BB 522</td>
<td>Molecular Biology Lab pg. 6</td>
</tr>
<tr>
<td>BI 525</td>
<td>Biology of Neurodegenerative Diseases pg. 14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI 701</td>
</tr>
</tbody>
</table>